2,178 research outputs found

    Edge-based mining of frequent subgraphs from graph streams

    Get PDF
    In the current era of Big data, high volumes of valuable data can be generated at a high velocity from high-varieties of data sources in various real-life applications ranging from sensor networks to social networks, from bio-informatics to chemical informatics. In addition, Big data are also available in business, education, engineering, finance, healthcare, scientific, telecommunication, and transportation domains. A collection of these data can be viewed as a big dynamic graph structure. Embedded in them are implicit, previously unknown, and potentially useful knowledge. Consequently, efficient knowledge discovery algorithms for mining frequent subgraphs from these dynamic streaming graph structured data are in demand. On the one hand, some existing algorithms discover collections of frequently co-occurring edges, which may be disjoint. On the other hand, some other existing algorithms discover frequent subgraphs by requiring very large memory space. With high volumes of Big data, available memory space may be limited. To discover collections of frequently co-occurring connected edges, we present in this paper two efficient algorithms that require small memory space. Evaluation results show the efficiency of our edge-based algorithms in mining frequent subgraphs from graph streams

    Frequent subgraph mining from streams of linked graph structured data

    Get PDF
    Nowadays, high volumes of high-value data (e.g., semantic web data) can be generated and published at a high velocity. A collection of these data can be viewed as a big, interlinked, dynamic graph structure of linked resources. Embedded in them are implicit, previously unknown, and potentially useful knowledge. Hence, ecient knowledge discovery algorithms for mining frequent subgraphs from these dynamic, streaming graph structured data are in demand. Some existing algorithms require very large memory space to discover frequent subgraphs; some others discover collections of frequently co-occurring edges (which may be disjoint). In contrast, we propose|in this paper|algorithms that use limited memory space for discovering collections of frequently co-occurring connected edges. Evaluation results show the effectiveness of our algorithms in frequent subgraph mining from streams of linked graph structured data

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Streaming Active Learning Strategies for Real-Life Credit Card Fraud Detection: Assessment and Visualization

    Full text link
    Credit card fraud detection is a very challenging problem because of the specific nature of transaction data and the labeling process. The transaction data is peculiar because they are obtained in a streaming fashion, they are strongly imbalanced and prone to non-stationarity. The labeling is the outcome of an active learning process, as every day human investigators contact only a small number of cardholders (associated to the riskiest transactions) and obtain the class (fraud or genuine) of the related transactions. An adequate selection of the set of cardholders is therefore crucial for an efficient fraud detection process. In this paper, we present a number of active learning strategies and we investigate their fraud detection accuracies. We compare different criteria (supervised, semi-supervised and unsupervised) to query unlabeled transactions. Finally, we highlight the existence of an exploitation/exploration trade-off for active learning in the context of fraud detection, which has so far been overlooked in the literature

    Comparative process mining:analyzing variability in process data

    Get PDF

    Comparative process mining:analyzing variability in process data

    Get PDF

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included
    • …
    corecore