531 research outputs found

    Molecular Dynamics Studies on Nanoscale Gas Transport

    Get PDF
    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the wall force penetration region at different flow conditions. Shear stress results are utilized to calculate the tangential momentum accommodation coefficient (TMAC) between argon gas and FCC walls. The TMAC value is shown to he independent of the now properties and Knudsen number in all simulations. Velocity profiles show distinct deviations from the kinetic theory based solutions inside the wall force penetration depth, while they match the linearized Boltzmann equation solution outside these zones. Afterwards, surface effects are studied as a function of the surface-gas potential strength ratio (ϵ wf/ϵff) for the shear driven argon gas flows in the early transition and tree molecular flow regimes. Results show that increased ϵwf/ϵ ff results in increased gas density, leading towards monolayer adsorption on surfaces. The near wall velocity profile shows reduced gas slip, and eventually velocity stick with increased ϵwf/ϵ ff. Similarly, using MD predicted shear stress values and kinetic theory, TMAC are calculated as a function of ϵwf/ϵ ff and TMAC values are shown to be independent of the Knudsen number. Results indicate emergence of the wall force field penetration depth as an additional length scale for gas flows in nano-channels, breaking the dynamic similarity between rarefied and nano-scale gas flows solely based on the Knudsen and Mach numbers

    Fluid velocity slip and temperature jump at a solid surface

    Full text link
    A comprehensive review of current analytical models, experimental techniques, and influencing factors is carried out to highlight the current challenges in this area. The study of fluid-solid boundary conditions has been ongoing for more than a century, starting from gas-solid interfaces and progressing to that of the more complex liquid-solid case. Breakthroughs have been made on the theoretical and experimental fronts but the mechanism behind the phenomena remains a puzzle. This paper provides a review of the theoretical models, and numerical and experimental investigations that have been carried out till date. Probable mechanisms and factors that affect the interfacial discontinuity are also documented

    ASA 2021 Statistics and Information Systems for Policy Evaluation

    Get PDF
    This book includes 25 peer-reviewed short papers submitted to the Scientific Opening Conference titled “Statistics and Information Systems for Policy Evaluation”, aimed at promoting new statistical methods and applications for the evaluation of policies and organized by the Association for Applied Statistics (ASA) and the Department of Statistics, Computer Science, Applications DiSIA “G. Parenti” of the University of Florence, jointly with the partners AICQ (Italian Association for Quality Culture), AICQ-CN (Italian Association for Quality Culture North and Centre of Italy), AISS (Italian Academy for Six Sigma), ASSIRM (Italian Association for Marketing, Social and Opinion Research), Comune di Firenze, the SIS – Italian Statistical Society, Regione Toscana and Valmon – Evaluation & Monitoring

    Measuring and Modeling Viscoelastic Relaxation of the Lithosphere with Application to the Northern Volcanic Zone, Iceland

    Get PDF
    Viscoelastic relaxation of the stress perturbation caused by an earthquake or diking event can produce measurable ground deformation over 100 km away from the source. We consider the role of viscoelastic relaxation in two different contexts. First, we explore the role that post-seismic relaxation may play in loading a fault over the entire seismic cycle. Viscous relaxation recycles the stress that is shed by the co-seismic fault, acting to reload the fault with stresses in a non-linear fashion. Under conditions of rapid post-seismic relaxation and slow tectonic loading, stress recycling via viscoelastic relaxation can lead to clustering of earthquakes in time. The second context in which we consider viscoelastic relaxation involves the lithospheric response to a mid-ocean ridge rifting episode in Northern Iceland. The diking and subsequent relaxation act as a natural rock mechanics experiment, and in measuring and modeling the post-rifting response we aim to constrain the rheological properties of the Icelandic lithosphere. In order to use post-seismic or post-rifting relaxation to probe properties of the lithosphere, we must be able to precisely measure surface deformation. To that end, we have developed a couple of new interferometric synthetic aperture radar (InSAR) processing approaches: (1) Automatically producing multiple interferograms in a common coordinate system and (2) removing displacements caused by ocean tidal loading from InSAR observations. Both of these developments are essential as we begin to consider the systematic use of tens to hundreds of interferograms

    Integrated trailing edge flap track mechanism for commercial aircraft

    Get PDF

    The critical slip distance for seismic and aseismic fault zones of finite width

    Get PDF
    We present a conceptual model for the effective critical friction distance for fault zones of finite width. A numerical model with 1D elasticity is used to investigate implications of the model for shear traction evolution during dynamic and quasi-static slip. The model includes elastofrictional interaction of multiple, parallel slip surfaces, which obey rate and state friction laws with either Ruina (slip) or Dieterich (time) state evolution. A range of slip acceleration histories is investigated by imposing perturbations in slip velocity at the fault zone boundary and using radiation damping to solve the equations of motion. The model extends concepts developed for friction of bare surfaces, including the critical friction distance L, to fault zones of finite width containing wear and gouge materials. We distinguish between parameters that apply to a single frictional surface, including L and the dynamic slip weakening distance do, and those that represent slip for the entire fault zone, which include the effective critical friction distance, Dcb, and the effective dynamic slip weakening distance Do. A scaling law for Dcb is proposed in terms of L and the fault zone width. Earthquake source parameters depend on net slip across a fault zone and thus scale with Dcb, Do, and the slip at yield strength Da. We find that Da decreases with increasing velocity jump size for friction evolution via the Ruina law, whereas it is independent of slip acceleration rate for the Dieterich law. For both laws, Da scales with fault zone width and shear traction exhibits prolonged hardening before reaching a yield strength. The parameters Dcb and Do increase roughly linearly with fault zone thickness. This chapter and a companion chapter in the volume discuss the problem of reconciling laboratory measurements of the critical friction distance with theoretical and field-based estimates of the effective dynamic slip weakening distance

    Reliability prediction in early design stages

    Get PDF
    In the past, reliability is usually quantified with sufficient information available. This is not only time-consuming and cost-expensive, but also too late for occurred failures and losses. For solving this problem, the objective of this dissertation is to predict product reliability in early design stages with limited information. The current research of early reliability prediction is far from mature. Inspired by methodologies for the detail design stage, this research uses statistics-based and physics-based methodologies by providing general models with quantitative results, which could help design for reliability and decision making during the early design stage. New methodologies which accommodate component dependence, time dependence, and limited information are developed in this research to help early accurate reliability assessment. The component dependence is considered implicitly and automatically without knowing component design details by constructing a strength-stress interference model. The time-dependent reliability analysis is converted into its time-independent counterpart with the use of the extreme value of the system load by simulation. The effect of dependent interval distribution parameters estimated from limited point and interval samples are also considered to obtain more accurate system reliability. Optimization is used to obtain narrower system reliability bounds compared to those from the traditional method with independent component assumption or independent distribution parameter assumption. With new methodologies, it is possible to obtain narrower time-dependent system reliability bounds with limited information during early design stages by considering component dependence and distribution parameter dependence. Examples are provided to demonstrate the proposed methodologies --Abstract, page iv
    corecore