8 research outputs found

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Streaming BDD manipulation

    Get PDF
    Binary decision diagrams (BDDs) are commonly used for handling Boolean functions because of their excellent efficiency in terms of time and space. However, the conventional BDD manipulation algorithm is strongly based on the hash table technique, so it always encounters the memory overflow problem when handling large-scale BDD data. This paper proposes a new streaming BDD manipulation method that never causes memory overflow or swap out. This method allows us to handle very large-scale BDD stream data beyond the memory limitation. Our method can be characterized as follows: (1) it gives a continuous tradeoff curve between memory usage and stream data length, (2) valid solutions for a partial Boolean space can be obtained if we break the process before finishing, and (3) easily accelerated by pipelined multiprocessing. An experimental result demonstrates that we can succeed in finding a number of solutions to a SAT problem using a commodity PC with a 64 MB memory, where as the conventional BDD manipulator would have required a 100 GB memory. BDD manipulation has been considered as an intensively memory-consuming procedure, but now we can also utilize the hard disk and network resources as well. The method leads to a new approach to BDD manipulatio

    Streaming BDD manipulation

    No full text

    Streaming BDD manipulation

    No full text
    corecore