184 research outputs found

    Post-processing Routes for Design of Giant Magnetoimpedance Response and Domain Wall Dynamics Control in Glass-coated Magnetic Microwires

    Get PDF
    215 p.En esta tesis se presenta el estado actual del arte en la producción, propiedades y aplicaciones demicrohilos magnéticos recubiertos de vidrio junto con las técnicas experimentales empleadas para laproducción y caracterización de los materiales estudiados se tratan efectos novedosos en microhilosmagnéticamente blandos recubiertos de vidrio. El trabajo se enfoca en: i) microhilos amorfos ricos en Fecon tratamiento térmico optimizado para la mejora del efecto de magnetoimpedancia gigante (GMI) ydinámica de pared de dominio mejorada; ii) microhilos amorfos a base de Fe y Co con anisotropíamagnética graduada; y iii) Microhilos basados en Co con efecto conjunto de alto GMI y rápidapropagación de pared de dominio único. La última sección está dedicada a la nueva posibilidad deaplicación de microhilos recubiertos de vidrio en compuestos inteligentes con microhilos integrados

    Development of Co-Rich Microwires with Graded Magnetic Anisotropy

    Get PDF
    In this paper, a gradual change in the hysteresis loop of Co-rich glass-coated microwire stress-annealed at variable temperature is observed. Such microwires annealed with a temperature gradient also present a variable squareness ratio and magnetic anisotropy field along the microwire’s length. The obtained graded anisotropy has been attributed to a gradual modification of the domain structure along the microwire originated by a counterbalance between shape, magnetoelastic, and induced magnetic anisotropies. Accordingly, we propose a rather simple route to design graded magnetic anisotropy in a magnetic microwire.This work was funded by and by the EU under “INFINITE” (Horizon 2020) project, by the Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by the Government of the Basque Country under PIBA 2018-44, PUE_2021_1_0009 and Elkartek (CEMAP and AVANSITE) projects, by the Diputación Foral de Gipuzkoa in the frame of Programa “Red guipuzcoana de Ciencia, Tecnología e Innovación 2021” under 2021-CIEN-000007-01 project and by the University of Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU18/192) and COLAB20/15 project

    Tuneable Composites Containing Magnetic Microwires

    Get PDF

    Optimization of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Annealing

    Get PDF
    As-prepared Fe-rich microwires with perfectly rectangular hysteresis loops present magnetization reversal through fast domain wall propagation, while the giant magnetoimpedance (GMI) effect in Fe-rich microwires is rather low. However, the lower cost of Fe-rich microwires makes them attractive for magnetic sensors applications. We studied the effect of conventional (furnace) annealing and Joule heating on magnetic-propertied domain wall (DW) dynamics and the GMI effect in two Fe microwires with different geometries. We observed that magnetic softness, GMI effect and domain wall (DW) dynamics can be substantially improved by appropriate annealing. Observed experimental results are discussed considering the counterbalance between the internal stresses relaxation and induced magnetic anisotropy associated with the presence of an Oersted magnetic field during Joule heating.This work was funded by the Spanish MICIN under PID2022-141373NB-I00, by the EU “Horizon Europe “under the “INFINITE” (HORIZON-CL5-2021-D5-01-06) project and by the government of the Basque Country under PUE_2021_1_0009, “Ayuda a Grupos Consolidados” (ref. IT1670-22) and Elkartek (MINERVA, MAGAF and ZE-KONP) projects

    Engineering of domain wall propagation in magnetic microwires with graded magnetic anisotropy

    Get PDF
    [EN] We report on the influence of graded magnetic anisotropy designed by stress-annealing of magnetic microwire at variable annealing temperature on domain wall propagation. We found that the domain wall propagation in a medium with graded magnetic anisotropy is substantially nonuniform. Domain wall can be trapped in the microwire region with strong enough stress-annealing induced magnetic anisotropy. On the other hand, faster domain wall propagation and a decrease in the domain wall length are observed in the region with moderate stress-annealing induced magnetic anisotropy. Beneficial effect of stress annealing on the domain wall dynamics is associated with the induced transverse magnetic anisotropy in the outer domain which affects the travelling domain wall in a similar way as application of transversal bias magnetic field. Observed decreasing of the half-width of the electromagnetic force (EMF) peak in stress-annealed microwires can be associated to the decreasing of the characteristic domain wall length.This work was supported by the Spanish MCIU, under PGC2018099530-B-C31 (MCIU/AEI/FEDER, UE), by the Government of the Basque Country, under PIBA 2018-44, PUE_2021_1_00 09 and Elkartek (CEMAP and AVANSITE) projects, and by the University of Basque Country, under the scheme of "Ayuda a Grupos Consolidados"(Ref.: GIU18/192) and COLAB20/15 project. The authors are thankful for the technical and human support provided by SGIker of UPV/EHU (Medidas Magneticas Gipuzkoa) and European funding (ERDF and ESF)

    Review of domain wall dynamics engineering in magnetic microwires

    Get PDF
    The influence of magnetic anisotropy, post-processing conditions, and defects on the domain wall (DW) dynamics of amorphous and nanocrystalline Fe-, Ni-, and Co-rich microwires with spontaneous and annealing-induced magnetic bistability has been thoroughly analyzed, with an emphasis placed on the influence of magnetoelastic, induced and magnetocrystalline anisotropies. Minimizing magnetoelastic anisotropy, either by the selection of a chemical composition with a low magnetostriction coefficient or by heat treatment, is an appropriate route for DW dynamics optimization in magnetic microwires. Stress-annealing allows further improvement of DW velocity and hence is a promising method for optimization of DW dynamics in magnetic microwires. The origin of current-driven DW propagation in annealing-induced magnetic bistability is attributed to magnetostatic interaction of outer domain shell with transverse magnetization orientation and inner axially magnetized core. The beneficial influence of the stress-annealing on DW dynamics has been explained considering that it allows increasing of the volume of outer domain shell with transverse magnetization orientation at the expense of decreasing the radius of inner axially magnetized core. Such transverse magnetic anisotropy can similarly a ect the DW dynamics as the applied transverse magnetic field and hence is beneficial for DW dynamics optimization. Stress-annealing allows designing the magnetic anisotropy distribution more favorable for the DW dynamics improvement. Results on DW dynamics in various families of nanocrystalline microwires are provided. The role of saturation magnetization on DW mobility improvement is discussed. The DW shape, its correlation with the magnetic anisotropy constant and the microwire diameter, as well as manipulation of the DW shape by induced magnetic anisotropy are discussed. The engineering of DW propagation through local stress-annealing and DW collision is demonstrated.This research was funded by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by the Government of the Basque Country under PIBA 2018-44 and Elkartek (CEMAP and AVANSITE) projects, and by the University of Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU18/192). J.O. wishes to acknowledge the support of the Ministry of Higher Education, Science and Technology of the Dominican Republic (2015 FONDOCyT program)

    Metal-to-glass ratio and the Magneto-Impedance of glass-covered CoFeBSi microwires at high frequencies

    Full text link
    High frequency [1-500 MHz] measurements of the Magneto-Impedance (MI) of glass-covered Co69.4_{69.4}Fe3.7_{3.7}B15.9_{15.9}Si11_{11} microwires are carried out with various metal-to-wire diameter ratios. A twin-peak, anhysteretic behaviour is observed as a function of magnetic field. A maximum in ΔZ/Z\Delta Z/Z appears at different values of the frequency ff, 125, 140 and 85 MHz with the corresponding diameter ratio pp = 0.80, 0.55 and 0.32. We describe the measurement technique and interpret our results with a thermodynamic model that leads to a clearer view of the effects of pp on the maximum value of MI and the anisotropy field.Comment: 5 pages and 6 figure
    corecore