

Comparative process mining

Citation for published version (APA):
Bolt Iriondo, A. J. (2023). Comparative process mining: analyzing variability in process data. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 11/01/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/bb7e6e1c-491d-40d1-8cbc-037b22dd1403

Comparative Process Mining: Analyzing
Variability in Process Data

Alfredo José Bolt Iriondo

Copyright © 2021 by A.J. Bolt Iriondo. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Bolt Iriondo, Alfredo José

Comparative Process Mining: Analyzing Variability in Process Data by
A.J. Bolt Iriondo.
Eindhoven: Technische Universiteit Eindhoven, 2023. Proefschrift.

Cover design by Camilo Ordenes

A catalogue record is available from the Eindhoven University of Tech-
nology Library

ISBN 978-90-386-5641-0

Keywords: Process Cube, Process Mining Workflow, Process Compari-
son, Process Variability

SIKS Dissertation Series No. 2023-01. The research reported in this thesis has
been carried out under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.

Printed by Ipskamp Printing B.V., Auke Vleerstraat 145, 7547 PH // Enschede,
The Netherlands.

Comparative Process Mining:
Analyzing Variability in Process Data

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het

openbaar te verdedigen op woensdag 11 januari 2023, om 11.00 uur

door

Alfredo José Bolt Iriondo

geboren te Santiago, Chili.

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof. dr. E.R. van den Heuvel
1e promotor: prof. prof. h. c. dr. h. c. dr. ir. W. M. P. van der Aalst

 (RWTH Aachen)
2e promotor: prof. dr. ir. H. A. Reijers
leden: prof. dr. I. Weber (TU Berlin)
 prof. dr. N. Meratnia
 prof. dr. M. E. Sepúlveda
 (Pontificia Universidad Católica de Chile)
adviseur(s): prof. dr. R. M. Dijkman

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is
uitgevoerd in overeenstemming met de TU/e Gedragscode
Wetenschapsbeoefening.

“Sometimes science is more art than science... A lot of people don’t get that”

Rick Sánchez

Abstract

Modern organizations may have a large number processes with different char-
acteristics. Most of them are supported by information systems ranging from
excel sheets to ERP systems. Such systems leave a data footprint that consists
of recorded executions of processes i.e., event data.

Process mining is a relatively young research discipline that is concerned with
discovering, monitoring and improving real processes by extracting knowledge
from event data readily available in today’s systems [156]. Process mining sup-
ports the extraction of insights from data about the overall and inner behavior
contained in any given process. Hundreds of different process mining tech-
niques have been proposed in literature. These are not limited to process-model
discovery and the checking of conformance. Also, other perspectives (e.g., data)
and operational support (e.g., predictions) are included.

In real-life, business processes are not static: They have to adapt to con-
stant environment changes (e.g., customer preferences, legal regulations, new
competitors). Like any live species, organizations (and their business processes)
also evolve according to Darwinian evolution: The best to adapt is the one that
thrives. It is not uncommon for organizations that the same business process
has to adapt to different contexts simultaneously, which leads to variability in
such processes, and ultimately to different process variants.

In many scenarios, splitting a process into variants can effectively reduce its
variability (hence, its complexity), making them easier to analyze. It also en-
ables many types of analysis e.g., comparing the different variants of the process
in order to identify the best practices and detect differences and similarities be-
tween variants. Nevertheless, the best way to split a process is not always clear.

viii

In general, we observe execution data of a process without knowing much about
it (sometimes we do not even know if there is an actual process in there). The
best way to split and analyze unknown data is obscured, and it requires exten-
sive trial-and-error experimenting until an acceptable solution is found.

This thesis addresses the problem of analyzing process variability by propos-
ing techniques and tools that use event data to identify variants within a process,
split them, compare them, and automate their analysis. Concretely, this thesis
proposes the following contributions to the body of scientific knowledge:

A technique to support the interactive and consistent exploration of process
variants (Chapter 3). Process Cubes are the result of adapting OLAP-operations
to explore process data, where each cell in a process cube contains events that
can be converted into a process variant. Process cubes enable the consistent
exploration of process variants, which can be used by other process mining
techniques.

A technique to compare process variants. (Chapter 5). This technique is able
to compare process variants in terms of behavior (using event dimensions) and
in terms of business rules, based on their event logs. The results are projected
into a process model that serves as a “map” in which the differences are clearly
identified and can be pinpointed to specific parts (e.g., activities) of the process.

A technique to detect relevant process variants in a general setting. (Chap-
ter 6). This technique is able to detect process variants in process data by split-
ting cases based on the data attributes of their events. It uses statistical testing
and unbiased variable selection to detect only relevant process variants. The
result is a summary of relevant splittings, where each splitting leads to a set of
variants. Each variant is then encoded into its corresponding set of traces. As
a result, an enriched event log can be used by a process cube to split the event
data into such variants using variant-related dimensions.

Support the execution of process mining workflows. (Chapter 4). The concept
of a process mining workflow as a chain of process mining (and/or non-process
mining) analysis steps is introduced. Process mining workflows can be used
to completely describe arbitrary process mining experiments. Therefore, it en-
ables full reproducibility of the results. The tool supporting these workflows is
introduced and it is applied in several use cases.

Develop replicable and sound benchmarks. (Chapters 7 and 8). Process min-
ing workflows are used to define two frameworks: one for benchmarking pro-
cess discovery techniques and the other for benchmarking concept drift detec-

ix

tion techniques. These frameworks are not meant only for comparing tech-
niques: they also allow for benchmarking techniques at a statistical level for
specific process characteristics, or to perform parameter sensitivity analysis. For
example, the effect of parallelism on the quality of models produced by a pro-
cess discovery technique can be studied.

For each of these contributions, a prototype software tool has been imple-
mented. They are all publicly available to use.

Contents

Abstract vii

List of Figures xvii

List of Tables xxxi

I Opening 1

1 Introduction 3
1.1 Process Mining . 8
1.2 Dealing with Variability in Processes 14
1.3 Opportunities for Tool Support in Process Mining 21
1.4 Contributions in this Thesis . 23
1.5 Thesis Structure . 24

2 Preliminaries 29
2.1 Basic Notations . 29
2.2 Events as Observed Executions of a Process 32
2.3 Process Modeling Notations . 36

2.3.1 Petri Nets . 36
2.3.2 Process Trees . 37
2.3.3 BPMN . 38
2.3.4 Transition Systems . 38

xii CONTENTS

2.4 Running Example: Road Fines . 42

II Foundations 45

3 Process Cubes 47
3.1 Related Work . 52
3.2 Process Cubes . 53

3.2.1 Process Cube Structure . 54
3.2.2 Event Base as a Data Source for the Cube 60
3.2.3 Materializing a Process Cube View 62
3.2.4 Process Cube Operations 63

3.3 Implementation . 67
3.4 Applications . 70

3.4.1 Creating a Process Cube 70
3.4.2 Using a Process Cube . 72
3.4.3 Interaction with other Process Mining Techniques 74

3.5 Conclusions . 79

4 Process Mining Workflows 81
4.1 Related Work . 83
4.2 Process Mining Workflows . 86

4.2.1 Event Data Extraction . 89
4.2.2 Event Data Transformation 90
4.2.3 Process Model Extraction 92
4.2.4 Process Model and Event Analysis 94
4.2.5 Process Model Transformations 97
4.2.6 Process Model Enhancement 98

4.3 Implementation . 100
4.4 Applications . 107

4.4.1 Result (Sub-)Optimality 108
4.4.2 Parameter Sensitivity . 112
4.4.3 Large-Scale Experiments 114
4.4.4 Repeating Questions . 114
4.4.5 Interaction with Process Cubes 115

4.5 Conclusions . 116

CONTENTS xiii

5 Process Variant Comparison 119
5.1 Related Work . 121

5.1.1 Model-based Behavior Comparison 122
5.1.2 Log-based Behavior Comparison 122
5.1.3 Business Rules Comparison 123

5.2 Process Variant Comparison . 124
5.2.1 Comparing Behavior . 126
5.2.2 Comparing Business Rules 135

5.3 Implementation . 143
5.4 Applications . 145

5.4.1 Using Synthetic Data . 145
5.4.2 Using Real Data . 148

5.5 Conclusions . 155

6 Process Variant Detection 157
6.1 Related Work . 159
6.2 Process Variant Detection . 160

6.2.1 Defining Points of Interest in a Transition System 162
6.2.2 Finding Variants in a Point of Interest 163

6.3 Implementation . 171
6.4 Applications . 173

6.4.1 Connection to Process Cubes and Comparison to Arbitrary
Splitting of Data . 178

6.5 Conclusions . 181

III Large-Scale Experimentation 183

7 A Framework for Benchmarking Process Discovery Techniques 185
7.1 Related work . 188
7.2 Discovery Evaluation Framework 189

7.2.1 The Design and Use of the Evaluation Framework 191
7.2.2 The Building Blocks of the Framework 194
7.2.3 Extensibility of the Framework 202

7.3 Experiments . 203
7.3.1 First Experiment . 204
7.3.2 Second (Extended) Experiment 215

7.4 Conclusions . 221

xiv CONTENTS

8 A Framework for Benchmarking Concept Drift Detection Techniques223
8.1 Related Work . 225
8.2 Concept Drift Evaluation Framework 226

8.2.1 The Design of the Framework 227
8.2.2 Building Blocks . 229

8.3 Experiments . 235
8.3.1 The Effect of Concept Drift Detection Technique 239
8.3.2 The Effect of Parallelism 240
8.3.3 The Effect of Type of Drift 246
8.3.4 The Effect of Type of Change 247
8.3.5 The Effect of Time Between Cases 249
8.3.6 The Effect of the Duration and Transition Functions of

Gradual Drifts . 252
8.4 Conclusions . 257

IV Case Studies 259

9 SLA Compliance Analysis in a Claim Management Process 261
9.1 Context . 262

9.1.1 Process Description . 262
9.1.2 Event Data . 263
9.1.3 SLAs . 264
9.1.4 Analysis Purpose . 265

9.2 Experiments . 266
9.2.1 Data Preparation . 267
9.2.2 Overall SLA Compliance Diagnostic 268
9.2.3 Correlating Claims to SLA Compliance 270
9.2.4 Comparing SLA-Compliant and SLA-Non-Compliant Claims 276

9.3 Discussion: The Delayed State . 282
9.4 Conclusion . 283

10 Business Process Reporting in Education 285
10.1 Context . 286

10.1.1 Process Description . 287
10.1.2 Event Data . 287
10.1.3 Analysis Purpose . 289
10.1.4 Related Work . 290

10.2 Experiments . 292

CONTENTS xv

10.2.1 Initial Report . 295
10.2.2 Final Report . 301

10.3 Conclusion . 308

11 Comparative Analysis of Business Process Outsourcing Services 311
11.1 Context . 312

11.1.1 Process Description . 312
11.1.2 Event Data . 314
11.1.3 Analysis Purpose . 315

11.2 Experiments . 316
11.2.1 Data Preparation and Scoping 318
11.2.2 Identification of Interesting Batch Comparisons 319
11.2.3 In-Depth Batch Comparison 323

11.3 Discussion . 326
11.4 Conclusion . 327

V Closure 329

12 Conclusions 331
12.1 Contributions Review . 331
12.2 Limitations . 334
12.3 Future Work . 335

Bibliography 337

Summary 363

Acknowledgments 365

Curriculum Vitae 367

SIKS dissertations 371

List of Figures

1.1 Overview of the concepts included in this thesis and the inter-
actions between them. 6

1.2 Abstract example of a process cube: each cell of the cube is
defined by a specific combination of dimension values. Events
are distributed into the cells according to their dimension values. 7

1.3 Process Mining in a nutshell. 9
1.4 Example of a fragment of an event log containing a sample of

executions of a journal reviewing process. Events are recorded
for each executed activity and are grouped with other events
related to the same execution of the process (called case) i.e.,
the same article. 9

1.5 Process model in BPMN notation that represents the control-
flow of the executions of the journal reviewing process. 11

1.6 Example of conformance checking between the process model
shown in Figure 1.5 and a new execution of the simplified jour-
nal reviewing process. 12

1.7 Example of a process model (shown in Figure 1.5) that has
been enhanced using an event log . Blue numbers represents
the percentage of cases that execute an activity. Red numbers
represent the average elapsed time of cases for a given activity. 13

1.8 Example of a “spaghetti” process model obtained directly from
the event log of a Dutch hospital. 15

xviii LIST OF FIGURES

1.9 Example of an event log of a Dutch hospital being split into
process variants based on the initial diagnostic of patients. . . . 17

1.10 Control-flow comparison of patients with Diagnostic code =
106 and patients with Diagnostic code = 821. Colored states
and arcs represent statistically significant differences in terms
of frequency of occurrence. 18

1.11 Performance comparison of patients with Diagnostic code =
106 and patients with Diagnostic code = 821. Colored states
and arcs represent statistically significant differences in terms
of elapsed time. 20

1.12 Example of an analytic workflow that combines ETL, process
mining and non-process mining analysis steps and performs
large-scale experimentation. 22

1.13 Structure of this thesis. The twelve chapters are organized into
five parts. 25

2.1 Petri net (WF-net) model representing the journal revision pro-
cess. 37

2.2 Process tree model representing the simplified journal revision
process. 37

2.3 BPMN model representing the journal revision process. 38
2.4 Transition system representing the journal revision process.

Transition labels are hidden for improving readability. 39
2.5 Fragment of an alternative transition system representing the

journal revision process. The full transition system is not shown
because of its size. 41

2.6 Transition system illustrating the road fines management process. 43

3.1 Overview of the scope of this chapter: a process cube takes
event data as input and splits it into process variants (cells
of the cube) that can be used directly by other process min-
ing techniques, such as the ones proposed in this thesis, i.e.,
process comparison and process mining workflows. Unused
interactions are greyed out. 48

3.2 Illustration of OLAP aggregation and summarization of facts
over a Location dimension. Each node contains the aggregated
sales of its corresponding city or country. For example, the city
Eindhoven has a total sales amount of 70 (i.e., facts 1 and 2). . 50

3.3 Overview of a process cube and its components. 54

LIST OF FIGURES xix

3.4 Example of a Location dimension. 56
3.5 Example of an Organization dimension. 56
3.6 Example of different process cube views (PCV) obtained from

the same process cube structure. 59
3.7 Example of a process cube view being similarly sliced and diced,

resulting in different process cube views. 65
3.8 Example of process cube view being rolled up and drilled down,

changing the level of granularity of the process cube view. . . . 65
3.9 Screenshot of the Process Mining Cube (PMC) in action. The

cells of the cube show different metrics and can be visualized
as process models or event logs. They can be also compared,
can be used as input for scientific workflows, and can be used
for conformance checking. 68

3.10 Importing event data into PMC. 70
3.11 Defining dimensions of the cube and their attributes. 71
3.12 List of available process cubes in PMC. 72
3.13 User interface of the Process Cube Explorer. 72
3.14 Configuration popups in PMC. 73
3.15 The events in the selected cells can be visualized with the Log

Visualizer plugin from ProM. 75
3.16 A process model can be discovered from the events in the se-

lected cells. 75
3.17 Event logs related to selected cells can be checked for confor-

mance with respect to the process model discovered from the
combined event logs of such selected cells. 76

3.18 Event logs related to different cells can be compared using the
Process Comparator plugin of ProM. 76

3.19 Process mining workflows can be executed using the events
contained in the selected cell(s) as input. 77

3.20 Process models discovered from events related to fines involv-
ing trucks (up) and motorcycles (down) in the year 2011. . . . 77

3.21 Materialized Process Cube view obtained by dicing the Time
and Vehicle Class dimensions, and removing all events that hap-
pened a week after the start of each case. The number in each
cell represents the average case size in terms of the number of
events. 78

xx LIST OF FIGURES

4.1 Overview of the scope of this chapter: a process mining work-
flow takes event data as input (either directly from event logs,
or from the cells of a process cube) and executes process min-
ing and non-process mining analysis steps in a designed work-
flow in order to produce results such as process models, re-
ports, etc. 82

4.2 Gartner’s Magic Quadrant for Data Science Platforms (Febru-
ary 2017). 85

4.3 Generic example of a Building Block transforming a process
model (M) and event data (E) into process analytics results
(R) and an annotated process model (M). 87

4.4 Process-mining building blocks related to event data extraction. 89
4.5 Process-mining building blocks related to event data transfor-

mations . 91
4.6 Process-mining building blocks related to process model ex-

traction . 93
4.7 Process-mining building blocks related to process model and

event analysis. 95
4.8 Process-mining building blocks related to process model trans-

formations. 97
4.9 Process-mining building blocks related to process model en-

hancement. 99
4.10 Example of a Process Mining Workflow in RapidMiner through

the RapidProM extension: The workflow transforms Event data
(Input) into a Sub-optimal Process Model (Output). 101

4.11 Result (sub-)optimality in process model discovery: process-
mining scientific workflow for mining an optimal model in
terms of a defined scoring criteria. 109

4.12 Comparison of process models that are mined with the default
parameters and with the parameters that maximize the har-
monic average of replay fitness and precision. The process is
concerned with road-traffic fine management and models are
represented using the BPMN notation. 111

4.13 Parameter sensitivity in process discovery techniques: process
mining workflow for comparing the effects of different param-
eter values for a given discovery technique 112

4.14 Parameter sensitivity analysis: Variation of the harmonic aver-
age of fitness and precision when varying the value of the noise
threshold parameter. 113

LIST OF FIGURES xxi

4.15 Process Mining Workflow implemented in RapidMiner using
building blocks from the RapidProM extension: The input is
an event log and the output is a conformance checking anal-
ysis of the event log (stored in several formats) and a model
discovered from it. 116

4.16 Selected cells of a Process Cube are used as input for the pro-
cess mining workflow. The workflow can run for each cell in-
dependently, or for just once for the union of all the selected
cells. 117

5.1 Overview of the scope of this chapter: event logs (e.g., process
variants related to cells of a process cube) can be compared in
order to identify their differences and similarities. 120

5.2 Overview of the approach: two event logs (e.g., cells from
a process cube) are compared, producing a single annotated
transition system that represents the combined behavior ob-
served in both event logs, where the highlighted (i.e., colored)
states and transitions highlight differences. Such states and
transitions are interactive: when clicked, they show details of
the actual differences. These can be related to behavior or
business rules. 125

5.3 A simplified version of the transition system presented in Fig-
ure 2.4 is annotated with the annotation functions an1 and an2

with occurrence state and transition measurement functions de-
fined in Equations 5.1 and 5.3. Annotations are represented as
text under the node and edge labels. Blue-colored annotations
correspond to an1 and red-colored annotations correspond to
an2. 130

5.4 An example of how the annotations are translated to the thick-
ness of the transition’s arcs and state’s node borders using the
annotated transition system shown in Figure 5.3. In this case,
thickness represents the combined frequency of occurrence. . . 133

5.5 Example of an annotated transition system colored with the
results of statistical significance tests and effect size oracle.
States and transitions that do not contain statistically signif-
icant differences (hence, the effect size is not measured) are
colored white and black respectively. 135

xxii LIST OF FIGURES

5.6 Example of a decision tree comparison using the first observa-
tion instance shown in Table 5.1. An observation instance is
evaluated by both decision trees DT 1

d and DT 2
d . In this case,

they classify the instance differently. An extended observation
instance is created from the observation instance by adding the
classification of both trees as attributes (highlighted in red),
and changing the target variable to “disagree” (highlighted in
blue). If the trees would have predicted the same class, the
target variable would be “agree”. 138

5.7 Abstract representation of a Decision Point Matrix for a deci-
sion point d, given a transition system TS (rs,ra,L) and two pro-
cess variants L1 and L2 where L = L1 ∪ L2. Each row header
corresponds to a multiset of observation instances. Each col-
umn header corresponds to a decision tree. Each cell (i.e.,
intersection of a row and a column) contains the classification
results of a multiset of observation instances (row) using a de-
cision tree (column). 140

5.8 Example of an annotated transition system colored with the
results of business rules comparison, where the decision points
are highlighted in red if their agreement score is below the
agreement threshold, and in grey otherwise. States that are
not decision points are not highlighted at all. 142

5.9 Representation of a cell (i.e., intersection of a row and a col-
umn) of a Decision Point Matrix (See Fig. 5.7) that corresponds
to the classification results of a set of observation instances
(row) using a decision tree (column). These results can be vi-
sualized as a pie chart (i.e., correctly and incorrectly classified)
or as a confusion matrix. 142

5.10 Screenshot of the Process Comparator plugin in the ProM frame-
work. Details are presented in pop-up dialogs when the user
clicks on states or transitions showing comparisons according
to the defined settings (Compare Behavior or Business Rules). . 144

5.11 Annotated Transition system representing the control-flow of
the loan application process. Thickness represents frequency
of occurrence. 146

5.12 Artificial experiment results: Differences in terms of frequency
(highlighted in blue and red) were found between the high and
low variants. 147

LIST OF FIGURES xxiii

5.13 Artificial experiment results: Differences in terms of business
rules (highlighted in red) were found between the high and
low variants. 148

5.14 Artificial experiment results: Decision trees learned for the
decision point “Assess elegibility”. The approach successfully
identifies that there is disagreement in the middle range (4.000
- 7.000). 149

5.15 Performance (elapsed time) comparison between high and low
fines. 150

5.16 Decision Trees of variants high fines (DT 1) and low fines (DT 2)
for the decision point Add Penalty. The leaf nodes (i.e., nodes
without child) also show the number of instances classified into
them (in brackets). 151

5.17 Section of the Decision Point Matrix for the decision point Add
Penalty. Each pie chart shows how each decision tree (column)
classifies sets of observation instances (rows). Group A corre-
sponds to high fines and Group B to low fines. 153

5.18 Decision tree that classifies extended observation instances into
whether the trees of each variant agree (green) or disagree (or-
ange) in their classifications in the decision point [Add Penalty].
The leaf nodes (i.e., nodes without child) also show the num-
ber of instances classified into them (in brackets). 153

5.19 Occurrence frequency comparison. Colored states (i.e., nodes)
and transitions (i.e., edges) contain statistically significant dif-
ferences between the two event logs. Blue nodes and arcs show
a higher fraction of cases involving a high fine. Orange nodes
and arcs signal a higher fraction of cases involving a low fine. . 154

6.1 Overview of the scope of this chapter: event data is analyzed
and process variants are found. This information is used to
enrich the log with new event attributes that explicitly mention
the variant it belongs to. These new variant-related attributes
can be used in a process cube for splitting event data into such
process variants. Unused interactions are greyed out. 158

6.2 Overview and steps of our approach to detect process variants
in event logs. 161

6.3 Transition system representing the behavior of the road fines
management process. 166

xxiv LIST OF FIGURES

6.4 Illustration of the user flow for the “Process Variant Finder”
tool. Panel 1 shows the settings panel. Once the user clicks
on the “Apply Settings” button, the tool searches for process
variants in all the points of interest according to the specified
settings. These results are shown in Panel 2 which shows a
table with information about the discovered process variants
including: the type (i.e., state or transition), relevance (see
Definition 6.1) and name of the points of interest where they
were detected, and which independent attributes and values
were used to split the event log into such process variants.
When a row in Panel 2 is selected (i.e., clicked) by the user,
the corresponding point of interest is highlighted (in red) in
the transition system that represents the process in Panel 3 and
the splitting criteria (attributes and values) that define such
process variants is shown in Panel 4. 172

6.5 Settings panel or our tool (Panel 1 in Figure 6.4). 173
6.6 Summary of Process Variants found in this experiment (Panel

2 in Figure 6.4). The next activity attribute was used as the
dependent variable, and the attributes amount and article were
used as independent variables. 174

6.7 Point of Interest Create Fine of the set of Process Variants se-
lected in this experiment (Panel 3 in Figure 6.4), with next ac-
tivity selected as the dependent variable and article is selected
as the independent variable. 175

6.8 Process Variants found in the point of interest Create Fine. The
dependent variable is the next activity to occur. The indepen-
dent variable is the article i.e., traffic law that was violated
(Panel 4 in Figure 6.4). 176

6.9 Process Variants found in the point of interest defined by the
state Create Fine. The dependent variable is the next activity
to occur. The independent variable is the amount of the fine.
For each box, the X-axis represents the possible activity to be
executed next, and the Y-axis represents the likelihood that an
activity will be executed next. 177

6.10 Performance (elapsed time) comparison between process vari-
ants. 179

6.11 Business rules comparison between process variants. 179
6.12 Control-flow (frequency of occurrence) comparison between pro-

cess variants. 180

LIST OF FIGURES xxv

7.1 Framework for process discovery algorithm evaluation, pre-
sented as a process mining workflow. Grey boxes represent
process mining building blocks. White boxes represent non-
process-mining operators. 192

7.2 Basic control-flow patterns. 196

7.3 Advanced control-flow patterns. 197

7.4 Illustration of a test log composition. Non-fitting traces (i.e.,
NFT) do not fit the original model. Type-1 fitting traces fit
the original model, and have been observed in the event log.
Type-2 fitting traces fit the original model, but have not been
observed in the event log. A test log is composed of type-1
fitting traces and non-fitting traces. 199

7.5 Concrete implementation of the framework into a RapidMiner
workflow. In Step 1, a collection of models is generated from
a population settings parameter. In Step 2, for each generated
model, an event log is created. In Step 3, each event log is
used to rediscover a model using different miners (left side),
which are checked for conformance with respect to fitting and
non-fitting traces (right side). Finally, results are processed. . 203

7.6 Samples of the models generated in this experiment. 207

7.7 Distribution of completeness of logs wrt. their respective pro-
cess models. Completeness is measured as the fraction of traces
allowed by the model that are present in the event log. 207

7.8 F1 scores for process discovery techniques for different proba-
bilities of duplicate activities 212

7.9 F1 scores for process discovery techniques for different proba-
bilities of process control-flow characteristics. 218

7.10 Model discovered by the Inductive miner. 219

7.11 Model discovered by the ILP miner. 220

8.1 Types of concept drift in processes 226

8.2 Framework for concept drift detection algorithm evaluation,
presented as an analysis scenario. Grey boxes represent pro-
cess mining building blocks. White boxes represent non-process-
mining operators. 227

xxvi LIST OF FIGURES

8.3 Inner composition of the “Generate event data with concept
drift from models" block. A process model is modified a given
number of times. Then, an event log is sampled from the re-
sulting collection of models (original and modified) according
to some parameters. 231

8.4 Example of linear and exponential transition functions for sam-
pling probabilities of different models in gradual drifts. 232

8.5 Mapping of discovered drifts and real drifts for calculating qual-
ity metrics. 234

8.6 Concrete implementation of the framework into a RapidMiner
workflow. In Step 1, a collection of models is generated from
a population settings parameter. In Step 2, for each generated
model, a set of two models modified with concept drift is cre-
ated. In Step 3, the original and the two modified models are
used to create an event log with concept drift according to the
specified parameters. In Step 4, a concept drift detection tech-
nique is used to detect the points of drift. In Step 5, these are
then compared with the original drift points. Finally, results
are processed. 236

8.7 Average calculation time for each concept drift detection tech-
nique. 241

8.8 F1 scores for concept drift detection for different probabilities
of parallelism in the process. 241

8.9 F1 scores for concept drift detection techniques for different
values of “time between cases”. 250

8.10 F1 scores for concept drift detection techniques for different
values of “duration of drift period”. 252

9.1 Hand-made model of the flow of a claim. The boxes represent
the possible states of a claim. The arrows indicate the possible
state changes. This model was provided by the company. 263

9.2 Response Time SLA compliance (avg) by service and severity
of claims. 269

9.3 Restoration SLA by service and severity of claims. 270
9.4 Transition systems that represent the behavior of the claim

management process using different abstractions. 271
9.5 Results of the Process Variant Finder tool: attributes correlated

to the response time SLA in the “New” state. 272

LIST OF FIGURES xxvii

9.6 Results of the Process Variant Finder tool: attributes correlated
to the response time SLA in the “Active, New” state. 273

9.7 Results of the Process Variant Finder tool: attributes correlated
to the restoration time SLA in the “Delayed, Active” state. . . . 274

9.8 Results of the Process Variant Finder tool: attributes correlated
to the restoration time SLA in the transition between the “Ac-
tive, New” and the “Solved, Active” states. 275

9.9 Results of the Process Variant Finder tool: attributes correlated
to the resolution time SLA in the “Closed, Solved” state. 275

9.10 Control-flow comparison results between claims that complied
with their resolution time SLA and claims that did not. 277

9.11 Control-flow comparison results between claims that complied
with their restoration time SLA and claims that did not. 279

9.12 Decision trees learned in the decision point (state) “Delayed,
Active”. 280

9.13 Performance comparison results between claims that complied
with their resolution time SLA and claims that did not. 281

10.1 Model of the “ideal” video lecture usage process for students
of a given course. 287

10.2 Overview of the case study: University data is transformed into
reports by using process mining, process cubes and analytic
workflows. 290

10.3 Abstract analysis scenario for generating reports from event data293
10.4 Implemented analytic workflow used to generate the reports.

Each instance of a course can be automatically analyzed in this
way resulting in the report described. 294

10.5 Analysis results contained in the report of the course 0LEB0:
(a) Number of students that watched each video lecture (b)
Conformance with the natural viewing order by course grade
(c) Grades distribution for students who watched video lec-
tures (in red) or did not (in blue) 297

10.6 Dotted charts for students grouped by their course grades . . . 298
10.7 Sequence analysis for students grouped by their course grades. 299
10.8 New compliance section of the report for an example course

(5ECC0 - Electronic circuits 2) 303

xxviii LIST OF FIGURES

10.9 Sequence models annotated with performance information for
students grouped by their grade. The models were obtained
from the report of course 7U855 - Research methods for the
built environment. 304

10.10 Analysis results included in the report of the course 1CV00. . . 305
10.11 Analysis results included in the report of the course 4EB00. . . 306
10.12 Fragment of the sequence model with frequency deviations for

all students. In (a), Lecture 1c is being skipped. These charts
were included in the report of the course 5ECC0 - Electronic
Circuits 2. 307

10.13 Analysis results included in the report of the course 5XCA0. . . 309

11.1 Example of two paper-printed forms digitalized by Xerox Ser-
vices. The UB-04 (on the right) form is a claim form used
by hospitals, nursing facilities, in-patient, and other facility
providers. The correspondence claim form (on the left) defines
a request for additional information in order for a claim to be
considered clean, to be processed correctly or for a payment
determination to be made. 313

11.2 Process Model that represents all the behavior included in the
event data related to different batches. 314

11.3 Experimental design: steps included in the experiments over
Xerox data . 316

11.4 The RapidProM workflow used for the first two phases of the
experiment . 317

11.5 The RapidProM (sub) workflow used for the data preparation
step. 318

11.6 The RapidProM (sub) workflow used for the scoping analysis
step. 319

11.7 The RapidProM (sub) workflow used in this phase for steps 3a
(i.e., discovery) and 3b (i.e., cross-comparison) of the experi-
mental design. 321

11.8 The RapidProM (sub) workflow used in this phase for step 3c
(i.e., clustering) of the experimental design. 323

11.9 Results of the clustering step: The y-axis represents the cluster
membership probabilities of batches. A batch will be related to
the cluster with the maximal membership probability. 323

LIST OF FIGURES xxix

11.10 Example of control-flow differences between batch 18 (group
A) and batch 4 (group B). The activities ToOCR, Images2Humana,
FromOCR, FixAfterOCR are executed only in batch 18. 325

11.11 Example of performance differences between found batch 18
(group A) and batch 4 (group B). The average duration of the
Entry activity is 44 mins for batch 18 and 5 mins for batch 4. . 325

11.12 Example of differences found between batch 3 (group A) and
batch 18 (group B). 326

List of Tables

1.1 Distinct event classes (i.e., activities) observed in the execution
data of a building permit application process in five different
Dutch municipalities. 5

1.2 Usage of the techniques presented in Part II in each case study. . . 26

2.1 List of attributes that can be related to events of the road fines
management process event log. 42

2.2 A fragment of the road fines event log represented as a table:
each row corresponds to an event (shown in the event id column)
and each column corresponds to an event attribute. Events with
the same fine id correspond to the same instance of the process.
The elapsed time is measured in days. 43

3.1 Facts in the Cube . 49
3.2 Tool integration with PMC. 69

4.1 Event Data Extraction Operators. 102
4.2 Event Data Transformation Operators. 103
4.3 Process Model Extraction Operators. 104
4.4 Process Model and Event Analysis Operators. 105
4.5 Process Model Transformation Operators. 105
4.6 Process Model Enhancement Operators. 106
4.7 Operators used in the Result (sub) Optimality experiment. 110
4.8 Operators used in the Parameter Sensitivity experiment. 113

xxxii LIST OF TABLES

5.1 Fragment of a set of Observation Instances related to the journal
revision process in the decision point given by the state “Invite
Reviewers”. 137

6.1 Selection of four traces of the road fines management process . . 167
6.2 Instances obtained from the traces described in Table 6.1 when

they reach the point of interest Add Penalty. 167

7.1 Parameters used to define a population of process models. 198
7.2 Summary of the possible parameter values included in the exper-

iment: 70 (5× 7× 2) value combinations. 205
7.3 Average ranks per miner (n = 4340). Each cell indicates the av-

erage ranking for a specific performance dimension (row header)
and for a specific miner (column header). One can compare min-
ers by comparing the average ranks within one row. 209

7.4 Results of the statistical tests to study the effect of discovery al-
gorithms on F1 scores. 210

7.5 Average ranks per miner in terms of recall, precision and F1 Scores.211
7.6 Results of the statistical tests to study the effect of the miner on

F1 scores in the presence of infrequent behavior. 211
7.7 Average ranks of process discovery techniques per probability of

duplicate activities in terms of recall, precision and F1 scores. . . 213
7.8 Results of the statistical tests to study the effect of duplicate ac-

tivities on F1 scores for the Alpha+ miner. 214
7.9 Results of the statistical tests to study the effect of duplicate ac-

tivities on F1 scores for the Declare miner. 215
7.10 Results of the statistical tests to study the effect of duplicate ac-

tivities on F1 scores for the Heuristics miner. 216
7.11 Results of the statistical tests to study the effect of duplicate ac-

tivities on F1 scores for the ILP miner. 216
7.12 Results of the statistical tests to study the effect of duplicate ac-

tivities on F1 scores for the Inductive miner. 217

8.1 Parameters used to create an event log with concept drift. 230
8.2 Parameter combinations considered in the experiment. 237
8.3 Average ranks of concept drift detection techniques (n = 205,632).

Each cell indicates the average ranking for a specific performance
dimension (row header) and for a specific concept drift detection
technique (column header). 239

LIST OF TABLES xxxiii

8.4 Results of the statistical tests to study the effect of concept drift
detection technique on F1 scores for detecting sudden drift. . . . 240

8.5 Average ranks of concept drift detection techniques per probabil-
ity of parallelism in terms of precision, recall and F1 scores. . . . 243

8.6 Results of the statistical tests to study the effect of parallelism on
F1 scores for the ConceptDrift approach. 244

8.7 Results of the statistical tests to study the effect of parallelism on
F1 scores for the ProDrift (event) approach. 244

8.8 Results of the statistical tests to study the effect of parallelism on
F1 scores for the ProDrift (trace) approach. 245

8.9 Results of the statistical tests to study the effect of parallelism on
F1 scores for the VariantFinder approach. 245

8.10 Average ranks of concept drift detection techniques in terms of
precision, recall and F1 scores for different types of drift. 246

8.11 Results of the statistical tests to study the effect of concept drift
detection technique on F1 scores for gradual drift. 247

8.12 Average ranks per concept drift detection technique in terms of
F1 scores. 248

8.13 Results of the statistical tests to study the effect of the concept
drift detection technique on F1 scores for the type of change “re-
move fragment”. 249

8.14 Average ranks of concept drift detection techniques for different
times between cases in terms of precision, recall and F1 scores. . 251

8.15 Results of the statistical tests to study the effect of time between
cases on F1 scores for the VariantFinder approach. 252

8.16 Average ranks of concept drift detection techniques for different
durations of drift periods in terms of precision, recall and F1 scores.254

8.17 Results of the statistical tests to study the effect of the duration
of drift periods on F1 scores for the ConceptDrift approach. 255

8.18 Results of the statistical tests to study the effect of the duration
of drift periods on F1 scores for the ProDrift (trace) approach. . . 255

8.19 Average ranks of concept drift detection techniques in terms of
precision, recall and F1 scores for different drift transition function.256

8.20 Results of the statistical tests to study the effect of concept drift
detection technique on F1 scores for linear drift transition func-
tions. 256

8.21 Results of the statistical tests to study the effect of concept drift
detection technique on F1 scores for exponential drift transition
functions. 257

xxxiv LIST OF TABLES

9.1 Event attributes contained in the data 264
9.2 SLAs defined for the claim management process. 266

10.1 Event Data . 288
10.2 A fragment of event data generated from the University’s system:

each row corresponds to an event. 289
10.3 Summary of the classification of statement evaluations performed

by lecturers . 300

11.1 A fragment of raw data generated by Xerox’s systems 315
11.2 The 10 most frequent batches in the data 320
11.3 Comparison table showing the comparison metric (i.e., fitness)

between logs and models of the selected batches. Cell (x,y) in-
dicates the replay fitness of the event log related to batch x with
respect to the process model related to batch y. 322

Part I

Opening

2

Chapter 1
Introduction

The notion of a process is not recent. One of the earliest and most famous
references to the concept of a process was elaborated by the Scottish economist
Adam Smith in the late eighteen century through the following example:

“One man draws out the wire, another straights it, a third cuts it,
a fourth points it, a fifth grinds it at the top for receiving the head:
to make the head requires two or three distinct operations: to put it
on is a particular business, to whiten the pins is another... and the
important business of making a pin is, in this manner, divided into
about eighteen distinct operations, which in some manufactories are
all performed by distinct hands, though in others the same man will
sometime perform two or three of them.”

Even though this example was aimed to illustrate the division of labor, it was one
of the first to hint about the existence of individual tasks that could be performed
by different people, and that a combination of those tasks can produce an output
(e.g., a pin).

Modern definitions of a process now include several other components, such
as inputs, resources, and customers. In the early 90’s, Thomas Davenport [41]
defined a process as:

“A structured, measured set of activities designed to produce a spe-
cific output for a particular customer or market. It implies a strong
emphasis on how work is done within an organization, in contrast
to a product focus that has an emphasis on what work is done. A

4 Introduction

process is thus a specific ordering of work activities across time and
space, with a beginning and an end, and clearly defined inputs and
outputs: a structure for action.”

Although many other definitions with different flavors have been proposed in
literature, the main ideas of Davenport are still relevant.

Within most organizations, many processes interact with each other. In the
late 80’s, Michael Porter was one of the first to ‘organize’ an organization in
terms of its processes. In his renowned Value Chain model [123] Porter divides
an organization into two types of processes: primary and support. Primary
processes relate to the business core (e.g., inbound and outbound logistics, op-
erations, marketing, sales, and services) and they define the way in which value
is added to the products or services provided by the organization. Support pro-
cesses aim to support the business core (e.g., human resource management,
technology management, procurement, and infrastructure management). Ac-
cording to Porter, the competitive advantages of an organization over its com-
petitors are located within the primary processes, while the support processes
ensure that these advantages are sustainable. Today, it is widely-accepted that
managing processes is the key for the success of an organization.

Modern organizations may have a large number processes with different
characteristics. Most of them are supported by information systems ranging
from excel sheets to ERP systems. Such systems leave a data footprint that
consists of recorded executions of processes i.e., event data.

Process mining is a relatively young research discipline that is concerned with
discovering, monitoring and improving real processes by extracting knowledge
from event data readily available in today’s systems [156]. Process mining sup-
ports the extraction of insights from data about the overall and inner behavior
contained in any given process. Hundreds of different process mining tech-
niques have been proposed in literature. These are not limited to process-model
discovery and the checking of conformance. Also, other perspectives (e.g., data)
and operational support (e.g., predictions) are included.

In real-life, business processes are not static: They have to adapt to con-
stant environment changes (e.g., customer preferences, legal regulations, new
competitors). Like any live species, organizations (and their business processes)
also evolve according to Darwinian evolution: The best to adapt is the one that
thrives. It is not uncommon for organizations that the same business process
has to adapt to different contexts simultaneously, which leads to variability in
such processes. Moreover, processes can change over time. This is known as
concept drift.

5

Take for example a building permit application process in five different mu-
nicipalities in the Netherlands [23–27]. In theory, the process is the same: a
building permit is requested by an applicant, and the municipality has to ana-
lyze the request and decide whether to approve it or not. However, data shows
us that the municipalities are doing things differently. Table 1.1 shows the num-
ber of different event classes (i.e., activities) performed in each municipality.

We can observe that the municipalities have a similar number of event classes
(i.e., ranging from 331 to 381). However, if we combine the event data of the
five municipalities, we can find a higher number of different event classes (i.e.,
461). This can mean that each municipality has a set of activities that are not
executed by other municipalities.

Let’s consider that the way each municipality executes the process is a vari-
ant of the process itself, so that if there are five municipalities, there are also five
variants of the process. If we combine these five variants into one mega-process,
then we can obtain one single dataset that describes the combined behavior of
the five variants of the process. Note that the complexity of this combined pro-
cess (i.e., the number of different activities, and the possible relations between
them) is much higher than the complexity of the individual variants. It is im-
portant to note that the complexity of the combined process is caused by two
factors: The variability between the process variants that were merged, and by
the complexity of the variants themselves. Therefore, we can reduce process
complexity by reducing process variability.

In many scenarios, splitting a process into variants can effectively reduce its
variability (hence, its complexity), making them easier to analyze. It also en-
ables many types of analysis e.g., comparing the different variants of the process

Table 1.1: Distinct event classes (i.e., activities) observed in the execution data of a build-
ing permit application process in five different Dutch municipalities.

Municipality # Event Classes

Muni. 1 [23] 381
Muni. 2 [24] 376
Muni. 3 [25] 369
Muni. 4 [26] 331
Muni. 5 [27] 352

Muni. 1 to 5 (combined) 461

6 Introduction

in order to identify the best practices and detect differences and similarities be-
tween variants. Nevertheless, the best way to split a process is not always clear.
In the case of the building permit application process, we know from domain
knowledge that there are five municipalities, hence it makes sense to split the
process in such way. However, such domain knowledge is not always avail-
able. In general, we observe execution data of a process without knowing much
about it (sometimes we do not even know if there is an actual process in there).
The best way to split and analyze unknown data is obscured, and it requires
extensive trial-and-error experimenting until an acceptable solution is found.

This thesis addresses the problem of analyzing process variability by
proposing techniques and tools that use event data to identify variants
within a process, split them, compare them, and automate their analysis.

Event
Data

Process
Cube

Process Variant
Detection

Process
Comparison

Process
Mining

Workflows

En
ri

ch
e

d
Ev

en
t

D
at

a
w

/
V

ar
ia

nt
 E

n
co

d
in

g

Cube cells
(process variants)

Figure 1.1: Overview of the concepts included in this thesis and the interactions between
them.

7

Figure 1.1 illustrates the overall idea. The cornerstone of the techniques and
tools presented in this thesis are event data (i.e., the observed execution data
of processes) which can be stored in e.g., databases, documents, smart devices,
spreadsheets, and event logs.

The event data are described by several data dimensions that characterize
each execution. Dimensions can be predefined (i.e., given in the data) or can
be derived from the context of the process and/or other predefined dimensions.
Common examples of predefined dimensions are the time in which an execu-
tion was observed, the resource that performed the execution, and the specific
activity that was executed. Examples of dimensions that are derived from the
context of a process are the workload of resources, the type of customer, etc.

Such data dimensions can be used to split the event data into process vari-
ants by using process cubes, as illustrated in Figure 1.2. A cell in a process cube
is defined by a combination of dimension values. Events are distributed into the
cells of a process cube according to their values for such dimensions. For exam-
ple, in Figure 1.2, a cube is defined by three dimensions (i.e., dimensions 1 to
3). The cell that is highlighted in red contains all the events that have a value
“B” for dimension 1, a value β for dimension 2, and a value 1 for dimension 3.

δ
β

α

1

2

D
im

en
si

on
 2

Dimension 1
“A” “B”

Event

Figure 1.2: Abstract example of a process cube: each cell of the cube is defined by a
specific combination of dimension values. Events are distributed into the
cells according to their dimension values.

8 Introduction

Predefined data dimensions do not always have a clear correlation with vari-
ability in the data. For example, if we randomly split event data using a di-
mension, it is possible that no significant variability is observed between the re-
sulting process variants. If only predefined data dimensions are used to split the
data into process variants, many opportunities for uncovering hidden variability
in the process can be missed. In such cases, new data dimensions that have a
strong correlation to process variability can be derived e.g., using process vari-
ant detection techniques. Then, event data can be enriched with these derived
dimensions These derived dimensions can be used to split the event data (e.g.,
using a process cube) in such a way that the maximum amount of variability is
exposed when comparing them, e.g., using process comparison techniques.

Event data and its process variants can also be used by process mining work-
flows, which can be used to automate their pre-processing and analysis. In this
way, experiments can be performed in less time since user interaction is mini-
mized. Also, experiments become more easily repeatable by other analysts and
researchers. This thesis proposes scientific contributions in each one of these
points.

It is important to note that the techniques proposed in this thesis (and illus-
trated in Figure 1.1) can also be used iteratively and independently, and do not
necessarily have to be used in a specific order.

The remainder of this chapter is organized as follows. Section 1.1 provides
an introductory overview of the field of process mining. Section 1.2 discusses
the problem of variability in processes and how this thesis addresses it. Sec-
tion 1.3 discusses the opportunities for automating process analysis. Section 1.4
describes the scientific contributions included in the thesis. Section 1.5 de-
scribes the structure of the thesis.

1.1 Process Mining

Process-mining techniques enable the analysis of a wide variety of processes us-
ing event data. The open-source process mining framework ProM [172] pro-
vides hundreds of plug-ins and has been downloaded over 150.000 times.1

Nowadays, there are over 30 process mining software vendors (e.g., Disco, Per-
ceptive Process Mining, Celonis Process Mining, QPR ProcessAnalyzer, Software
AG/ARIS PPM, Fujitsu Interstage Automated Process Discovery, Minit, MyIn-
venio, etc.) working with small-to-large-sized companies in several countries

1ProM tools is free to download from http://www.promtools.org

http://www.promtools.org

1.1 Process Mining 9

worldwide. The formation of the IEEE Task Force on Process Mining is a reflec-
tion of the growing impact of process mining in the world. See for example
the twenty case studies on the webpage of the IEEE Task Force on Process Min-
ing [72].

Figure 1.3 illustrates the three different flavors in process mining: process
discovery, conformance checking and process enhancement [156]. Process dis-

Figure 1.3: Process Mining in a nutshell.

covery techniques aim to obtain process models from event logs. Process mod-
els (hand-made or discovered) can be checked for conformance with respect to
event logs. In this way, behavioral differences between the model and the real
data can be detected. Process models can also be enhanced (i.e., improved or
extended) using information about the actual process recorded in event logs.

In order to explain the different types of process mining techniques, we in-
troduce an example fragment of an event log that relates to a journal reviewing
process, shown in Figure 1.4. The process starts when an article submission
is received. Then, the editor invites three reviewers. Each reviewer makes a
revision of the article and sends it to the editor. However, there is a time limit

Invite Reviewers
01/08/2017

Get Review 1
13/08/2017

Get Review 3
14/08/2017

Invite Reviewers
06/09/2017

Get Review 2
10/09/2017

Get Review 1
12/09/2017

Invite Reviewers
14/08/2017

Get Review 3
28/08/2017

Get Review 1
29/08/2017

Article # 3025

Article # 3026

Article # 3027

Get Review 2
15/08/2017

Timeout 3
13/09/2017

Get Review 2
30/08/2017

Collect Reviews
16/08/2017

Collect Reviews
16/09/2017

Collect Reviews
2/09/2017

Invite Additional
Reviewer

17/09/2017

Reject
17/08/2017

Get Review X
25/09/2017

Accept
3/09/2017

Reject
16/10/2017

Figure 1.4: Example of a fragment of an event log containing a sample of executions of a
journal reviewing process. Events are recorded for each executed activity and
are grouped with other events related to the same execution of the process
(called case) i.e., the same article.

10 Introduction

for this. If the reviewer does not send the revision before such limit, a time-out
occurs. After the reviews have been sent (or timeouts have occurred) the editor
collects the reviews and decides whether an additional reviewer is needed or
not. This step can happen more than once. Finally, the editor accepts or rejects
the article.

The remainder of this section discusses and illustrates the three types of
process mining techniques described above using this example process.

Process Discovery

The recorded executions of a process contained in an event log can provide
information that is not only useful to analyze such executions individually; it
can also be aggregated to obtain a global understanding of the whole process.

Process discovery techniques can produce a model of a process by only using
an event log as input.

Definition 1.1 (Process Model). A process model is an abstract representation of
a process from a defined perspective using a combination of elements of a defined
notation (i.e., language).

When a building is designed, many blueprints i.e., models (e.g., structural,
electrical, water, gas) are made from different perspectives: from a top view,
from a side view, etc. They are necessary because a single blueprint does not
contain all the information that is needed to construct a building. For example,
a top view does not show the height of the building.

In processes, a similar phenomenon occurs. Different perspectives capture
different information about the process, and no single perspective can capture
everything about a process. Some of the most common process perspectives
discussed in literature are:

• Control-flow: focus on the ordering and dependencies between activities.

• Performance: focus on time and how fast or slow is the execution of the
process.

• Resource: focus on the persons, systems or machines that perform the
activities.

• Data: focus on the data properties of events.

1.1 Process Mining 11

Invite
Reviewers

Get
Review 1

Timeout 1

Get
Review 2

Timeout 2

Get
Review 3

Timeout 3

Invite
Additional
Reviewer

Get
Review X

Timeout X

Accept

Reject
Collect

Reviews

Figure 1.5: Process model in BPMN notation that represents the control-flow of the exe-
cutions of the journal reviewing process.

A process modeling notation is simply a language of graphical elements that
can be combined to represent a process. Naturally, process perspectives relate
to specific modeling notations that contain elements that are specific to that
perspective. For example, the control-flow perspective of a process can be mod-
eled in many notations such as transition systems, Petri nets, BPMN, and many
more, which contain elements to represent activities, choices, etc.

Figure 1.5 shows an example of a control-flow process model in BPMN no-
tation that represents the recorded executions of the journal reviewing process
illustrated in Figure 1.4. An extended discussion on control-flow notations is
presented in the next chapter (see Section 2.3).

Conformance Checking

Process models can be obtained from event logs through process discovery tech-
niques, or can be hand-made by analysts to state the “ideal” way the process
should be. Process models might not always represent the way that a process
is actually executed. For example, a process discovery technique might omit in-
frequent behavior, or an analyst could miss some special cases when designing
the process model.

12 Introduction

Invite
Reviewers

Get
Review 1

Timeout 1

Get
Review 2

Timeout 2

Get
Review 3

Timeout 3

Invite
Additional
Reviewer

Get
Review X

Timeout X

Accept

Reject

Invite Reviewers
14/10/2017

Get Review 1
29/10/2017

Article # 3033
Get Review 2

30/10/2017

Collect Reviews
2/11/2017

Accept
3/11/2017

Collect
Reviews

Figure 1.6: Example of conformance checking between the process model shown in Fig-
ure 1.5 and a new execution of the simplified journal reviewing process.

Conformance checking techniques can identify and quantify discrepancies
between a process model and the real execution of the process i.e., the event
log. Figure 1.6 illustrates the notion of conformance checking by an example. In
this case, a new execution of the journal reviewing process is observed, consist-
ing of only five activities: invite reviewers, get review 1, get review 2,
collect reviews, and accept. If this is compared to the process model shown
in Figure 1.5, we can observe a discrepancy: the model states that before the
reviews can be collected, all three reviews have to be received or timed out).
However, this is not observed in Figure 1.6. Given a discrepancy, analysts have
to decide whether the model should incorporate such discrepant behavior or
not. In this case, one of the two activities: get review 3 and timeout 3,
clearly should have been executed, as it is wrong to accept an article with-
out collecting all the relevant reviews. In some other cases, the execution of the
process might be indeed correct (e.g., special cases) and the model should be
modified to incorporate such behavior.

1.1 Process Mining 13

Process Enhancement

Discovered process models rarely can provide sufficient insights to fully under-
stand the process: most discovery techniques only capture the control-flow per-
spective. Process models can also be enhanced using the information contained
in event logs. Figure 1.7 shows an example of an enhanced process model. Note
that now activities contain information about their average frequency of occur-
rence in the event log (highlighted in blue), and also the average elapsed time
since the case started until such activity is executed within the case (highlighted
in red). These enhanced models provide a more complete view of the process,
and can be used for several types of analysis.

Invite
Reviewers

Get
Review 1

Timeout 1

Get
Review 2

Timeout 2

Get
Review 3

Timeout 3

Invite
Additional
Reviewer

Get
Review X

Timeout X

Accept

Reject
Collect

Reviews100%
1 day

90%
10 days

10%
15 days

95%
8 days

5%
15 days

92%
11 days

8%
15 days

100%
20 days

60%
28 days

40%
25 days

90%
21 days

81%
30 days

9%
35 days

Figure 1.7: Example of a process model (shown in Figure 1.5) that has been enhanced
using an event log . Blue numbers represents the percentage of cases that
execute an activity. Red numbers represent the average elapsed time of cases
for a given activity.

Now that we have introduced the basic concepts of process mining, we will
further discuss the problem of variability presented before in more depth, as
follows.

14 Introduction

1.2 Dealing with Variability in Processes

In literature, variability in processes is usually related to the control-flow per-
spective (e.g., a process may skip risk assessment steps for gold customers), but
can also be related to other perspectives, such as performance, resources and
data. For example, if two branches of a company execute their processes in
the same way (i.e., same control-flow) but there are huge performance differ-
ences between the branches, it is interesting to understand and explain such
differences.

Naturally, too much variability can complicate the analysis of a process. The
importance of dealing with variability is reflected in the process mining man-
ifesto [152] as the challenges “Dealing with complex event logs having diverse
characteristics” and “Dealing with concept drift”. Note that concept drift refers
to variability over time, e.g., the typical ordering of activities may change and
bottlenecks may shift to different parts of the process.

The different process perspectives are usually materialized in event data in
the form of data dimensions (i.e., attributes). The core concept in which this
thesis is based, is that the variability in processes can be reduced by splitting the
data into variants using such dimensions.

Event data can be split using a process cube (as shown in Figure 1.2). The
cells of a process cube are defined by a specific combination of dimension values.
Events are related to cells according to their values for such dimensions, in such
a way that events with the same dimension values are grouped together into
process variants.

However, as mentioned before, predefined dimensions included in the event
data may not always unveil all the variability present in the process. Sometimes,
new dimensions can be derived from other predefined (i.e., given) dimensions
and context information.

Such dimensions can be used to split and explore the data differently in
order to expose variability. For example, we could derive a “customer type”
dimension from existing dimensions related to purchase history, risk factor, etc.
Such derived dimension might have a stronger correlation to variability (e.g.,
VIP customers lead to shorter processing times) than the given dimensions it
was derived from.

The remainder of this section discusses how variability is currently handled
in process mining in each of the process perspectives defined previously (i.e.,
control-flow, performance, resource, and data), and sketches how the contribu-
tions introduced in this thesis may help dealing with variability.

1.2 Dealing with Variability in Processes 15

Control-flow Variability

In [156], van der Aalst proposes to classify processes depending on their degree
of structure. Processes can range from highly-structured lasagna processes to
highly-unstructured spaghetti processes.

However, this process classification was originally conceived based only on
the control-flow perspective. On the one hand, if the control-flow process model
(designed or discovered) is relatively structured, then the process is considered
as “lasagna”. Note that “lasagna” processes tend to be very simple and struc-
tured, and most process mining techniques work well with this type of pro-
cesses.

On the other hand, if the control-flow process model is highly complex, il-
legible, with many activities and lines connecting them, then the process is
considered as “spaghetti”. Hospitals are usually good examples of unstructured
processes because of the high variety of exams and treatments applied to pa-
tients. Figure 1.8 shows a spaghetti process model that describes the process of
an oncologic gynecology department at a Dutch hospital [171].

Figure 1.8: Example of a “spaghetti” process model obtained directly from the event log
of a Dutch hospital.

This process model describes the control-flow of the process related to the
diagnosis and treatment of over 1100 oncologic gynecology patients, described
by over 150.000 events. There are over 600 different activities (e.g., tests,
consultations) in the process.

The degree of control-flow structure in a process is usually related to the

16 Introduction

number of different activities in the process and the relations between them. A
common approach used in process mining to deal with control-flow variability
is to filter infrequent behavior by removing the infrequent activities and paths,
so only the most frequent ones are kept, hence a simpler model is obtained. This
can indeed allow the analyst to get a clearer picture of what the process looks
like in some cases. However, this has three main drawbacks. The first one is that
exceptions could be critical to the process and are also interesting to analyze.
If infrequent activities (related to exceptions) are filtered out, this information
is lost. The second one is related to the fact that unstructured processes may
have no “frequent” behavior. Therefore, threshold-based frequency filtering may
remove or keep activities with relatively similar frequencies. The third one is
that there is no standard guideline about how much should be filtered out. As
an extreme example, the hospital log could be filtered out until only one activity
remains (i.e., the most frequent). This will result in a process model that is as
simple as it is incorrect.

Other process discovery techniques like the fuzzy miner [64] can deal with
variability by clustering regions of activities with a lot of variability. They do
present a simpler high-level model as a result, but only when a cluster is “ex-
panded”, all the hidden variability appears.

This thesis proposes a different approach: to consider that variability comes
from different variants (i.e., versions of the process) grouped together, and that
the process can be split in some way into such variants. Figure 1.9 illustrates
this idea in the hospital example mentioned above: one could use derived or
given dimensions present in the data (such as the “Diagnosis”) to split the event
data based on its different values using a process cube. The choice of which
dimensions to be used normally depends on the available domain knowledge
of the process. However, when such domain knowledge is missing, process
variant detection techniques can be used to identify which dimensions (given
or derived) can be used to maximize the exposure of variability in the data.

In the hospital example, splitting the data using the “Diagnosis” dimension
results in a set of simpler process models (in terms of control-flow) compared to
a model that includes all types of patients together (see Figure 1.8), as patients
with similar diagnostics take similar exams and treatments.

The advantage of extracting variants of a process is that they (and the pro-
cess models that represent them) tend to be simpler, and they can be compared
with each other. Naturally, not all process variants are always relevant for the
analysis purpose. Differences and similarities between relevant variants can
uncover many useful insights and lead to a better understanding of the whole
process.

1.2 Dealing with Variability in Processes 17

Figure 1.9: Example of an event log of a Dutch hospital being split into process variants
based on the initial diagnostic of patients.

Figure 1.10 shows an example of a process model (i.e., a transition sys-
tem) enhanced with case frequency information that compares the event data
of patients with two different Diagnostic codes (i.e. 106 and 821) in terms of
control-flow. In such a model, the main differences are highlighted. This will be
discussed in much more detail further ahead.

18 Introduction

Figure 1.10: Control-flow comparison of patients with Diagnostic code = 106 and pa-
tients with Diagnostic code = 821. Colored states and arcs represent statis-
tically significant differences in terms of frequency of occurrence.

Performance Variability

Processes with a relatively structured control-flow can still have a high variabil-
ity in other process perspectives such as performance. However, performance
is usually not considered by process discovery algorithms, hence the resulting
process models only care about the control-flow structure of the process. To
overcome this, process enhancement techniques are used to annotate process
models with performance information, allowing analysts to visually inspect the

1.2 Dealing with Variability in Processes 19

performance of the process in the process models and can identify bottlenecks
based on such information [156].

From all the possible performance annotations, the most commonly used
by process enhancement techniques are the average duration of activities, the
time in-between activities and the average elapsed time in a case. Even though
using averages can simplify analysis (i.e., fewer numbers to focus on), it has
a drawback: single values (e.g., average, median) hide the underlying distri-
bution. Averaging is useful only when the underlying distribution is (close to)
either uniform or normal with a small standard deviation. In such cases, the
average can be representative. Other types of distributions (e.g., skewed, ex-
ponential/poisson, normal with a large standard deviation) cannot be properly
summarized by an average. In real life, performance is usually far from be-
ing constant or uniform, as the process is executed in different moments of
time by different resources and often handling different case complexities (e.g.,
complex cases may take longer than simple cases). Many non-process-mining-
related classical data analysis tools (e.g., SAS, SPSS) can be used to analyze
such distributions.

However, since we are dealing with event data, performance analysis should
not be done in isolation, but always in relation to the process in order to e.g.,
identify performance bottlenecks or points of performance improvement in the
process.

Figure 1.11 illustrates the idea. In a similar fashion as Figure 1.10, it shows
an example of an enhanced process model (i.e., a transition system) that com-
pares the event data of patients with the same two different Diagnostic codes
(i.e. 106 and 821), but this time in terms of performance. In such a model, the
main differences are highlighted so that it is easy to detect performance differ-
ences in specific parts of the process. This will also be discussed in much more
detail further ahead.

Differences in performance can be related to many factors e.g., control-flow,
resource, etc. In the hospital process, performance could be affected by the com-
plexity the treatment, the accuracy of the initial diagnostics, etc. Moreover, the
actual grouping criteria is also a determinant factor for observing performance
differences. In the hospital process, patients were simply grouped according
to the initial diagnostics. However, in large and complex processes, defining a
good grouping criteria is far from trivial. Most of the time is done manually
and it is usually obtained through either trial-and-error or the use of domain
knowledge, which is not always available.

20 Introduction

Figure 1.11: Performance comparison of patients with Diagnostic code = 106 and pa-
tients with Diagnostic code = 821. Colored states and arcs represent statis-
tically significant differences in terms of elapsed time.

Resource & Data Variability

Control-flow process models can also be enhanced using other data attributes
of events such as the resource that executes an activity, the customer age and
income, etc. The executions of a process can be clustered into subgroups de-
pending on resource and data attributes. Such subgroups might have different
control-flow or performance over the process. This type of clustering enables

1.3 Opportunities for Tool Support in Process Mining 21

many types of analysis, such as understanding the differences in the customer
journey for different type of customers.

In the hospital process, for example, all the patients treated by the same
doctor, or that had similar exam results can be grouped together. It might be the
case that one specific doctor has a much higher treatment success rate than the
others, and it would be interesting to analyze and understand the reasons why
this happens. However, these insights are not visible if the right perspectives
are not included.

Most process mining techniques ignore this type of variability, as they mainly
focus on control-flow, sometimes extending the scope to performance.

1.3 Opportunities for Tool Support in Process Min-
ing

Hundreds of process mining techniques are available and their value has been
proven in many case studies. See for example the twenty case studies on the
webpage of the IEEE Task Force on Process Mining [72]. The open-source pro-
cess mining framework ProM [172] provides over 1500 plug-ins and has been
downloaded over 150.000 times. The growing number of commercial process
mining tools (nowadays there are over 30 different vendors) further illustrate
the uptake of process mining. Nevertheless, current tool support for process
mining presents many opportunities for improvement. In this thesis, we will
focus on three main opportunities, described as follows.

The first one is that process data often come from different and heteroge-
neous sources. Extracting process data from IT systems is not trivial. Moreover,
most process event logs are obtained through manual extraction and prepro-
cessing step. Such manual steps are often difficult to replicate. This is referred
to in the process mining manifesto [152] as the challenge “Finding, Merging, and
Cleaning Event Data”. Extract, transform & load (ETL) techniques can be used
to support the data extraction and preprocessing from several sources [180].

The second one is that process mining can be combined with other types
of analysis. Process mining techniques have been proven to be useful in many
applications, but their full potential is only unleashed when they are combined
with other types of data analysis. This is referred to in the process mining
manifesto [152] as the challenge “Combining Process Mining With Other Types of
Analysis”. Other disciplines such as complex event processing, sequence mining,
pattern mining, natural language processing, simulation, machine learning, and

22 Introduction

many others, can also contribute to achieving this goal.
The third one is that large-scale experimentation is not supported by existing

process mining tools. Experiments in process mining rarely consist of a single
application of a technique. Often, many techniques need to be chained together
in a specific order. For example, a model is discovered and then it is checked for
conformance with respect to the data. Moreover, the same chain of techniques
can be executed hundreds or thousands of times. For example, when finding
the parameter value of the process discovery technique that results in the best
conformance. As a result, the manual execution of these chains of techniques
can become tedious and error-prone, which jeopardize the repeatability and
provenance of the experiments. These chains of techniques can be used for
many purposes, such as the challenge “Creating Representative Benchmarks” in
the process mining manifesto [152]. Such benchmarks should rely on statistical
hypothesis testing, which often require large sample sizes.

This thesis proposes a new approach to capture these opportunities by com-
bining process mining techniques with existing analytic workflow tools. Fig-
ure 1.12 illustrates the idea. This workflow can be used to extract, transform
& load (ETL) the data in early steps and then perform several process mining

Figure 1.12: Example of an analytic workflow that combines ETL, process mining and
non-process mining analysis steps and performs large-scale experimenta-
tion.

1.4 Contributions in this Thesis 23

analysis combined with an arbitrary set of non-process mining analysis for any
given number of process variants in any scale needed. Such type of workflows
enable large-scale experimentation (including representative benchmarks) com-
bining process mining and non-process-mining techniques in a clear, error-safe,
reproducible, and transparent manner.

1.4 Contributions in this Thesis

Based on the two discussions presented above, several contributions are in-
cluded in this thesis.

To address the challenges discussed in Section 1.2: “Dealing with Variability
in Processes”, the following three technical contributions to the body of scientific
knowledge (CBSKs) are proposed.

Process Cubes: A technique to support the interactive and consistent explo-
ration of process variants (Chapter 3). Process Cubes are the result of adapting
OLAP-operations to explore process data, where each cell in a process cube con-
tains events that can be converted into a process variant. Process cubes enable
the consistent exploration of process variants, which can be used by other pro-
cess mining techniques.

Process Variant Comparison: A technique to compare process variants. (Chap-
ter 5). This technique is able to compare process variants in terms of behavior
(using event dimensions) and in terms of business rules, based on their event
logs. The results are projected into a process model that serves as a “map” in
which the differences are clearly identified and can be pinpointed to specific
parts (e.g., activities) of the process.

Process Variant Detection: A technique to detect relevant process variants in
a general setting. (Chapter 6). This technique is able to detect process variants
in process data by splitting cases based on the data attributes of their events.
It uses statistical testing and unbiased variable selection to detect only relevant
process variants. The result is a summary of relevant splittings, where each
splitting leads to a set of variants. Each variant is then encoded into its cor-
responding set of traces. As a result, an enriched event log can be used by
a process cube to split the event data into such variants using variant-related
dimensions.

To address the challenges discussed in Section 1.3:“Opportunities for Tool

24 Introduction

Support in Process Mining”, the following tooling contributions to the body of
scientific knowledge are proposed.

Process Mining Workflows: Support the execution of process mining work-
flows. (Chapter 4). The concept of a process mining workflow as a chain of pro-
cess mining (and/or non-process mining) analysis steps is introduced. Process
mining workflows can be used to completely describe arbitrary process mining
experiments. Therefore, it enables full reproducibility of the results. The tool
supporting these workflows is introduced and it is applied in several use cases.

Benchmark Frameworks: Develop replicable and sound benchmarks. (Chap-
ters 7 and 8). Process mining workflows are used to define two frameworks:
one for benchmarking process discovery techniques and the other for bench-
marking concept drift detection techniques. These frameworks are not meant
only for comparing techniques: they also allow for benchmarking techniques
at a statistical level for specific process characteristics, or to perform parame-
ter sensitivity analysis. For example, the effect of parallelism on the quality of
models produced by a process discovery technique can be studied.

Additionally, this tesis adds three empirical contributions to the body of sci-
entific knowledge in the form of case studies.

Case Studies: (Chapters 9, 10, and 11). Three case studies using real-
life event data show the relevance of the techniques presented in this thesis
through their application in solving problems related to different organizations
and industries, such as: Telecommunications, Printing & Digitalization, and
Education.

1.5 Thesis Structure

This thesis is composed of twelve chapters that are organized into five parts.
Figure 1.13 shows an overview of the parts of this thesis and the chapters in-
cluded in them.

Part I serves as an introduction and motivation for this thesis. Next to this
introductory chapter, Chapter 2: Preliminaries introduces the basic concepts
and notations used in the remainder of this thesis.

Part II describes the main contributions proposed in this thesis. It includes
the following chapters:

Chapter 3: Process Cubes. This chapter introduces the concept of event

1.5 Thesis Structure 25

Chapter 1

Introduction

Chapter 2

Preliminaries

Chapter 3

Process Cubes

Chapter 4

Process Mining
Workflows

Chapter 5

Process Variant
Comparison

Chapter 6

Process Variant
Detection

Chapter 7

A Framework for Benchmarking
Process Discovery Techniques

Chapter 8

A Framework for Benchmarking
Concept Drift Detection Techniques

Part I
Opening

Part II
Foundations

Part III
Large-Scale

Experimentation

Chapter 9

Variability Analysis of a
Claim Management Process

Part IV
Case Studies

Chapter 12

Conclusions &
Future Work

Part IV
Closure

Chapter 10

 Business Process
Reporting in

Education

Chapter 11

Comparative Analysis
of Business Process

Outsourcing Services

Figure 1.13: Structure of this thesis. The twelve chapters are organized into five parts.

dimensions, and describes how OLAP-cube operations can be adapted for event
data, and describes how they can be used to perform multidimensional explo-
ration of processes. Finally, the natural connection of process cubes with process
comparison and the execution of process mining workflows from the cells of the
cube is discussed. This chapter is based on the work presented in [16].

26 Introduction

Chapter 4: Process Mining Workflows. This chapter introduces the con-
cept of process mining workflows, and proposes several process mining work-
flow patterns i.e. (use cases) using building blocks. It also describes how process
mining workflows can interact with other types of analysis and with the process
cubes introduced in the previous chapter. This chapter is based on the work
presented in [11,169].

Chapter 5: Process Variant Comparison. This chapter introduces a tech-
nique to compare process variants in terms of behavior (using event dimen-
sions) and in terms of business rules. This chapter is based on the work initially
presented in [12] and later extended in [13].

Chapter 6: Process Variant Detection. This chapter introduces the concept
of process variants, and proposes a technique to automatically detect them using
event attributes. This chapter is based on the work presented in [17].

Part III presents two applications of the process mining workflows presented
in Chapter 4 to propose frameworks for benchmarking process mining tech-
niques by leveraging on the large-scale experimentation capabilities enabled by
the use of such process mining workflows. The chapters included in this part
are:

Chapter 7: A Framework for Benchmarking Process Discovery Tech-
niques. This chapter presents a framework for comparing process discovery
techniques in different scenarios for different populations of processes. This
chapter is based on the work presented in [85].

Chapter 8: A Framework for Benchmarking Concept Drift Detection
Techniques. This chapter presents a framework for comparing, in the scope
of event data, concept drift detection techniques in different scenarios for dif-
ferent populations of processes.

Part IV describe the empirical application of the techniques proposed in
Part II in three case studies using real-life data sets. Table 1.2 summarizes the
usage of these techniques in each case study.

Table 1.2: Usage of the techniques presented in Part II in each case study.

Process Process Mining Process Process Variant
Cubes Workflows Comparison Detection

Chapter 9 X X X
Chapter 10 X X
Chapter 11 X X

1.5 Thesis Structure 27

Chapter 9: Variability Analysis of a Claim Management Process. This
chapter describes the application of process variant detection, process cubes,
and process comparison techniques to analyze and compare process variants in
the claim management process of a large telecommunications company.

Chapter 10: Business Process Reporting in Education. This chapter de-
scribes the application of process cubes and process mining workflow techniques
to automate the generation of reports obtained from educational data in a large
scale, combining learning analytics and process mining techniques.

Chapter 11: Comparative Analysis of Business Process Outsourcing Ser-
vices. This chapter describes the use of process mining workflows and process
comparison techniques to analyze and understand the variability of a document
digitalization service process in a business process outsourcing organization.

Finally, Part V concludes this thesis by summarizing the contributions pre-
sented on this thesis, discussing their limitations and proposing future research
directions in Chapter 12: Conclusions.

Chapter 2
Preliminaries

This chapter introduces the existing concepts and notations that will be used
throughout this thesis. It is organized as follows. Section 2.1 introduces basic
mathematical concepts and notations such as sets and functions. Section 2.2
provides a formal definition of event logs and their components, and discusses
existing standards. Section 2.3 briefly describes well-known process modeling
notations and provides a formal definition of transition systems as process mod-
els, defining how they can be constructed using event data. Finally, Section 2.4
describes the running example that will be used throughout this thesis.

2.1 Basic Notations

Definition 2.1 (Set). A set is an unordered collection of distinct objects of any
nature.

The symbol ∈ is used to denote the membership of an object in a set, and
its negation (/∈) is used to denote the opposite. For example, given a set X, the
expression a ∈ X means that a is an element of X, while the expression b /∈ X
means that b is not an element of X.

There are two ways to define a set: by intension or by extension. An in-
tensional definition uses a rule or semantic description, e.g., “the colors of the
Dutch flag”. An extensional definition lists each element of the set in curly brack-
ets, e.g., {red, white, blue}.

30 Preliminaries

Some specific infinite sets of elements used in this thesis are also commonly
used in mathematics. They are considered as "standard" sets.

Definition 2.2 (Standard Sets of Elements). Standard sets of elements are de-
scribed as follows:

• N denotes the set of natural numbers (N0 includes 0).

• Z denotes the set of integer numbers (Z+ denotes positive integers).

• R denotes the set of real numbers.

For sets with a large number of elements, an extensional definition is some-
times inconvenient. Instead of listing all the elements of a set, an abbrevi-
ated definition can be made using the set-builder notation of the form {vari-
able|conditions} which defines a set with all the values of the variable for which
the conditions hold (i.e., are true). For example, in the expression {a ∈ Z|∃b ∈
Z : a = 2 ∗ b}, the variable a is an integer and the condition states that there is
an integer b for which a is the double. Note that this expression simply defines
the set of even integer numbers.

Let X and Y be two sets. The standard notation for operations over sets
used in this thesis is defined as follows:

• ∅ = { } denotes the empty set.

• |X| denotes the cardinality (i.e., number of elements) of the set X.

• X ∪ Y = {a|a ∈ X ∨ a ∈ Y } denotes the union of X and Y .

• X ∩ Y = {a|a ∈ X ∧ a ∈ Y } denotes the intersection of X and Y .

• X \ Y = {a ∈ X|a /∈ Y } denotes the difference of X and Y .

• X ⊆ Y ⇔ |X ∩ Y | = |X| denotes that X is a subset of Y , i.e., every
element of X is also an element of Y .

• X ⊂ Y ⇔ X ⊆ Y ∧ |X| < |Y | denotes that X is a strict subset of Y .

• P(X) = {Y |Y ⊆ X} denotes the power set (i.e., the set of all subsets) of
X.

• X × Y = {(x, y)|x ∈ X ∧ y ∈ Y } denotes the cartesian product of X and
Y , where (x, y) is an ordered pair (i.e., a tuple).

2.1 Basic Notations 31

• Xn = X1 ×X2 × ... ×Xn where X = X1 = X2 = ... = Xn, is the n-fold
cartesian product of X. All the elements in Xn are n-tuples of size n.

Definition 2.3 (Relation). Let X1, ..., Xn be sets. A n-ary relation R ⊆ X1× ...×
Xn defines a mapping between elements of these sets. This mapping is observed in
the elements of the relation. Any n-tuple (x1, ..., xn) ∈ R where x1 ∈ X1, ..., xn ∈
Xn relates the values of x1, ..., xn to each other.

Functions and partial functions are a special case of a relation between two
sets, and they map elements of one set to elements of another set.

Definition 2.4 (Partial Function). A partial function pf : X ↛ Y , is a subset of
the cartesian product of X and Y , where each element in X is related to at most
one element of Y :

∀x∈X∀y1∈Y ∀y2∈Y

(
(x, y1) ∈ pf ∧ (x, y2) ∈ pf

)
⇒ y1 = y2

Note that a partial function X ↛ Y allows elements of X to not be mapped
to any element of Y . Total functions enforce a mapping of all elements of X to
exactly one element of Y .

Definition 2.5 (Total Function). A function f : X → Y , is also a subset of the
cartesian product of X and Y , where each element in X is always related to exactly
one element of Y :

∀x∈X∀y1∈Y ∀y2∈Y

(
(x, y1) ∈ f ∧ (x, y2) ∈ f

)
⇒ y1 = y2 ∧ ∀x∈X∃y∈Y

(
(x, y) ∈ f

)
For any function or partial function f : X ↛ Y , the domain of f is denoted

as dom(f) = {x ∈ X|∃y∈Y (x, y) ∈ f}, and the range of f is denoted as rng(f) =
{y ∈ Y |∃x∈X(x, y) ∈ f}. Additionally, for any function or partial function f , a
relation (x, y) ∈ f can alternatively be denoted as f(x) = y.

A function f : X → Y is surjective if each element of Y is related to an
element of X: ∀y∈Y ∃x∈X f(x) = y. A partial function f : X ↛ Y is injective if
each element of X is related to a different element of Y : ∀x1∈X∀x2∈X

(
f(x1) =

f(x2)
)
⇒ x1 = x2. A function is bijective if it is surjective and injective.

A multiset is an unordered collection of objects, where the objects can be
present multiple times in the collection.

Definition 2.6 (Multiset). Given a set X, a multiset M over X is defined as the
function M : X → N0.

32 Preliminaries

A multiset can be defined by extension using square brackets and superindices
to indicate the multiplicity of elements, where an element x ∈ X is represented
as [xM(x)]. For example, M = [a, b2] contains one a and two b’s.

The set of all the possible multisets over X is defined as B(X). The size of
a multiset corresponds to the number of distinct elements on it, regardless of
their cardinality.

The sum of two multisets M1 and M2 over the set X, i.e., M1 ⊎M2 yields a
resulting multiset M ′ with M ′(x) = M1(x) +M2(x).

As a consequence, a set X can be seen as a multiset where the multiplicity
of all its elements is one.

A sequence is an ordered collection of objects, where the objects can be
present multiple times in the sequence.

Definition 2.7 (Sequence). Let X be a set. A sequence of length n ∈ N over the
elements of X is defined as the function s ∈ {1, 2, ..., n} → X, which defines the
order in which elements appear in the sequence. Equivalently, a sequence of length
n ∈ N over the elements of X can be defined as a n-tuple s = ⟨s1, s2, ..., sn⟩ ∈ Xn.
The i-th element of the sequence s, for any 1 ≤ i ≤ n is defined as s(i) ∈ X,
denoted as simply si.

Given a set X, the set of all the sequences of all possible lengths over X is
denoted as X∗ =

⋃
i∈NXi.

Now that all the necessary basic mathematical concepts have been intro-
duced, we proceed to introduce the process-mining-related concepts that will
be used throughout this thesis.

2.2 Events as Observed Executions of a Process

Using the notation and definitions presented previously, several universes are
defined. The universes mentioned and used throughout this thesis are described
as follows.

Definition 2.8 (Universes). Universes are infinite sets of elements:

• V is the universe of values, including numbers, characters, names, etc.

• E is the universe of events.

• N is the universe of attribute names.

2.2 Events as Observed Executions of a Process 33

As mentioned previously in Section 1.1, information systems can record the
execution of a process. Every time that something “happens” in the process, an
event e ∈ E is recorded. Events are unique and they can be characterized by
attributes.

Definition 2.9 (Attribute). Attributes can relate events to values through the func-
tion # : N → (E ↛ V). For any attribute a ∈ N , the partial function #(a) can
relate events to values of the attribute a. In the remainder, function #(a) is short-
ened as #a.

For an attribute a ∈ N and an event e ∈ E , if e ∈ dom(#a), then the event
e has a value for the attribute a, indicated as #a(e) = v ∈ V. If e /∈ dom(#a),
then the event e does not have a value for the attribute a. We write #a(e) = ⊥
to indicate this.

Events can be related to multiple attributes such as costs, resources, cus-
tomers, purchase amounts, etc. However, there are three specific event at-
tributes that are almost always present in an event log:

• Case ID: describes the specific case related to this event, so that an event
can be related to other events with the same case id (denoted as #case_id),

• Activity: describes the specific activity executed in an event (denoted as
#activity),

• Timestamp describes the moment in time when an event was executed
(denoted as #time).

For example, in Figure 1.4, the first event e (leftmost) of the first trace (i.e.,
article #3025) is characterized by the three following attributes: #case_id(e) =
3025, #activity(e) = invite reviewers, and #time(e) = 01/08/2017.

An event can be related to a set of attributes for which it has a value, by
the function atts : E → P(N), where for any event e ∈ E , atts(e) is defined as
{a ∈ N|e ∈ dom(#a)}.

As mentioned before, events can be grouped together if they refer to the
same case of the process. For example, they may refer to the same patient in
a hospital, or to the same production order in a factory. A trace records the
execution of a case of a process.

Definition 2.10 (Trace). A trace (i.e., case) σ ∈ E∗ is a finite sequence of events,
where for any e1, e2 ∈ σ : #case_id(e1) = #case_id(e2). In other words, all the
events in a trace have the same value for the case id attribute.

34 Preliminaries

The length of a trace is denoted as |σ|. The kth event of a trace is denoted
as σ(k) with k ≤ |σ|. The last event of a trace is denoted as σ(|σ|). The prefix of
a trace containing its first k events is defined by the function pref k ⊆ E∗ → E∗,
with k ≤ |σ|. Note that pref 0(σ) = ⟨⟩. The set of all the prefixes of a trace σ is
defined as pref ⋄(σ) =

⋃|σ|
k=0{pref

k(σ)}.
Traces can also be manipulated in order to extract process characteristics

and include them as attributes in the events of the trace, as proposed in [45].

Definition 2.11 (Trace Manipulation Function). A trace manipulation function
is defined as T : E∗ → E∗. This function is defined for any trace σ = ⟨e1, ..., en⟩ ∈
E∗ as T (σ) = ⟨f1, ..., fn⟩ ∈ E∗ where all e ∈ σ and all f ∈ T (σ) are unique
events, and |σ| = |T (σ)|, such that for any attribute a ∈ N and ∀1≤i≤n : ei ∈
dom(#a)⇒ #a(ei) = #a(fi).

A trace manipulation function creates new events by copying all the attribute
values of existing events and adding extra attributes. It does not change the
value of event attributes when such attributes already have a value in the origi-
nal trace, and it does not add or remove events.

There are several ways to manipulate a trace by adding extra event at-
tributes. These extra attributes can be related to different perspectives such
as control-flow, performance, resource, and costs, but also to the context of the
process and variant information. For example, process variants found by the
approach presented in Chapter 6 can be used to enrich the original event data,
e.g., by encoding the variant-related information as new additional attributes.

The work presented in [45] discusses a list of over twenty different trace
manipulation functions. From this list, we used four manipulation functions
to extend all the event logs used in this thesis. A brief description of them is
provided as follows.

Next Activity (CFP2): each event is annotated with the name of the activ-
ity executed afterwards for the same trace. Formally, this is defined as:
TCFP2 (⟨e1, . . . , en⟩) = ⟨f1, . . . , fn⟩ such that ∀1≤i<n : #next_activity(fi) =
#activity(ei+1), with #next_activity(en) = ⊥.

Duration (TIP1): each event is annotated with the time difference between
the current activity and the previous activity of the same case. Formally,
this is defined as: TTIP1 (⟨e1, . . . , en⟩) = ⟨f1, . . . , fn⟩ such that ∀1<i≤n:
#duration(fi) = #time(ei)−#time(ei−1), with #duration(f1) = ⊥.

Elapsed Time (TIP2): each event is annotated with the time difference be-
tween the current activity and the first activity of the same case. For-

2.2 Events as Observed Executions of a Process 35

mally, this is defined as: TTIP2 (⟨e1, . . . , en⟩) = ⟨f1, . . . , fn⟩ such that
∀1≤i≤n : #elapsed(fi) = #time(ei)−#time(e1).

Attribute Cascading (DFP2) : each event is annotated with the latest value of
every available attribute contained in previous events of the same trace.
Formally, this is defined as: TDFP2 (⟨e1, . . . , en⟩) = ⟨f1, . . . , fn⟩ such that
∀a∈N : #a(f1) = #a(e1), and ∀1<i≤n : ei ∈ dom(#a)⇒ #a(fi) = #a(ei),
and ei /∈ dom(#a) ∧ fi−1 ∈ dom(#a)⇒ #a(fi) = #a(fi−1).

The brackets in each manipulation function contains the special attribute name
as they have been defined in [45].

A collection of traces (manipulated or not) is defined as an event log.

Definition 2.12 (Event Log). An event log L ⊆ E∗ is a finite set of traces such
that given any two traces σ1, σ2 ∈ L : ∃e : e ∈ σ1 ∧ e ∈ σ2 ⇒ σ1 = σ2.

Within an event log, each event is unique and can appear only once in one
trace. The set of all the prefixes of traces of an event log L is defined as:

PL =
⋃
σ∈L

pref ⋄(σ)

Note that for any trace σ, ⟨⟩ and σ are also considered to be a prefix of σ. The
set of all the events in an event log L is defined as:

EL =
⋃
σ∈L

{e ∈ σ}

In this thesis, an event log is assumed to contain traces related to the same
process. An event log may contain variations of the same process (i.e., process
variants).

Definition 2.13 (Process Variant (Log)). Given an event log L, a set of process
variants of L is defined as VL ⊆ P(L), such that |VL| > 1 and that for any
v1, v2 ∈ VL, v1 ⊆ v2 ⇒ v1 = v2. Each process variant v ∈ VL is simply a subset of
traces of L.

Process variants are typically constructed to group together homogeneous
behavior. A process variant refers to a variation or version of the process, hence
there has to be least another version of the process in the event log in order to
call them as process variants. In this thesis, process variants are considered as
non dominant, i.e., a variant cannot fully contain another variant. Note that

36 Preliminaries

traces in the event log are allowed to be in more than one variant. For example,
if we distribute the cases of an event log into process variants depending on
the year in which any event was executed, then cases that started in 2017 and
finished in 2018 can be related to the process variants related to both years.

2.3 Process Modeling Notations

Process models use notations to represent some process perspectives (usually,
the control-flow of the process). For process models, several notations exist in
literature. Note that these notations have several properties and characteris-
tics. The most commonly used in process mining are: Petri nets, process trees,
BPMN and transition systems. The remainder of this section briefly describes
the notations mentioned above. For a formal definition of these process mod-
eling notations, the reader is referred to [156]. Since this thesis heavily uses
transition systems, these will be formally described in Section 2.3.4.

2.3.1 Petri Nets

Petri nets are a well known process modeling language and are one of the first
to provide explicit support for concurrency. Petri nets are bipartite graphs con-
taining places, transitions, and directed arcs between them. Places can contain
tokens that can flow through transitions, and the state of all places (i.e. a mark-
ing) represents the state of the process execution.

In the context of process mining, not all types of Petri nets are used. Work-
flow nets (WF-nets) are a subset of Petri nets that is specially adapted to rep-
resent the workflow of process activities. One of the main particularities of
WF-nets are the presence of a source, i.e., a place with no incoming arcs, and a
sink, i.e., a place with no outgoing arcs. Another particularity of WF-nets is the
presence of initial and final markings which define the initial and final desired
values for all the places in the net.

WF-nets also have clear execution semantics. Because of this, they can be
mapped onto transition systems, e.g., by building a so-called reachability graph.
WF-nets are mainly used to represent the control-flow perspective of a process,
as they have difficulties capturing data and performance-related aspects. This
issue is partially addressed by Colored Petri Nets (CPN) [80] and Data Petri nets
(DPN) [156] in which tokens carry such data aspects (i.e., case level). WF-nets
can contain deadlocks (i.e., non-final markings with no outgoing transitions),

2.3 Process Modeling Notations 37

livelocks (i.e., transitions are enabled, but it is impossible to reach the final
marking), therefore, soundness is not guaranteed.

Figure 2.1 shows a WF-net that represents the journal revision process (see
Section 1.1). This WF-net was discovered from the event log shown in Figure 1.4
using the approach introduced in [167].

Figure 2.1: Petri net (WF-net) model representing the journal revision process.

2.3.2 Process Trees

A process tree is a hierarchical tree-structured process model where the inner
nodes are operators (e.g., sequence, choice, parallel) and the leaves are activi-
ties [158]. Process trees are block-structured, and they guarantee soundness by
design (i.e., no dead-or-live locks). They also have executable semantics, and
they can be directly mapped onto workflow nets (i.e., a sub-class of Petri nets).
Therefore, they can be transitively mapped onto transition systems.

Figure 2.2 shows a process tree that represents the simplified journal revi-
sion process (see Fig. 1.4). This process tree was discovered from the event log
shown in Figure 1.4 using the approach introduced in [102].

Invite
Reviewers +

X X X

Get Review 1 Time-out 1 Get Review 2 Time-out 2 Get Review 3 Time-out 3

Collect Reviews X

Invite Additional
Reviewers

X

Get Review X Time-out X

Time-out X X

Accept Reject

Figure 2.2: Process tree model representing the simplified journal revision process.

38 Preliminaries

2.3.3 BPMN

The business process model and notation (BPMN) has become one of the most
common notations to model processes. BPMN has been standardized by the
OMG1 in collaboration with several BPM software vendors and has been re-
cently published by the ISO 2. In its latest version, BPMN offers a large collection
of constructs (over 50) that can be used to model specific behavioral settings.

BPMN has clear execution semantics (e.g., BPMN 2.0 can be directly ex-
ecuted in workflow engines). The mapping between Petri nets and BPMN is
not completely bidirectional, but BPMN can be mapped to transition systems
directly.

Figure 2.3 shows a BPMN model that represents the simplified journal revi-
sion process (see Fig. 1.4). This BPMN model was discovered from the event
log shown in Figure 1.4 using the approach introduced in [39].

Invite
Reviewers

Get
Review 1

Timeout 1

Get
Review 2

Timeout 2

Get
Review 3

Timeout 3

Invite
Additional
Reviewer

Get
Review X

Timeout X

Accept

Reject
Collect

Reviews

Figure 2.3: BPMN model representing the journal revision process.

2.3.4 Transition Systems

Transition systems are commonly used in computer science to describe the pos-
sible behavior of discrete systems. Since the execution of a process is also dis-
crete (i.e., marked by events), transition systems can be used to represent the
executions of a process. Transition systems are considered as the most basic rep-
resentation of processes. This is because of the simplicity of this notation, com-

1http://www.omg.org/spec/BPMN/
2Resolution ID: ISO/IEC 19510:2013 (https://www.iso.org/standard/62652.html)

http://www.omg.org/spec/BPMN/
https://www.iso.org/standard/62652.html

2.3 Process Modeling Notations 39

posed of only two constructs: states and transitions between them. Therefore,
transition systems can easily represent the current state of a process execution.

Any process modeling notation with execution semantics can be mapped
onto a transition system [156]. Moreover, transition systems are not limited to
the control-flow perspective. They can be used, for example, to describe the
interaction of resources in a process, i.e., social networks.

Based on the above, transition systems are the process modeling notation
that will be used throughout this thesis.

As mentioned before, transition systems are composed of states and of tran-
sitions between them. A transition is defined by an activity being executed,
triggering the current state of the process to move from a source state to a target
state.

LetRs be the universe of all the possible state representations. For example,
in Figure 2.4, the state (i.e., <Invite Reviewers> ∈ Rs) represents that the
activity Invite Reviewers was executed.

Figure 2.4: Transition system representing the journal revision process. Transition labels
are hidden for improving readability.

Let Ra be the universe of all the possible activity representations. The activ-
ity representation of an event defines the type of activity that was executed.

This is commonly obtained from the event attributes and usually refers to

40 Preliminaries

the activity event attribute. For example, in Figure 1.4, the first event of the
first trace (i.e., article #3025) can be related to the activity Invite Reviewers

∈ Ra.
Prefixes of traces can be mapped to states and transitions using representa-

tion functions that define how these prefixes are interpreted.
The state representation function is defined as rs : E∗ → Rs. This function

relates (prefixes of) traces to states in a transition system. Given an empty
(prefix of a) trace, we denote the empty state as a special element rs(⟨⟩) = ⊥ ∈
Rs

The activity representation function is defined as ra : E → Ra. This function
relates events to activities.

When using a state representation function rs and an activity representa-
tion function ra together, (prefixes of) traces can be related to transitions in a
transition system, as the activity and the source and target states of the transi-
tion can be identified using rs and ra. The set of all possible representations of
transitions is defined as Rt ⊆ Rs × Ra × Rs. A transition t ∈ Rt is a triplet
(s1, a, s2) where s1, s2 ∈ Rs are the source and target states and a ∈ Ra is the
activity executed. Note that in this thesis only the activity event attribute is
used to determine states and transitions. However, other event attributes can
be used instead. For example, if a resource attribute is used in the state and
activity representation functions, the resulting transition system will be a social
network where states and transitions correspond to resources (e.g., employees)
that execute events.

It is important to mention that transition systems do not inherently filter
out infrequent behavior, as they represent all the behavior observed in an event
log. In fact, they often over-approximate behavior (e.g., in the case of loops).
If infrequent behavior needs to be filtered out, this must be done directly in the
event data prior to the creation of the transition system or in a post-processing
stage (see Chapter 5 for more details).

Now that we have defined the state and activity representation functions,
we proceed to define transition systems.

Definition 2.14 (Transition System). Given an event log L, a state representa-
tion function rs and an activity representation function ra, a transition system
TS (rs,ra,L) is defined as a triplet (S,A, T) where S = {rs(σ) | σ ∈ PL} is the
set of states, A = {ra(e) | e ∈ EL} is the set of activities and T = {(s1, a, s2) ∈
S × A× S | ∃σ∈PL\{⟨⟩} : s1 = rs(pref |σ|−1(σ)) ∧ a = ra(σ(|σ|)) ∧ s2 = rs(σ)} is
the set of valid transitions between states.

Given any trace prefix σ = ⟨e⟩ (i.e., |σ| = 1), then pref |σ|−1(σ) = ⟨⟩ (see

2.3 Process Modeling Notations 41

Section 2.2). Hence, the only transition t = (s1, a, s2) that can be defined for
σ corresponds to t = (rs(⟨⟩), ra(e), rs(e)) which is the one that goes from the
empty state rs(⟨⟩) to the state rs(e). This empty state acts as the only initial state
(i.e., the state with no incoming transitions) for the transition system, and all
the other non-empty states in the transition system are (transitively) connected
to it. However, the empty state can only be the source of a transition, but never
the target. Therefore, the empty state cannot be a final state (i.e., a state with
no outgoing transitions). In this thesis, we do not impose a single final state.
Instead, any state with no outgoing transitions can be considered as a final state.

Also note that the structure of a transition system is affected by the state and
activity representation functions used to create it.

As an example, Figure 2.4 showed the transition system that was learned
based on the event log L related to the journal revision process introduced in
Section 1.1 while using the state representation function defined as rs(σ) =
#activity(σ(|σ|)) for σ ∈ PL and the activity representation function ra(e) =
#activity(e) for e ∈ EL. Note that the special case of an empty trace is defined
as: #activity(⟨⟩) = { }. This transition system was discovered from this event
log using the approach introduced in [162]. In this transition system, (prefixes
of) traces are mapped into states and transitions as the activity name of their
last event.

Alternatively, other state and activity representation functions can be used,
which will result in structurally different transition systems. For example, Fig-
ure 2.5, shows a different representation for the same event log L. This tran-
sition system was created using the state representation function defined as

Figure 2.5: Fragment of an alternative transition system representing the journal revi-
sion process. The full transition system is not shown because of its size.

42 Preliminaries

rs(σ) = {#activity(e)|e ∈ σ}, for σ ∈ PL and the activity representation function
ra(e) = #activity(e), for e ∈ EL. In this transition system, (prefixes of) traces
are mapped into states as the set of activity names of all their events, and into
transitions as the activity name of their last event. For more information and
detailed discussions on state and event representations in transition systems,
the reader is referred to [162].

Now that the basic concepts have been introduced, we present the running
example that will be used in chapters of Parts II i.e., Chapters 3 to 6.

2.4 Running Example: Road Fines

A real-life event log is used throughout this thesis as a running example. This
event log describes the recorded execution of the road fines management process
of a local police in Italy (publicly available in [43]). It contains 561.470 events
for 150.370 road fines created between January 2000 and June 2013. Each fine
relates to four events on average.

The list of attributes contained in this event log are presented in Table 2.1.
From this list, the last three event attributes were generated using trace manip-
ulation functions (see Definition 2.11).

Table 2.1: List of attributes that can be related to events of the road fines management
process event log.

Event attribute Description

Activity The name of the task that was executed.
Timestamp The time in which the activity is executed.
Resource The id of the person that executes an activity.
Amount The total amount of the fine (can increase due to penalties).
Article The law/article that was violated.
Expense The cost of sending the fine to the offender.
Vehicle Class Car (A), truck (C) or motorbike (M).
Vehicle Type The brand and model of the car.
Points The number of points that are deducted from the offender’s license.
Payment Amount The amount of a payment to the local police.
Total Payment Amount The total amount paid to the local police.
Notification Type The recipient of the notification: offender (C) or car owner (P).
Delay Send The time since a fine is created until it is sent to the offender.
Delay Judge The time since a fine is received by the offender until an appeal to a judge is filed.
Delay Prefecture The time since a fine is received by the offender until an appeal to a prefecture is filed.
Next Activity The next task that was executed for that fine.
Duration The duration of a task.
Elapsed Time The time since the start of a fine until the task is executed.

2.4 Running Example: Road Fines 43

Table 2.2: A fragment of the road fines event log represented as a table: each row cor-
responds to an event (shown in the event id column) and each column corre-
sponds to an event attribute. Events with the same fine id correspond to the
same instance of the process. The elapsed time is measured in days.

event id fine id activity timestamp amount next activity elapsed time ...

...
001 A1 create fine 24-07-2006 35 send fine 0 ...
002 A1 send fine 05-12-2006 35 - 134 ...
003 A100 create fine 02-08-2006 35 send fine 0 ...
004 A100 send fine 12-12-2006 35 insert fine notif. 132 ...
005 A100 insert fine notif. 15-01-2007 35 add penalty 166 ...
006 A100 add penalty 16-03-2007 71.5 send for credit col. 227 ...
007 A100 send for credit col. 30-03-2009 71.5 - 972 ...
008 A1007 create fine 28-08-2006 21 send fine 0 ...
009 A1007 send fine 15-12-2006 21 insert fine notif. 110 ...
010 A1007 insert fine notif. 07-01-2007 21 add penalty 133 ...
011 A1007 add penalty 08-03-2007 42.5 payment 192 ...
012 A1007 payment 30-11-2007 42.5 - 460 ...
013 A10082 create fine 11-03-2007 36 payment 0 ...
014 A10082 payment 11-03-2007 36 - 0 ...
...

Table 2.2 shows a fragment of this event log. Note that only a few events
and attributes are shown.

The basic flow of a road fine is described as follows: The process starts when
a fine is created. After this, the local police has 90 days to send a notification to
the offender if the fine is not fully paid. After being notified, offenders have a
choice: they can pay the fine, or they can appeal to a judge/prefecture. If they
decide to pay, they have 180 days to pay the full amount of the fine, otherwise
a penalty is added. If they decide to appeal, they have 60 days to do so. If a fine
is not fully paid and an appeal is not filed, the fine is eventually sent to credit
collection and the process finishes. Note that the offender can make (partial)
payments at any time.

Given the event log shown above in Table 2.2, Figure 2.6 shows a transition
system created using the state representation function rs(σ) = #activity(σ(|σ|))
and the activity representation function ra(e) = #activity(e). In other words,
both the states and transitions consist of only the last activity that was executed.
Note that the transition system was filtered after its creation in order to obtain
a simpler representation of the process: states and transitions that occurred in
less than 5% of the traces are hidden.

Figure 2.6: Transition system illustrating the road fines management process.

Part II

Foundations

46

Chapter 3
Process Cubes

Classical process mining techniques focus on analyzing a process through pro-
cessing its corresponding event log as a whole. Processes inherently contain
variability (as discussed in Section 1.2) which can complicate the analysis of
such a process. In this thesis, we claim that variability can be dealt with by
splitting event data into process variants by using event dimensions in such a
way that differences (hence, the variability) between variants are exposed e.g.,
when comparing such variants using process comparison tools.

This chapter formalizes the notion of process cubes where the event data
is presented, organized and split into cells using different dimensions. These
dimensions can be given in the event data, or can be derived from them, or from
the context of the process. For example, process variant detection techniques
(see Chapter 6) can be used to find process variants and encode such variant
information explicitly in the event data as derived dimensions, which can be
used by a process cube to split the data into such variants.

A process cube can use any combination of dimensions (given or derived) to
split the data into cells, where each cell in the cube contains a set of events that
can be converted into a process variant (i.e., a set of traces) which can be used
as an input by any process mining technique such as process comparison (pre-
sented in Chapter 5) and process mining workflows (presented in Chapter 4).
The interactions between these techniques are illustrated in Figure 3.1.

The notion of a process cube is related to the well-known OLAP paradigm
providing insights into multidimensional data [81, 92]. An OLAP cube is com-
posed of facts and dimensions. Facts are numerical measures and are the object

48 Process Cubes

Event
Data

Process
Cube

Process Variant
Detection

Process
Comparison

Process
Mining

Workflows

En
ri

ch
e

d
Ev

en
t

D
at

a
w

/
V

ar
ia

nt
 E

n
co

d
in

g

Cube cells
(process variants)

Figure 3.1: Overview of the scope of this chapter: a process cube takes event data as
input and splits it into process variants (cells of the cube) that can be used
directly by other process mining techniques, such as the ones proposed in
this thesis, i.e., process comparison and process mining workflows. Unused
interactions are greyed out.

of analysis (e.g., sales, costs, inventory levels). Each fact depends on a set of
dimensions, which provide the context for such fact. For example, the dimen-
sions associated with a sale amount (fact) can be the location, product name,
and the date when the sale was made. However, dimensions only determine the
“structure” of the cube. The combination of dimensions together with data can
uniquely determine facts. For example, in Table 3.1 fact “1” is fully determined
by the dimension values sale amount = 10, city = “Eindhoven”, and country

= “Netherlands”.

Dimensions can be described by a set of attributes related to each other.
For example, the location dimension may consist of two attributes: city and
country. The attributes in a dimension may be related to each other through a
hierarchy that defines the aggregation relations of attributes of the dimension.
For example, the hierarchy city → country defines that countries can aggre-

49

gate cities. This defines the level of detail with which the facts are presented.
In the previous example, sales can be grouped by city (more detailed, less
aggregated) or by country (less detailed, more aggregated).

The main purpose of On-Line Analytical Processing (OLAP) is to provide an-
alytic results over large collections of facts in real-time. On the other hand, On-
line Transactional Processing (OLTP) query facts on-demand (i.e., for a given
analysis) and will most likely not produce results quickly enough. In order to
achieve a real-time response, most of the processing of the raw facts is done a
priori (i.e., when the cube is being built) and only once, through aggregation
and summarization of these facts over the available dimensions. After an OLAP
cube is built, results can be quickly retrieved by using these summarized (pre-
calculated) facts. Example 3.2 illustrates the aggregation and summarization of
facts in OLAP and how the cube can retrieve results using summarized facts.

Example 3.1 (Data Aggregation and Summarization in OLAP). Let us con-
sider a simple OLAP cube that contains sales facts and a location dimension
that defines where a sale was made.

Each fact of this cube is characterized by a measure (i.e., Sale Amount),
and the location where it happened, described by the City and Country

attributes, as shown in the following table:

Table 3.1: Facts in the Cube

Fact Id Sale Amount City Country

1 10 Eindhoven Netherlands
2 60 Eindhoven Netherlands
3 53 Amsterdam Netherlands
4 41 Madrid Spain
5 32 Sevilla Spain
6 15 Sevilla Spain
7 65 Zaragoza Spain

The location dimension is defined by the attribute hierarchy: City →
Country, which means that sales associated to cities can be aggregated to
countries.

Facts can be directly queried from the cube, as in OLTP (e.g., using
SQL). For example, if we want to obtain the total sales amount in Eind-
hoven, we can query the cube and aggregate all the facts that are related

50 Process Cubes

to the city Eindhoven (i.e., facts 1 and 2) resulting in a total value of 70.
However, in large cubes with many facts and dimensions, this type of ad-
hoc querying can become unfeasible in practice.

Before a cube is used, facts can be pre-aggregated over dimensions using
similar queries, and such pre aggregations can be re-used for many future
queries over the cube. For example, if we want to obtain the total sales
amount of Spanish cities that are not Sevilla, instead of calculating the total
sales amount of all Spanish cities except Sevilla and then adding them, we
can use the pre-aggregated value of the total sales amount of the country
Spain (i.e., 153) , and then substract the pre-aggregated total sales amount
of the city Sevilla (i.e., 47), resulting in a value of 106.

The pre-aggregation of facts in OLAP is key for its real-time response
performance. The main advantage of OLAP over OLTP is that the querying
is generally done only once for OLAP. Naturally, pre-aggregated values are
stored in data structures within the cube. The concrete data representa-
tion used for storing pre-aggregations depends on many factors (e.g., the
vendor, type of dimensions). In this example, we will use a graph repre-
sentation to illustrate data aggregation on an OLAP cube.

The graph presented in the following figure shows the pre-aggregation
of facts performed over the location dimension:

Eindhoven
(70)

Netherlands
(123)

Madrid
(41)

All sales
(276)

Amsterdam
(53)

Sevilla
(47)

Zaragoza
(65)

Spain
(153)

Figure 3.2: Illustration of OLAP aggregation and summarization of facts over a Lo-
cation dimension. Each node contains the aggregated sales of its cor-
responding city or country. For example, the city Eindhoven has a total
sales amount of 70 (i.e., facts 1 and 2).

Each node in this graph contains a single summarized value that represents
the aggregation of sale amounts for that location through an addition func-
tion, and each arc defines an aggregation direction. The bottom row of
nodes in the graph describes the aggregated sales for each City, which is
the lowest level in the hierarchy of the location dimension. Note that facts

51

1 and 2 are related to the city Eindhoven. However, on the pre-aggregation
graph, only the summarized value 70 (i.e., the sum of the sale amounts of
facts 1 and 2) is stored for the city Eindhoven. Similarly, the same procedure
applies to every value combination of the location dimension (i.e., value
combinations of the attributes City and Country). For example, Spain has
a total amount of sales of 153, which comprehends facts 4, 5, 6 and 7. Let
us say that the initial state of the cube is to group all sales together (i.e., the
All sales node in the pre-aggregation graph). If the user wants to drill-down
to group facts by Country, then the cube does not query the total sales for
each country from the raw facts, but uses the summarized values shown in
Figure 3.2 to retrieve the answer for each country and/or city.

Research on OLAP is plentiful. An extensive overview of OLAP approaches
is presented in [35]. The application of OLAP on non-numerical data is increas-
ingly being explored in recent years. Temporal series, graphs, and complex
event sequences are possible applications [36,105,107].

Process cubes can be seen as an adaptation of OLAP to the use of events
instead of facts [155]. The difference between a fact being a numerical mea-
surement and an event being a more complex type of data causes two important
differences between OLAP and process cubes: Aggregability and Summarizabil-
ity.

Aggregability refers to the fact that, in OLAP, facts are numerical measures
that can be aggregated through numeric algebraic functions, e.g., sum, aver-
age. Events cannot be aggregated using numeric algebraic functions. However,
events can be (pre-)aggregated and grouped using set operations (e.g., union),
where the result of an aggregation of events is simply a set of events. Aggrega-
tion in OLAP (and process cubes) is not always possible [92]. The dimensions
used in the cube usually have to satisfy some properties such as completeness
(i.e., a fact or event has a value for all the attributes of the dimension) and
disjointness of attributes (e.g., in a location dimension, a city cannot be related
to different countries).

Summarizability in OLAP refers to the aggregation of facts for reducing a
set of (aggregated) values into a single summarized value e.g., mode, average
of values. Some authors have studied summarizability issues in OLAP [117,
120] where facts cannot always be summarized, and attempt to solve it by
introducing rules and constraints to the data model. However, process cubes
have to deal with a much more complex representation of data. Many events
cannot be reduced into a single event.

In summary, a process cube handles events like an OLAP cube would handle

52 Process Cubes

non-aggregatable facts. To illustrate this, let’s go back to Example 3.2. If each
fact in Table 3.1 is considered as an event (i.e., non-summarizable data point),
the pre-aggregation graph shown in Figure 3.2 should contain, for each node,
the set of facts that are related to it, instead of a summarized value. For exam-
ple, the node Eindhoven should only contain the facts 1 and 2 regardless of the
value of such facts.

Events in a process cube can be aggregated using set operations (e.g., set
addition) where the elements of the sets are events. For example, sales in the
city Eindhoven (i.e., facts 1 and 2 in Table 3.1) and Amsterdam (i.e., fact 3 in
Table 3.1) can be aggregated into the sales in the country Netherlands (i.e., fact
1, 2 and 3 in Table 3.1). Note that this only helps to identify which events
should be considered for any query.

Naturally, this type of non-summarized pre-aggregation has an impact on the
performance and real-time responsiveness of an OLAP cube: non-summarized
pre-aggregation will likely have a slower response time than summarized pre-
aggregation. However, in process cubes this presents a dramatic advantage over
not pre-aggregating events: after a pre-aggregated process cube is built, cube
operations do not require to retrieve events from storage in order to evaluate
and distribute them into the cells of the cube, as the relevant events for each cell
can be identified using simple set operations over pre-calculated sets of events.

The remainder of this chapter is structured as follows. Section 3.1 discusses
related approaches. Section 3.2 formally defines a process cube, its operations
and how the cells of the cube can be translated into event logs. Section 3.3 de-
scribes the implementation of the approach. Section 3.4 shows the application
of process cubes to the running example 2.4 and shows the interaction of the
process cube tool with other process mining techniques proposed in this thesis.
Note that the full application of process cubes to real case studies and the in-
sights that can be retrieved is presented in depth in Part IV. Finally, Section 3.5
concludes the chapter.

3.1 Related Work

The idea of applying OLAP techniques to event data has been recently ap-
proached by some authors.

The event cube approach described in [128] presents an exploratory view on
the applications of OLAP operations using events. The first description of a pro-
cess cube was introduced in [155]. Later, a data-warehouse-based process cube
approach was presented in [184]. The process cube notion has been proven

3.2 Process Cubes 53

useful in several case studies [5, 161, 183]. These approaches have established
a conceptual framework for process cubes, however, they still present some con-
ceptual limitations, discussed as follows.

The work presented in [155] has two main limitations. The first limitation
is related to the fact that derived attributes are created directly on the event
base (instead of on the cube structure) which may be used with many process
cube structures. This would force all the dimensions that correspond to a specific
event attribute to have exactly the same meaning and value set. For example,
it is not possible to create a derived attribute customer type in different process
cube structures according to different criteria: in one process cube structure the
VIP customers must have an income over 1000 and in the other cube structure
the income must be over 2000. This is because the derived attribute customer
type can be calculated only once and is added as an extra event attribute in the
event base. The second limitation is the lack of attributes within the dimensions
i.e., there are no attribute hierarchies or compositions, which are necessary for
aggregation. Also, there are no defined granularity levels within the dimensions,
which are necessary to perform cube operations such as roll-up and drill-down.
Note that the approach presented in [155] allow for events to be present in
multiple cells, which is not allowed in our approach in order to enable the
aggregability of cells.

The work presented in [184] (extended afterwards in [182] with improved
performance and interactivity) is tightly coupled to a data warehouse imple-
menting a snowflake schema, where the trace identifier and the activity identi-
fiers are fixed and are central to all dimensions. This means that if the analyst
wants to change the activity identifier to e.g., analyze social networks (where
the resource is the activity identifier), the whole process cube becomes useless
and has to be rebuilt again, which can take significant time and resources. Also,
traces (instead of events) are the basic elements in the cube. This means that
traces cannot be horizontally split into e.g., front-office and back-office parts of
a process.

In the remainder of this chapter, an improved formalization of the process
cube concept is presented, which addresses the limitations discussed above.

3.2 Process Cubes

A process cube is composed of two main components: A process cube structure
and a compatible event base. The process cube structure defines the dimensions
of the cube (i.e., the schema) and the event base contains the collection of

54 Process Cubes

M
a
d
ri

d
P

a
ri
s

A
m

st
er

d
am

2017

2018

L
oc

at
io

n
 (

ci
ty

)

Customer (type)
Gold Silver

Process Cube View
Process Cube View

Location

Time

Cost

Customer Type

Resource

Performance

Process Cube
Structure

Process Cube
View

Event Base

Materialized Process
Cube View

M
a
d
ri

d
P

a
ri
s

A
m

st
er

d
am

2017

2018

L
oc

at
io

n
 (

ci
ty

)

Customer (type)
Gold Silver

Event

Figure 3.3: Overview of a process cube and its components.

events (i.e., the data) that will be used to fill the cube.
Figure 3.3 shows an overview of a process cube and its components. Once

a process cube structure is defined, several process cube views can be obtained
from it using process cube operations, e.g., slice and dice (see Section 3.2.4). A
process cube view defines the visible cells of the cube. Using a compatible event
base, the cells of the cube are filled with their matching events to become a
materialized process cube view.

The remainder of this section is organized as follows. Section 3.2.1 describes
the structure of a process cube and the different views that can be obtained from
it. Section 3.2.2 describes the event base (i.e., the data source for the cube) and
the compatibility between an event base and a process cube structure. Sec-
tion 3.2.3 describes how the cells in the process cube view are filled with event
data and how the cells can be transformed into event logs. Finally, Section 3.2.4
discusses how traditional OLAP operations such as slice and dice can be applied
in process cubes.

3.2.1 Process Cube Structure

The structure of a process cube is independent of the actual data. A process cube
structure is fully characterized by a set of dimensions. Before formally defining

3.2 Process Cubes 55

what a dimension is, it is necessary to introduce the concept of directed acyclic
graphs.

Definition 3.1 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a pair
(N,A) where N is a set of nodes and A ⊆ N ×N is a set of arcs connecting these
nodes, where:

• The arcs are directed: (n1, n2) ∈ A is a directed arc that starts in n1 (i.e.,
the source node) and ends in n2 (i.e., the target node).

• The graph has a topological order: A topological order of a directed graph
(N,A) is a sequence σ ∈ N∗ so that for every directed arc (σi, σj) ∈ A ⇒
i < j

Note that multiple topological orders can exist for the same DAG e.g., in the
presence of partial orders. Therefore, a DAG can often be mapped onto multiple
sequences. Also note that the graphs must be acyclic to be used as a Dimension
in order to have finite-length paths within it. Now, we can define dimensions.

Definition 3.2 (Dimension). Let N be the universe of attribute names and V the
universe of values. A dimension d = ((A,H), valueset) consists of a hierarchy
(A,H) which is a directed acyclic graph where A ⊆ N correspond to dimension
attributes and H ⊆ A× A corresponds to a set of directed edges (i.e., hierarchical
relations), and a function valueset : A→ P(V) defining the possible set of values
for each attribute. The universe of all possible dimensions is denoted as:
D ⊆

(
P(N)× P(N ×N)

)
× (N ↛ P(V))

The attributes in A in a dimension ((A,H), valueset) are unique. Note that
for a dimension d, we denote its set of attributes as Ad. The set of directed edges
H defines the hierarchy relations between the attributes of the dimension. An
edge (a1, a2) ∈ H means that attribute a1 can be rolled up (i.e., aggregated) to
attribute a2 (see Section 3.2.4 for a detailed description).

A dimension should describe events from a single perspective through any
combination of its attributes (e.g., attributes city and country can describe a
Location) where attributes describe the perspective from higher or lower lev-
els of detail (e.g., city describes a Location in a more fine-grained level than
country). However, this is not strict and users can define dimensions as they
want.

A dimension attribute a ∈ A has a valueset(a) that is the set of possible val-
ues and typically only a subset of those values are present in a concrete instance

56 Process Cubes

of the process cube. Note that valueset(a) can define an enumeration of ele-
ments (e.g., valueset(customerType) = {vip, regular} for a = customerType),
but also can define ranges e.g., valueset(age) = {i ∈ N|0 ≤ i ≤ 120} for
a = age, or valueset(temperature) = {t ∈ R| − 40 ≤ t ≤ +60} for a =
temperature. Another example: valueset(cost) = N allows for infinitely many
possible values. It is important to note that the value sets of the different at-
tributes of a dimension are not typed or predefined. For example, in a Location
dimension, it is possible to have a value Eindhoven ∈ valueset(City) with
Netherlands /∈ valuset(Country). The relations between the attribute values
are not defined here, but are taken explicitly from the event data that is used to
“materialize” the cube. Figure 3.4 shows an example of a Location dimension.
Figure 3.5 shows an example of an Organization dimension.

City

Province StateSales Zone

CountrySales Region

(a) Attribute Hierarchy

Attribute Value set

Sales Region {North Europe, Latin America, etc.}
Sales Zone {Scandinavia, Benelux, etc.}
Country {Netherlands, Chile, Singapore, USA, etc.}
Province {Noord Brabant, Andalucía , Flanders, etc.}
State {Washington, California, etc.}
City {Talca, Paris, London, etc.}

(b) Attribute Value sets

Figure 3.4: Example of a Location dimension.

Job Position

Office/BranchDepartment

(a) Attribute Hierarchy

Attribute Value set

Office {Boston, London, etc.}
Department {Marketing, Operations, National Sales, etc.}
Job Position {Programmer, Sales Executive, etc.}

(b) Attribute Value sets

Figure 3.5: Example of an Organization dimension.

Definition 3.3 (Process Cube Structure). Let D be the universe of dimensions.
A process cube structure is a set of dimensions PCS ⊆ D, where for any two
dimensions d1 = ((A1, H1), valueset1) ∈ PCS and d2 = ((A2, H2), valueset2) ∈
PCS : d1 = d2 ∨A1 ∩A2 = ∅.

3.2 Process Cubes 57

All dimensions in a process cube structure are independent from each other.
This means that they do not have any attributes in common. However, the value
sets of the attributes might have common values. We introduce the following
notation to refer to the union of all the sets of dimension attributes of the di-
mensions contained in the process cube structure PCS:

APCS =
⋃

d∈PCS

Ad

where Ad is the set of the attribute names in the dimension d.
Once a process cube structure is defined, it does not change. While applying

typical OLAP operations such as slice, dice, roll up and drill down (defined in
Sec 3.2.4) we only change the way we are visualizing the cube and its content.

A process cube structure can contain many dimensions. A dimension can
contain many attributes, and each dimension attribute can be related to many
different attribute values. However, not all dimensions, attributes and values
are always relevant. Often, the analyst wants to focus only on some dimensions,
and on specific parts of them. For example, the analyst might want to focus only
on the location dimension (shown in Figure 3.4), and might want to focus on
analyzing different cities. In such case, only the location dimension is visible i.e.,
it will be used to define the visible part of the cube (see Definition 3.6). Given
a process cube structure PCS, we define the subset of visible dimensions to be
visualized in the cube as Dvis ⊆ PCS. Although the term cube suggests a three
dimensional object, a process cube can have any number of visible dimensions.

Given a set of visible dimensions Dvis, for every visible dimension d =
((Ad, Hd), valuesetd) ∈ Dvis, we must choose the attribute a ∈ Ad that defines
the granularity (i.e., level of detail) of the dimension. For example, in the loca-
tion dimension shown in Figure 3.4, the highest level of granularity corresponds
to the city attribute (i.e., the most detailed) and the lowest level of granularity
corresponds to both country and sales region (i.e., the least detailed). Note
that the highest or lowest granularities of a dimension are determined by the
attribute hierarchy H (see Figure 3.4.a).

Definition 3.4 (Granularity of Visible Dimensions). Given a process cube struc-
ture PCS and a set of visible dimensions Dvis ⊆ PCS, the granularity of the
visible dimensions is defined through a function that maps visible dimensions to
attributes of such dimensions, and is defined as: gran : Dvis → APCS , such that
for any d ∈ Dvis : gran(d) ∈ Ad.

These granularities are also used for defining the visible part of the cube (see
Definition 3.6). For example, the location dimension shown in Figure 3.4 can

58 Process Cubes

be aggregated by country, province, city, etc. For example, if the country is
selected as the granularity of the location dimension, then the cells in the cube
will relate to different countries. Alternatively, if the city is selected as the
granularity, then the cells in the cube will relate to different cities.

Let us say that now the analyst wants to only focus on cities within the
province of Noord Brabant. This means that, within the location dimension
(shown in Figure 3.4), the only value that should be considered for the attribute
province is “Noord Brabant”. This means that only events that happened in the
province of Noord Brabant should be selected.

Definition 3.5 (Selection of Dimension Attribute Values). Given a process cube
structure PCS, the selection of dimension attribute values is performed using the
function:
sel : APCS → P

(⋃
a∈APCS

valueset(a)
)

such that for any dimension d ∈ PCS :
a ∈ Ad ⇒ sel(a) ⊆ valueset(a).

Note that only values that exist in the valueset of a dimension attribute can
be selected. Also note that the sel function can be applied to any attribute
of any dimension in the cube structure, regardless of whether the dimension
is visible or not. The sel function does not depend on the visible dimensions
or the granularities defined for them: it can be used to select values of any
attribute in any dimension of the cube. For example, in the dimension location
in Figure 3.4, one could select the province of Noord Brabant, and in a invisible
time dimension, one could select the year = 2018 to select only the events that
occurred in 2018 in the province of Noord Brabant. One can even select values
for different attributes of the same dimension. In our approach, we made this
selection as flexible as possible, so it is up to the user to check if the selection
is done properly. Note that if this selection is done incorrectly, it might lead to
empty results. For example, in the dimension Location in Figure 3.4, one could
select the city = Eindhoven and the country = Spain and this would produce
empty results since no event can have both values.

These selections, in combination with the granularity levels discussed above,
can define the visible part of the process cube structure. For example, if we have
a cube with Dvis = {location}, where gran(location) = city and sel(province) =
{Noord Brabant}, the cells of the resulting process cube view will correspond to
different cities within the province of Noord Brabant.

A process cube view defines the visible part of the process cube structure.

Definition 3.6 (Process Cube View). Let PCS be a process cube structure, Dvis ⊆
PCS be the set of visible dimensions, sel be a selection function (see Definition 3.5)

3.2 Process Cubes 59

Location

Time

Cost

Customer Type

Resource

Performance

Process Cube
Structure

Process Cube View 1
Dvis ={Location, Customer, Time}

gran(Location)=city sel(city)={Amsterdam, Paris, Madrid}
gran(Customer)=type sel(type)={Gold, Silver}
gran(Time)=year sel(year)={2017, 2018}

M
a
d
ri

d
P

a
ri
s

A
m

st
er

d
am

2017

2018

L
oc

a
ti
on

 (
ci

ty
)

Customer (type)
Gold Silver

A
n
n
e

B
ry

a
n

Gold

Silver

R
es

ou
rc

e
(p

er
so

n
)

Time (month)
April May

Process Cube View 2
Dvis ={Resource, Time, Customer}

gran(Resource)=person sel(person)={Bryan, Anne}
gran(Time)=month sel(month)={April, May}
gran(Customer)=type sel(type)={Gold, Silver}

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴𝑃𝐶𝑆 ∖ {𝑐𝑖𝑡𝑦, 𝑡𝑦𝑝𝑒,𝑦𝑒𝑎𝑟}: 𝑠𝑒𝑙(𝑎) = 𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑡(𝑎) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴𝑃𝐶𝑆 ∖ {𝑝𝑒𝑟𝑠𝑜𝑛,𝑚𝑜𝑛𝑡ℎ, 𝑡𝑦𝑝𝑒}: 𝑠𝑒𝑙(𝑎) = 𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑡(𝑎)

Figure 3.6: Example of different process cube views (PCV) obtained from the same process
cube structure.

and gran be a granularity function (see Definition 3.4). A process cube view is
simply a triplet PCV = (Dvis, sel, gran).

Many different process cube views can be obtained from the same process
cube structure. For example, Figure 3.6 shows two process cube views obtained
from the same process cube structure. The cells of the process cube view 1 are
defined by the Location, Time, and Customer dimensions. The cells of the process
cube view 2 are defined by the Resource, Customer, and Time dimensions. Note
that the granularity level of the Time dimension in the process cube view 1 is
set to year, and in the process cube view 2 is set to month.

Definition 3.7 (Cell Set). Let PCS be a process cube structure and PCV =
(Dvis, sel, gran) be a view over PCS. CSPCV is the cell set of PCV , and is
defined as the set of mappings:
CSPCV =

{
f : {gran(d)|d ∈ Dvis} → V

∣∣∣∀d∈Dvis : f
(
gran(d)

)
∈ sel

(
gran(d)

)}
Each mapping in the cell set CS defines a visible cell of the process cube view.

For example, the process cube view 1 shown in Figure 3.6 with visible dimen-
sions Location, Customer and Time with their granularity set to: gran(Location)=

60 Process Cubes

City, gran(Customer)= Type and gran(Time)= Year and the selected values of
those attributes are set to: sel(City) = {Amsterdam, Paris, Madrid}, sel(Type) =
{Gold, Silver} and sel(Year) = {2017,2018} has a cell set with the following 12
mappings (i.e., cells):{

{(City, Amsterdam), (Year, 2017), (Type, Gold)},

{(City, Amsterdam), (Year, 2017), (Type, Silver)},
{(City, Amsterdam), (Year, 2018), (Type, Gold)},
{(City, Amsterdam), (Year, 2018), (Type, Silver)},
{(City, Paris), (Year, 2017), (Type, Gold)},
{(City, Paris), (Year, 2017), (Type, Silver)},
{(City, Paris), (Year, 2018), (Type, Gold)},
{(City, Paris), (Year, 2018), (Type, Silver)},
{(City, Madrid), (Year, 2017), (Type, Gold)},
{(City, Madrid), (Year, 2017), (Type, Silver)},
{(City, Madrid), (Year, 2018), (Type, Gold)},

{(City, Madrid), (Year, 2018), (Type, Silver)}
}

3.2.2 Event Base as a Data Source for the Cube

The starting point for most process mining techniques is an event log. These
logs are created having a particular process and a set of questions in mind. The
difference between an event log and a simple set of events is that in the first,
events are organized in traces (using an attribute as trace id) and are related to
an activity or class (using an attribute as activity id). The relations and ordering
between events are subject to the attributes that are used as trace id and activity
id. For example, events that are in the same trace under a given trace id may not
be in the same trace if another attribute is used as trace id. An event collection is
a set of events that have certain attributes, but no defined notion of traces and
activities.

An event base is a large collection of events not tailored towards a particular
process or predefined set of questions. An event base can be seen as an all-
encompassing event log or the union of a collection of related event logs. The
events in the event base are used to populate the cube.

Definition 3.8 (Event Base). An event base is a triplet EB = (E,P,#) where
E ⊆ E is a set of events, P ⊆ N is a set of event attributes, and # : P → (E ↛ V)
is a function that relates attributes to values for given events (see Definition 2.9).

3.2 Process Cubes 61

Any event log L with a set of attributes P and a function # as described
above, can be trivially converted to the event base EBL = (EL, P,#) where
EL =

⋃
σ∈L{e ∈ σ}.

A process cube structure PCS and an event base EB are independent ele-
ments, where the PCS is the structure and the EB is the content of the cube.
To make sure that they can be used together, they need to be related through a
mapping function and then we check whether they are compatible.

Definition 3.9 (Mapper). A mapper is a triplet M = (PCS,EB,R) where PCS
is a process cube structure, EB = (E,P,#) is an event base and R is a function
defined as R : APCS → (P(P)× (E ↛ V)).

For any dimension attribute a ∈ APCS , R(a) is defined as the pair (Pa, ga)
where ga : E ↛ V is a dimension attribute value calculation function that, for a
given dimension attribute a, maps events to values by using the values of a defined
set of event attributes Pa ⊆ P , such that:

1. ga only depends on the attributes in Pa:

∀e1,e2∈E :
((
∀p∈Pa

: #p(e1) = #p(e2)
)
⇒ ga(e1) = ga(e2)

)
2. ga is undefined for an event if one of the considered attributes of that event

is undefined:

∀e∈E :
(
∃p∈Pa

:
(
#p(e) = ⊥

)
⇒

(
ga(e) = ⊥

))
Note that each dimension attribute is related to one set of event attributes

which is used to calculate the value of the dimension attribute for any event in
the event base through a specific calculation function. For example, in a Cus-
tomer dimension, we can calculate an age dimension attribute using the event
attributes time and birthday by defining:

R(age) =
(
{time, birthday}, gage

)
such that gage : E ↛ V with gage(e) = #time(e) − #birthday(e) for any e ∈ E.
As another example, in a Time dimension, a dimension attribute day type (e.g.,
weekday, weekend) can be calculated using the event attributes {day,month,year}
according to some specific calendar rules.

A set of event attributes can be used by more than one dimension attribute
producing different results if the calculation function is different. For example,

62 Process Cubes

in sales one could use the set of event attributes {purchase amount, purchase
num} to classify customers into a dimension attribute customer type = {Gold,
Silver} (i.e., if purchase amount > 50 and purchase num >10, then customer type
= Silver) and at the same time to detect fraud into a dimension attribute fraud
risk = {High,Low} (i.e., if purchase amount > 100000 and purchase num = 1,
then fraud risk = High).

Given a mapper M = (PCS,EB,R) we say that PCS and EB are compat-
ible through R, making all the possible views of PCS also compatible with the
EB.

3.2.3 Materializing a Process Cube View

Once we selected a part of the cube structure through a process cube view, and
there is a cell set defined as the visible part of the cube (see Definition 3.7), now
we have to add content to those cells. In other words, we have to add events to
these cells so they can be used by process mining algorithms.

Definition 3.10 (Materialized Process Cube View). Let M = (PCS,EB,R) be
a mapper with PCS being a process cube structure, EB = (E,P, π) being an
event base, and R being a mapping function such that for any a ∈ APCS , R(a) =
(Pa, ga). Let PCV = (Dvis, sel, gran) be a view over PCS with a cell set CSPCV .
The materialized process cube view for PCV and EB is a defined as a function
MPCVPCV,EB : CSPCV → P(E) that relates mappings in the cell set (i.e., cells)
to sets of events, so that ∀c∈CSPCV

: MPCVPCV,EB(c) ={
e ∈ E|

(
∀a∈APCS

: ga(e) ∈ sel(a)
)
∧
(
∀d∈Dvis : c(gran(d)) = ggran(d)(e)

)}
Figure 3.3 shows an example of a materialized process cube view. Each of the
selected dimensions conform the cell distribution of the cube, and the events in
the event base are mapped to these cells.

For example, for a mapping (i.e., cell) c = {(year,2017),(city,Amsterdam)}
one could relate all events in the event base that have both attribute values to
that cell, as long as their attribute values are part of the sel function defined by
the process cube view.

Note that MPCVPCV,EB(c) only yields a set of events as a result. However,
most process mining techniques rely on event logs where events are grouped in
traces. Therefore, we need to be able to transform this set of events so that for
any given cell in the cube, we can obtain an event log from it.

In order to do this, the first step is to group events by their “case id” attribute.
Given any mapping c ∈ CSPCV , a related set of events MPCVPCV,EB(c) and

3.2 Process Cubes 63

an attribute a ∈ APCS selected as “case id”, for any “case id” value v ∈ sel(a)
we denote the set of events that have such an attribute value as:

Ev = {e ∈MPCVPCV,EB(c)|#a(e) = v}

Each of these sets contains all the events in the cell that have the same value for
a given “case id” attribute.

Now, we have to transform sets of events into traces. Given a pair (E,≺),
where E is a set of events and≺ is a total order on events, we define the function
seq : P(E)→ E∗ that maps sets of events to sequences, defined as:

seq(E) = σ such that E = {e ∈ σ} ∧ ∀1≤i<j≤|σ| : σ(i) ≺ σ(j)

Note that σ contains all the events in E. By using the elements described above,
we can transform a set of events related to a cell into an event log. Given any
mapping c ∈ CSPCV , a related set of events MPCVPCV,EB(c) and an attribute
a ∈ APCS selected as “case id”, c can be mapped to the event log Lc defined as:

Lc =
⋃

v∈sel(a)

{seq(Ev)}

Note that this approach allows for any attribute a ∈ APCS to be used as the
“case id” for grouping events into traces. For example, in hospital setting, a =
“Patient ID” can be used to group events by patient, while a = “Doctor ID” can
be used to group events by the treating doctor. This allows for analyzing event
data from different points of view.

Given the above definitions, we can specify the operations that can be done
over a process cube view in order to perform multidimensional exploration of
event data.

3.2.4 Process Cube Operations

In this section, we adapted the classical OLAP operations to the context of pro-
cess cubes (i.e., to work with events instead of numerical facts). The slice opera-
tion produces a new cube by allowing the analyst to filter (pick) specific values
for attributes within a cube dimension d, while removing d from the visible part
of the cube.

The dice operation produces a sub-cube by allowing the analyst to filter
(pick) specific values for one of the dimensions. No dimensions are removed in
this case, but only the selected values are considered. Figure 3.7 illustrates the

64 Process Cubes

notions of slicing and dicing. For both operations, the same filtering is applied.
In the case of the slice operation, the Time dimension is no longer visible, but
after a dice operation one could still use that dimension for further operations
(e.g., drilling down to month) keeping the same dimensions visible.

The roll up and drill down operations do not remove any dimensions or fil-
ter any values, but only change the level of granularity of a specific dimension.
Figure 3.8 illustrates the concept of drilling down and rolling up. These opera-
tions are intended to show the same data with more or less detail (granularity).
However, this is not guaranteed as it depends on the dimension definition.

Definition 3.11 (Slice). Let PCS be a process cube structure and let PCV =
(Dvis, sel, gran) be a view of PCS. We define slice for a dimension d = ((Ad, Hd),
valuesetd) ∈ Dvis and a filtering function fild : Ad → P(V) where for any a ∈
Ad, fild(a) ⊆ valuesetd(a), as: sliced,fild(PCV) = (D′

vis, sel
′, gran′), where:

• D′
vis = Dvis \ {d} is the new set of visible dimensions, and

• sel′ : APCS → P(V) is the new selection function, where:

for any a ∈ Ad, sel
′(a) = fild(a), and

for any a ∈ APCS \Ad, sel
′(a) = sel(a).

• gran′ : D′
vis →

⋃
d∈D′

vis
Ad is the new granularity function, where:

for any d′ ∈ D′
vis, gran

′(d′) = gran(d′)

The slice operation produces a new process cube view (D′
vis, sel

′, gran′).
Note that in the new process cube view, d is no longer a visible dimension, i.e.,
d ̸∈ D′

vis, but it can be used for filtering. The new sel′ function will still be
valid as a value set selection function for filtering even when the corresponding
dimension is no longer visible. For any attribute a ∈ Ad, the new selection
function takes the values given by the filtering function. For any attribute a ∈
APCS \Ad the new selection function is not reset to the valueset of a but keeps
the existing selected values (e.g., filtered values from previous slices). This
allows to filter values using many attributes simultaneously (even from the same
dimension) regardless of the dimensions being sliced. Also, note that the new
gran′ function yields the same values as gran for all the dimensions in D′

vis, but
is undefined for d i.e., d /∈ dom(gran′).

For example, for sales data one could slice the cube for a dimension Location
for City Eindhoven, the Location dimension is removed from the cube and only
sales of the stores in Eindhoven are considered. One could also do more complex

3.2 Process Cubes 65

M
a
d
ri

d
P

a
ri
s

A
m

st
er

d
am

2016

2017

L
oc

at
io

n
 (

ci
ty

)

Customer (type)
Gold Silver

2018

M
ad

ri
d

P
a
ri
s

A
m

st
er

d
a
m

2016

2017

L
o
ca

ti
o
n
 (

ci
ty

)

Customer (type)
Gold Silver

M
a
d
ri
d

P
ar

is
A

m
st

er
d
am

L
oc

at
io

n
 (

ci
ty

)

Customer (type)
Gold Silver

Figure 3.7: Example of a process cube view being similarly sliced and diced, resulting in
different process cube views.

M
a
d
ri

d
S
ev

il
la

A
m

st
er

d
am

2016

2017

L
oc

at
io

n
 (

ci
ty

)

Customer (type)
Gold Silver

2018

E
in

d
h
o
v
en

S
p
a
in

N
et

h
er

la
n
d
s

L
oc

a
ti
on

 (
co

u
n
tr

y
)

Customer (type)
Gold Silver

Roll-up: Location (city to country)

Drill-down: Location (country to city)

2016

2017

2018

Figure 3.8: Example of process cube view being rolled up and drilled down, changing
the level of granularity of the process cube view.

66 Process Cubes

slicing. For example, for a dimension Time, one could slice that dimension and
select years 2013 and 2014 and months January and February, then the time
dimension is removed from the cube and only sales in January or February of
years 2013 or 2014 are considered.

Definition 3.12 (Dice). Let PCS be a process cube structure and let PCV =
(Dvis, sel, gran) be a view of PCS. We define dice for a dimension d = ((Ad, Hd),
valuesetd) ∈ Dvis and a filtering function fild : Ad → P(V) where for any
a ∈ Ad, fild(a) ⊆ valuesetd(a), as: diced,fild(PCV) = (Dvis, sel

′, gran), where:

• sel′ : APCS → P(V) is the new selection function, where:

for any a ∈ Ad, sel
′(a) = fild(a), and

for any a ∈ APCS \Ad, sel
′(a) = sel(a).

The dice operation is very similar to the slice operation defined previously,
where the only difference is that in dice the dimension is not removed from
Dvis, hence the gran function remains unaffected.

The visible dimensions and their granularities define the visible cells in a
process cube. We need to be able to change such granularities in order to make
new process cube views.

Definition 3.13 (Change Granularity). Let PCS be a process cube structure and
PCV = (Dvis, sel, gran) a view of PCS. We define a change of granularity
(chgr) for a dimension d = ((Ad, Hd), valuesetd) ∈ Dvis and an attribute a ∈ Ad

as: chgrd,a(PCV) = (Dvis, sel, gran
′), where gran′(d) = a, and for any d′ ∈

Dvis \ {d}, gran′(d′) = gran(d′).

This operation produces a new process cube view and allows us to set any
attribute of the dimension d as the new granularity for that dimension, leaving
any other dimension untouched. Note that Dvis and sel always remain unaf-
fected when changing granularity. Typical OLAP cubes allow the user to “nav-
igate" through the cube using roll up and drill down operations, changing the
granularity in a guided way through the hierarchy of the dimension. The hierar-
chy of a dimension defines the granularity relations between its attributes. For
example, in Figure 3.8 a Location dimension (see Figure 3.4) in a cube is rolled
up from a city attribute to a country attribute. This allows us to view events
from a more coarse-grained viewpoint (i.e., split events by country instead of by
city).

Now we define the roll up and drill down operation using the previously
defined chgr function.

3.3 Implementation 67

Definition 3.14 (Roll up & Drill down). Let PCS be a process cube structure,
PCV = (Dvis, sel, gran) a view of PCS and d = ((Ad, Hd), valuesetd) ∈ Dvis a
visible dimension in PCV . We can roll up the dimension d if ∃a∈Ad

, (gran(d), a) ∈
H. The result is a more coarse-grained cube: rollupd,a(PCV) = chgrd,a(PCV).
We can drill down the dimension d if ∃a∈Ad

, (a, gran(d)) ∈ H. The result is a
more fine-grained cube: drilldownd,a(PCV) = chgrd,a(PCV).

If there is more than one attribute a that the dimension could be rolled up
or drilled down to, then any of those attributes can be a valid target, but we
can pick only one each time. For example, in the dimension Location described
in Fig 3.4, we could roll up the dimension from City to Province, State or Sales
Zone.

3.3 Implementation

The approach presented in this chapter has been implemented as a stand-alone
tool called Process Mining Cube (PMC) and it is freely available at https://

abolt.github.io/ProcessMiningCube/. The tool provides support for design-
ing and storing a process cube structure and its dimensions through a wizard.
A process cube structure can be saved for later use, and the same process cube
structure can be used with many event bases, as long as they are compatible.

PMC allows the user to distribute events into the cells of the cube, defined
by the selected dimensions and value sets. Each cell is represented by a so-
called metric (e.g., number of events in the cell) and the events in a cell can be
converted into an event log. Such event logs can be visualized using standard
state-of-the-art process discovery and log visualization techniques, as shown in
Figure 3.9. Alternatively, these event logs can be compared using process com-
parison techniques, and also can be used as input for process mining workflows.

Given the large collections of events that are available nowadays, PMC uses
an embedded SQLite database to store the event base (see Section 3.2.2) on
disk.1 In this internal database, we use dynamic SQL indexing to speed-up the
retrieval of events based on attribute values.

All of the interactive and visual components of PMC (e.g., the cell visualizer,
wizards) were built using JavaFX8, hence Java 8 is required to run the tool.2

1SQLite website: https://sqlite.org/
2JavaFX8 can be found here: http://www.oracle.com/technetwork/java/javase/

overview/javafx-overview-2158620.html

https://abolt.github.io/ProcessMiningCube/
https://abolt.github.io/ProcessMiningCube/
https://sqlite.org/
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html

68 Process Cubes

Figure
3.9:

Screenshot
of

the
Process

M
ining

C
ube

(PM
C

)
in

action.
The

cells
of

the
cube

show
different

m
etrics

and
can

be
visualized

as
process

m
odels

or
event

logs.
They

can
be

also
com

pared,
can

be
used

as
input

for
scientific

w
orkflow

s,and
can

be
used

for
conform

ance
checking.

3.3 Implementation 69

The cells of a process cube contain sets of events that can be trivially trans-
formed into an event log. Such event logs can be utilized by existing tools
and techniques. PMC has been integrated with two external tools: ProM and
RapidProM.

The integration with ProM provides a wide variety of state-of-the-art process
mining techniques. PMC launches a lightweight (i.e., without user interface)
instance of ProM in the background, which handles the execution of process
mining plugins.

The integration with the analytic workflows tool RapidMiner (see Chap-
ter 4) through the RapidProM extension allows PMC to use the contents of any
cell(s) of the cube as input to run analytic workflows (with or without process
mining components). Therefore, any process mining technique that is incorpo-
rated in RapidProM can also be used by PMC. Similarly to the ProM integration,
PMC launches a UI-less lightweight instance of RapidProM in the background.
PMC allows to select which workflow should be executed using the event data,
but does not support the design of such workflow. The design of the workflow
should be done a-priori using the RapidMiner tool. Table 3.2 lists the inte-
gration of PMC with these external tools. Note that the last two integrations

Table 3.2: Tool integration with PMC.

Tool Description

Log Explorer Log visualizer plugin of ProM
Dotted Chart Log visualizer/scatterplot plugin of ProM
Inductive Miner [102] Process discovery plugin of ProM
Fuzzy Miner [64] Process discovery plugin of ProM
Alignment-based Confor-
mance checker [157]

Conformance checking plugin of ProM

Process Comparator Process comparison tool of ProM (see Chap-
ter 5)

RapidProM Process mining workflow tool of Rapid-
Miner (see Chapter 4)

correspond to contributions introduced in this thesis.
The process cubes created with PMC can also be exported and imported

later. This is especially useful in situations where the cube has several complex
dimensions.

The remainder of this section illustrates all the previously described features
as a demonstration using real event data.

70 Process Cubes

3.4 Applications

This section describes the usage of our tool and its interaction with other pro-
cess mining techniques (e.g., process comparison, process mining workflows)
through two step-by-step applications of PMC using the event data from the
running example (see Section 2.4) related to a road fines management process.

3.4.1 Creating a Process Cube

This section describes how to create a process cube from scratch in PMC.
The first step in order to create a process cube in PMC is to import event

data). PMC allows the import of event data in different formats (e.g., XES [1],
CSV). When the event data is loaded, PMC automatically detects attribute types
and value sets (see Figure 3.10). These can be modified by the user. After

Figure 3.10: Importing event data into PMC.

3.4 Applications 71

this step, the user is prompted to create the dimensions of the cube, based on
the event attributes obtained from the previous step, although, these can be
modified. For each dimension, the user can specify the attributes that compose
it by simply dragging them from the list of unused attributes and dropping
them at the right dimension (see Figure 3.11). Note that PMC handles time in

Figure 3.11: Defining dimensions of the cube and their attributes.

a specific manner. Given a timestamp event attribute, PMC builds a standard
time dimension from it, including dimension attributes such as year, month,
day, quartile, etc.

In a process cube with many dimensions, this can be an exhausting task,
hence we provide a quick-setup option that creates a different dimension for
each event attribute (each dimension contains only such attribute). After this
step, PMC presents an overview summary of the cube, and the user gets to select
a name and location to store the cube. Finally, the cube is stored in disk and it

72 Process Cubes

is loaded into PMC and is now available for usage. Alternatively, the user can
save the cube or load previously saved cubes.

3.4.2 Using a Process Cube

After opening PMC, and either loading or creating a process cube, the tool shows
a list of the available cubes (see Figure 3.12). Once the user has selected a

Figure 3.12: List of available process cubes in PMC.

process cube, the process cube explorer is shown as illustrated in Figure 3.13.
The user interface of the process cube explorer is divided into two main parts:

Figure 3.13: User interface of the Process Cube Explorer.

the process cube view settings and the materialized cube cells.

3.4 Applications 73

(a) Filter configuration in PMC (e.g., for slic-
ing).

(b) Defining a Log structure for the events in
the selected cell(s).

Figure 3.14: Configuration popups in PMC.

The first part (i.e., process cube view settings) defines the visible part of the
cube as discussed in Section 3.2.1 and is divided into 4 elements.

The available dimensions panel (i.e., element (1) in Figure 3.13) represents
the process cube structure (i.e., the available dimensions of the cube and their
attributes), also as discussed in Section 3.2.1.

The available dimension attributes can be used to define the rows or columns
of the cube, by dragging them into the corresponding list (i.e., elements (2)
or (3) in Figure 3.13). The result of this is that the cube is diced over the
dimension that contains such attribute, and the granularity of the dimension is
set to such attribute. For example, in Figure 3.13, we diced the cube over the
Time dimension (where the granularity is set to Year) which is represented in
the resulting rows of the cube. Additionally, we diced the cube over the Vehicle
dimension (where the granularity is set to Vehicle Class) which is represented
in the resulting columns of the cube.

One can also slice dimensions in PMC. This is done by dragging dimension
attributes into the filter list (i.e., element (4) in Figure 3.13). The result of this
is that the cube is sliced over the dimension that contains such attribute. This
means that the sliced dimension will not be used to define the cells of the cube,
but will be used to determine which events will be used by the cube. PMC
allows the user to modify the selection of values for the sliced dimensions by
simply double clicking them, as illustrated in Figure 3.14a. A customized popup
will emerge and the user can select the values that he/she wants to keep. This

74 Process Cubes

is useful in scenarios where the events have to be filtered. For example, in
Figure 3.13 and Figure 3.14a, we sliced the cube over the Amount dimension,
keeping only the events with an amount equal or lower than 1000 euros.

The second part of the user interface (i.e., element (6) in Figure 3.13) corre-
sponds to the resulting cells of the cube, filled with events from the event base
(see Section 3.2.3).

A cell in a process cube is related to a set of events. In PMC, cells are also
related to numerical metrics that can provide insights about their underlying
set of events. Examples of such metrics are the number of events in the cell,
the number of cases in the cell (after the set of events is transformed into an
event log), the average size of cases in the cell, the average duration of cases
in the cell, etc. All the metrics mentioned above are implemented in PMC, and
can be configured by the user in the table settings panel (i.e., element (5) in
Figure 3.13).

Once a materialized process cube view is produced (see Section 3.2.3) the
contents of the materialized cells can be used by many process mining tech-
niques. Often, process mining techniques require an event log as input, and
since PMC produces sets of events as the output of each cell, such sets need to
be converted into an event log in order to be used by external process mining
techniques. In PMC this is done through a popup that appears as illustrated in
Figure 3.14b when such conversion is needed.

3.4.3 Interaction with other Process Mining Techniques

After the contents of the selected cells have been converted to event logs, they
can be used by many process mining plugins connected to PMC through its in-
tegration with ProM and RapidProM. For example, Figure 3.15 shows a selected
cell transformed into an event log and visualized using the Log Explorer.

Figure 3.16 shows a selected cell transformed into an event log and then
a Petri net is discovered from it using the “infrequent” version of the Inductive
Miner [102] with a noise threshold of 0.2 (i.e., the default parameters).

Cells can be checked for conformance, as shown in Figure 3.17. A group of
cells is selected, and their corresponding event logs can be merged into a single
event log that is used for discovering a process model. This process model is
then checked for conformance with respect to the event log used to discover it.

Event logs related to different cells can also be compared against each other.
Figure 3.18 shows the results of such comparison using the process comparison
tool (described in detail in Chapter 5).

3.4 Applications 75

Figure 3.15: The events in the selected cells can be visualized with the Log Visualizer
plugin from ProM.

Figure 3.16: A process model can be discovered from the events in the selected cells.

Cells can also be used as input for process mining workflows. This is ex-
plained in more detail in Chapter 4. Figure 3.19 shows how a process mining
workflow (described in Chapter 4) can be executed once for each cell, or only
once for all the cells combined. The first time that a workflow is executed, PMC
will request for the installation folder of RapidMiner, as this is necessary to boot
RapidMiner in the background. After this, the workflow file is requested, and is
later executed for the selected cells.

76 Process Cubes

Figure 3.17: Event logs related to selected cells can be checked for conformance with
respect to the process model discovered from the combined event logs of
such selected cells.

Figure 3.18: Event logs related to different cells can be compared using the Process Com-
parator plugin of ProM.

Going back to Figure 3.13, a quick glance at this set of cells shows that
most of the fines are related to cars (A), and that the fines related to trucks (C)
have decreased significantly over the years. Note that the numbers on the cells
indicate the number of events in it. Also note that the fines related to trailers
(R) only occurred between the years 2000 and 2004.

In Figure 3.20, the Inductive Miner [102] was used to discover a model from

3.4 Applications 77

Figure 3.19: Process mining workflows can be executed using the events contained in
the selected cell(s) as input.

each of two selected cells i.e., events that happened in the year 2011 related to
trucks (C) and motorbikes (M) (i.e., cells C13 and D13 in Figure 3.13 respec-
tively). Note that the process models discovered from these two cells certainly

Figure 3.20: Process models discovered from events related to fines involving trucks (up)
and motorcycles (down) in the year 2011.

78 Process Cubes

have some differences. In a similar way, many other process mining techniques
can be used instead.

In Figure 3.21, the same cube was now sliced over the elapsed time of events:
all events that have an elapsed time within the trace of a week or more are
removed. We do this by simply adding the elapsed time attribute to the filters
list, and then selecting the value range that we want to keep. In other words,

Figure 3.21: Materialized Process Cube view obtained by dicing the Time and Vehicle
Class dimensions, and removing all events that happened a week after the
start of each case. The number in each cell represents the average case size
in terms of the number of events.

the cube view shows only the events that happened in the first week of a case
since it started. The rows and columns are the same as before, but the number
in each cell now represents the average size of the cases (in terms of number
of events) after the events are filtered. Note that for trucks (C) initially in the
early 2000’s four events occurred in the first week of each case (in average). By
the end of 2013 this was reduced to half. This suggests that at least in the first
week, the process is getting slower, as in the last year only two events could be
executed in the first week of each fine.

3.5 Conclusions 79

3.5 Conclusions

As process mining techniques are maturing and more event data becomes avail-
able, we no longer want to restrict analysis to a single all-in-one process. We
would like to analyze and compare different variants (behaviors) of the pro-
cess from different perspectives. Organizations are interested in comparative
process mining to see how processes can be improved by understanding differ-
ences between groups of cases, departments, etc. We propose to use process
cubes as a way to organize, split, and explore event data in a multi-dimensional
data structure tailored towards process mining by splitting such event data us-
ing different data dimensions (i.e., given in the event data or derived from it)
into process variants in a way that can help exposing differences between such
variants, e.g., by using process comparison techniques.

This chapter extends the formalization of process cubes proposed in [155],
providing a working implementation with an adequate performance needed to
conduct multidimensional analysis using large event sets. The new framework
gives end users the opportunity to analyze, explore and compare processes in-
teractively on the basis of a multidimensional view on event data. We imple-
mented the ideas proposed in this chapter in our PMC tool, and we encourage
the process mining community to use it. There is a huge interest in tools sup-
porting process cubes and the practical relevance is obvious.

Chapter 4
Process Mining Workflows

Scientific Workflow Management (SWFM) systems help users to design, com-
pose, execute, archive, and share workflows that represent some type of analy-
sis or experiment. Scientific workflows are often represented as directed graphs
where the nodes represent “work” and the edges represent paths along which
data and results can flow between nodes. Next to “classical” SWFM systems such
as Taverna [71] and Kepler [108], one can also see the uptake of integrated en-
vironments for data mining, predictive analytics, business analytics, machine
learning, text mining, reporting, etc. Notable examples are RapidMiner [66]
and KNIME [9]. These can be viewed as SWFM systems tailored towards the
needs of data scientists.

In process mining, typically many analysis steps need to be chained together
i.e., a process mining workflows. Existing process mining tools do not support
such analysis workflows. As a result, analysis may be tedious and it is easy to
make errors. Repeatability and provenance are jeopardized by manually exe-
cuting more involved process mining workflows.

A process mining workflow is basically composed of building blocks (i.e.,
analysis steps) that are chained together so that the output produced by the
building blocks can be used as input by other building blocks. The approach
presented in this chapter has been implemented based on building blocks ob-
tained from the process mining framework ProM and the workflow and data
mining capabilities of RapidMiner. The resulting tool is called RapidProM which
explicitly supports process mining workflows. Overall, RapidProM offers a com-
prehensive support for any type of analysis involving event data and processes.

82 Process Mining Workflows

Figure 4.1 illustrates the integration between process cubes and process min-
ing workflows. A process mining workflow tool (i.e., RapidProM) may take
event data from different sources (e.g., event logs, cells of a process cube defined
in Chapter 3, databases, smart devices) as input for executing process mining
workflows and can produce both process-mining and non-process-mining re-
sults e.g., process models, filtered event logs, reports, charts, etc.

Event
Data

Process
Cube

Process Variant
Detection

Process
Comparison

Process
Mining

Workflows

V
ar

ia
nt

s
as

 n
e

w

at
tr

ib
u

te
s

fo
r

d
at

a
sp

lit
ti

n
g

Cube cells
(process variants)

Figure 4.1: Overview of the scope of this chapter: a process mining workflow takes event
data as input (either directly from event logs, or from the cells of a process
cube) and executes process mining and non-process mining analysis steps
in a designed workflow in order to produce results such as process models,
reports, etc.

Since RapidProM is a part (i.e., an extension) of the RapidMiner suite, the
process mining building blocks provided by RapidProM can be integrated and
combined with pre-existing non-process-specific data mining building blocks re-
lated to data cleansing, filtering, preprocessing steps, and many others, and can
leverage on the functionalities that analytic workflow tools can provide. More-
over, established data mining analysis (e.g., filtering, clustering and classifica-
tion) can also be incorporated in such workflows in order to combine process
mining with other types of analysis (see Challenge “Combining Process Mining

4.1 Related Work 83

With Other Types of Analysis” in [152]).
This chapter is structured as follows. Section 4.1 discusses related work and

positions our contribution. Section 4.2 describes the types of building blocks
that are commonly used to construct a process mining workflow. Section 4.3
describes RapidProM, a tool supporting scientific workflows for process mining.
Section 4.4 describes the application of process mining workflows in many use
cases in process mining where the use of process mining workflows is crucial.
It also discusses the interaction of process mining workflows with the process
cubes presented in Chapter 3. Finally, Section 4.5 concludes the chapter.

4.1 Related Work

Conventional Business Process Management (BPM) [50] and Workflow Man-
agement (WfM) [104,165] approaches and tools are mostly model-driven with
little consideration for event data analysis. They are simply not designed for
handling scientific workflows. On the other hand, Data Mining (DM) [65], Busi-
ness Intelligence (BI), and Machine Learning (ML) [118] focus on data without
considering end-to-end process models.

This chapter takes a different perspective on the gap between data analytics
and BPM/WfM. We propose to use workflow technology for process mining
rather than the other way around, namely, applying process mining to provide
insights and, hence, advantages for workflow technologies. To this end, we
focus on particular kinds of scientific workflows composed of process mining
operators.

Differences between scientific and business workflows have been discussed
in literature [7]. Despite unification attempts (e.g., [141]) both domains have
remained quite disparate due to differences in functional requirements, selected
priorities, and disjoint communities.

Naturally, the work reported in this chapter is closer to scientific workflows
than business workflows (i.e., traditional BPM/WFM from the business do-
main). Numerous Scientific Workflow Management (SWFM) systems have been
developed. Examples include Taverna [71], Kepler [108], Galaxy [60], Clowd-
Flows [96], jABC [142], Vistrails, Pegasus, Swift, e-BioFlow, VIEW, and many
others. Some of the SWFM systems (e.g., Kepler and Galaxy) also provide repos-
itories of models. The website myExperiment.org lists over 3500 workflows
shared by its members [59]. The diversity of the different approaches illus-
trates that the field is evolving in many different ways. We refer to [147] for an
extensive introduction to SWFM. Most of the scientific workflow management

myExperiment.org

84 Process Mining Workflows

systems (with the exception of the RapidProM extension of the analytic work-
flow suite RapidMiner) do not support process mining. Yet, process models and
event logs are very different from the artifacts typically considered.

An approach to mine process models for scientific workflows (including data
and control dependencies) was presented in [194]. Instead, this approach “uses
process mining for scientific workflows” rather than applying scientific workflow
technology to process mining. The results in [194] can be used to recommend
scientific workflow compositions based on actual usage.

There are many approaches that aim to analyze repositories of scientific
workflows. In [191], the authors provide an extensible process library for ana-
lyzing jABC workflows empirically. In [49] graph clustering is used to discover
subworkflows from a repository of workflows. Other analysis approaches in-
clude [57], [106], and [186].

Explicit tool support for process mining workflows is still limited: none of
the existing process mining tools (ProM [172], Disco, Perceptive, Celonis, QPR,
Apromore [100], etc.) provides a complete and explicit set of functionalities
to easily design and execute complex analysis workflows. Recently, PM4Py [10]
and bupaR [77] have been introduced as process mining libraries (in python and
R respectively) that can be used to write scripts that execute chains of process
mining steps. However, scripting can be viewed as UI-less primitive workflow
support, as it lacks typical scientific workflow functionalities and requires inten-
sive knowledge of a programming language in order to be used. Furthermore,
scripting becomes cumbersome and error-prone for complex workflows.

To our knowledge, RapidProM is the only approach explicitly supporting
“scientific workflows for process mining”. In the demo paper [115], Mans
reported on the first implementation. In the meantime, RapidProM has been
refactored based on various practical experiences.

Scientific workflows have been developed and adopted in various disciplines,
including physics, astronomy, bioinformatics, neuroscience, earth science, eco-
nomics, health, and social sciences. Various collections of reusable workflows
have been proposed for all of these disciplines. For example, in [150] the au-
thors describe workflows for quantitative data analysis in the social sciences.

The boundary between data analytics tools and scientific workflow manage-
ment systems is not well-defined. Tools like RapidMiner [66] and KNIME [9]
provide graphical workflow modeling and execution capabilities.

According to Gartner’s 2017 magic quadrant for data science platforms,
RapidMiner is one of the current leaders in the market (see Figure 4.2).1 As

1Gartner’s 2017 magic quadrant for data science platforms report can be found here: https:

https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms

4.1 Related Work 85

Figure 4.2: Gartner’s Magic Quadrant for Data Science Platforms (February 2017).

claimed in the report, platforms such as RapidMiner and KNIME have good
user interfaces, tool support and exhaustive sets of functionalities. In this re-
port, Gartner also elaborates on the pros and cons of each platform considering
several aspects. The choice to focus on RapidMiner instead of KNIME is based
on the report by Gartner, where it is stated that:

“KNIME’s platform can be difficult to scale and share across enter-
prise deployments. Several survey respondents indicated that their
main challenge with KNIME is slow performance or an inability to
build and deploy models in the needed time frame. Other issues
with performance and scalability could reflect a need for additional
components beyond the KNIME Analytics Platform.”

This performance difference, and the fact that KNIME is slightly behind Rapid-
Miner in the market (see Figure 4.2) lead us to choose RapidMiner as our plat-

//www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms

https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms

86 Process Mining Workflows

form to work on.

4.2 Process Mining Workflows

In order to create scientific workflows for process mining, the building blocks
that compose them need to be defined. This section discusses a taxonomy of
such building blocks inspired by the so-called “BPM use cases” introduced in
[153].

The Process Mining Building Blocks (PMBB) are characterized by two main
aspects. First, they are abstract as they are not linked to any specific technique
or algorithm. Second, they represent logical units of work, i.e., they cannot be
conceptually split while maintaining their generality. This does not imply that
concrete techniques that implement process-mining building blocks cannot be
composed by micro-steps, according to the implementation and design that was
used.

A process mining building block describes the objective and purpose of the
step, and can be implemented by many techniques and algorithms. For exam-
ple, the building block “discover a process model from event data” can be imple-
mented by many process discovery techniques such as the Alpha miner [167],
the Inductive miner [102] and many others. The process mining building blocks
proposed in this chapter are grouped into six categories based on their purpose:

• Event data extraction: Building blocks to extract data from systems or to
create synthetic data.

• Event data transformation: Building blocks to pre-process data (e.g., split-
ting, merging, filtering, and enriching) before analysis.

• Process model extraction: Building blocks to obtain process models through
e.g., discovery, selection from a repository, or via process model genera-
tion tools.

• Process model and event analysis: Building blocks to evaluate event logs
and models, e.g., to check the internal consistency or to check confor-
mance with respect to an event log.

• Process model transformations: Building blocks to repair, merge or decom-
pose process models.

4.2 Process Mining Workflows 87

Figure 4.3: Generic example of a Building Block transforming a process model (M) and
event data (E) into process analytics results (R) and an annotated process
model (M).

• Process model enhancement: Building blocks to enrich event logs with ad-
ditional perspectives or to suggest process improvements.

Each process mining building block takes a number of inputs and produces
certain outputs, as illustrated in Figure 4.3. The input elements represent the
set (or sets) of abstract objects required to perform the operation. The process
mining building block component represents the logical unit of work needed
to process the inputs and produce the outputs. Inputs and outputs are indi-
cated through circles whereas a process-mining building block is represented by
a rectangle. Arcs are used to connect the blocks to the inputs and outputs.

Two process-mining building blocks a and b are chained if one or more out-
puts of a are used as an inputs in b. As mentioned before, inputs and outputs are

88 Process Mining Workflows

depicted by circles. The letter inside a circle, and the color of the circle specify
the type of the input or output. The following types of inputs and outputs are
considered:

• (M) Process models, which are a representation of the behavior of a pro-
cess, are represented by the letter M and are colored red. Here we abstract
from the notation used, e.g., Petri nets, Heuristics nets, BPMN models are
concrete representation languages.

• (E) Event data sets, which contain the recording of the execution of process
instances within the information system(s), regardless of the format. They
are represented by letter E and are colored green.

• (S) Information systems, which supports the performance of processes at
runtime. They are represented by the letter S and are colored white. Infor-
mation systems may generate events used for analysis and process mining
results (e.g., prediction) may influence the information system.

• (P) Sets of parameters to configure the application of process-mining build-
ing blocks (e.g., thresholds, weights, ratios, etc.). They are represented
by the letter P and are colored yellow.

• (R) Results that are generated as outputs of a process-mining building
blocks. This can be as simple as a number or more complex structures
like a detailed report. In principle, the types enumerated above in this
list (e.g., process models) can also be results. However, it is worth to
differentiate those specific types of outputs from results which are not
process mining specific (e.g., a bar chart). Results are represented by the
letter R and are colored blue.

• (D) Additional Data Sets that can be used as input for certain process-
mining building blocks. These are represented by the letter D and are
colored black. Such an additional data set can be used to complement
event data with context information (e.g., one can use weather or stock-
market data to augment the event log with additional data).

A process mining workflow is a chain of process mining building blocks in
the form of a directed bigraph, which is defined by a set of building blocks, a
set of inputs and outputs and a set of directed arcs that connect building blocks
to inputs and outputs (and vice versa) and defines the data flow of the process
mining workflow.

4.2 Process Mining Workflows 89

Process mining workflows are not necessarily sequential: some steps may be
executed under specific circumstances only and some steps may be executed in
parallel or multiple times (i.e., loops).

The remainder of this section provides a taxonomy of process-mining build-
ing blocks grouped into the six categories described before. For each category,
several building blocks are provided. They were selected because of their useful-
ness for the definition of many process-mining scientific workflows. The taxon-
omy is not intended to be exhaustive; there will be new process-mining building
blocks as the discipline evolves. Section 4.3 discusses how these building blocks
can be implemented into concrete operators and provides examples of these
operators implemented in RapidProM.

4.2.1 Event Data Extraction

Event data are the cornerstone of process mining. In order to be used for analy-
sis, event data has to be extracted and made available. All of the process-mining
building blocks of this category can extract event data from different sources.
Figure 4.4 shows some process-mining building blocks that belong to this cate-
gory.

Figure 4.4: Process-mining building blocks related to event data extraction.

Import event data (ImportED) Information systems store event data in differ-
ent formats and media, from files in a hard drive to databases in the cloud.
This building block represents the functionality of extracting event data

90 Process Mining Workflows

from any of these sources. Some parameters can be set to drive the event-
data extraction. For example, event data can be extracted from files in
standard formats, such as XES, or from transactional databases.

Generate event data from model (GenerED) In a number of cases, one wants
to assess whether a certain technique returns the expected or desired out-
put (i.e., synthetic event data). For this assessment, controlled experi-
ments are necessary where input data is generated in a way that the ex-
pected output of the technique is clearly known. Given a process model
M , this building block represents the functionality of generating event
data that records the possible execution of instances of M . This is an im-
portant function, e.g., for testing a new discovery technique. Many event
simulators have been developed to support the generation of event data.

Export event data (ExportED) In many analysis situations, event data needs
to be exported and stored for later use. For example, simulated or gen-
erated event data needs to be stored in order to be used later, e.g., for
double-checking purposes.

4.2.2 Event Data Transformation

Sometimes, event data sets are not sufficiently rich to enable certain process
mining analysis. In addition, certain data set portions should be excluded, be-
cause they are irrelevant, out of the scope of the analysis or even noise. There-
fore, a number of event data transformations may be required before doing fur-
ther analysis. This category comprises the building blocks to provide function-
alities to perform the necessary event data transformations. Figure 4.5 shows
the repertoire of process-mining building blocks that belong to this category.

Add data to event data (AddED) In order to perform a certain analysis or to
improve the results, the event data can be augmented with additional data
coming from different sources. For instance, if the process involves citi-
zens, the event data can be augmented with data from the municipality
data source. If the level of performance of a process is suspected to be in-
fluenced by the weather, event data can incorporate weather data coming
from a system storing such a kind of data. If the event data contain ZIP
codes, then other data fields such as country or city can be added to the
event data from external data sources. This building block represents the
functionality of augmenting event data using external data, represented
as a generic data set in the figure.

4.2 Process Mining Workflows 91

Figure 4.5: Process-mining building blocks related to event data transformations

Filter event data (FilterED) Several reasons may exist to filter out part of the
event data. For instance, the process behavior may exhibit concept drifts
over time. In those situations, the analysis needs to focus on certain parts
of the event data instead of all of it. One could filter the event data and use
only those events that occurred, e.g., in 2018. As a second example, the
same process may run at different geographical locations. One may want
to restrict the scope of the analysis to a specific location by filtering out the
event data referring to different locations. This motivates the importance
of being able to filter event data in various ways.

Add noise to event data (NoisED) All data is naturally subject to noise. In the
case of event data, noise can be related to anomalous or infrequent process

92 Process Mining Workflows

behavior. In most settings, noise needs to be removed before analyzing
the process (e.g., filtering). However, to study the effects of noise in event
data, one needs to be able to add noise in a controlled manner in order
to analyze its impact. Optionally, a reference process model can be used
to steer the noise added to the data. This building block represents the
functionality of adding noise to event data.

Split event data (SplitED) Sometimes, the organization generating the event
data is interested in comparing the process’ performances for different
customers, offices, divisions, involved employees, etc. To perform such
comparison, the event data needs to be split according to a certain crite-
rion, e.g., according to organizational structures, and the analysis needs to
be iterated over each portion of the event data. Finally, the results can be
compared to highlight differences. Alternatively, the splitting of the data
may be motivated by the size of the data. It may be intractable to ana-
lyze all data without decomposition or distribution. Many process-mining
techniques are exponential in the number of different activities and linear
in the size of the event log. If data is split in a proper way, the results
of applying the techniques to the different portions can be fused into a
single result. For instance, [154] discusses how to split event data while
preserving the correctness of results. This building block represents the
functionality of splitting event data into overlapping or non-overlapping
portions.

Convert event data (ConvertED) Event data can be described and stored in
many formats (e.g., XES, CSV). This building block represents the func-
tionality of converting event data into a different format.

Merge event data (MergED) This process-mining building block is the inverse
of the previous: data sets from different information systems are merged
into a single event data set. This process-mining building block can also
tackle the typical problems of data fusion, such as redundancy and incon-
sistency.

4.2.3 Process Model Extraction

Process mining revolves around process models to represent the behavior of a
process. This category is concerned with providing building blocks to mine a
process model from event data as well as to select or extract it from a process-

4.2 Process Mining Workflows 93

model collection. Figure 4.6 lists a number of process-mining building blocks
belonging to this category.

Figure 4.6: Process-mining building blocks related to process model extraction

Import process model (ImportM) Process models can be stored in some me-
dia for later retrieval to conduct some analyses. This building block rep-
resents the functionality of loading a process model from some repository.

Export process model (ExportM) Process models can be stored in some me-
dia for later retrieval to conduct some analyses. This building block repre-
sents the functionality of exporting a process model to be stored for future
analysis.

Discover process model from event data (DiscM) Process models can be man-
ually designed to provide a normative definition for a process. These mod-
els are usually intuitive and understandable, but they might not describe
accurately what happens in reality. Event data represent the “real behav-
ior" of the process. Discovery techniques can be used to mine a process
model on the basis of the behavior observed in the event data [156]. Here,
we stay independent of the specific notations and algorithms. Examples of

94 Process Mining Workflows

algorithms are the Alpha Miner [167], the Heuristics Miner [189] or, more
recent techniques like the Inductive Miner [102]. This building block rep-
resents the functionality of discovering a process model from event data.
This block, as many others, can receive a set of parameters as an input to
customize the application of the algorithms.

Select process model from collection (SelectM) Organizations can be viewed
as a collection of processes and resources that are interconnected to form
a process ecosystem. This collection of processes can be managed and sup-
ported by different approaches, such as ARIS [133] or Apromore [100].
To conduct certain analyses, one needs to use some of these models and
not the whole collection. In addition, one can give a criterion to retrieve
a subset of the collection. This building block represents the functionality
of selecting one or more process models from a process-model collection.

Generate process model (GeneM) Process models can be artificially generated
without the use of event data on the basis of configuration parameters
that control the distributions of the presence of control-flow constructs
e.g., sequences, parallelism, loops. Examples of process model generators
are [32] and [86].

4.2.4 Process Model and Event Analysis

Organizations normally use process models for the discussion, configuration,
and implementation of processes. In recent years, many process mining tech-
niques are also using process models for analysis. This category groups process-
mining building blocks that can analyze process models or event logs and pro-
vide analysis results. Figure 4.7 shows some process-mining building blocks
that belong to this category.

Analyze process model (AnalyzeM) Process models may contain a number of
structural problems. For instance, the model may exhibit undesired dead-
locks, activities that are never enabled for execution, variables that are
used to drive decisions without previously taking on a value, etc. Several
techniques have been designed to verify the soundness of process models
against deadlocks and other problems [166]. This building block refers to
design-time properties: the process model is analyzed without considering
how the process instances are actually being executed. The checking of
the conformance of the process model against real event data is covered
by the next building block (EvaluaM). Undesired design-time properties

4.2 Process Mining Workflows 95

Figure 4.7: Process-mining building blocks related to process model and event analysis.

happen for models designed by hand but also for models automatically
mined from event data. Indeed, several discovery techniques do not guar-
antee to mine process models without structural problems. This building
block provides functionalities for analyzing process models and detecting
structural problems.

Evaluate process model using event data (EvaluaM) Besides structural anal-
ysis, process models can also be analyzed against event data. Compared
with the previous building block (AnalyzeM), this block is not concerned
with a design-time analysis. Conversely, it makes a-posteriori analysis
where the adherence of the process model is checked with respect to the
event data, namely how the process has actually been executed. In this
way, the expected or normative behavior as represented by the process
model is checked against the actual behavior as recorded in the event
data. In the literature, this is referred to as conformance checking [156].

96 Process Mining Workflows

This can be used, for example, in fraud or anomaly detection. Replay-
ing event data on process models has many possible uses: Aligning ob-
served behavior with modeled behavior is key in many applications. For
example, after aligning event data and model, one can use the time and
resource information contained in the log for performance analysis. This
can be used for bottleneck identification or to gather information for simu-
lation analysis or predictive techniques. This building block represents the
functionality of analyzing or evaluating process models using event data.

Compare process models (CompareM) Processes are not static as they dy-
namically evolve and adapt to the business context and requirements. For
example, processes can behave differently over different years, or at dif-
ferent locations. Such differences or similarities can be captured through
the comparison of the corresponding process models. For example, the de-
gree of similarity can be calculated. Approaches that explicitly represent
configuration or variation points [159] directly benefit from such compar-
isons. Building block CompareM is often used in combination with SplitED
that splits the event data into sublogs and DiscM that discovers a model
per sublog.

Analyze event data (AnalyzeED) Instead of directly creating a process model
from event data, one can also first inspect the data and look at basic statis-
tics. Moreover, it often helps to simply visualize the data. For example,
one can create a so-called dotted chart [156] exploiting the temporal di-
mension of event data. Every event is plotted in a two dimensional space
where one dimension represents the time (absolute or relative) and the
other dimension may be based on the case, resource, activity or any other
property of the event. The color of the dot can be used as a third dimen-
sion. See [91] for other approaches combining visualization with other
analytical techniques.

Generate report (GenerR) To consolidate process models and other results,
one may create a structured report. The goal is not to create new analysis
results, but to present the findings in an understandable and predictable
manner. Generating standard reports helps to reduce the cognitive load
and helps users to focus on the things that matter most.

4.2 Process Mining Workflows 97

4.2.5 Process Model Transformations

Process models can be designed or, alternatively, discovered from event data.
Sometimes, these models need to be adjusted for follow-up analyses. This cate-
gory groups process-mining building blocks that provide functionality to change
the structure of a process model. Figure 4.8 shows some process-mining build-
ing blocks that belong to this category.

Figure 4.8: Process-mining building blocks related to process model transformations.

Repair process model (RepairM) Process models may need to be repaired in
case of consistency or conformance problems. Repairing can be regarded
from two perspectives: repairing structural problems and repairing behav-
ioral problems. The first case is related to the fact that models can con-
tain undesired design-time properties such as deadlocks and livelocks (see
also the Analyze process model building block discussed in Section 4.2.4).
Repairing involves modifying the model to avoid those properties. Tech-
niques for repairing behavioral problems focus on models that are struc-
turally sound but that allow for undesired behavior or behavior that does

98 Process Mining Workflows

not reflect reality. See also the Evaluate process model using event data
building block discussed in Section 4.2.4, which is concerned with the
discovery of conformance problems. This building block provides func-
tionality for both types of repair.

Decompose process model (DecompM) Processes running within an organi-
zation may be extremely large, in terms of activities, resources, data vari-
ables, etc. As mentioned, many techniques are exponential in the number
of activities. The computation may be improved by splitting the models
into fragments, analogously to what was mentioned for splitting the event
log. If the model is split according to certain criteria, the results can be
somehow amalgamated and, hence, be meaningful for the entire model
seen as a whole. For instance, the work on decomposed conformance
checking [154] discusses how to split process model to make process min-
ing possible with models with hundreds of elements (such as activities, re-
sources, data variables), while preserving the correctness of certain results
(e.g., the fraction of deviating cases does not change because of decom-
position). This block provides functionalities for splitting process models
into smaller fragments.

Merge process models (MergeM) Process models may also be created from
the intersection (i.e. the common behavior) or union of other models.
This building block provides functionalities for merging process models
into a single process model. When process discovery is decomposed, the
resulting models need to be merged into a single model.

Convert process model (ConvertM) Process models can be described and stored
in many notations, as described in Section 2.3 e.g., Petri net, BPMN, pro-
cess tree. This building block represents the functionality of converting a
process model into a different notation.

Modify process model (ModifyM) Existing process models can be structurally
modified (e.g., a choice can be removed, activities can be put in parallel
branches). This block represent the functionality of modifying process
models.

4.2.6 Process Model Enhancement

Process models just describing the control-flow are usually not the final result
of process mining analysis. Process models can be enriched or improved using

4.2 Process Mining Workflows 99

Figure 4.9: Process-mining building blocks related to process model enhancement.

additional data in order to provide better insights about the real process be-
havior that it represents. This category groups process-mining building blocks
that are used to enhance process models. Figure 4.9 shows a summary of the
process-mining building blocks that belong to this category.

Enrich process model using event data (EnrichM) The backbone of any pro-
cess model contains basic structural information relating to control-flow.
However, the backbone can be enriched with additional perspectives de-
rived from event data to obtain better analysis results. For example, event
frequency can be annotated in a process model in order to identify the
most common paths followed by process instances. Timing information
can also be used to enrich a process model in order to highlight bottle-
necks or long waiting times. This enrichment does not have an effect
on the structure of the process model. This building block represents the
functionality of enriching process models with additional information con-
tained in event data.

Improve process model (ImproveM) Besides being enriched with data, pro-
cess models can also be improved. For example, performance data can be
used to suggest structural modifications in order to improve the overall
process performance. It is possible to automatically improve models us-
ing causal dependencies and observed performance. The impact of such
modifications could be simulated in “what-if scenarios" using performance
data obtained in the previous steps. This building block represents the
functionality of improving process models using data from other analysis
results.

100 Process Mining Workflows

4.3 Implementation

The framework to support process mining workflows proposed in this chap-
ter has been implemented into RapidProM, which is an extension for Rapid-
Miner [66] that offers several process mining techniques obtained from the
process mining tool ProM [172]. The building blocks defined in Section 4.2
have been implemented in RapidProM as Operators. Most of the building blocks
have been realized using RapidMiner-specific wrappers of plug-ins of the ProM
Framework [172]. ProM is a framework that allows researchers to implement
process mining algorithms in a standardized environment, which provides a
number of facilities to support programmers. Nowadays, it has become the
de-facto standard for process mining (see Section 1.1). The extension of Rapid-
Miner to provide process-mining blocks for scientific workflows using ProM is
also freely available. At the time of writing, RapidProM provides over 50 process
mining operators, including several process-discovery algorithms and filters as
well as importers and exporters from/to different process-modeling notations.
The operators are defined as atomic steps, however, they can be composed into
(sub) processes natively in RapidMiner. A (sub) process is the equivalent of a
collapsed group of operators, but it can also be executed as an atomic block
itself. This is allowed by RapidMiner’s native concurrency management, which
separates input from output object representations (i.e., a modified input does
not affect any other parallel operators that use the same input).

The first version of RapidProM was presented during the BPM 2014 demo
session [115]. This initial version successfully implemented around 30 basic
process-mining functionalities and has been downloaded over 10.000 times
since its release in July 2014 until its deprecation in November 2016. However,
process mining is a relatively new discipline, which is developing and evolv-
ing rapidly. Therefore, various changes and extensions were needed to keep
up with the state-of-the-art. The new version presented in this chapter incor-
porates implementations of various new algorithms, which did not exist in the
first version, and also improved the performance and robustness of the algo-
rithms [169]. This new version has been downloaded over 56.000 times since
its release in November 2016 until September 2019.2

The RapidProM extension is hosted both at http://www.rapidprom.org

and in the RapidProM extension manager server, which can be directly accessed
through the RapidMiner Marketplace. After installation, the RapidProM opera-

2This figure only includes downloads using the RapidMiner Marketplace. Downloads and code
usage from our server and its original source in GitHub are not considered.

http://www.rapidprom.org

4.3 Implementation 101

tors are available for use in any RapidMiner workflow, which allows to combine
process-mining with other data-mining techniques. Figure 4.10 shows an ex-
ample of a process-mining scientific workflow implemented using RapidProM
operators. Many of these operators implement a process-mining building block.

Figure 4.10: Example of a Process Mining Workflow in RapidMiner through the Rapid-
ProM extension: The workflow transforms Event data (Input) into a Sub-
optimal Process Model (Output).

The process mining workflow shown in Figure 4.10 is used to obtain a sub-
optimal process model from event data.

Readers are referred to http://www.rapidprom.org for detailed installa-
tion, setup and troubleshooting instructions.

This remainder of this section describes the available implementation of the
building blocks described in Section 4.2 into RapidProM operators in Tables 4.1
to 4.6.

http://www.rapidprom.org

102 Process Mining Workflows

Table 4.1: Event Data Extraction Operators.

Building Block Operator Name Operator Description

ImportED Read Log (path) Imports an event log from a specified
path

ImportED Read Log (file) Takes a file object (usually obtained
from a "loop files" operator) and trans-
forms it to an Event Log

ExportED Export Event Log Exports an Event Log in different for-
mats

GenerED Generate Event
Log from Process
Tree [86]

Generates an event log from a process
model in a process tree format.

4.3 Implementation 103

Table 4.2: Event Data Transformation Operators.

Building Block Operator Name Operator Description

AddED Add Table Col-
umn to Event
Log

Adds a single Data Table column as trace
attribute to a given Event Log

AddED Add Trace At-
tributes to Event
Log

Adds all columns of a Data Table (except
case id) as trace attributes to a given
Event Log

AddED Add Event At-
tributes to Event
Log

Adds all columns of a Data Table (except
case id and event id) as event attributes
to a given Event Log

AddED Add Events to
Event Log

Adds Events to a given Event Log from
selected columns on a Data Table

MergeED Merge Event
Logs

Merges two Event Logs

AddED Add Artificial
Start and End
Event

Adds an artificial Start Event to the be-
ginning, and an artificial End Event to
the ending of each trace

AddED & FilterED Add Noise to
Event Log

Adds different types of noise (e.g., re-
move, add or swap activities) to the
event log

ConvertED Event Log to Ex-
ampleSet

Converts an Event Log into a Data Table
(ExampleSet)

ConvertED ExampleSet to
Event Log

Converts a Data Table (ExampleSet)
into an Event Log

SplitED Split Event Log Splits an event log into two non-
overlapping sets of traces (i.e., event
logs).

104 Process Mining Workflows

Table 4.3: Process Model Extraction Operators.

Building Block Operator Name Operator Description

ImportM Read PNML Imports a Petri Net in a Petri Net Mod-
eling Language (PNML) format from a
specified path

ExportM Export PNML Exports a Petri Net in PNML format
DiscM Alpha Miner

[167]
Discovers a Petri Net. Fast but results
are not always reliable because of over-
fitting issues

DiscM ILP Miner [170] Discovers a Petri Net by solving Inte-
ger Linear Programming (ILP) problems.
Result have perfect fitness but generally
poor precision. Slow on large Logs

DiscM Evolutionary
Tree Miner [29]

Discovers a Process Tree using a guided
genetic algorithms based on model qual-
ity dimensions. Guarantees soundness
but cannot represent all possible behav-
ior due to its block-structured nature

DiscM Heuristics Miner
[189]

Discovers a Heuristics Net using a prob-
abilistic approach. Good when dealing
with noise. Fast

DiscM Inductive Miner
[102]

Discovers a Process Tree or Petri Net.
Good when dealing with infrequent be-
havior and large Logs. Soundness is
guaranteed

DiscM Social Network
Miner [164]

Discovers a Social Network from the
Event Log resources. Different Social
Networks can be obtained: similar task,
handover of work, etc.

DiscM Transition Sys-
tem Miner [162]

Discovers a Transition System using pa-
rameters to simplify the space-state ex-
ploration.

DiscM Fuzzy Miner [64] Discovers a Fuzzy Model. Good when
dealing with unstructured behavior.
Fast

GeneM Generate Pro-
cess Tree [86]

Generates a process tree with defined
control-flow structures.

4.3 Implementation 105

Table 4.4: Process Model and Event Analysis Operators.

Building Block Operator Name Operator Description

AnalyzeED Dotted Chart
[140]

Shows the temporal distribution of
events within traces

AnalyzeED Feature Predic-
tion [45]

Produces predictions of business process
features using decision trees

AnalyzeM WOFLAN [181] Analyzes the soundness of a Petri
Net using the Woflan software (www.
swmath.org/software/7028)

AnalyzeM Select Fuzzy In-
stance

Selects the best fuzzy instance from a
Fuzzy Model

EvaluaM Measure the Pre-
cision of a Model
[3]

Measures the precision of a process
model with respect to an event log.

EvaluaM Measure the Fit-
ness of a Model
[2]

Measures the fitness of a process model
with respect to an event log.

Table 4.5: Process Model Transformation Operators.

Building Block Operator Name Operator Description

RepairM Repair Model
[52]

Replays an Event Log in a Petri Net and
repairs this net to improve fitness.

RepairM Reduce Silent
Transitions

Reduces a Petri Net by removing invisi-
ble transitions (and places) that are not
used

ConvertM Reachability
Graph to Petri
Net

Converts a Reachability Graph into a
Petri Net

ConvertM Petri Net to
Reachability
Graph

Converts a Petri Net into a Reachability
Graph

ConvertM Heuristics Net to
Petri Net

Converts a Heuristics Net into a Petri
Net

ConvertM Process Tree to
Petri Net

Converts a Process Tree into a Petri Net

ConvertM Petri Net to
BPMN

Converts a Petri Net into a BPMN model

www.swmath.org/software/7028
www.swmath.org/software/7028

106 Process Mining Workflows

Table 4.6: Process Model Enhancement Operators.

Building Block Operator Name Operator Description

EnrichM Inductive Visual
Miner [103]

Process exploration tool that shows an
annotated interactive model for quick
exploration of a Log

EnrichM Animate Log
in Fuzzy In-
stance [58]

Shows an animated replay of a Log pro-
jected over a Fuzzy Instance

EnrichM PomPom Petri Net visualizer that emphasizes
those parts of the process that corre-
spond to high-frequent events in a given
Log

EnrichM Replay Log on
Petri Net (Perfor-
mance) [157]

Replays a Log on a Petri Net and
generates performance metrics such as
throughput time, waiting time, etc.

EnrichM Replay Log on
Petri Net (Con-
formance) [157]

Replays a Log on a Petri Net and gener-
ates conformance metrics such as fitness

4.4 Applications 107

4.4 Applications

Building blocks can be chained together in many ways in order to support spe-
cific use cases. This section identifies generic use cases that are not domain-
specific and, hence, that can be applied in different contexts. We provide con-
crete process mining workflows to support these use cases. The use cases are
composed using the process mining building blocks defined before, and remain
independent of any specific implementation of a building block. In fact, as men-
tioned before, the building blocks may employ different concrete techniques:
there are dozens of process discovery techniques realizing instances of building
block DiscM (see Section 4.2.3). This section considers five use cases that are
made possible by process mining workflows:

1. Result (sub-)optimality: Often different process mining techniques can be
applied and a priori it is not clear which one is most suitable. By modeling
the analysis workflow, one can just perform all candidate techniques on
the data, evaluate the different analysis results, and pick the result with
the highest quality (e.g., the process model best describing the observed
behavior). Note that results are regarded as sub-optimal. Optimality is
not guaranteed in general because it depends on the techniques and pa-
rameters used.

2. Parameter sensitivity: Different parameter settings and alternative ways
of filtering can have unexpected effects. Therefore, it is important to see
how the quality of the results is sensitive to changes in these settings. It
is important to not simply show the analysis result without having some
confidence indications.

3. Large-scale experiments: Each year new process mining techniques become
available and larger data sets need to be tackled. For example, novel dis-
covery techniques need to be evaluated through massive testing and larger
event logs need to be decomposed to make analysis feasible. Without
automated workflow support, these experiments are tedious, error-prone
and time consuming.

4. Repeating questions: Practical questions that can be answered through pro-
cess mining analysis are often repetitive, e.g., the same analysis is done for
a different period or a different group of cases. Process mining workflows
facilitate recurring forms of analysis.

108 Process Mining Workflows

5. Interaction with process cubes: The process mining workflows introduced in
this chapter can interact with the process cubes introduced in Chapter 3):
The cells of a process cube can be used as input for a process mining workflow,
so the same workflow can be executed for each cell of the cube.

Note that the same results could also be achieved without using scientific
workflows. However, obtaining such results would require a tedious and error-
prone work of repeating the same steps ad nauseam. The reminder of this sec-
tion discusses the use cases described above, and shows concrete applications
of them in which the usage of process mining workflows is crucial.

4.4.1 Result (Sub-)Optimality

This section discusses how process-mining building blocks can be used to mine
optimal process models according to some optimality criteria. Often, in process
discovery, optimality is difficult (or even impossible) to achieve. Often sub-
optimal results are returned and it is not known what is “optimal”.

Consider for example the process discovery task. The quality of a discovered
process model is generally defined by four quality metrics [2,3,156,157]:

• Replay fitness: quantifies the ability of the process model to reproduce the
execution of process instances as recorded in event data.

• Simplicity: captures the degree of complexity of a process model, in terms
of the numbers of activities, arcs, variables, gateways, etc.

• Precision: quantifies the degree with which the model allows for too much
behavior compared to what was observed in the event data.

• Generalization: quantifies the degree with which the process model is ca-
pable to reproduce behavior that is not observed in the event data but
that potentially should be allowed. This is linked to the fact that event
data often are incomplete in the sense that only a fraction of the possible
behaviors can be observed.

Traditionally, these values are normalized between 0 and 1, where 1 indicates
the highest score and 0 the lowest.

The model of the highest value within a collection of (discovered) models
is such that it can mediate among those criteria. Often, these criteria are in
competing: higher score for one criterion may lower the score of a second cri-
terion. For instance, in order to have a more precise model, it is necessary to

4.4 Applications 109

Figure 4.11: Result (sub-)optimality in process model discovery: process-mining scien-
tific workflow for mining an optimal model in terms of a defined scoring
criteria.

sacrifice the behavior observed in the event data that is less frequent, thus partly
hampering the replay-fitness score.

Figure 4.11 shows a suitable generic scientific workflow for mining a process
model from event data that is optimal with respect to a score defined by specific
criteria. The optimization is done by finding the parameters that returns an
optimal model.

Event data is loaded from an information system and used n times as input
for a discovery technique using different parameter values. The n resulting pro-
cess models are evaluated using the original event data and the model that has
the best score is returned. Please note that the result is likely to be sub-optimal:
n arbitrary parameter values are chosen out of a much larger set of possibilities.
If n is sufficiently large, the result is sufficiently close to the optimal. This scien-
tific workflow is still independent of the specific algorithm used for discovery;
as such, the parameter settings are also generic.

Note that scientific workflows can also be hierarchically defined. For exam-

110 Process Mining Workflows

ple, the discover process-mining building block (DiscM) in Figure 4.11 can be
replaced by an entire scientific sub-workflow.

To show the application of process mining workflows in this use case, we
performed an experiment using RapidProM to extract the model that scores
higher with respect to the harmonic average of precision and replay fitness i.e.,
the f1-score of fitness and precision.3 The harmonic average of replay fitness
and precision seems to be better than the arithmetic average since it is necessary
to have a strong penalty if one of the criteria is low.

In this experiment, we employed the Inductive Miner - Infrequent discovery
technique [102] and used different values for the noise threshold parameter.
This parameter is defined in a range of values between 0 and 1. This parameter
allows for filtering out infrequent behavior contained in event data in order to
produce a simpler model: the lower the value is for this parameter (i.e., close to
0), the larger the fraction of behavior observed in the event data that the model
allows. To measure fitness and precision, we employ the conformance-checking
techniques reported in [2,3].

We designed a process mining workflow where several models are discov-
ered with different values of the noise threshold parameter. Finally, the work-
flow selects the model with the highest value of the harmonic average among
those discovered. As input, we used the Road Fines running example (see Sec-
tion 2.4).

All techniques used here are available as part of the RapidProM extension.
A summary of the concrete operators used in this experiment for each building
block is presented in Table 4.7.

Table 4.7: Operators used in the Result (sub) Optimality experiment.

Building Block Operator Name

ImportED Read Log (file)
DiscM Inductive Miner

EvaluaM Replay Log on Petri Net
SelectM Optimize Parameter (RapidMiner

native operator)

The result of this experiment is shown in Figure 4.12b, which corresponds
to the model generated using the optimal parameters obtained through our

3The harmonic average of a and b used in this article is defined as 2*a*b/(a+b) and it is meant
to penalize very low scores in either a or b.

4.4 Applications 111

scientific workflow, whereas Figure 4.12a illustrates the model generated using
default parameters.

(a) Model mined using the Inductive Miner with default value of the noise-threshold parameter,
which is 0.2. The harmonic average of fitness and precision is 0.708

(b) Model mined using the Inductive Miner with one of the best
values of the noise-threshold parameter, which is 0.7. This
value was obtained as a result of this experiment. The har-
monic average of fitness and precision is 0.912

Figure 4.12: Comparison of process models that are mined with the default parameters
and with the parameters that maximize the harmonic average of replay
fitness and precision. The process is concerned with road-traffic fine man-
agement and models are represented using the BPMN notation.

There are clear differences between the models. For example, in the default
model, parallel behavior dominates the beginning of the process. Instead, the
“optimal model” presents simpler choices. Another example concerns the final
part of the model. In the default model, the latest process activities can be
skipped through. However, in the optimal model, this is not possible. The op-
timal model has a replay fitness and precision of 0.921 and 0.903 respectively,
with harmonic average 0.912. It scores better than the model obtained through
default parameters, where the replay fitness and precision is 1 and 0.548, re-
spectively, with harmonic average 0.708. The optimal model was generated

112 Process Mining Workflows

with value 0.7 for the noise threshold parameter.

4.4.2 Parameter Sensitivity

Parameters are used by techniques to customize their behavior, e.g., adapting
to the noise level in the event log. These parameters have different ways of
affecting the results produced, depending on the specific design of the technique
or algorithm. Some parameters can have more relevance than others (i.e., they
have a more substantial effect on the results). There are many ways to evaluate
the sensitivity of a certain parameter for a given algorithm. Figure 4.13 shows
an example of this use case. Here the parameter value P is varied (i.e., from P1

to P△). For each of the discovered models, a score is computed. The results are
finally plotted on a Cartesian coordinate system where the X-axis is associated
with the parameter’s values and the Y-axis is associated with the model’s score.

Figure 4.13: Parameter sensitivity in process discovery techniques: process mining work-
flow for comparing the effects of different parameter values for a given dis-
covery technique

To show an application of this use case, we conducted an experiment that
analyses the sensitivity of the noise threshold parameter of the Inductive Miner -
infrequent [102]. We used again the event data of the Road Fine management
process (see Section 2.4)

A summary of the concrete operators used in this for each building block is
presented in Table 4.8.

4.4 Applications 113

Table 4.8: Operators used in the Parameter Sensitivity experiment.

Building Block Operator Name

ImportED Read Log (file)
DiscM Inductive Miner

EnrichM Replay Event Log on Petri Net, Create chart
from value array (RapidMiner native opera-
tor)

In this experiment, we implemented a process mining workflow using Rapid-
ProM to explore the effect of this parameter in the final quality of the produced
model. In order to do so, we discovered 41 models using different parame-
ter values between 0 and 1 (i.e., a step-size 0.025) and evaluated their quality
through the harmonic average of replay fitness and precision used before.

Figure 4.14 shows the results of these evaluations, showing the variation of
the harmonic average for different values of the noise threshold parameter.

Figure 4.14: Parameter sensitivity analysis: Variation of the harmonic average of fitness
and precision when varying the value of the noise threshold parameter.

By analyzing the graph, the models with higher harmonic average are pro-

114 Process Mining Workflows

duced when the parameter takes on a value between 0.675 and 0.875. The
worst model is obtained when value 1 is assigned to the parameter.

4.4.3 Large-Scale Experiments

Empirical evaluation is often needed (and certainly recommended) when test-
ing new process mining algorithms. In case of process mining, many experi-
ments need to be conducted in order to prove that these algorithms or tech-
niques can be applied in reality, and that the results are as expected. This is
due to the richness of the domain. Process models can have a wide variety of
routing behaviors, timing behavior, and second-order dynamics (e.g., concept
drift). Event logs can be large or small and contain infrequent behavior (some-
times called noise) or not. Hence, this type of evaluation has to be conducted
on a large scale. The execution and evaluation of such large-scale experiment
results is a tedious and time-consuming task: it requires intensive human as-
sistance by configuring each experiment’s run and waiting for the results at the
end of each run.

This can be greatly improved by using process mining workflows, as only
one initial configuration is required. There are many examples for this use
case within the process mining domain. Two applications of this use case are
presented in Part III (i.e., Chapters 7 and 8), where we propose two frameworks
that can be used to benchmark process discovery and concept drift techniques
respectively through the use of large scale experiments.

4.4.4 Repeating Questions

Whereas the previous use cases are aimed at (data) scientists, process mining
workflows can also be used to lower the threshold for process mining. After the
process mining workflow has been created and tested, the same analysis can
be repeated easily using different subsets of data and different time-periods.
Without workflow support, this implies repeating the analysis steps manually
or using hardcoded scripts that perform them over some input data. The use
of scientific workflows is clearly beneficial: the same workflow can be replayed
many times using different inputs where no further configuration is required.

There are many examples of this use case within the process-mining do-
main. An application of this use case in the domain of report generation over
collections of data sets is described in Part IV (i.e., Chapter 10), where we ana-
lyzed the use of videolectures by thousands of students in hundreds of university

4.4 Applications 115

courses over the course of several years, where for each instance of a course,
we provided lecturers with an automatically-generated report describing the
videolecture-viewing behavior of students.

4.4.5 Interaction with Process Cubes

As discussed in Chapter 3, the cells of a process cube relate to set of events (and
even to event logs). Such event data can be trivially used as input for a process
mining workflow.

The idea is simple: A process mining workflow is designed for a specific
purpose e.g., for creating a report of the performance of the process, including
charts, tendencies, etc. Then, the same workflow can be executed many times
using different cells of the cube as input.

The implementation of the process mining workflows and process cubes are
related, but are independent from each other. The RapidMiner framework can
be used as a library without a GUI. Therefore, the core of RapidMiner was
integrated into the Process Mining Cube (PMC) tool described in Section 3.3.
Within the cube, one can select cells and run a specific process mining workflow
for them, in a similar fashion than visualizing the cell as an event log, or as a
process model.

Figure 4.15 shows an example of a process mining workflow in RapidMiner
using operators from the RapidProM extension. In this workflow, a process
model is discovered from the event log provided as input, and the conformance
checking of the event log with respect to the process model is performed. Fi-
nally, several result outputs of the conformance checking operator are written
into files containing images, data or text.

Figure 4.16 shows an example of cells of the PMC, obtained from the Road
Fines running example (see Example 2.4) where events are grouped based on
the year in which they occurred. The cells corresponding to years 2000, 2004,
2008 and 2012 are selected, and they are used as input for the process mining
workflow shown in Figure 4.15.

The concrete interaction between the process mining workflow and the pro-
cess cube is performed through the following steps, shown in Figure 4.16:

1. Cells of the cube are selected.

2. A process mining workflow is selected.

3. The events in the cell can be merged and used once as input of the work-
flow, or the workflow can be executed for each cell separately.

116 Process Mining Workflows

Figure 4.15: Process Mining Workflow implemented in RapidMiner using building blocks
from the RapidProM extension: The input is an event log and the output is a
conformance checking analysis of the event log (stored in several formats)
and a model discovered from it.

Finally, the process mining workflow is executed.
The results produced by a process mining workflow are not visualized in the

process cube (there are 200+ different types of result objects in RapidMiner,
each one having several visualizers), and should be stored in disk and han-
dled by the workflow itself using the available export operators in RapidMiner
and RapidProM, using any naming scheme (e.g., “cell_X_model”) that allows to
store the results from different cells without overwriting them.

Note that the integration of the PMC and process mining workflows is not
limited to only RapidProM operators. For example, one could use the events of
a cell of the cube to perform clustering using standard data mining techniques.

4.5 Conclusions

This chapter presented a framework for supporting the design and execution
of process mining workflows. As argued, scientific workflow systems are not
tailored towards the analysis of processes based on models and logs. Tools like
RapidMiner and KNIME can model analysis workflows but do not provide any
process mining capabilities. The focus of these tools is mostly on traditional data
mining and reporting capabilities that tend to use tabular data. Also more classi-

4.5 Conclusions 117

Fi
gu

re
4.

16
:

Se
le

ct
ed

ce
lls

of
a

Pr
oc

es
s

C
ub

e
ar

e
us

ed
as

in
pu

t
fo

r
th

e
pr

oc
es

s
m

in
in

g
w

or
kfl

ow
.

Th
e

w
or

kfl
ow

ca
n

ru
n

fo
r

ea
ch

ce
ll

in
de

pe
nd

en
tl

y,
or

fo
r

ju
st

on
ce

fo
r

th
e

un
io

n
of

al
lt

he
se

le
ct

ed
ce

lls
.

118 Process Mining Workflows

cal Scientific Workflow Management (SWFM) systems like Kepler and Taverna
do not provide dedicated support for artifacts like process models and event
logs. Process mining tools like ProM, Disco, Celonis, Everflow, QPR, MyInvenio,
Minit, PM4PY, bupaR, etc. do not fully provide explicit workflow support.

We proposed generic process mining building blocks grouped into six cate-
gories. These can be chained together to create process mining workflows. We
identified five generic use cases and provided conceptual and concrete work-
flows for these. The whole approach is implemented as RapidProM, which
is a ProM-based extension for RapidMiner, an has been tested in several use
cases. RapidProM is freely available at http://www.rapidprom.org and at
RapidMiner Market place.

As a limitation, we would like to mention that the stability of RapidProM
is not guaranteed with newer versions of the RapidMiner software. This will
be caused by eventual changes in RapidMiner´s architecture over the years. In
order to use RapidProM properly, please use the versions used here.

http://www.rapidprom.org

Chapter 5
Process Variant Comparison

Event logs (and process variants) can be compared to each other in order to find
similarities and differences. Such similarities and differences can provide useful
insights to business managers. Figure 5.1 positions the idea: one can compare
a set of event logs in order to identify the strengths and weaknesses of each
one, and their similarities and differences. Alternatively, one can also compare
process variants obtained from the cells of a process cube (see Chapter 3).

Process similarity can be measured from several perspectives such as control-
flow, performance, resource, and data. The combination of these process per-
spectives characterizes the context of a process [160]. The context of a process
can be divided in four types:

Instance context refers to data attributes that can be related to individual pro-
cess instances (e.g., type of customer, size of an order). This includes
perspectives such as control-flow and performance.

Process context refers to data attributes that are not related to a single instance
of the process, but to the process as a whole (e.g., workload and availabil-
ity of resources).

Social context refers to data attributes that reflect the way in which people
work together not within a specific process, but within a particular orga-
nization (e.g., team efficiency, relations between co-workers).

External context refers to data attributes that capture all other factors that are
beyond the control sphere of an organization (e.g., weather, changing
regulations).

120 Process Variant Comparison

Event
Data

Process
Cube

Process Variant
Detection

Process
Comparison

Process
Mining

Workflows

En
ri

ch
e

d
Ev

en
t

D
at

a
w

/
V

ar
ia

nt
 E

n
co

d
in

g

Cube cells
(process variants)

Figure 5.1: Overview of the scope of this chapter: event logs (e.g., process variants re-
lated to cells of a process cube) can be compared in order to identify their
differences and similarities.

For the purpose of process comparison, we can split the context into two
groups: behavioral and non-behavioral.

The behavioral context incorporates the perspectives that refer to “the way
in which the process is executed” (i.e., the observed behavior of a process). This
generally refers to the control-flow (i.e., what was executed) and performance
(i.e., when was it executed) perspectives, which are a type of instance context.
Behavior can be compared in order to find differences in the frequencies with
which activities are executed, or in waiting and executing times. For example,
one may notice that two process variants have slightly different ways of exe-
cuting the same process. Furthermore, these variants may even have the same
control-flow, but different performance for the same process.

The non-behavioral context incorporates the perspectives that refer to all the
data attributes that do not describe behavior, but are related to it (e.g., the
amount of the requested loan or the workload of people) These perspectives
can have an influence on certain decisions made within the process, affecting
its behavior. Sometimes, context data can be highly related to (and can even

5.1 Related Work 121

determine) the way in which a process is executed. For example, the amount of
a loan and the risk factor of a customer might determine if there will be extra
financial checks or not before a loan is granted. In cases like this, such relations
can be structured as business rules.

Similar behavior does not imply similar business rules (and vice versa). For
example, two branches of a bank can reject the same percentage of loan ap-
plications using different thresholds to reject a loan. On the other hand, two
branches can reject a different percentage of loan applications using the same
threshold (and branches in richer regions would approve more loans).

This chapter presents a comprehensive technique to compare event logs
(e.g., variants of a business process) in terms of behavior and business rules.
The types of questions that our approach can answer are (not limited to):

• What are the differences in terms of behavior (e.g., frequency of occur-
rence, elapsed time) and business rules between two variants?

• In which points of the process (e.g., represented by a specific state or
transition in a transition system) do these difference appear?

• Do the differences depend on certain behavioral and/or non-behavioral
characteristics (e.g., type of a customer, workload of resources)?

The remainder of this chapter is structured as follows: Section 5.1 discusses
related work. Section 5.2 details our technique for comparing two event logs
in terms of their behavior and business rules and describes the result visualiza-
tions provided by our approach, including a discussion of the design principles
behind the chosen design criteria. Section 5.3 describes the software tool that
implements this approach. Section 5.4 illustrates the application of the tool in
two experiments using synthetic and real data. Finally, Section 5.5 concludes
the chapter.

5.1 Related Work

Substantial work has been done on comparing process variants. The corre-
sponding papers can be grouped in three categories: model-based and log-based
behavior comparison, and business rules comparison. The main difference be-
tween model-based and log-based behavior comparison approaches is that the
first one requires process models as input and the second one requires event
logs as input. Note that, model-based approaches could also be applied if the

122 Process Variant Comparison

model is not known, because models can be discovered from event logs and then
used as input for the approach. However, the reliability of the results could be
hampered by the fact that the structure of the models (hence, the detected dif-
ferences) can be drastically affected by the choice of the discovery technique or
its parameters. Finally, we include a discussion on stacking of decision trees and
classifiers in general.

5.1.1 Model-based Behavior Comparison

Many model-based behavioral comparison [40, 73, 97, 99] and process model-
matching [94, 95] techniques have been developed in recent years. La Rosa et
al. [99] provide an overview of the different ways to compare and merge mod-
els. Most of them are based on control-flow comparison, where the structural
properties of the models (represented as graphs) are compared (e.g., nodes and
edges present in one of the models, but not in the other one).

A drawback of model-based approaches is that they are unable to detect
differences in terms of frequency or other perspectives (e.g., elapsed time or
costs). In other words, in model-based comparison the variants are compared
in terms of their model structure whereas we aim to compare the behavior and
business rules.

5.1.2 Log-based Behavior Comparison

One of the most recent approaches for log-based behavior comparison is by
Van Beest et al. [151]. This technique is able to identify differences between
two event logs by computing frequency-enhanced prime event structures (FPES)
from the corresponding event logs, comparing the obtained FPES and report
the results using two sets of textual statements: control-flow differences and
branching frequency differences.

This approach has several advantages, such as the handling of concurrency
in process behavior. However, the approach also has some limitations. First of
all, the technique looks at the relative frequency, only. As such, when looking at
branching frequency, it possibly returns a difference (if any), even though the
branching point is actually reached very rarely. Also, no statistical significant
tests are employed. Second, to determine branching points, they only look at
the last activity independently of what activities were previously executed. As
such - as we have verified by testing the reference implementation - it is unable
to detect differences that refer to the activities preceding the last. Third, the ap-
proach considers event logs as sequences of event labels, thus ignoring all other

5.1 Related Work 123

event attributes (e.g., timestamp, event payload). This limits the approach to
detect only frequency differences. Differences in performance or other metrics
cannot be obtained.

Another interesting process comparison technique was recently introduced
in [193], where many process variants can be compared simultaneously. How-
ever, the focus is put on comparing only the performance of such process vari-
ants, while disregarding control-flow and other context differences.

Other approaches based on sequence mining such as [75,101,119,144] tend
to obtain over-fitting and complex rules (as indicated in [119] and [151]).

It is very gratifying for the authors to see that the work presented in this
chapter was used to inspire further research as seen in [148], where they ex-
tended our work (published initially in [12] and later extended in [13]) by
learning a directly-follows graph called mutual fingerprint from the event logs
of two process variants. A mutual fingerprint is a lossless encoding of a set of
traces and their duration using discrete wavelet transformation.

5.1.3 Business Rules Comparison

In machine learning, classifiers are usually compared in terms of their accuracy
or predictive power: different types of classifiers can be trained, and the best
are selected. This allows one to compare classifiers that are essentially different
(e.g., decision trees and neural networks). However, accuracy and predictive
power are not enough to understand business rules. Furthermore, black-box
classifiers (e.g., neural networks) can indeed classify, but the underlying rules
are not human-interpretable.

Since our approach compares business rules by comparing decision trees
(see Section 5.2.2), we discuss decision tree comparison approaches as follows.
The comparison of decision trees (and classifiers in general) is not process-
specific, and it can be applied in many domains. Several authors have worked
on the comparison of decision trees. [122] reports on an approach to compare
branching conditions and to calculate a similarity score. However, such ap-
proaches tend to yield highly specific comparisons that have little relevance.
For example, branch rules x > 5 and x > 5.01 are structurally different, but, in
fact, the difference may be negligible from a domain viewpoint. In [121], a sim-
ilarity score is obtained from the classification results, but such score does not
point out the actual similarities and differences in decision trees (e.g., why or
in which cases do differences occur) but it is only limited to somehow measure
the degree of similarity.

124 Process Variant Comparison

In our approach, we use the classification predictions of existing decision
trees to build a new decision tree that defines the conditions of agreement or
disagreement between the predictions of the existing decision trees (see Sec-
tion 5.2.2). This relates to stacking [192], a well-known concept of machine
learning that consists of building a classifier based on the output of other clas-
sifiers. Unlike bagging and boosting, it is a different way of combining multiple
classifiers, that introduces the concept of a meta learner that uses the predictions
of other classifiers as input.

In machine learning, the whole ensemble or stack is commonly used as a
single classifier. For example, in a 2-level stack an input instance is provided.
Level-0 classifiers make a prediction, then level-1 classifiers take those predic-
tions and make a new prediction, which is returned as the prediction (i.e., out-
put) of the whole stack.

Unlike the above approach, we used the meta learner (e.g., a decision tree)
for a different purpose: to understand under which conditions the classifiers
(i.e., decision trees) predict the same class for a given instance, and under which
conditions they make different predictions.

5.2 Process Variant Comparison

The process comparison approach presented in this chapter takes into account
both behavior and business rules in order to perform a comprehensive analysis.
For example, if a bank wants to reduce its number of branches in a city by
merging them, it is probably best to merge those branches that are most similar
to each other in terms of behavior and business rules, since this minimizes the
efforts of the merge. If only behavior is compared, the resulting merged branch
could have conflicting sets of business rules (e.g., different thresholds to give a
loan) which could cause operational problems and ambiguity. For example, a
loan application could be rejected if it is handled by an employee using a set
of business rules (e.g., high thresholds), or accepted if it is handled by another
employee using other rules (e.g., low thresholds). On the other hand, if only
business rules are compared, the resulting merged branch could have conflicting
control-flows, guided by employees that are used to execute different sets of
tasks. For example, using the same loan approval thresholds, employees from
one branch may do an additional check before approving a loan.

Figure 5.2 sketches the idea: two event logs (e.g., process variants obtained
from a process cube) are compared for differences that are projected onto a
transition system that represents the combined control-flow of both event logs,

5.2 Process Variant Comparison 125

Event
Log ‘A’

Process
Cube

Process Variants
(cube cells)

Event
Log ‘B’

Annotated Model

[A]

Behavior Comparison

Business Rules Comparison

Figure 5.2: Overview of the approach: two event logs (e.g., cells from a process cube)
are compared, producing a single annotated transition system that represents
the combined behavior observed in both event logs, where the highlighted
(i.e., colored) states and transitions highlight differences. Such states and
transitions are interactive: when clicked, they show details of the actual
differences. These can be related to behavior or business rules.

where states and transitions are colored to highlight differences in behavior or
business rules. Then, highlighted states or transitions can be clicked on in order
to show the details of such difference in terms of behavior or business rules.

The two event logs that are used for comparison can be extracted from the
cells of a process cube (see Chapter 3). However, our technique is generic

126 Process Variant Comparison

enough to work with any event log i.e., not necessarily process variants. For ex-
ample, the two event logs may have been extracted from different information
systems (e.g., two branches of the same company or even two different compa-
nies). In the case that k > 2 event logs need to be compared, it is possible to
create k pairs of 2 groups i.e., k − 1 groups are merged and compared with the
remaining one (“one against the rest”).

The remainder of this section describes our approach and how it can be
used to compare behavior (Section 5.2.1) or business rules (Section 5.2.2) of
different process variants.

5.2.1 Comparing Behavior

Event logs reflect the observed behavior of processes. Most process discovery
techniques analyze this behavior from a pure control-flow perspective [156].
However, more behavioral related to other perspectives can be extracted from
event logs (e.g., the cost of an activity, or the running time of a case). This infor-
mation can be used to provide detailed insights about the behavioral differences
between process variants.

In this section, we introduce a technique to extract and compare the be-
havior of event logs (e.g., process variants) using annotations: measurements
are obtained from the event logs and are annotated on the states and transi-
tions of a transition system that represents the combined behavior of both event
logs. This technique is able to detect, for example, if one variant is significantly
slower than the other, even if they have the same control-flow.

The remainder of this section is structured as follows. First, we provide
a reminder of transition systems, and how they can be used to represent the
combined behavior of two event logs. Second, we introduce the concept of
measurements and how they can be annotated into a transition system. Then,
we describe how, for each state and transition, the measurement values in the
annotations of each variant are compared using statistical significance tests in
order to detect relevant differences. Finally, we describe how the results are be
visualized.

Recall: Transition Systems

This section consists of a brief recall of transition systems, as defined in Sec-
tion 2.3.4, and can be skipped if the reader is familiar with these concepts.

Transition systems are directed graphs composed of states and of transitions
between them. A transition is defined by an activity being executed, triggering

5.2 Process Variant Comparison 127

the current state of the process to move from a source state to a target state.
Prefixes of traces in an event log can be mapped to states and transitions

using representation functions that define how these prefixes are interpreted.
The state representation function is defined as rs : E∗ → Rs, where Rs is

the universe of possible state representations. This function relates prefixes of
traces to states in a transition system. Given an empty (prefix of a) trace, we
denote the empty state as a special element rs(⟨⟩) = ⊥ ∈ Rs.

The activity representation function is defined as ra : E → Ra, where Ra

is the universe of all the possible activity representations. This function relates
events to activities in a process.

The universe of all possible representations of transitions is defined as Rt ⊆
Rs × Ra × Rs. A transition t ∈ Rt is a triplet (s1, a, s2) where s1, s2 ∈ Rs are
the source and target states and a ∈ Ra is the activity executed.

Given an event log L, a state representation function rs and an activity rep-
resentation function ra, a transition system TS (rs,ra,L) is defined as a triplet
(S,A, T) where S ⊂ Rs is the set of states, A ⊂ Ra is the set of activities and
T ⊆ (S×A×S) is the set of valid transitions between states (see Definition 2.14
in Section 2.3.4 for more details).

Given two event logs L1 and L2, where each event log is a set of traces,
we can combine them into a new event log L′ = L1 ∪ L2, which is the union
of both sets of traces. Therefore, given the two event logs L1 and L2, a state
representation function rs and an activity representation function ra, we can
define TS (rs,ra,L1∪L2) as the transition system that represents the combined
behavior of both event logs L1 and L2.

Measurements and Annotations

In order to compare event logs, we need to introduce the measurements that we
will use for comparison. Measurement functions are computed as functions of
event attributes contained in the events of a trace.

Definition 5.1 (State Measurement Function). Given an event log L and a tran-
sition system TS (rs,ra,L) = (S,A, T) with a state representation function rs and
an activity representation function ra, a state measurement function, defined as
smr s : E∗×Rs → B(R), is a function that relates traces σ ∈ E∗ and states s ∈ Rs

to a multiset of numerical measurements.

Note that for a given trace and state, multiple measurement values can be
obtained, e.g., if a state is visited twice within the same trace (e.g., in a loop in
the process), it can lead to two different elapsed time values.

128 Process Variant Comparison

For example, it is possible to measure whether or not a certain state s in a
state representation rs is reached during the process’ execution recorded in a
trace σ:

smoccur
rs (σ, s) =

{
[1] if ∃σ′ ∈ pref ⋄(σ) : rs(σ′) = s

[0] otherwise
(5.1)

It is also possible to measure the elapsed time between the beginning of a
trace σ and the visit of a state s using a state representation rs:

smelapsed
rs (σ, s) =

⊎
σ′∈pref ⋄(σ),σ′ ̸=⟨⟩

rs(σ′)=s

[#time(σ
′(|σ′|))−#time(σ

′(1))] (5.2)

Note that in this case, the same trace can contain more than one prefix that
reach the same state, leading to multiple measurement values. Also note that
we use the notation ⊎ to indicate the sum of multisets, while we use the notation
∪ to indicate the union of sets (see Section 2.1).

Definition 5.2 (Transition Measurement Function). Given a state representation
function rs and an activity representation ra, a transition measurement function
tm(r s ,ra) : E∗ × Rt → B(R), is a function that relates a trace σ ∈ E∗ and a
transition t ∈ Rt to a multiset of numerical measurements.

For example, it is possible to measure whether a certain transition t is exe-
cuted in a given trace σ:

tmoccur
(rs,ra)(σ, t) =

{
[1] if ∃σ′∈pref ⋄(σ),σ′ ̸=⟨⟩

(
rs(pref |σ

′|−1(σ′)), ra(σ′(|σ′|)), rs(σ′)
)
= t

[0] otherwise

(5.3)

It is also possible to measure the elapsed time of a trace until a transition is
triggered within the trace:

tmelapsed
(rs ,ra)(σ, t) =

⊎
σ′∈pref ⋄(σ),σ′ ̸=⟨⟩(

rs(pref |σ
′|−1(σ′)),ra(σ′(|σ′|)),rs(σ′)

)
=t

[#time(σ
′(|σ′|))−#time(σ

′(1)]

(5.4)

States and transitions can be annotated with the measurements obtained from
an event log [163].

5.2 Process Variant Comparison 129

Definition 5.3 (Annotation Function). Given a state measurement function sm,
a transition measurement function tm and an event log L, an annotation function
an(sm,tm,L) : (Rs ∪ Rt) → B(R), is a function that, given a state s ∈ Rs or
transition t ∈ Rt, produces a multiset of numerical measurements. The annotation
function is defined as:

an(sm,tm,L)(x) =

{⊎
σ∈L sm(σ, x) if x ∈ Rs⊎
σ∈L tm(σ, x) if x ∈ Rt

Creating Annotated Transition Systems from Event Logs

In order to compare process variants, we need to be able to compare the an-
notations that are produced for each state and transition of a transition system
(see Def. 2.14). Hence, we introduce annotated transition systems which allows
one to annotate a transition system with multiple annotation functions.

Definition 5.4 (Annotated Transition System). Given two event logs L1 and
L2, state and activity representation functions rs and ra, state and transition
measurement functions sm and tm, we define an annotated transition system
ATS (rs,ra,L1,L2,sm,tm) as the triplet (TS (rs,ra,L1∪L2), an(smrs ,tm(rs,ra),L1),

an(smrs ,tm(rs,ra),L2)) consisting of a transition system TS (rs,ra,L1∪L2) and two an-
notation functions an(smrs ,tm(rs,ra),L1) and an(smrs ,tm(rs,ra),L2).

Note that the transition system TS (rs,ra,L1∪L2) uses all the traces contained
in the event logs L1 and L2. All the annotations in an1 are related to the event
log L1 and all the annotations in an2 are related to the event log L2. This allows
us to extract only the annotations related to a specific event log for any given
state or transition.

Figure 5.3 shows an example of an annotated transition system. It is the
result of annotating a simplified transition system related to the journal revision
process using the event log shown in Figure 1.4 which is split into two sublogs:
L1 contains the first two traces (i.e., no extra reviews needed) and L2 contains
the third trace (i.e., extra review needed), the state representation function
rs(σ) = {#activity(e)|e ∈ σ} for σ ∈ PL, the activity representation function
ra(e) = #activity(e) for e ∈ EL, the state measurement function smrs defined
in Equation 5.1 and the transition measurement function tm(rs,ra) defined in
Equation 5.3. Note that the measurements corresponding to all three traces are
included in the annotations.

130 Process Variant Comparison

{ }

Invite Reviewers

an1:[1,1]
an2:[1]

{Invite Reviewers}

an1:[1,1]
an2:[1]

{Get Review 1}

an1:[1,1]
an2:[1]

{Get Review 2}

an1:[1,1]
an2:[1]

{Get Review 3}

an1:[1,1]
an2:[0]

Get Review 1

Get Review 2

Get Review 3

{Timeout 3}

an1:[0,0]
an2:[1]

Get Review 3

{Collect Reviews}

an1:[1,1]
an2:[1]

{Acept}

an1:[0,1]
an2:[0]

{Reject}

an1:[1,0]
an2:[1]

{Invite Aditional
Reviewer}
an1:[0,0]
an2:[1]

{Get Review X}

an1:[0,0]
an2:[1]

an1:[1,0]
an2:[0]

an1:[1,0]
an2:[0]

Get Review 2
an1:[1,0]
an2:[0]

Get Review 2
an1:[0,1]
an2:[0]

an1:[0,1]
an2:[0]

an1:[0,0]
an2:[1]

Get Review 1
an1:[0,1]
an2:[0]

an1:[0,0]
an2:[1]

Timeout 3
Get Review 1

an1:[0,0]
an2:[1]

Collect Reviews
an1:[1,1]
an2:[0]

Collect Reviews
an1:[0,0]
an2:[1]

Accept
an1:[0,1]
an2:[0]

Reject

an1:[1,0]
an2:[0]

Invite Additional Reviewer
an1:[0,0]
an2:[1]

Get Review X
an1:[0,0]
an2:[1]

Reject
an1:[0,0]
an2:[1]

Figure 5.3: A simplified version of the transition system presented in Figure 2.4 is anno-
tated with the annotation functions an1 and an2 with occurrence state and
transition measurement functions defined in Equations 5.1 and 5.3. Annota-
tions are represented as text under the node and edge labels. Blue-colored
annotations correspond to an1 and red-colored annotations correspond to
an2.

5.2 Process Variant Comparison 131

State and Transition Comparison using Annotations.

The annotations in states and transitions can be compared in order to detect
differences between them.

Definition 5.5 (Comparison Oracle). Given two multisets of numerical measure-
ments (i.e., annotations), the comparison of annotations can be abstracted as a
comparison oracle that is defined as the function diff : B(R)×B(R)→ Bool , that
decides whether there are significant differences between such multisets (i.e., true)
or not (i.e., false).

This comparison oracle is unrelated to the notion of cases and processes,
as it works over numerical annotations. Such annotations incorporate all the
process-specific information of the event data.

Given an ATS =
(
(S,A, T), an1, an2

)
, for each element x ∈ S ∪ T we want

to detect differences by evaluating diff (an1(x), an2(x)).
The framework is irrespective of the employed comparison oracle. However,

in this chapter we propose two concrete oracles. If the annotation values fol-
low a normal distribution, we use the two-tailed Welch’s T-test, also known as
the “two-tailed T-test with different variances” [190]. Otherwise, we use the
non-parametric rank-based Mann-Whitney U-test [113]. This test is the non-
parametric version of a T-test (i.e., it does not assume normality).

Statistical significance tests only indicate if there is a difference big enough
to be significant, but do not take into account the magnitude of the actual differ-
ence. For example, a difference of one second or one month can be statistically
significant, depending on the sparsity or skewness of the annotations. To ad-
dress this, the effect size is measured in order to indicate the magnitude of the
difference. Note that the effect size is only calculated when a statistically signif-
icant difference is detected. This means that states and transitions that do not
contain statistically-significant differences are not measured for effect size.

Definition 5.6 (Effect Size Oracle). The effect size oracle is defined as the function
eff : B(R)× B(R)→ R, which given two multisets of measurements, returns the
size of the effect (i.e., how small or large is the difference) and the sign of the
difference (+/-) in a certain scale.

In this chapter, we use Cohen’s d [38] to measure effect size, which measures
the difference of sample means in terms of pooled standard deviation units.
Cohen relates ranges of d values to effect size categories: d = ±0.2 is considered
as a small effect, d = ±0.5 is considered as a medium effect and d = ±0.8 is
considered as a large effect. However, other effect size measurements could be
used instead.

132 Process Variant Comparison

Visualization of Results

This section discusses a way to visualize the behavior comparison results de-
scribed above. Design principles of transition systems including thickness, color,
shape, and layout can be used to represent information. The design principles
that we used in this chapter are:

• Processes can be visually represented as transition systems (see [162]).

• Thickness of elements in a graph can be used to represent numerical prop-
erties (e.g., existing process mining tools use this to show delays and fre-
quencies).

• Categories (e.g., related to Cohen’s d) can be represented by color scales
(see [22]).

The most common design principles used in the process mining software
industry (e.g., tools like Disco1, Celonis2, Minit3, MyInvenio4, Perceptive Pro-
cess Mining5, SNP Business Process Analysis6, and many more) are the use of
thickness to represent scalar values (e.g., frequency of occurrence) and the use
of color to highlight elements of the model (e.g., nodes, arcs). In this chapter,
we do not claim a contribution in terms of visualization, and we adhere to the
common industry design principles mentioned above.

Thickness is especially useful to represent numerical attributes due to the
high number of different values it can take (i.e., a small range of real numbers)
and by the fact that it is unidimensional and scalar (i.e., when comparing two
thicknesses, one can quickly identify the magnitude of their difference). For
example, if a line is two times thicker than another line, then its numerical
attribute value is two times bigger.

In this chapter, we use thickness to represent behavioral properties of the
process (e.g., frequency, elapsed time). The behavioral property used to calcu-
late thickness is configured by the user: Given an annotated transition system
ATS =

(
(S,A, T), an1, an2

)
, for each element x ∈ S ∪ T , the thickness of the

corresponding node (if x ∈ S) or arc (if x ∈ T) is proportional to the mean value
of an1(x) ⊎ an2(x), i.e., the average value of the annotations associated with x

1https://fluxicon.com/disco
2www.celonis.com/en
3www.minitlabs.com
4www.my-invenio.com
5www.lexmark.com
6www.snp-bpa.com

5.2 Process Variant Comparison 133

and computed on the merged log. Note that the thickness property can provide
insights about the overall behavior of both variants combined. However, other
alternatives representations are possible, e.g., the average difference of an1(x)
and an1(x) can be used instead in order to highlight the states or transitions
with biggest absolute differences in their annotation values.

Figure 5.4 shows an example of this visualization using the exact same ATS

{ }

Invite Reviewers

{Invite Reviewers}

{Get Review 1}

{Get Review 2}

{Get Review 3}

Get Review 1

Get Review 2

Get Review 3

{Timeout 3}

Get Review 3

{Collect Reviews}

{Acept} {Reject}

{Invite Aditional
Reviewer}

{Get Review X}

Get Review 2
Get Review 2

Get Review 1

Timeout 3
Get Review 1

Collect Reviews

Collect Reviews

Accept
Reject

Invite Additional Reviewer

Get Review X

Reject

Figure 5.4: An example of how the annotations are translated to the thickness of the
transition’s arcs and state’s node borders using the annotated transition sys-
tem shown in Figure 5.3. In this case, thickness represents the combined
frequency of occurrence.

134 Process Variant Comparison

presented in Figure 5.3, which uses the state representation function rs(σ) =
{#activity(e)|e ∈ σ} for σ ∈ PL, the activity representation function ra(e) =
#activity(e) for e ∈ EL, the state measurement function smrs defined in Equa-
tion 5.1 and the transition measurement function tm(rs,ra) defined in Equa-
tion 5.3. In this case, the annotations are represented as thickness instead of
text. Note that in this figure, thickness represents the frequency of occurrence.

Color is commonly used to highlight elements, because the human eye is
very susceptible to color contrast. This fact can be used to draw the attention of
the user to the parts of the process that contain differences.

Given an annotated transition system ATS =
(
(S,A, T), an1, an2

)
, for each

element x ∈ S ∪ T , the corresponding node (if x ∈ S) or arc (if x ∈ T) will be
colored black or white (depending whether it is a transition or a state, respec-
tively) if there are no statistically-significant differences detected in that element.
On the other hand, if a statistically-significant difference is detected, a different
color will be used.

In this latter case, the specific color used depends on the type and magnitude
of the difference found: For differences in terms of behavior, the color used will
depend on the effect size of the difference (defined in Section 5.2.1). Please note
that our approach can analyze only one annotation (e.g., frequency, elapsed
time) at a time, and it is defined by the user. The selected annotation is then
used for all the statistical tests and effect size calculations.

Different colors are used according to Cohen’s d ranges of effect size values
(8 value ranges in total: four for positive d’s and four for negative d’s). Col-
ors with higher intensity (i.e., darker) represent larger effect sizes (i.e., more
relevant differences), whereas colors with low intensity (i.e., lighter) represent
smaller effect sizes (i.e., less relevant differences).

Blue-based colors mean that the average value of the annotation of a state or
transition in a first event log is higher than in a second event log and red-based
colors mean the opposite. Figure 5.5 shows an example of a transition system
in which some states and transitions are colored blue or red if they present
statistically significant differences in their annotations.

The color scheme (blue and red) was obtained from http://colorbrewer2.

org (introduced in [22]) from the selection of diverging color schemes (i.e.,
where white is the median color and the two extremes are different non-white
colors) with eight levels that were also identifiable by color-blind users. In [22],
Brewer discusses how these schemes are generated and how they can be used
to represent categories.

http://colorbrewer2.org
http://colorbrewer2.org

5.2 Process Variant Comparison 135

Figure 5.5: Example of an annotated transition system colored with the results of statis-
tical significance tests and effect size oracle. States and transitions that do
not contain statistically significant differences (hence, the effect size is not
measured) are colored white and black respectively.

5.2.2 Comparing Business Rules

When a state of a transition system has more than one outgoing transition, a
decision needs to be made: only one of the outgoing transitions can be executed.
Such states are called as decision points.

Definition 5.7 (Decision Point). Given a transition system TS = (S,A, T), a
state s ∈ S is a decision point if it has at least two different outgoing transitions,
namely ∃a′, a′′ ∈ A,∃s′, s′′ ∈ S : (p, a′, s′) ∈ T ∧ (p, a′′, s′′) ∈ T ∧ a′ ̸= a′′.

As discussed earlier, the non-behavioral context of a process can be directly
related to its observed behavior. Such context information is present in event
data in the form of data attributes (e.g., workload, type of customer). For any
decision point, the context information (contained in the event log in the form
of data attributes) can be used to discover business rules that capture the data
conditions that lead to a control-flow decision (e.g., if the amount of a requested
loan is higher than X, then the loan is rejected). Similarly to what was proposed
in [44], we use decision trees [124] to discover data conditions (i.e., business
rules) at the decision points.

Given a transition system, for each decision point, the business rules com-
parison is performed as follows:

136 Process Variant Comparison

1. Extract observation instances from the event logs of the two variants. In
abstract terms, an observation instance relates, for a given trace prefix
in an event log, the execution of one of the outgoing transition of the
decision point (i.e., target or class variable) to a set of attribute values
(i.e., descriptive variables)

2. For each variant, a decision tree is built using the respective observation
instances.

3. Compare the decision trees for differences.

Note that in step 1, all the necessary process-specific information contained in
the event data is embedded into the observation instances. Therefore, steps
2 and 3 are not process-specific. Given a collection of observation instances
(i.e., value vectors), any classification technique can be used instead. Step 3
proposes a novel way to compare decision trees according to whether they agree
or disagree in their predictions. These three steps are detailed in the remainder
of this section.

Creation of the Observation Instances

Since we are interested in analyzing how data attributes can explain the control-
flow decisions of a process variant (i.e., business rule), for each decision point
we need to create observation instances that contain such data attributes. These
instances will be used to train and test decision trees.

Let L be an event log and TS (rs,ra,L) = (S,A, T) be a transition system.
Let DP ⊆ S be the set of decision points of the transition system TS. For
each decision point d ∈ DP , an observation instance associated to d is a pair
associating a set of attribute values to the next activity a ∈ A being executing,
as observed in the event log. For the remainder of this section, we introduce
function:

values : E∗ → (N ̸→ V)

that, for each trace (prefix) σ, returns a function f = values(σ) that relates
attributes n ∈ N to values f(n) ∈ V. For each attribute n in the domain of f ,
f(n) returns the latest value that n has taken on in trace (prefix) σ.

With this helper function at hand, we can precisely define the set of obser-
vation instances associated with an event log.

Definition 5.8 (Observation instances). Let L be an event log and let PL be the
set of all prefixes of all traces in L. Let TS (rs,ra,L) = (S,A, T) be a transition

5.2 Process Variant Comparison 137

system. Given a decision point d ∈ DP ⊆ S, the multiset of observation instances
I
(L,rs,ra)
d ∈ B

(
(N ̸→ V)×A

)
related to d is defined as:

I
(L,rs,ra)
d =

⊎
σ∈PL\{⟨⟩},

rs(pref |σ|−1(σ))=d

[(values(pref |σ|−1(σ)), ra(σ(|σ|)))]

where ra(σ(|σ|)) ∈ A is the class attribute, namely the activity that is observed
being executed (i.e., the last activity executed in the trace σ).

Table 5.1 shows an example in the context of the journal revision process,
where the observation instances were obtained using the event log shown in
Figure 1.4 and the transition system for this event log shown in Figure 2.4
for the decision point given by the state “Invite Reviewers”. Note that these

Table 5.1: Fragment of a set of Observation Instances related to the journal revision
process in the decision point given by the state “Invite Reviewers”.

Trace ID Observation Instance

3025 ({f(activity) = “Invite Reviewers”, f(timestamp) = 01-08-2017}, “Get Review 1”)
3026 ({f(activity) = “Invite Reviewers”, f(timestamp) = 14-08-2017}, “Get Review 3”)
3027 ({f(activity) = “Invite Reviewers”, f(timestamp) = 06-09-2017}, “Get Review 2”)

observation instances have different target activities, i.e., “Get Review 1”, “Get
Review 2”, and “Get Review 3”. Also note that if any of the events “Invite
Reviewers”, “Get Review 1”, “Get Review 2”, or “Get Review 3” had an extra
data attribute (e.g., resource = John), its latest value would also be included in
the observation instance, even if the other events do not contain such attribute.

Training and Testing Decision Trees to Obtain Business Rules

Once a multiset of observation instances Id has been created for each decision
point d, decision trees are trained with such instances. Concretely, we use the
C4.5 algorithm to train decision trees [125]. Even though other decision-tree
training algorithms can be employed, we opted for C4.5 because of its ability of
dealing with noise and missing values. The decision tree trained with the set of
observation instances Id is denoted as DTd.

Once a decision tree has been trained, it can be used to represent the busi-
ness rules of a process variant at a particular decision point. The decision tree
can also be used to predict the next activity that is going to be executed when

138 Process Variant Comparison

a certain decision point is reached based on attribute values. For later usage,
assume the function that describes the decision tree semantics:

evalDTd
: (N ↛ V)→ A

Given a function f that assigns values to certain attributes, evalDTd
(f) predicts

the next activity a ∈ A to be executed when reaching a certain decision point d
when attributes take on values according to function f . Note that the attributes
that are given values in the set of observation instances might be different from
those used by decision trees to classify new instances. In these cases, the addi-
tional attributes are discarded and the missing attributes are set as missing. The
C4.5 algorithm can deal with missing values by assuming that they can take any
value.

Comparing Decision Trees to Identify Differences in Business Rules

Let L1 and L2 be two process variants and TS (rs,ra,L1∪L2) = (S,A, T) be a
transition system. Given a decision point d ∈ S, we can compare the decision
trees DT 1

d and DT 2
d respectively trained with instances I(L1,r

s,ra)
d and I

(L2,r
s,ra)

d

by performing a cross-validation. Figure 5.6 illustrates the idea. For each ob-

Figure 5.6: Example of a decision tree comparison using the first observation instance
shown in Table 5.1. An observation instance is evaluated by both deci-
sion trees DT 1

d and DT 2
d . In this case, they classify the instance differently.

An extended observation instance is created from the observation instance by
adding the classification of both trees as attributes (highlighted in red), and
changing the target variable to “disagree” (highlighted in blue). If the trees
would have predicted the same class, the target variable would be “agree”.

5.2 Process Variant Comparison 139

servation instance in I
(L1∪L2,r

s,ra)
d , we classify it using the decision trees DT 1

d

and DT 2
d . The more instances (f, a) ∈ I

(L1∪L2,r
s,ra)

d have the same prediction
by both trees, the more similar are DT 1

d and DT 2
d and, hence, the fewer dif-

ferences exist in business rules between the two variants for the decision point
d. In this thesis, we define the degree of similarity as simply the percentage of
observation instances that yield the same prediction in both trees. Formally, this
is defined as follows.

Definition 5.9 (Degree of Similarity of Decision Trees). Given two decision trees
DT 1

d and DT 2
d and a set of observation instances Id, the degree of similarity of

DT 1
d and DT 2

d can be measured as:

similarity(Id, DT 1
d , DT 2

d) =
|{(f, a) ∈ Id|evalDT 1

d
(f) = evalDT 2

d
(f)}|

|Id|

Cross-validation results relate to the degree of exchangeability of business
rules between process variants. It provides answers to the following question:
“What if a process variant is executed using the business rules of another vari-
ant?” If the degree of similarity is 1 (i.e., perfectly similar), then the business
rules of the variants are exchangeable, and the observed behavior after exchang-
ing the rules should not be affected. On the other hand, if the degree of similar-
ity is is low, this means that the business rules of the variants are different, and
the observed behavior should be different as well.

Cross-validation is useful to quantify the degree of exchangeability (thus,
similarity) of business rules between variants, but does not provide any informa-
tion about on which specific situations they agree or disagree. To address this,
we analyze under which conditions the decision trees of two variants agree (i.e.,
classify an observation instance in the same class) or disagree. The disagreement
conditions are relevant because they indicate variants business rules. Further-
more, they describe conflicts in terms of business rules. For example, if the
threshold to accept a loan request is 1000 in one variant, and 2000 in another
variant, this means that both variants accept loans up to 1000, both variants
reject loans of 2000 or more, and there there is a disagreement between them
in the amount range]1000, 2000[. This means that the business rules of the vari-
ants predict different control-flow paths (i.e., accept or reject the loan) for any
loan having an amount in that range.

For this purpose, we stack decision trees: we build a new decision tree using
extended observation instances, which are observation instances extended with
the classification predictions of the decision trees of the two variants, as shown
in Figure 5.6. Formally, they are defined as follows.

140 Process Variant Comparison

Definition 5.10 (Extended Observation Instances). Given an event log L, a tran-
sition system TS (rs,ra,L) = (S,A, T), for each decision point d ∈ S, we create a
multiset of extended observation instances (denoted as EI

(L,rs,ra)
d) by extending

all the instances (f, a) ∈ I
(L,rs,ra)
d with the classification results of the two deci-

sion trees DT 1
d and DT 2

d , and whether they agree or disagree in their classification,
regardless of the actual value of a:

EI
(L,rs,ra)
d =

⊎
(f,a)∈I

(L,rs,ra)
d :

eval
DT1

d
(f)=eval

DT2
d
(f)

[(f ′, agree)]
⊎

(f,a)∈I
(L,rs,ra)
d :

eval
DT1

d
(f)̸=eval

DT2
d
(f)

[(f ′, disagree)]

where f ′ is used as a replacement of f ⊕ (“classDT1
”, evalDT 1

d
(f))⊕ (“classDT2

”,
evalDT 2

d
(f)).7

Function f ′ contains the attribute value assignments of f and, additionally,
the evaluation results of f using both decision trees (attributes classDT1 and
classDT2 respectively).

The extended observation instances EId are used to train a new decision tree
EDTd, which is used to correlate the (dis)agreement of the decision trees of two
variants with the attribute values of one of the trees. Note that EDTd simply
classifies the extended observation instances EId into two classes: “agree” and
“disagree” using all the other available attributes. All the evaluations mentioned
above for a decision point are summarized into a decision point matrix, as illus-
trated in Figure 5.7. Each cell in this matrix (i.e., intersection of a row and a

DT1
d DT2

d EDTd

I
(L1,rs,ra)
d

DT1
d tested with I

(L1,rs,ra)
d

DT2
d tested with I

(L1,rs,ra)
d

EDTd tested with EI
(L1,rs,ra)
d

I
(L2,rs,ra)
d

DT1
d tested with I

(L2,rs,ra)
d

DT2
d tested with I

(L2,rs,ra)
d

EDTd tested with EI
(L2,rs,ra)
d

I
(L,rs,ra)
d

DT1
d tested with I

(L,rs,ra)
d

DT2
d tested with I

(L,rs,ra)
d

EDTd tested with EI
(L,rs,ra)
d

Figure 5.7: Abstract representation of a Decision Point Matrix for a decision point d,
given a transition system TS (rs,ra,L) and two process variants L1 and L2

where L = L1∪L2. Each row header corresponds to a multiset of observation
instances. Each column header corresponds to a decision tree. Each cell (i.e.,
intersection of a row and a column) contains the classification results of a
multiset of observation instances (row) using a decision tree (column).

column) corresponds to the classification results of a multiset of observation in-
stances (indicated by the row) using a decision tree (indicated by the column).

7The operator ⊕ is used to override the definition of a function f ′ = f ⊕ (a, b) with f ′(a) = b
and f ′(x) = f(x) for x ̸= a.

5.2 Process Variant Comparison 141

The way in which the classification results are presented to the user is described
in Section 5.2.2.

In transition systems with many decision points, it is slow and cumbersome
to explore all of them in order to find differences in the business rules. To
address this issue, we want to identify the decision points that have the highest
differences.

We can measure the differences between variants in a decision point accord-
ing to an agreement score, defined as the percentage of extended observation
instances that were classified as “agree” by the new decision tree EDTd (i.e.,
the decision trees DT 1

d and DT 2
d agreed on their classification). Low agreement

scores indicate that there are more differences in the decision trees, thus, in the
business rules of the process variants.

Visualization of Results

This section describes how the business-rules comparison results can be visual-
ized.

To point out the decision points with larger differences, users can indicate
a threshold for agreement scores. For each decision point, if the agreement
score is below the threshold, then the element has a considerable difference
and is colored bright-red, otherwise is colored light-gray. We chose these two
colors because of their contrast with black and white: bright-red is highly visible
when contrasted with black and white, and light-gray is not as contrasting, but
enough to inform that there is a small difference.

Figure 5.8 shows an example of a transition system in which decision points
are highlighted order to show where the differences are.8

If the user clicks in a highlighted decision point (where the differences score
lower than the agreement threshold described above), a decision point matrix
is shown (see Figure 5.7).

The classification results contained in each cell of a decision point matrix
may contain many insights about how the decision tree classifies observation
instances, and they may be compared to other cells in order to detect differ-
ences. Concretely, we use two ways to present classification results, as shown
in Figure 5.9.

The first one is to use a pie chart that shows the percentage of correctly and
incorrectly classified instances. It is also used for representing the percentage of

8Note that the example transition system used in this figure differs from previous examples. It
has been added to better illustrate the visualizations.

142 Process Variant Comparison

Figure 5.8: Example of an annotated transition system colored with the results of busi-
ness rules comparison, where the decision points are highlighted in red if
their agreement score is below the agreement threshold, and in grey other-
wise. States that are not decision points are not highlighted at all.

Figure 5.9: Representation of a cell (i.e., intersection of a row and a column) of a Deci-
sion Point Matrix (See Fig. 5.7) that corresponds to the classification results
of a set of observation instances (row) using a decision tree (column). These
results can be visualized as a pie chart (i.e., correctly and incorrectly classi-
fied) or as a confusion matrix.

agreement and disagreement in classifying the instances. The second one is to
use a confusion matrix, where each column of the confusion matrix represents
the instances in a predicted class while each row represents the instances in an
actual class. Please note that other ways to present classification results can be
used instead.

From this confusion matrix, we can also calculate metrics such as precision

5.3 Implementation 143

and recall that can provide insights about the quality of the classifications.

5.3 Implementation

Our approach has been implemented as the Process Comparator plugin in the
ProM [172] framework, as shown in Figure 5.10.9

The tool takes two event logs as input. However, more than two event logs
can be compared. This is handled by requesting the user to group these event
logs into two groups. Each of these groups is then merged into a single event
log and then compared against each other (e.g., “one against the rest” or “one
half of the event logs against the other half”). The tool also provides a “hint”
functionality to create the two groups of event logs for the users that do not
have context knowledge or do not know a-priori which event logs to compare.
This functionality suggests to compare a single event log against all the others
by calculating similarity scores between each individual process and the merge
of the n−1 remaining processes. The similarity score is calculated based on the
percentage of elements that present statistically significant differences. Finally,
the tool suggests to the user the process that has most differences with the rest
as a starting point for comparative analysis.

Our tool allows the user to change state and event representation functions,
state and transition measurement functions and several useful parameters (e.g.,
the significance level of the statistical significance tests) in order to provide
flexible representations for the event logs, as shown in Figure 5.10. Our tool also
provides frequency filtering capabilities where all the nodes and arcs with lower
frequency than a defined threshold will be hidden from the visualization. This
allows to filter out rare behavior and to produce clearer visualizations. Also, the
elements of the transition system presented as a result are interactive. The user
can click on any state or transition, and a dialog will pop-up showing either:
(1) the values of the annotations of such a state or transition for both event logs
(e.g., frequency of occurrence, elapsed time, remaining time, number of traces),
as shown in Figure 5.10a, or (2) its decision point matrix if the selected element
is a decision point, as shown in Figure 5.10b. The actual content of the dialog
will depend on the settings defined by the user (whether they want to compare
behavior or business rules).

It is important to note that this implementation relies on the event log being
“enriched” (e.g., by the user) with context information in the form of event

9The plugin is included in the ProcessComparator package in ProM.

144 Process Variant Comparison

(a) Comparison of Behavior

(b) Comparison of Business Rules

Figure 5.10: Screenshot of the Process Comparator plugin in the ProM framework. De-
tails are presented in pop-up dialogs when the user clicks on states or tran-
sitions showing comparisons according to the defined settings (Compare
Behavior or Business Rules).

5.4 Applications 145

attributes. Such event attributes enable the extraction of business rules and
their comparison.

5.4 Applications

This section describes the application of our tool to two different datasets: a
synthetic and a real one. In these applications, the use of the tool is showcased,
and the results are interpreted and discussed in order to obtain useful insights.

5.4.1 Using Synthetic Data

This experiment is inspired by the textbook process example: The loan applica-
tion process [50].

This process starts with an applicant submitting a loan application. The
company checks the application and returns it to the applicant if there are is-
sues with the application. If there are no issues, the company checks the credit
history of the applicant, appraises the property (if the loan is for purchasing a
property), assesses the risk of the loan, and assesses the eligibility of the ap-
plication. After this, the company decides whether to approve or reject the
loan. If the loan is rejected, the process ends. If the loan is accepted, the com-
pany can optionally offer a home insurance quote to the customer, and sends
the acceptance pack. Finally, if the company verifies the payment agreement,
the application is approved. If payment cannot be verified, the application is
cancelled.

Figure 5.11 shows a transition system that represents the control-flow of the
loan application process. This transition system was built using the state and ac-
tivity representation functions rs(σ) = #activity(σ(|σ|)) and ra(e) = #activity(e)
(i.e., equivalent to the directly-follows graph [156]).

In this experiment, we designed two CPN models of this process that have an
identical control-flow structure, but one of the business rules is different.10 The
difference between these two models is that they use different thresholds in the
activity “Assess Eligibility” to determine whether a loan is accepted or rejected.
In the high model, the rejection threshold is set to 7000 euros (i.e., loans of 7000
euros or more are rejected), whereas in the low model, the rejection threshold
is set to 4000 euros.

10The CPN models of both variants can be downloaded from: http://www.win.tue.nl/~abolt/
userfiles/downloads/Models/

http://www.win.tue.nl/~abolt/userfiles/downloads/Models/
http://www.win.tue.nl/~abolt/userfiles/downloads/Models/

146 Process Variant Comparison

Figure 5.11: Annotated Transition system representing the control-flow of the loan ap-
plication process. Thickness represents frequency of occurrence.

These two models were used to simulate two event logs (i.e., variants) of
1.000 traces each using CPN Tools: a high variant simulated from the high
model, and a low variant simulated from the low model11. In both event logs,
the loan amount of each trace is generated from a uniform distribution between
1.000 and 10.000 euros. We expect to observe a difference between these vari-
ants in terms of business rules (due to different rejection thresholds) but also
in behavior (i.e., more loans should be rejected in the low variant). This is be-
cause, in the simulation, the probability of a single randomly-selected loan to
be rejected is 0.3 in the high variant and 0.6 in the low variant.

Figure 5.12 shows the behavior comparison results obtained using our ap-
proach. We can note that, indeed, we could detect a statistically significant dif-
ference in the percentage of loans that are rejected (highlighted in red): 65%
of the loans are rejected (i.e., they reach the Reject Application state) in the
low variant versus 35% in the high variant. The blue colors assigned to states
and transitions indicate that the part of the process that comes after the accep-
tance of the loan (i.e., state Prepare acceptance pack and subsequent states and
transitions) was more frequent in the case of high fines. This difference in the

11CPN Tools is freely available from: http://cpntools.org

5.4 Applications 147

Figure 5.12: Artificial experiment results: Differences in terms of frequency (highlighted
in blue and red) were found between the high and low variants.

percentage of accepted or rejected fines is expected because of the less-strict
threshold used in the case of high fines.

Figure 5.13 shows the business rules comparison results obtained using our
approach. Note that a difference between the two variants in terms of business
rules was detected for the decision point Assess Eligibility. Figure 5.13 also
shows a concrete instantiation of the decision point matrix (see Figure 5.7)
for the decision point mentioned above. The elements on this matrix indicate
the percentage of a set of instances (defined for each row) correctly classified
by a decision tree (defined by each column). Note that even though the self
accuracy is perfect (as shown by elements 1 and 4 in Figure 5.13), when the
same business rules are applied to the other variant (as shown by elements 2
and 3 in Figure 5.13), the accuracy is not so good.

The decision trees learned for this decision point are shown in Figure 5.14,
where Figure 5.14a represents the decision tree learned with the low variant
and Figure 5.14b represents the decision tree learned with the high variant.

Note that in both cases the business rules are very close to the original
thresholds (3.993 vs 4.000 for the low variant and 6.999 vs 7.000 for the high
variant).

Figure 5.14c shows the agreement/disagreement decision tree. Note that the

148 Process Variant Comparison

Figure 5.13: Artificial experiment results: Differences in terms of business rules (high-
lighted in red) were found between the high and low variants.

disagreement range is as expected: around the interval from 4.000 to 7.000.

5.4.2 Using Real Data

In order to show the usefulness of our approach in practice, we applied our
tool to the running example related to the road fines management process (see
Section 2.4). For showing the comparison capabilities of our approach, we
arbitrarily split the event logs into two sub-logs (i.e., variants): the first one
contains all the cases where the fine amount was lower than 50 euros (i.e., low
fines) and the second contains all the cases where the amount of the fine was
equal or higher than 50 euros (i.e., high fines). Both event logs are annotated
with over 20 data attributes. The two event logs were then compared against

5.4 Applications 149

(a) Decision tree learned from the low vari-
ant.

(b) Decision tree learned from the high vari-
ant.

(c) Agreement/disagreement decision tree.

Figure 5.14: Artificial experiment results: Decision trees learned for the decision point
“Assess elegibility”. The approach successfully identifies that there is dis-
agreement in the middle range (4.000 - 7.000).

each other in terms of behavior and decision making using our tool in three sets
of experiments:

1. The first was based on an abstraction where the last event of the trace is
considered. Given an event log L, a trace σ ∈ PL and an event e ∈ EL,
we used the state and transition abstractions: rs(σ) = #activity(σ(|σ|))
and ra(e) = #activity(e). As a measurement for comparison, the elapsed
time was used as defined in Eqs. 5.2 and 5.4, thus comparing the time
differences when activities were executed.

2. The second experiment was based on the same abstractions as the first
experiment (i.e., identical state and transition representation functions).
However, the focus of this experiment is to make comparisons in terms of
decision-making.

3. In the third experiment, the last two events of the trace were consid-
ered, as we used rs(σ) = ⟨#activity(σ(|σ|)), #activity(σ(|σ| − 1))⟩ and
ra(e) = #activity(e). Unlike the previous two experiments, we used this
abstraction in this experiment to include more than just directly-follows
relations. The occurrence measurements for comparison were used as de-
fined in Eqs. 5.1 and 5.3.

150 Process Variant Comparison

In the first and last experiments (i.e., comparison in terms of behavior), we used
a confidence level α = 0.05 for the statistical significance tests. The results of
the three experiments mentioned above are described in the remainder of this
section.

First Experiment: Differences in Performance

Figure 5.15 shows the results of the first experiment, where many relevant per-
formance differences were detected. Figure 5.15a shows a transition system
annotated with the significant differences found in terms of elapsed time. Fig-
ure 5.15b shows information popups obtained after clicking on the states Send
Fine and Payment. Such popups indicate the average and spread (i.e., standard
deviation) of several control-flow and performance annotations. Red colors are

(a) Annotated transition system showing
performance differences. Blue shades
represent earlier executions of activities
or reaching of states in high fines. Red
shades represent the other way around.
White indicates that no significant differ-
ences can be observed.

(b) Information popups obtained from click-
ing the states Send Fine and Payment in
the Process Comparison Tool. Group A
refers to low fines and Group B refers to
high fines.

Figure 5.15: Performance (elapsed time) comparison between high and low fines.

5.4 Applications 151

assigned to states and transitions that are reached or executed statistically sig-
nificantly earlier in low fines, whereas blue colors are assigned when the oppo-
site occurs.

The red color assigned to state Payment indicates that payments were re-
ceived significantly earlier for low fines (99 days versus 151 days). Conversely,
the blue color assigned to the state Send Fine indicates that high fines are sent to
offenders significantly earlier (72 days versus 90 days). The fact that the Create
Fine state is white indicates that there is no statistically significant difference in
how early Create Fine is executed.

Second Experiment: Differences in Business Rules

The results of the second experiment showed the states Create Fine and Add
Penalty were identified as decision points. After a fine has been created, it can
be immediately paid (i.e., Payment). If it is not fully paid, it is sent to the
offender (i.e., Send Fine). Since the decision in this case is trivial, we proceeded
to analyze the Add Penalty decision point in more detail.

From this decision point, a fine can be either paid or sent to credit collection
(i.e., states Payment and Send to Credit Collection respectively). Figure 5.16
shows the decision trees of both process variants for this decision point. We can

(a) DT 1
Add penalty (b) DT 2

Add penalty

Figure 5.16: Decision Trees of variants high fines (DT 1) and low fines (DT 2) for the
decision point Add Penalty. The leaf nodes (i.e., nodes without child) also
show the number of instances classified into them (in brackets).

observe that both decision trees follow different decision making rules. From all
the data attributes contained in the event log, the one that is most determinant

152 Process Variant Comparison

to predict which activity will follow is totalPaymentAmount. This data attribute
contains the accumulation of all the payments for that fine.

Figure 5.16 shows that if the totalPaymentAmount is higher than 13.7 (for
the high fines) or 10 (for the low fines), both decision trees predict that the fine
will be paid. This means that if an offender has partially paid a given amount
and a penalty is added (increasing the fine Amount to be paid) most offenders
will pay the fine. In the case of the high fines, if the totalPaymentAmount is
lower or equal to 13.7, the fine is most likely to be sent for credit collection.
This includes all the offenders that have not paid any part of their fine, and it
seems that the penalty added does not stimulate the offender to pay the fine. In
the case of low fines, if the totalPaymentAmount is lower or equal to 10 and if
the new amount of the fine after the penalty is higher than 65.6, it will be most
likely sent to credit collection. On the other hand, if the new amount is lower
or equal to 65.6 and if the notificationType is “C” (i.e., Conducente, which is the
Italian for “Driver”), means that the notification was sent to the driver of the
car when the fine was given, and it leads to the payment of the fine. However,
if the notificationType is “P” (i.e., Proprietario, which is the Italian for “Owner”),
means that the notification was sent to the owner of the car, and it most likely
leads to the fine being sent for credit collection.

We also analyzed how each decision tree can be used to replace the other,
adapting their decision making criteria. Figure 5.17 shows that, although the
decision trees are different, they tend to make the same decisions.

This can be observed in the first row of pie charts of Figure 5.17; The pie
charts indicate a similar classification accuracy. From the above, we can con-
clude that the decision making in both process variants is similar, even though
their decision making is structurally different (i.e., different decision rules).

So far, we have concluded that the decision making in the studied variants is
very similar in the Add Penalty decision point. However, we are also interested
in analyzing under which conditions these trees disagree in their predictions.
For this purpose, we built a decision tree with the extended observation in-
stances of both variants to analyze the decision rules that lead to agreements
or disagreements (as discussed in Section 5.2.2). The resulting tree is shown
in Figure 5.18. This similarity tree confirms the conclusions obtained from the
cross classification mentioned above: in 99.93% out of 75803 cases, the predic-
tions of the previous decision trees are the same (i.e., agree). However, the cases
where they disagree are characterized, in 47 out of 53 cases, by the notification
being sent to the driver (notificationType = “C”) and the amount after the fine
(Amount) is less or equal to 65.6 euros. This indicates that, even though the
business rules of both variants are structurally different in the [Add Penalty]

5.4 Applications 153

Figure 5.17: Section of the Decision Point Matrix for the decision point Add Penalty. Each
pie chart shows how each decision tree (column) classifies sets of observa-
tion instances (rows). Group A corresponds to high fines and Group B to
low fines.

Figure 5.18: Decision tree that classifies extended observation instances into whether
the trees of each variant agree (green) or disagree (orange) in their clas-
sifications in the decision point [Add Penalty]. The leaf nodes (i.e., nodes
without child) also show the number of instances classified into them (in
brackets).

154 Process Variant Comparison

decision point, they agree in most cases.

Third Experiment: Differences in Control-flow Frequency

Figure 5.19 illustrates the output of the third experiment. Orange shade ovals
and arcs represent states reached or transitions executed significantly more of-
ten in low fines compared with high fines. Blue shades refer to the opposite.
The first observation is that low fines are usually immediately paid without re-
quiring the local police to send a copy of fine to the offender. This can be seen
through the orange-colored state [Payment,Create Fine] and the transition from

Figure 5.19: Occurrence frequency comparison. Colored states (i.e., nodes) and transi-
tions (i.e., edges) contain statistically significant differences between the
two event logs. Blue nodes and arcs show a higher fraction of cases involv-
ing a high fine. Orange nodes and arcs signal a higher fraction of cases
involving a low fine.

5.5 Conclusions 155

[Create Fine] to this state. Conversely, high fines are more often sent to the of-
fender than low fines, as one can observe through the blue-colored state [Send
Fine, Create Fine]. Similar observations can be derived by looking at the other
states and transitions.

Figure 5.19 also indicates that, for low and high fines, it is similarly fre-
quent that offenders perform incomplete payments, which causes a penalty to
be added12, which are subsequently followed by a second payment to prob-
ably complete the fine payment. This can be observed in the white-colored
states [Payment,Insert Fine Notification] and [Add Penalty, Payment]. Note that,
for high fines, it is significantly more frequent that a payment only occurs af-
ter adding the penalty. This can be seen from the blue color associated with
the transition between states [Add Penalty, Insert Fine Notification] and [Pay-
ment,Add Penalty]. Please observe that the latter finding could not be observed
if we used an abstraction solely based on the last occurred event.

5.5 Conclusions

The problem of comparing process variants is highly relevant. Many compa-
nies are observing that the executions of their processes are not always optimal
and subject to variations. There may be interesting differences between depart-
ments, customer groups, and periods. Processes may change because of the
influence of several factors, such as the period of the year, the geographical
location of the process execution or the resource unit in charge. Some recent
approaches aim to compare the execution of different process variants. How-
ever, existing approaches tend to focus on the control-flow perspective and often
detect differences that are statistically insignificant.

To our knowledge, none of the existing approaches is able to detect the
relevant (i.e., statistically significant) behavioral differences between process
variants in terms of any annotation (e.g., performance) or business rules based
on their recorded event logs. To address this challenge, we developed a new
technique based on transition systems that detects statistically significant dif-
ferences between process variants in terms of any measurement annotations,
and shows the similarities and differences of the business rules between them,
using event logs as input. We used transition systems to avoid being dependent
on a particular discovery algorithm and representation. Transition systems can

12According to the Italian laws, if a fine is not paid in full within 90 days, a penalty is added so
that the due amount doubles.

156 Process Variant Comparison

be created using different perspectives (e.g., next to control-flow one may also
consider resource interaction) and a range of parameters can be used to control
the result.

Our implementation is provided with concrete annotations, which are re-
lated to the control-flow frequency (named occurrence) and to the time per-
spective (elapsed time, remaining time, and sojourn time annotations). However,
the framework is extensible and allows users to easily add new measurement
functions. This extensibility enables the user to use context information (e.g.,
workload, weather) in the extraction and comparison of business rules.

The applications showed the approach enables users to pinpoint differences
that previous approaches failed to provide. Also, our approach does not show
differences that are statistically insignificant, which are conversely returned by
other approaches.

As a limitation, we would like to discuss the choice of transition systems as
the representation used for process models in this chapter. Transition systems
have some limitations: they can easily explode into giant state-spaces, they
cannot represent concurrency properly, etc. However, transition systems are
what is considered in the machine learning field as a "stable classifier" (i.e.,
small changes in the data have small effects in the model). In contrast, Petri
nets, BPMN and other higher level representations that can handle concurrency
have a tendency to be "unstable classifiers" (i.e., small changes in the data can
have large effects in the model). For example, removing a single trace from an
event log may have a significant effect in a Petri net structure (e.g., border cases
around the discovery technique´s parameter thresholds), yet it will have a low
impact on the structure of a transition system.

Chapter 6
Process Variant Detection

Business processes are not static: They have to adapt to constant environment
changes (e.g., customer preferences, legal regulations, new competitors). Like
any live species, companies (and their business processes) also evolve accord-
ing to Darwinian evolution: “The best to adapt is the one that thrives”. It is
not uncommon for companies that the same business process has to adapt to
different contexts simultaneously, which leads to variability in the behavior of
such processes.

As discussed in Section 1.2, process variability is not only related to the
control-flow perspective (e.g., a process may skip risk assessment steps for gold
customers), but can also be related to other perspectives, such as performance.
For example, if two branches of a company execute their processes in the same
way (i.e., same control-flow) but there are huge performance differences be-
tween the branches, it is interesting to understand and explain such differences.
Most process discovery techniques (i.e., discovering process models from event
logs) deal with process control-flow variability by combining all the observed
executions (i.e., cases) of a process into a single process model. This results in
what is known as spaghetti models (i.e., illegible process models). Note that
process variability can be related to any context information, as long as it is
presented in the form of data attributes of events.

Variability makes processes more difficult to analyze and understand. In this
chapter, we deal with variability in processes by identifying process variants (see
Definition 2.13) in event data, which are then enriched with event attributes
that encode variant information. This enriched event data can also be split

158 Process Variant Detection

into process variants using a variant dimension in a process cube, created from
the newly-created attributes (see Chapter 3) and later, such variants can be
used to run process mining workflows (see Chapter 4) or to be compared with
each other using process comparison techniques such as the one presented in
Chapter 5, as illustrated in Figure 6.1.

Event
Data

Process
Cube

Process Variant
Detection

Process
Comparison

Process
Mining

Workflows

En
ri

ch
e

d
Ev

en
t

D
at

a
w

/
V

ar
ia

nt
 E

n
co

d
in

g

Cube cells
(process variants)

Figure 6.1: Overview of the scope of this chapter: event data is analyzed and process
variants are found. This information is used to enrich the log with new
event attributes that explicitly mention the variant it belongs to. These new
variant-related attributes can be used in a process cube for splitting event
data into such process variants. Unused interactions are greyed out.

In this chapter, we propose a technique to detect relevant process variants
in an event log using the control-flow, performance, and context attributes of
events in an interactive and exploratory way, where only relevant results are
presented. To achieve this, we leveraged on well-proven data mining techniques

6.1 Related Work 159

for Recursive Partitioning driven by Conditional Inference (RPCI) over event
attributes.

It is important to note that the type of analysis performed with our approach
can also be achieved by combining other approaches and standard data mining
techniques. However, such techniques require extensive and manual ad-hoc
parametrization and configuration to achieve the same results that our approach
can obtain in a much easier way. We achieve this by discovering a process model
from an event log and using such model to identify points of interest in the
process (e.g., a given state in the process). Then, the same variability analysis
is automatically performed in each point of interest and the summarized results
for the whole process are presented to the user as result.

The remainder of this chapter is structured as follows. Section 6.1 discusses
related work. Section 6.2 introduces our approach and discusses how process
variants can be identified in event logs with the help of process models. Sec-
tion 6.3 describes the implementation of our approach. Section 6.4 describes
the application of our tool using real event data. Finally, Section 6.5 concludes
the chapter.

6.1 Related Work

The identification of process variants can be related to the well-known trace
clustering problem. In recent years, several approaches for trace clustering have
been proposed in literature. Even though these approaches may use different
techniques, they all have a common goal: Split an event log into smaller event
logs with less variability.

Existing trace clustering approaches can be grouped into four categories,
based on how clusters are obtained:

• Structural similarity

• Concept drift detection

• Performance analysis

• Attribute correlation

Trace clustering techniques based on structural similarity [21,139,173,188]
focus on clustering traces based on their control-flow structure (i.e., sequence
of activities). A downside of techniques based on structural similarity is that,
even though the discovered clusters contain traces with similar control-flow,

160 Process Variant Detection

such clusters are often difficult to characterize using data attributes (e.g., type
of customer, amount of a loan request). For example, all the traces in an event
log that executed the same sequence of activities can be trivially clustered to-
gether, but such cluster is meaningless from a business perspective if it cannot
be characterized using data attributes (e.g., most traces in the cluster can be
related to vip customers).

Trace clustering techniques based on concept drift detection focus on a spe-
cific type of process variability i.e., control-flow variability over time. An ex-
tensive survey on concept drift techniques in data mining is presented in [56].
Concept drift detection techniques have been applied in process mining by sev-
eral authors [112, 116, 135]. These approaches focus on detecting points in
time when the control-flow of a process changed. When a change point is de-
tected, an event log can be split based on whether traces were executed before
or after such point in time. The downside of these techniques is their limited
scope (i.e., control-flow changes over time), ignoring other perspectives such as
performance or other data attributes.

Trace clustering techniques based on performance analysis [67,68] focus on
detecting differences in the performance of the process and characterizing them
by using control-flow, performance, and context attributes. Then, traces with
similar performance can be grouped together, and clusters can be characterized
using other perspectives (e.g., control-flow, other data attributes). The down-
side of these techniques is also their limited scope, as they only cluster traces
based on their performance.

Trace clustering techniques based on attribute correlation [45, 74] are more
general, as they aim to group cases depending on any event or trace attributes.
The approach proposed in this chapter falls in this category and is closely related
to [45], which focuses on classifying specific selections of events by building
decision or regression trees with the attributes of such events that are later used
to classify traces into process variants.

6.2 Process Variant Detection

The approach presented in this chapter allows for grouping traces of an event
log into process variants (see Definition 2.13). The overview of our approach
and its steps are illustrated in Figure 6.2. The approach consists of the following
steps:

Step 1: Given an event log, a transition system is created.

6.2 Process Variant Detection 161

Figure 6.2: Overview and steps of our approach to detect process variants in event logs.

We use transition systems as process models because any process model
(in any notation) that has executable semantics can be translated into a
transition system. Section 2.3.4 discussed how a transition system can be
built from an event log based on state and activity abstractions. Given an
event log L, a state representation function rs and an activity representa-
tion function ra, the output of this step is a transition system TS (rs,ra,L) =
(S,A, T).

Step 2: Points of interest are identified in the transition system.
Informally, a point of interest can be any state or transition of the tran-
sition system. Users can select points of interest in many ways, e.g., the
most frequently visited states or the transitions corresponding to a specific
part of the process. The output of this step is a set of points of interest. Each
point of interest is related to a set of traces that reach it. This is discussed
in detail in Section 6.2.1.

Step 3: For each point of interest, the set of traces that reach it is parti-
tioned into process variants.
Given a point of interest and a set of traces that reach it, the objective
of this step is to partition such set of traces into non-overlapping sets of
traces, i.e., process variants. This is performed for all the points of inter-
est defined in the previous step. The details of this step are discussed in
Section 6.2.2.

Step 4: A summary of process variants is produced, where the splitting cri-
teria and the resulting variants are shown for each point of interest.

162 Process Variant Detection

To simplify the interpretation of the results of the previous step, we present
a summary of only the points of interest where process variants were found
(see Section 6.3). For each point of interest, the splitting criteria are
clearly presented, and the obtained process variants are used to enrich
the original event log with variant information by explicitly encoding it as
data attributes, so it can be later split using process cubes or used by other
process mining techniques.

Step 1 (creating a transition system from an event log) was discussed in detail in
Sections 2.3.4 and 5.2.1. Hence, we assume that the reader is already familiar
with it.

Therefore, the remainder of this section will discuss steps 2 and 3 of the
approach in detail.

6.2.1 Defining Points of Interest in a Transition System

The second step in our approach (step 2 in Figure 6.2) is to identify points of
interest in the transition system obtained from step 1. Given an event log L and
a transition system TS (rs,ra,L) = (S,A, T), any state s ∈ S and any transition
t ∈ T can be a point of interest.

A point of interest can be related to a set of traces that “reach” it. Given
an event log L and a transition system TS (rs,ra,L) = (S,A, T), every potential
point of interest p ∈ S ∪ T can be related to a set of traces in the event log
through the function Tr(r

s,ra,L) : (S ∪ T)→ P(L). This function is defined as:

Tr(r
s,ra,L)(p) =

⋃
σ∈L

{
σ
∣∣∃σ′∈pref ⋄(σ) : r

s(σ′) = s
}

if p ∈ S⋃
σ∈L

{
σ
∣∣∃σ′∈pref ⋄(σ)\{⟨⟩} : rs(pref |σ

′|−1(σ′))

= s1 ∧ ra(σ′) = a ∧ rs(σ′) = s2
} if p = (s1, a, s2) ∈ T

All the states and transitions of a transition system can be initially considered as
points of interest. However, we select a subset of points of interest PI ⊆ S ∪ T
because not all points of interest are equally relevant. The relevance of a point
of interest with respect to an event log is defined as follows.

Definition 6.1 (Relevance of points of interest). Let L be an event log and
TS (rs,ra,L) = (S,A, T) be a transition system. The relevance of a point of in-
terest p ∈ S ∪ T is defined as |Tr(rs,ra,L)(p)|/|L| i.e., the percentage of traces in
the event log that reach that point of interest.

6.2 Process Variant Detection 163

For example, all the states and transitions that are reached by less than 5%
of the traces in the event log could be considered as irrelevant because they
rarely happen, and can be removed from the analysis. In the implementation of
our approach (see Section 6.3), a threshold of relevance is defined by the user,
which defines the minimum allowed relevance of points of interest, which is
used to filter out points of interest with a lower relevance than the threshold.
However, other alternative notions of relevance can be defined, and the users
can arbitrarily select points of interest from S ∪ T . For example, if there is a
bottleneck in the process, users can select the points of interest related to the
states and transitions where such bottleneck is located.

The output of this step is a set of points of interest PI ⊆ S ∪ T , where each
point of interest p ∈ PI is related to the set of traces Tr(r

s,ra,L)(p).

6.2.2 Finding Variants in a Point of Interest

The third step in our approach (step 3 in Figure 6.2) is to find process variants
in the points of interest defined above. As described in Definition 2.13 in Sec-
tion 2.2, process variants are sets of traces. The objective of this step is, for each
point of interest p (e.g., a state or transition), to group the set of traces that
reach it (i.e., Tr(r

s,ra,L)(p)) into process variants by leveraging on their event
attributes.

It is important to note that traces can reach a point of interest more than
once (e.g., in the presence of loops), hence, can have multiple values for the
same event attribute. However, because we need single values for event at-
tributes, we must choose only one event within the trace in order to use its
attribute values for such cases. In this chapter, we choose the last event of the
shortest prefix of a trace that reaches the point of interest i.e., the first event if
observed multiple times. For this purpose, we introduce a helper function σp

that, given a trace σ and an event e ∈ σ, returns the prefix of σ that ends with
e: σp(e) = σ′ ∈ pref ⋄(σ) such that σ′(|σ′|) = e. We use this helper function to
define, for any point of interest, the set of events related to traces that reach it.
This set of events will be used later for creating instances that can be clustered
or partitioned.

Definition 6.2 (Set of events related to traces that reach a point of interest).
Let L be an event log, EL = {e ∈ σ|σ ∈ L} be the set of events in traces of L,
TS (rs,ra,L) = (S,A, T) be the corresponding transition system, p ∈ PI ⊆ S ∪ T
be a point of interest and Tr(r

s,ra,L)(p) be the set of traces of L that reach p. We
define the function Ev(r

s,ra,p,L) : Tr(r
s,ra,L)(p)→ EL that maps traces to the first

164 Process Variant Detection

event within that trace with which p is reached. For any trace σ ∈ Tr(r
s,ra,L)(p) ,

the function Ev is defined as:

Ev(r
s,ra,p,L)(σ) =

e ∈ σ
∣∣∣rs(σp(e)) = p ∧

∀e′∈pref |σp(e)|−1(σ)r
s(σp(e

′)) ̸= p
if p ∈ S

e ∈ σ
∣∣∣rs(pref |σp(e)|−1(σ)) = s1 ∧

rs(σp(e)) = s2 ∧ ra(e) = a ∧(
∀e′∈pref |σp(e)|−1(σ))r

s(σp(e
′)) ̸= s2

∨ ra(e′) ̸= a

∨ rs(pref |σp(e
′)|−1(σ)) ̸= s1

)
if p = (s1, a, s2) ∈ T

In order to partition a set of traces into subsets of traces, we need to first trans-
late them into instances that can be used by classification and partitioning tech-
niques.

Given a set of traces Tr(p) related to a point of interest p, we define the set
of available attributes as: A(rs,ra,L,p) =

⋃
σ∈Tr(rs,ra,L)(p) atts

(
Ev(r

s,ra,p,L)(σ)
)
.1

Analogously to several machine learning techniques, instances need a depen-
dent variable d ∈ A(rs,ra,L,p) to be defined (a.k.a, class or label). The dependent
variable d represents the outcome whose variation is being studied, and it will
determine the process variants that are found. For example, if one wants to de-
tect control-flow variants in a process (i.e., variants with differences in control-
flow), then the dependent variable should be a control-flow event attribute of
the process (e.g., the next activity to occur). Alternatively, if one wants to detect
performance variants in a process (i.e., variants with differences in the perfor-
mance e.g., slower and faster variants), then the dependent variable should be
an event attribute of the process that encodes the performance level e.g., the
elapsed time within a trace. See Definition 2.11 in Section 2.2 for examples of
these attributes obtained with trace manipulation functions.

The remaining A(rs,ra,L,p)\{d} attributes are considered as independent vari-
ables which can be used to split the instances in order to reduce the variability
of the dependent variable in the resulting partitions i.e., process variants. After
defining the dependent and independent variables, we can build instances from
traces.

1Recall that the function atts maps events to a set of attributes related to them (see Section 2.2).

6.2 Process Variant Detection 165

Definition 6.3 (Set of Instances related to a point of interest). Let L be an event
log, TS (rs,ra,L) = (S,A, T) be a transition system, p ∈ PI ⊆ S ∪ T be a point of
interest, Tr(r

s,ra,L)(p) be the set of traces of L that reach p, d ∈ A(rs,ra,L,p) be a
dependent attribute and A(rs,ra,L,p) \ {d} = {a1, ..., an} be the set of independent
attributes. The set of instances related to p is defined by the function In : PI →
P((V ∪ {⊥})|A(rs,ra,L,p)| × L), where for any point of interest p ∈ PI, the set of
instances related to it is defined as:

In(rs,ra,L)(p) =
⋃

σ∈Tr(rs,ra,L)(p)

{((
#a1

(Ev(r
s,ra,p,L)(σ)), . . .

. . . ,#an(Ev(r
s,ra,p,L)(σ)),#d(Ev(r

s,ra,p,L)(σ))
)
, σ

)}
Note that, differently from Definition 5.8, every trace in Tr(p) is mapped to

a single instance. An instance in In(p) is composed by a list of |A(rs,ra,L,p)| − 1
independent variable values (i.e., #a1(Ev(σ)) to #an(Ev(σ))), a dependent
variable value or class (i.e., #d(Ev(σ))), and the trace it was generated from
(i.e., σ).

Also note that, unlike Definition 5.8, in this chapter In(p) is not a multiset of
instances because every instance is unique since it incorporates the trace, which
is unique being composed by unique events.

Most classification and partitioning techniques will only use the first two
elements of our instances (i.e., independent and dependent attribute values).
The third element (i.e., the trace) is used to simply identify the trace from which
the instance was generated from. This becomes useful after partitioning the
instances, where each resulting subset of instances (i.e., a partition) can be
directly related to a set of traces (i.e., a process variant).

The following example shows how a set of instances can be obtained for a
point of interest p using the running example of this thesis.

166 Process Variant Detection

Example 6.1 (Instances related to a Point of Interest). Let’s consider the
following transition system (Figure 6.3) related to the road fines manage-
ment process introduced in Section 2.4:

Figure 6.3: Transition system representing the behavior of the road fines manage-
ment process.

This transition system was built using the state representation function
rs(σ) = #activity(σ(|σ|)) and the activity representation function ra(e) =
#activity(e). Note that this transition system has 6 states and 7 transitions
which can be points of interest. Also note that the empty state rs(⟨⟩) is not
considered as a point of interest because it does not have events related to
it (see the discussion in Section 2.3.4).

For the remainder of this example, we will focus on the state Add Penalty
(highlighted in red) as our point of interest p. Let’s now consider the fol-
lowing four traces:

6.2 Process Variant Detection 167

Table 6.1: Selection of four traces of the road fines management process
event id fine id activity timestamp amount next activity elapsed time

001 A1 create fine 24/07/2006 35 send fine 0
002 A1 send fine 05/12/2006 35 - 134 days

003 A100 create fine 02/08/2006 35 send fine 0
004 A100 send fine 12/12/2006 35 insert fine notification 132 days
005 A100 insert fine notification 15/01/2007 35 add penalty 166 days
006 A100 add penalty 16/03/2007 71.5 send for credit collection 226 days
007 A100 send for credit collection 30/03/2009 71.5 - 972 days

008 A10000 create fine 09/03/2007 36 send fine 0
009 A10000 send fine 17/07/2007 36 insert fine notification 131 days
010 A10000 insert fine notification 02/08/2007 36 add penalty 147 days
011 A10000 add penalty 01/10/2007 74 payment 207 days
012 A10000 payment 09/09/2008 74 - 551 days

013 A10005 create fine 20/03/2007 36 payment 0
014 A10005 payment 21/03/2007 36 - 1 day

Note that the fine id field indicates the different traces: In this example, a
fine corresponds to a trace. From these four traces, only traces A100 and
A10000 reach the point of interest p = Add Penalty. This means that such
traces are elements of Tr(r

s,ra,L)(p). Note that since traces A1 and A10005
do not reach the state Add Penalty, they will not be considered for this point
of interest.
Alternatively, if the point of interest to be analyzed was the state
Create Fine instead, all four traces described above would be considered,
as they all reach such point of interest.
As discussed before, for each trace that reaches p, we need to select the
event in the trace that first reached the point of interest p = Add Penalty.
For the trace “A100” we select the event “006”, and for the trace “A10000”
we select the event “011”. From each of these traces, an instance is built. In
this example, we consider the elapsed time as the dependent variable i.e.,
the class of the instance.
Table 6.2 shows the two instances that can be obtained from the traces
described above in Table 6.1.

Table 6.2: Instances obtained from the traces described in Table 6.1 when they
reach the point of interest Add Penalty.

activity timestamp amount next activity elapsed time (dependent) fine id (trace)

add penalty 16/03/2007 71.5 send for credit collection 226 days A100
add penalty 01/10/2007 74 payment 207 days A10000

Note that for each instance, the first four columns correspond to the values
of the independent variables related to the trace σ. The fifth and sixth

168 Process Variant Detection

column correspond to the elapsed time (i.e., the dependent variable) and
the id of trace σ respectively. Also note that, formally, an instance contains
a whole trace, but for the sake of simplicity we only mention its trace id.
These instances can now be used to detect process variants in the point of
interest p = Add Penalty.

The set of instances obtained for any point of interest (i.e., In(rs,ra,L)(p))
can now be partitioned into process variants by leveraging on its event attribute
values. Many clustering algorithms can be uses to partition such sets of in-
stances e.g., classification and regression trees such as C4.5 [125], or any other
non-overlapping clustering technique.

In this chapter, we use a technique named Recursive Partitioning by Condi-
tional Inference (RPCI) [69] to partition sets of instances related to each point of
interest. The remainder of this section is described as follows. First, we discuss
the details of this specific choice, and present an overview of how RPCI works.
Finally, we describe how to use sets of instances related to specific process vari-
ants to enrich event data with variant-related attributes.

Recursive Partitioning by Conditional Inference

Unlike other classification techniques (e.g., classification and regression trees)
RPCI provides an unbiased selection and binary splitting mechanism by means
of statistical tests of independence between the independent variables and the
dependent variable.

One of the main differences is that decision and regression trees aim to pre-
dict a value, whereas RPCI aims to partition data. Hence, differences in minor-
ity classes would be overseen by approaches based on decision and regression
trees. For example, consider an activity X which can be followed by A, B or C.
Decision-tree-based approaches (e.g., the work presented in [45]) would not
find a difference between (A = 60%, B = 40%, C = 0%) and (A = 60%, B
= 0%, C = 40%) because in both cases the majority class, hence, the actual
predicted value, is A (60% of the cases). RPCI detects this because it focuses
on the differences between the distributions instead of the expected (i.e., most
probable) values.

RPCI is based on the work by Strasser and Weber [143], which defines inde-
pendence tests based on permutations using the asymptotic properties of linear
statistics derived from arbitrary distributions. The specific independence tests
used depend on the distributional characteristics of the dependent and inde-
pendent variables. These independence tests are concretely used to determine

6.2 Process Variant Detection 169

attribute correlations and optimal splittings of the set of instances.
In a nutshell, RPCI is described for a set of instances In(rs,ra,L)(p) (denoted

as I) in Algorithm 1. The algorithm takes a set of instances as input and returns
partitions as output in the form of a set of sets of instances.

Algorithm 1 Recursive Partitioning by Conditional Inference

1: procedure RPCI(I, α,A, d)
2: Input: I ⊆ (V ∪ ⊥)|A| × E∗, α ∈ [0, 1] ⊂ R, A ⊆ N , d ∈ A
3: Output: O ⊆ P

(
(V ∪ ⊥)|A| × E∗)

)
4: bestPValue ← 1 ▷ worst possible p-value
5: bestAttribute ← ⊥
6: for all a ∈ A \ {d} do ▷ for all independent attributes
7: pValue ← CORRELATIONTEST(I, a, d) ▷ test correlation of a and d
8: if pValue < bestPValue then
9: bestPValue ← pValue

10: bestAttribute ← a
11: end if
12: end for
13: if bestPValue > α then
14: return ({I}) ▷ no significant correlation⇒ no splitting
15: else
16: (I1, I2)← SPLITWRTATTRIBUTE(I, bestAttribute) ▷ I1 ⊆ I, I2 = I \ I1
17: return RPCI(I1, α,A, d) ∪ RPCI(I2, α,A, d) ▷ recursive step
18: end if
19: end procedure

In the first part of the algorithm (lines 4 to 12 in Algorithm 1), the dependent
variable d is tested for correlation with respect to each independent variable a
in isolation using the method CORRELATIONTEST(I, a, d) (line 7 in Algorithm 1).
From the independent variables for which the null hypothesis is rejected (i.e.,
they are significantly correlated to d), we select the one with the lowest p-value,
which is obtained from the independence test. The lowest p-value (i.e., best-
PValue) indicates the strongest significant correlation between the dependent
variable and an independent variable. Note that if no null hypothesis is rejected
(i.e., p-value larger than a given alpha), no splitting is done.

If an independent variable a is selected (i.e., a is significantly correlated to
d), an optimal binary partition is searched (line 16 in Algorithm 1). A set of
instances I can be partitioned using the independent attribute a in different

170 Process Variant Detection

ways depending on the distribution of a.
For binary splitting a numerical a, a single value is chosen, which acts as

a “border” between the resulting subsets. For example, splitting by the value
5 results in two groups of instances: I1 = {

(
(#a(Ev(σ)),#d(Ev(σ))

)
, σ) ∈

I|#a(Ev(σ) ≤ 5} and I2 = {
(
(#a(Ev(σ)),#d(Ev(σ))

)
, σ) ∈ I|#a(Ev(σ) > 5}.

For binary splitting a categorical a, a set of values is chosen, because cate-
gories are not comparable. For example, I1 = {

(
(#a(Ev(σ)),#d(Ev(σ))

)
, σ) ∈

I|#a(Ev(σ)) ∈ {Gold, Silver}} and I2 = {
(
(#a(Ev(σ)),#d(Ev(σ))

)
, σ) ∈

I|#a(Ev(σ)) /∈ {Gold, Silver}}. Note that RPCI provides several mechanisms
to deal with missing values (i.e., ⊥).

In the method SPLITWRTATTRIBUTE(I, a) (line 16 in Algorithm 1) RPCI uses
the values of the independent variable a to detect a binary partition of the set
of instances I into I1 ⊂ I and I2 = I \ I1 such that the difference between the
distributions of the dependent variable d over the resulting subsets I1 and I2 is
maximized.

In the last part of the algorithm (lines 14 and 17 in Algorithm 1), the whole
process is repeated for the resulting partitions I1 and for I2 if a significant cor-
relation between independent and dependent attributes was found. Otherwise,
the input set of instances I is returned as the output.

As a result of the RPCI algorithm, the set of instances I is partitioned into
non-overlapping (sub)sets of instances: RPCI(I, α,A, d) = {I1, ..., In} where
I = I1 ∪ ... ∪ In. Given the recursive nature of this approach, the exact final
number of obtained partitions depends on the characteristics and distributions
of the variables, and how many independent variables are correlated to the
dependent variable.

From Sets of Instances to Process Variants and Variant-Enriched Event Data

The last step of our approach consists of enriching the original event log with
new event attributes that explicitly specify the process variants found in the
event data.

Given an event log L and a set of instances I, each instance is denoted
as i = (a, σ) ∈ I, where a is the sequence of values of the dependent and
independent variables that describe the instance and σ ∈ L is the trace related
to such instance. The set of traces associated to I corresponds to a process
variant, defined as Var I =

⋃
i=(a,σ)∈I{σ}

Then, for a set of instances I and a subset Im ⊂ I, all the events in the
process variant Var Im can be enriched with a new event attribute variant us-

6.3 Implementation 171

ing a trace manipulation function defined as TVAR(⟨e1, . . . , en⟩) = ⟨f1, . . . , fn⟩
such that ∀1≤i<n : #variant(fi) = m (see Section 2.2 for more details on trace
manipulation functions).

This new “variant” event attribute encodes the specific variant to which the
event is related, and can be used, e.g., as a dimension in a process cube for
splitting an event log into such process variants.

6.3 Implementation

We have implemented our approach as a ProM [172] plugin named “Process
Variant Finder” included in the VariantFinder package. We use the R library
ctree [70] to perform the statistical tests and partitioning of the sets of instances,
including the RPCI technique. Therefore, a running instance of R is required.2

Figure 6.4 illustrates the flow of user interactions with our tool.
The first step in using our “Process Variant Finder” tool is to specify the

settings that will be used to discover process variants, as shown in Figure 6.5.
In our tool, the “Settings” panel (Panel 1 in Figure 6.4) is sub-divided into

three parts: “Transition System Settings”, “Partitioning Settings”, and “Actions”,
described as follows.

Transition System Settings: These settings define the transition system
that will be used to identify points of interest (see Step 1 of our approach in
Section 6.2). The user can also select a frequency threshold (i.e., “frequency” in
Figure 6.5) that is used to filter out points of interest based on their relevance
(see Definition 6.1).

Partitioning Settings: These settings are used to define instances that will
be partitioned by RPCI, and also to parameterize the partitioning algorithm.
This is done by defining the dependent variable (i.e., “class attribute” in Fig-
ure 6.5), the set of independent variables (i.e., “selected attributes” in Fig-
ure 6.5), the α for statistical tests (i.e., the statistical significance level), and
also provides an early-stopping mechanism by defining the minimum size of
a partition (i.e., “Min % of instances in a leaf” in Figure 6.5). Users can se-
lect whether to test all independent attributes in combination, or to test them
separately (i.e., “use separately” checkbox in Figure 6.5).

Actions: This part contains two buttons: one for discovering process vari-
ants based on the specified settings defined above (i.e., “Apply Settings” in Fig-

2Our approach requires the R libraries “partykit” and “Rserve” to be installed an the function
Rserve() needs to be executed. Such method opens a socket through which R communicates with
Java.

172 Process Variant Detection

Figure
6.4:

Illustration
of

the
user

flow
for

the
“Process

Variant
Finder”

tool.
Panel

1
show

s
the

settings
panel.

O
nce

the
user

clicks
on

the
“A

pply
Settings”

button,
the

tool
searches

for
process

variants
in

all
the

points
of

interest
according

to
the

specified
settings.

These
results

are
show

n
in

Panel
2

w
hich

show
s

a
table

w
ith

inform
ation

about
the

discovered
process

variants
including:

the
type

(i.e.,
state

or
transition),

relevance
(see

D
efinition

6.1)
and

nam
e

of
the

points
of

interest
w

here
they

w
ere

detected,
and

w
hich

independent
attributes

and
values

w
ere

used
to

split
the

event
log

into
such

process
variants.

W
hen

a
row

in
Panel2

is
selected

(i.e.,clicked)
by

the
user,the

corresponding
pointofinterestis

highlighted
(in

red)
in

the
transition

system
that

represents
the

process
in

Panel
3

and
the

splitting
criteria

(attributes
and

values)
that

define
such

process
variants

is
show

n
in

Panel4.

6.4 Applications 173

Figure 6.5: Settings panel or our tool (Panel 1 in Figure 6.4).

ure 6.5) and one that is used to enrich the event log with a new attribute spec-
ifying the corresponding process variants, according to the selection made by
the user in Panel 2.

The details of the other panels (shown in Figure 6.4) and the step-by-step
application of our tool to a real dataset and the interpretation of its results will
be illustrated as follows.

6.4 Applications

This section first describes a step-by-step experiment showing the application
of our technique to the event log related to the road fines management pro-
cess (see Section 2.4). Then, Section 6.4.1 compares the obtained results with
the arbitrary partitioning of this dataset that was performed in Chapter 5 (see
Section 5.4.2).

The transition system used to represent the behavior in the road fines man-
agement process is shown in Figure 6.7 (based on Figure 2.6 presented in Sec-

174 Process Variant Detection

tion 2.4). By default, all the states and transitions of this transition system are
initially considered as point of interest, but only those with a relevance of 5%
or more are used in our analysis.

In this experiment, we used the next activity attribute as dependent variable,
and the attributes amount (i.e., the amount of the fine) or the article (i.e., the
traffic law that was violated) were each used as independent variables (see
Figure 6.5). Note that the independent variables were used separately. We used
a significance level (α) of 5%.

After defining the settings, the second step in using our tool is to click on the
“Apply Settings” button. Now, the “Summary of Process Variants” panel (Panel 2
in Figure 6.4) shows a table with a summary for all the process variants found,
as shown in Figure 6.6.

Figure 6.6: Summary of Process Variants found in this experiment (Panel 2 in Fig-
ure 6.4). The next activity attribute was used as the dependent variable,
and the attributes amount and article were used as independent variables.

Each row in this table relates to a set of process variants obtained from the
event log using RPCI. Note that several sets of process variants can be found
for the same point of interest depending on the independent attributes used
for splitting (i.e., see the column “split attribute”). For example, rows 1 and 5
(highlighted in blue) relate to the point of interest defined by the state Create
Fine (i.e., see the columns “split attribute”). However, in row 1, the process vari-
ants were obtained by splitting the event log based on the article independent
variable (i.e., the traffic law that was violated) and in row 5 the process variants
were obtained by splitting the event log based on the amount of the fine.

6.4 Applications 175

Once a set of process variants (i.e., a row in Figure 6.6) is selected by the
user, Panels 3 and 4 in Figure 6.4 show more information about it. Note that the
user can select only one set of process variants each time. In this demonstration,
we select the first row of the summary of process variants which splits the event
log into process variants based on the article of the fine in the point of interest
defined by the state Create Fine. We chose such point of interest because it is
the only one that is reached by all the traces in the event log.

As a consequence, the “Point of Interest of selected Process Variants” panel
(i.e., Panel 3 in Figure 6.4) shows the location of the point of interest related
to the selected set of process variants by highlighting it in red within the tran-
sition system that represents the behavior of the process. In this case, since the
first row in the “Summary of Process Variants” panel was selected, the point of
interest Create Fine is highlighted in red, as shown in Figure 6.7.

Figure 6.7: Point of Interest Create Fine of the set of Process Variants selected in this ex-
periment (Panel 3 in Figure 6.4), with next activity selected as the dependent
variable and article is selected as the independent variable.

At the same time, the “Splitting Criteria” panel (i.e., Panel 3 in Figure 6.4)
describes the details of the splitting criteria used to partition the event log into
the selected set of process variants by visualizing it as a tree where each branch
of the tree defines the values of the independent variable that is used for split-
ting, and each leaf of the tree represents a process variant, and is visualized as
the distribution of values of the dependent variable for the subset of instances
that represent that variant. In this case, the process variants for the point of

176 Process Variant Detection

interest Create Fine when only the article (i.e., traffic law that was violated) is
used as an independent variable are shown in Figure 6.8. We can observe that

Figure 6.8: Process Variants found in the point of interest Create Fine. The dependent
variable is the next activity to occur. The independent variable is the article
i.e., traffic law that was violated (Panel 4 in Figure 6.4).

fines related to the article 157 (i.e., parking-related fines) have a significantly
higher likelihood of being paid before the fine is sent to the offender, compared
to other types of fines.

Figure 6.9 shows the process variants for the point of interest Create Fine
when only the amount of the fine is used as independent variable. We can
observe that more expensive fines (i.e., more than 41 euros) and cheaper fines
(i.e., less than 32.8 euros) are less likely to be paid directly by the offender, and
most likely the fine will be sent to the offender. We can also observe that fines
with amounts between 32.8 and 41 euros are more likely to be paid directly
(i.e., without the need of sending the fine by mail) by the offender than higher
or lower-amount fines. We will use this observation to define process variants
for the remainder of this section.

6.4 Applications 177

Fi
gu

re
6.

9:
Pr

oc
es

s
Va

ri
an

ts
fo

un
d

in
th

e
po

in
t

of
in

te
re

st
de

fin
ed

by
th

e
st

at
e
C
r
e
a
t
e

F
i
n
e
.

Th
e

de
pe

nd
en

t
va

ri
ab

le
is

th
e

ne
xt

ac
ti

vi
ty

to
oc

cu
r.

Th
e

in
de

pe
nd

en
t

va
ri

ab
le

is
th

e
am

ou
nt

of
th

e
fin

e.
Fo

r
ea

ch
bo

x,
th

e
X-

ax
is

re
pr

es
en

ts
th

e
po

ss
ib

le
ac

ti
vi

ty
to

be
ex

ec
ut

ed
ne

xt
,a

nd
th

e
Y-

ax
is

re
pr

es
en

ts
th

e
lik

el
ih

oo
d

th
at

an
ac

ti
vi

ty
w

ill
be

ex
ec

ut
ed

ne
xt

.

178 Process Variant Detection

6.4.1 Connection to Process Cubes and Comparison to Arbi-
trary Splitting of Data

In Section 5.4.2, we arbitrarily split this same dataset related to the read fines
management process (see Section 2.4) into two process variants: one contain-
ing fines lower than 50 euro and the other containing fines higher than 50
euro, and then compared them for differences using the techniques described
in Chapter 5. This type of arbitrary splitting is not uncommon in process mining
analysis, as domain experts that could define a better splitting are not always
available.

The purpose of the remainder of this chapter is to evaluate, in the whole
process (not just in the state Create Fine), whether our approach provides a
detection of process variants in which differences are more evident than on
arbitrarily-chosen variants e.g., our previous 50-euro arbitrary split.

In the previous section chapter, we performed a different partition: traces
with an amount between 32.8 and 41 euros define one variant (i.e., variant 1),
and all the other fines define the other variant (i.e., variant 2). This choice, as
previously discussed, is based on the results observed in Figure 6.9, where we
grouped the variants that had a higher chance of being directly paid before the
fine is sent. These variants are related to the point of interest defined by the
state Create Fine. We used these results to enrich the event log by encoding the
variants explicitly into the event data as a new variant event attribute (see Sec-
tion 6.2.2). Then, we used a process cube (see Chapter 3) to split the event log
by dicing the newly-created variant dimension so that the two process variants
(i.e., 1 and 2) were contained in two different cells of the cube.

Given these two process variants, we used the technique described in Chap-
ter 5 to compare them using the same three experiments discussed in Sec-
tion 5.4.2: performance comparison, business rules comparison, and frequency
of occurrence comparison.

In the first experiment (i.e., performance comparison), we compared these
two variants in terms of their elapsed time. For more details about the design of
this experiment, see Section 5.4.2. The results of the first experiment are shown
in Figure 6.10.

We can observe that the two process variants found using our technique have
much larger performance differences than just arbitrary splitting the event data.
This can be observed in the fact that in the two process variants found using the
technique described in this chapter, the darker blue colors of states Send Fine,
Insert Fine Notification and Add Penalty indicate that the effect size is much
larger compared to the same states if the event log is split like in Chapter 5. See

6.4 Applications 179

(a) Results of comparing elapsed time in fines
higher than 50 euros and lower than 50
euros (extracted from Figure 5.15).

(b) Results of comparing elapsed time in fines
between 32.8 and 41 euros and the rest
of the fines.

Figure 6.10: Performance (elapsed time) comparison between process variants.

Section 5.2.1 for more details about the color schemes used.
In the second experiment, we compared these two variants in terms of their

business rules in the state Add Penalty. For more details about the design of this
experiment, see Section 5.4.2. The results of the second experiment are shown
in Figure 6.11.

(a) Agreement/Disagreement of business
rules in fines higher than 50 euros and
lower than 50 euros (extracted from
Figure 5.19).

(b) Agreement/Disagreement of business
rules in fines between 32.8 and 41 eu-
ros and the rest of the fines.

Figure 6.11: Business rules comparison between process variants.

We can observe that using the technique presented in this chapter, we could
identify process variants that have larger differences in terms of business rules

180 Process Variant Detection

than just arbitrary splitting the event data. This can be observed in the fact that
in the two process variants found using the technique described in this chapter,
we discovered that the business rules disagreed in 822 cases, compared to the
52 cases of disagreement if the event log is split like in Chapter 5.

In the third experiment (i.e., control-flow comparison), we compared these
two variants in terms of their frequency of occurrence. For more details about
the design of this experiment, see Section 5.4.2. The results of the third experi-
ment are shown in Figure 6.12.

(a) Results of comparing frequency of occur-
rence in fines higher than 50 euros and
lower than 50 euros (extracted from Fig-
ure 5.19).

(b) Results of comparing frequency of occur-
rence in fines between 32.8 and 41 euros
and the rest of the fines.

Figure 6.12: Control-flow (frequency of occurrence) comparison between process vari-
ants.

We can observe that using the technique presented in this chapter, we could
find process variants that have more significant control-flow differences. This
can be observed in the fact that in the two process variants found using the
technique described in this chapter, the color of the states [Payment, Send Fine],
[Payment, Insert Fine Notification] and [Add Penalty, Payment] indicate that the
difference in terms of frequency of occurrence is significant, compared to the
same states if the event log is split like in Chapter 5, where no significant differ-
ences were detected.

6.5 Conclusions 181

6.5 Conclusions

The problem of detecting process variants in event logs has been tackled by
several authors in recent years. Many authors have successfully solved specific
scenarios where the focus is put on specific attributes, such as time. Some have
even provided general solutions, but they fail to filter out irrelevant splits. This
chapter presents an approach that is able to detect relevant process variants in
any process perspective (in the form of event attributes) by splitting any other
(combination of) event attributes. The approach has been implemented and
is publicly available. We also showed that the approach could rediscover de-
signed performance issues in an artificially generated event log, where certain
resources were related to poorer performance. We also were able to successfully
identify points of process variability inside in a real-life event log and we were
able to detect process variants without the use of domain knowledge, confirm-
ing such variability using process comparison techniques. Such process vari-
ants are used to enrich the original event log by explicitly encoding the process
variants as event attributes. These variant-related attributes can be used as di-
mensions in a process cube, and can be used to split the event data, so that the
resulting cells can be analyzed using process mining techniques, process min-
ing workflows, or they can be compared using process comparison techniques.
Therefore, our approach provides a viable solution to process variant detection,
even when no domain knowledge is available.

As a limitation, we would like to mention that, even though our technique
requires "less of it”, it still relies on manual setting of parameters such as the
independent and dependent variables and a few thresholds. Therefore, there
is room for improvement in the sense of reducing the ammount of settings re-
quired to operate the tool by automatically choosing some of them.

Another limitation of the tool presented in this chapter is that it requires a
connection to the R software to be functional. This can be difficult to set up for
some people, and it is far from ideal. However, by the time of implementation,
there were no libraries that implemented RPCI. The only place where RPCI was
implemented was in R.

Part III

Large-Scale Experimentation

184

Chapter 7
A Framework for
Benchmarking Process
Discovery Techniques

Disclaimer: The work presented in this chapter is based on the work presented in [85],
in which the author collaborated with other researchers from TU/e and Hasselt University.
This work was also included in the doctoral dissertation by Jouck [84], where the focus was
put on the generation of process models and data. In this chapter, the focus is put on the
evaluation capabilities of process discovery techniques, and on the large-scale experiments
required for the statistical analysis of the results.

The lion’s share of attention within process mining was received by process
discovery, which aims to discover a process model from event logs. This resulted
in dozens of discovery algorithms (see [47, 156] for an overview). Researchers
aim to improve the quality of the mined models to adequately represent the
behavior observed in the event logs. A popular way to measure the quality is
the fitness between the event log and the mined model. However, there are
other ways to measure quality as well (e.g., precision, generalization, simplic-
ity). A good model allows for the behavior seen in the event log. Fitness alone
is not sufficient, also a proper balance between overfitting and underfitting is
required [156]. A process model is overfitting (the event log) if it is too restric-
tive, disallowing behavior which is part of the underlying process but not yet

186 A Framework for Benchmarking Process Discovery Techniques

observed. This typically occurs when the model only allows for the behavior
recorded in the event log. Conversely, it is underfitting (the reality) if it is not
restrictive enough, allowing behavior which is unlikely to be part of the under-
lying process. This typically occurs if it overgeneralizes the observed behavior
in the event log.

The abundance of discovery algorithms has made it increasingly important
to develop evaluation frameworks that can compare the efficiency of these dis-
covery techniques, especially in terms of balancing between overfitting and un-
derfitting. As detailed in Section 7.1, several comparison frameworks have al-
ready been proposed in literature. Unfortunately, these frameworks are charac-
terized by at least one of the following three major limitations:

1. They are not independent from the modeling notation in which the dis-
covered models are represented, e.g. two behaviorally-equivalent models
may have very different precision scores, or quality can only be measured
after a conversion that does not preserve the behavior precisely. This re-
stricts the framework to a comparison of the algorithms that generate
models in one specific notation.

2. The evaluation results are based on concrete event logs and cannot be
generalized as the population of processes from which they originate is
unknown. Processes come from different populations depending on the
type of behavior allowed. Processes may have different behavioral char-
acteristics, with parts that can be repeated, with mutually-exclusive and
parallel branches, with non-local dependencies and so on. Also, these
characteristics can be more or less predominant in a process model. Dif-
ferent algorithms may better deal with a certain characteristic than oth-
ers. And the quality of the discovered model may also depend on the
predominance of certain characteristics. Performing a comparison with-
out acknowledging the influence of these behavioral characteristics can
lead to inconclusive results.

3. They use a small number of processes. Even if processes are randomly
sampled from a well-defined population of processes, one cannot validate
the evaluation results if only a few processes were considered, as this
prevents the results from being statistically and generally valid.

This chapter tries to overcome these limitations by proposing a framework that:

1. abstracts from the modeling notation employed.

187

2. starts from the definition of a process population where the probability of
several behavioral characteristics can be varying. From this population a
random sample of process models and event logs is drawn, thus making it
possible to evaluate and generalize the influence of behavioral character-
istics on the quality of the discovered models by the different algorithms
under analysis.

3. performs experiments on random samples of a user-specified size, so as to
return statistically valid results.

In a nutshell, our framework is based on a classification perspective to eval-
uate the quality of a discovered model. The framework starts with artificially
generating random samples of process models from a specified population of
processes. For each model, we generate a training log with fitting traces (to dis-
cover a model) and a test log with both fitting and non-fitting traces (to check
conformance). Then, the quality of a discovery algorithm with respect to the
event log is related to the ability to correctly classify the traces in the test event
log: the discovered model should classify a trace representing real process be-
havior as fitting and a trace representing a behavior not related to the process
as non-fitting. In this way the classification approach allows us to evaluate dis-
covery algorithms generating models in different modeling notations because
the quality measurement is not based on one specific modeling notation. Fur-
thermore, by using (large) samples of randomly generated models and logs we
can make general statements about populations of models and logs.

Obviously, repeating the generation of event logs and process models cannot
be done manually to get significant results. We aim at thousands of models and
logs in order to generalize. Fortunately, this can be automated through the use
of process mining workflows, presented in Chapter 4.

In summary, this chapter introduces a novel evaluation framework which
is operationalized using a process minig workflow, and is an instantiation of
the use case “Large-scale experiments” proposed in Section 4.4.3. The exper-
iments report the results of their application to five state-of-the-art discovery
algorithms. It is beyond the scope of this thesis to extensively cover every exist-
ing discovery algorithm. However, the operationalization and the experiments
show how easy it is to extend the framework to other algorithms.

The remainder of this chapter is structured as follows. Section 7.1 discusses
related work. Section 7.2 discusses the new evaluation framework including
the methodological foundations and the building blocks used. Next, Section 7.3
describes the implementation of this framework as a process mining workflow

188 A Framework for Benchmarking Process Discovery Techniques

and its application in an experimental setting, providing a discussion of the
experimental results. Finally, Section 7.4 concludes the chapter.

7.1 Related work

Several frameworks for evaluating process discovery algorithms have been pro-
posed. Rozinat et al. [130] introduced the first evaluation framework, Wang et
al. [185] and Ribeiro et al. [126,127] extended the Rozinat framework to eval-
uate and predict the best algorithm. Weber et al. [187] proposed an alternative
framework that takes a probabilistic perspective. In addition to the evaluation
frameworks, De Weerdt et al. [46, 47], Vanden Broucke et al. [177, 179] and
Augusto et al. [6] performed benchmarking studies of process discovery tech-
niques.

As indicated before, our framework evaluates the quality of models on the
basis of measures of precision and recall that are not bound to any modeling
notation. Conversely, the existing body of research is based on metrics that are
applicable to one notation, mostly Petri nets [6,47,126,127,130,177,179,185,
187].

We previously mentioned that the second and third advantage of our frame-
work is that it is based on the generation of a sufficiently-large number of ar-
tificial models to guarantee a statistical validity of the analysis. Conversely,
existing frameworks base their conclusions on samples that are small, either a
few real-life event logs [6,46,47,127], either artificial but not randomly gener-
ated [47,126,127,130,179,185,187], thus limiting the statistical validity of the
analysis. Also, the artificial process models are not generated by controlling the
probability of certain constructs to be present. This means that the event logs
generated from these models do not allow one to evaluate the correlation be-
tween the quality of the discovered models and the presence of certain process
constructs.

Furthermore, all frameworks, except Weber et al. [187], leverage on the
typical process-mining notions of precision, generalization, and fitness from lit-
erature to evaluate the quality of the discovered models (see, e.g., [156]). The
work presented by van der Aalst [168] discusses an exhaustive taxonomy of 21
propositions for conformance measures. Tax et al. [146] introduces a discussion
on the quality of precision measures in process mining. All these process-mining
measures are designed considering that the real process model is not known and
that one only observes the positive cases, namely the traces that are part of the
real process. The negative cases (i.e., the executions (traces) that do not fit the

7.2 Discovery Evaluation Framework 189

real process) are not known because they would require to know the real model.
Therefore, the process-mining measures of model quality try to artificially gen-
erate the negative cases based on estimation and, hence, the measured results
are estimates. An example of this is the work presented in [61, 178], where
negative events are added to event logs. Negative events record that at a given
position in a trace, a particular event cannot occur. However, negative events
are created based on the lack of evidence that contradicts them. This means that
negative events do not necessarily represent behavior that is not allowed by the
real process model: it only represents behavior that has not been observed yet.
In our approach, we know the real underlying process: we know what behavior
is allowed and not allowed by the real process model, and we also know which
behavior has been observed and which behavior has not been observed yet.
Therefore, the precision and recall measures that we use in our approach are
closer to the ground-truth than the typical process-mining measures of model
quality.

The frameworks reported in [87, 88] are clearly not the only to generate
process models and event logs. While the framework would allow one to plug
different model and log generators, the choice has fallen onto those frame-
works because they provide an API that allows one to invoke them from code,
as our scientific workflow requires. For example, PLG [30] only allows a GUI
interaction; also, PLG does not support certain patterns, namely long-term de-
pendencies, silent transitions, and duplicate activity labels.

The classification approach of the proposed evaluation framework builds
upon established principles and methods from the machine learning domain.
See [78] for more information on the empirical evaluation of learning algo-
rithms using a classification perspective.

7.2 Discovery Evaluation Framework

The framework presented in this chapter aims to evaluate the quality of dis-
covery algorithms to rediscover a model when confronted with a fraction of
its behavior. The framework is designed based on the principles of scientific
workflows and experimental design. The former captures the complete eval-
uation experiment in a workflow that can be automated, reused, refined and
shared with other researchers [8]. The latter allows for precise answers that a
researcher seeks to answer with the evaluation experiment [93].

To integrate the steps needed for empirically evaluating process discovery
algorithms, the framework is built as a process mining workflow (see Chapter 4).

190 A Framework for Benchmarking Process Discovery Techniques

Process mining workflows offer several advantages over traditional ways to
conduct process discovery evaluation. The first advantage comes from workflow
automation. Experiments evaluating discovery techniques involve large-scale
and computationally expensive experiments that require intensive human assis-
tance. Therefore, automating these experiments removes the need for the hu-
man assistance and reduces the time needed to perform experiments. A second
benefit comes from the modularity of the workflows. This allows researchers to
adapt and extend an existing workflow, e.g., by using other parameter settings
or adding new process discovery techniques. A final benefit is that they can
be shared with other researchers. As a result other researchers can replicate
experiments with little effort. In this way, our framework facilitates repeated
process discovery evaluation, e.g. it becomes trivial to evaluate another set of
algorithms or to assess the algorithm’s performance with regard to other data
characteristics (e.g. noise, control-flow patterns, etc.).

An evaluation analysis aims to test statistical hypotheses about a discov-
ery algorithm. For example, does the presence of loops cause the Alpha+
miner [167] to discover models with lower fitness? Or: do the Alpha+ miner
and Heuristics miner [189] perform equally in the fitness dimension on event
logs with non-exclusive choice (OR) behavior? This makes it fit within the exper-
imental design methodology in which the primary goal is to establish a causal
connection between the independent (algorithm, log characteristics) and de-
pendent (model quality criteria) variables [93]. The three cornerstones of good
experimental design are: randomization, replication, and blocking [55]. The
three cornerstones together are fundamental to make the experiments scientif-
ically sound (e.g., avoid bias or wrong conclusions). Therefore, the evaluation
framework incorporates each of the cornerstones.

Randomization involves the random assignment of subjects to the treatment
in order to limit bias in the outcome of the experiment [48, 93]. In the evalua-
tion context, the subjects are the event logs and the treatments are the discovery
algorithms. Therefore, the evaluation framework has to ensure that the event
logs generated in the data generation step are random observations from a pop-
ulation of processes with all desired control-flow characteristics.

Replication means that more than one experimental unit is observed under
the same conditions. It enables researchers to estimate error effects and obtain
a more precise estimate of treatment effects [93]. In the context of process
discovery this implies that one needs to test a specific algorithm on more than
one event log drawn from the same population to accurately assess the effect
of that algorithm on model quality. The framework requires that the evaluation
is based on a sample of event logs from a given population to obtain better

7.2 Discovery Evaluation Framework 191

estimates of the studied effect.
Finally, blocking an experiment is dividing the observations into similar

groups. In this way one can compare the variation between groups more pre-
cisely [48]. For example, if the experiment studies the effect of loops on model
quality, also other characteristics such as infrequent behavior could have an ef-
fect. Therefore, the evaluation framework allows to vary the presence of loops
in models (variable of interest) while holding the infrequent behavior constant
to obtain precise estimates of the effect of loops on model quality (studied ef-
fect).

The remainder of this section is organized as follows. Section 7.2.1 describes
the design of the framework. Section 7.2.2 describes the building blocks used in
this framework in more detail. Finally, Section 7.2.3 discusses the extensibility
of the framework.

7.2.1 The Design and Use of the Evaluation Framework

The framework focuses on evaluating control-flow discovery algorithms. There-
fore, other process related perspectives, such as data and resources, are out
of scope. Moreover, the framework aims at evaluation instead of predicting the
best performing algorithm given an event log. The framework enables two main
objectives: either benchmarking different discovery algorithms, or performing
sensitivity analysis e.g., what effect does a control-flow characteristic or event
log characteristic have on the algorithm’s performance.

Figure 7.1 illustrates the framework instantiating the “large-scale experi-
ment” use case (see Section 4.4.3). The framework uses the process mining
building blocks defined in Section 4.2, represented as grey boxes. It also con-
tains non-process-specific blocks, represented as white boxes. Such blocks rep-
resent generic data-processing functionalities (e.g., statistical testing) that com-
plement the process mining building blocks in order to obtain the desired anal-
ysis results.

The framework enforces the consecutive execution of data generation, pro-
cess discovery, quality measurement and statistical analysis. The framework
applies a classification approach to allow for the evaluation of discovery algo-
rithms generating models in different notations.

The first step i.e., the data generation, is triggered by the objective of the
experiment. As a result, the objective determines the control-flow behavior a
researcher wants to include in the event logs. The specification of control-flow
behavior defines a population of process models. This population definition is
the start of the data generation phase.

192 A Framework for Benchmarking Process Discovery Techniques

For each miner...

For each model…

For each log, K-fold cross validation...

Generate process models

(GeneM)

Original Model

Calculate
metrics

Original
Model

Average
results

Statistical
analysis

Number
of traces

P

Population
parameters

MMM

P E

E

Training log
(90%)

P

Algorithm
Parameters

E

Fitting Test
log (5%)

E
Fitting Test

log (5%)

E

Non-Fitting
Test log (5%)

M

Discovered
Model

R

R

TP & FN

FP & TN

Generate event data

from model (GenerED)

Split event data

(SplitED)

Discover process

model from event

data (DiscM)

Evaluate process

model using event

data (EvaluaM)

Evaluate process

model using event

data (EvaluaM)

Add noise to

event data

(NoisED)

P

Noise con-
figuration

parameters

Event Log

Figure 7.1: Framework for process discovery algorithm evaluation, presented as a pro-
cess mining workflow. Grey boxes represent process mining building blocks.
White boxes represent non-process-mining operators.

For each discovery algorithm to be tested, multiple instances of the “generate
process models” block run in parallel. The generation results in multiple random
samples of process models from the same population. Each model (“original
model”) is then simulated once by the block “generate event data from model”
to create one event log i.e., a random sample of traces from all possible traces
allowed by the model. The samples of process models and event logs constitute
as the ground truth.

Next, the k-fold cross-validation splits each event log into k subsets (i.e.,
folds) of equal size. k − 1 folds form the training log, while the remaining fold
serves as the test log.

7.2 Discovery Evaluation Framework 193

The block “discover process model from event log” applies the algorithm to
discover a model from the training log.

To this point, the test log only contains positive examples i.e., traces that fit
the original model. The classification approach requires also negative examples
i.e., traces that do not fit the original model. To generate negative examples, the
block “add noise to event data” alters half of the test traces until they cannot
be replayed1 anymore by the original model (i.e., the ground truth) to create
non-fitting traces. Thus, the test log contains a 50/50 balance between fitting
and non-fitting traces to avoid the class imbalance problem which makes the
evaluation more difficult [79].

Subsequently, the framework measures the quality of the discovery algo-
rithm by using the discovered model to classify the test traces. This classifica-
tion happens within the “evaluate process model using event data” block which
replays all traces on the discovered model (i.e., conformance checking). A trace
representing real process behavior should be classified as allowed i.e., com-
pletely replayable. A trace representing behavior not related to the real process
should be classified as disallowed by the discovered model i.e., not completely
replayable. This approach allows for evaluating any discovery algorithm gener-
ating models with formal replay semantics.

The classification results are then combined in a confusion matrix in the
block “calculate metrics”. This is discussed in the next section. Based on that
matrix, one can compute the well-known recall and precision metrics to evaluate
the quality of the discovery algorithm.

The framework repeats the process of splitting, discovery, creating non-
fitting traces and conformance checking ten times, each time with a different
fold as the “test log”. The block “average results” computes the average of the
metric values over the ten folds to get an estimate of the algorithm’s perfor-
mance. Note that by using k-fold cross validation the obtained estimate is less
likely to suffer from bias i.e., it helps to decrease the difference of the estimate
from the real unknown value of the algorithm’s performance on the popula-
tion of processes. Finally, the block “statistical analysis” tests the hypotheses
formulated in the context of the objectives.

This framework’s design has the property that no two discovery algorithms
are applied to the same event log. Furthermore, for each generated model - ran-
domly drawn from a predefined population of models - we randomly draw only
a single event log. Consequently, all discovered models and all corresponding

1Replay uses the trace and the model as the input. The trace is “replayed” on top of the model
to see if there are discrepancies between the trace and the model [156].

194 A Framework for Benchmarking Process Discovery Techniques

quality metrics are independent observations which is an important assumption
made by many standard statistical techniques. We acknowledge that this de-
sign decision is not the only option, as one could test discovery algorithms on
the same logs. This alternative design would have more statistical power for
the same sample size, however, it requires more complex statistical techniques
to deal with the dependence between observations. We can compensate for
the loss in power in our design by defining the desired power in advance and
calculate the sample size required for such power.

Finally, the framework’s design based on the experimental design principles
enable users to obtain algorithm’s performance measures that are independent
from specific process models and event logs. More specifically, this starts from
the generation of (preferably large2) random samples of process models and
logs from a population, which are then used to estimate the performance of an
algorithm with regard to that population. This contrasts evaluations based on a
small non-random sample of (manually created) process models and event logs
as it could influence the performance estimate to only reflect these particular
models and logs.

7.2.2 The Building Blocks of the Framework

The previous section described the design of the framework, and briefly de-
scribed the blocks that conform it. This section elaborates on each of the blocks
presented above.

Generate process models

This building block (i.e., GeneM, introduced in Section 4.2.3) generates a ran-
dom sample of process models from a population of models. The input of this
block is a set of parameters describing the population characteristics. The user
can specify such population characteristics by assigning probabilities to control-
flow characteristics of the model (e.g., parallelism) and setting the size of the
models in terms of visible activities. The probabilities of the control-flow char-
acteristics influence the probability for each characteristic to be included in the
resulting process model. For example, if the probability of loops is 0.2, then on
average 20% of the model control-flow constructs will be of type loop.

2One can define the required sample size based on the desired power of the statistical analysis
in advance, see [38].

7.2 Discovery Evaluation Framework 195

There are several approaches in literature that can be used to generate pro-
cess models, e.g., PLG [30,32], GraphGrammar [90], BeehiveZ [83], TestBed [82],
and PTAndLogGenerator [88]. All these approaches are able to generate ran-
dom samples of process models from a population of models, and can imple-
ment this building block.

In this thesis, we chose to use the PTAndLogGenerator [88] approach given
its wider range of parameters to specify control-flow characteristics. As a few
examples: PLG and TestBed cannot specify the size (i.e., the number of activi-
ties) of a model, GraphGrammar and BeehiveZ cannot create models with loops,
and none except PTAndLogGenerator can generate models with OR constructs,
or with duplicate activities. See [88] for an exhaustive comparison of these
approaches.

The approach used in this thesis as the implementation of this building block
allows one to generate models in the form of process trees (described in Sec-
tion 2.3) with random nestings of several basic control-flow patterns identified
in [132]. These basic control-flow patterns are explicitly supported by most
process modeling notations e.g., BPMN, Petri nets, process trees. Figure 7.2
illustrates these patterns through examples in BPMN notation.

The sequence pattern is illustrated in Figure 7.2a: first, the activity A is ex-
ecuted, then the activity B is executed. The exclusive choice (i.e., XOR) pattern
is illustrated in Figure 7.2b: either A or B is executed. The parallelism (i.e.,
AND) pattern is illustrated in Figure 7.2c: both activities A and B are executed
in no particular order. The inclusive choice (i.e., OR) pattern is illustrated in Fig-
ure 7.2d: either A or B, or both A and B are executed (in no particular order).
Finally, the loop pattern is illustrated in Figure 7.2e: activity A can be executed
multiple times.

This set of patterns is complemented by a set of more advanced control-flow
patterns, illustrated in Figure 7.3 as examples in BPMN notation.

The silent transitions pattern is illustrated in Figure 7.3a: a “silent transition”
(i.e., unlabeled activity, highlighted in black) is inserted so that activity A can
be skipped. The duplicate activities pattern is illustrated in Figure 7.3b: activity
A is present in multiple parts of the process. The long-term dependency pattern
is illustrated in Figure 7.3c: the choice between activities C and D is affected
by the previous choice of A and B i.e., C can be chosen only if A was chosen
before. Finally, the infrequent paths pattern is illustrated in Figure 7.3d: when
the execution reaches an exclusive choice, one outgoing branch (i.e., activity
A) has a 90% chance to be chosen, while all other branches (i.e., activity B)
have a combined 10% chance to be chosen. In the absence of infrequent paths,
all branches have the same probability of being chosen. Note that this pattern

196 A Framework for Benchmarking Process Discovery Techniques

A B

(a) Sequence

A

B

(b) Exclusive choice

A

B

(c) Parallelism

A

B

(d) Inclusive choice

A

(e) Loop

Figure 7.2: Basic control-flow patterns.

impacts the frequency of traces in the event logs, as traces will tend to follow
the “frequent paths”. Also note that the frequency of an “infrequent path” is
determined by the number of branches in the exclusive choice.

As a result, the implementation of this block allows users to fully control the
control-flow behavior in the generated models and generalize the results to the
pre-defined population. Concretely, the user can define a population of process
models by setting a value for each of the following parameters related to the
patterns described above:

Generate event data from model

For each generated model, this block creates an event log i.e., a random sample
of all possible traces allowed by that model. This building block simulates the
given model to generate a user-specified number of traces per event log. As

7.2 Discovery Evaluation Framework 197

A

B

(a) Silent transitions

A B A

(b) Duplicate activities

A

B

C

D

(c) Long-term dependency

A

B

50%

50%

A

B

90%

10%

Without infrequent paths With infrequent paths

(d) Infrequent Paths

Figure 7.3: Advanced control-flow patterns.

a result, the resulting event log contains a random set of fitting and complete
traces.

The exclusive choices in each of the models have output-branch probabili-
ties. Therefore, the presence of infrequent paths will affect these probabilities
in order to make some branches of the model more visited than others, which
will result in event logs with infrequent behavior. The technique used in this
framework for generating event data is described in [88].

198 A Framework for Benchmarking Process Discovery Techniques

Table 7.1: Parameters used to define a population of process models.

Parameter Type Parameter Value set Constraints

Model size (# act)
min N

min ≤ mode ≤ maxmode N

max N

sequence (s) [0, 1] ⊂ R

s+ e+ p+ i+ l = 1
Probability of exclusive choice (e) [0, 1] ⊂ R

basic c-f parallelism (p) [0, 1] ⊂ R
pattern inclusive choice (i) [0, 1] ⊂ R

loop (l) [0, 1] ⊂ R
Probability of silent transitions [0, 1] ⊂ R

none
advanced c-f duplicate activities [0, 1] ⊂ R

pattern long-term dependency [0, 1] ⊂ R
infrequent paths {true,false}

Split event data

This building block applies the first step needed for the k-fold cross validation
evaluation method. The step splits a given event log into k subsets (folds) of
equal size. k − 1 folds will form the “training log” and are the input of the
discovery algorithm. The k-th fold is the “test log” which is split in half: one
half constitutes the “fitting test traces”, the other half will serve as the input of
the “add noise to event data” block to make “non-fitting test traces”. This is
repeated k times such that each of the k folds becomes a “test log” exactly once.

Add noise to event data

In a classification approach, the “test log” should contain positive and nega-
tive examples. To this point, there are only positive examples i.e., an event
log containing only traces that fit the original model. The “add noise to event
data” block alters the given test traces so that they do not fit the original model
anymore. The goal of the non-fitting traces is to punish overgeneralization of
discovery algorithms. The flower model is an example of extreme overgen-
eralization that allows every possible trace but provides no added value in a
business context [156]. Therefore, this block aims to punish typical overgen-
eralizing patterns such as unnecessary loops, activity skips and parallelism, by
altering the traces using specific noise operations (see description below) that
can add or remove behavior. Additionally, the traces are altered but kept as

7.2 Discovery Evaluation Framework 199

close to the original trace as possible. In this way, the framework avoids non-
fitting traces that would be trivially rejected by underfitting models e.g., adding
an activity name that is not present in the original model.

It is important to note that the generation of non-fitting traces is done in con-
sideration of both the event log and the original model, as shown in Figure 7.4.
We consider three types of traces: non-fitting traces i.e., NFT, represent behav-

Type-1 FT

NFT

Type-2 FT

Figure 7.4: Illustration of a test log composition. Non-fitting traces (i.e., NFT) do not
fit the original model. Type-1 fitting traces fit the original model, and have
been observed in the event log. Type-2 fitting traces fit the original model,
but have not been observed in the event log. A test log is composed of type-1
fitting traces and non-fitting traces.

ior that is not considered by the original model. Type-1 fitting traces represent
the behavior observed in the event log and considered in the original model.
Type-2 fitting traces represent the behavior considered in the original model,
but not observed in the event log. Note that both non-fitting traces and type-2
fitting traces have not been observed in the event log. As mentioned earlier,
most existing approaches for evaluating discovery techniques do not consider
the original model, and use only the event log instead. If non-fitting traces
are generated only considering the event log (hence, disregarding the original
model), then such traces could be either real non-fitting traces or type-2 fitting
traces. In this chapter, we use both the event log and the original model to
generate non-fitting traces and overcome this limitation. Therefore, in the test
logs used in this chapter, only type-1 fitting traces and non-fitting traces are
included.

Given a process model and a set of type-1 fitting traces, noise is randomly-
added to each trace in order to transform it into a non-fitting trace as follows.

200 A Framework for Benchmarking Process Discovery Techniques

First, one or more of the following noise types based on [58] is added with a
user specified probability:

• Add activity: one of the process activities is added in a random position
within the trace.

• Duplicate an activity: when an activity is duplicated, it is inserted immedi-
ately after the original.

• Remove an activity: a single activity is randomly removed from the trace.

• Swap consecutive activities: a random pair of consecutive activities are
swapped within the trace.

• Swap random activities: similar to the previous type of noise, but the ac-
tivities to be swapped are selected from random positions in the trace (not
necessarily consecutive).

Then, the modified trace is checked for fitness with respect to the original
model. If the trace does not fit anymore, it is a noisy trace which will not
be edited anymore. If the trace still fits the model, noise is added again (and
checked afterwards) until it does not fit anymore, or until noise has been added
five times. If the noisy trace still fits the model, the trace is discarded and an-
other trace is randomly selected from the set of fitting traces. This trace follows
the same process described above.

Discover process model from event data

This block applies a discovery algorithm to the “training log” to induce a process
model. This could be any discovery technique with user specified parameter
settings. The discovered model will be used for conformance checking in the
next block.

Evaluate process model using event data

This block consists of a conformance check: the given traces used as input are
“replayed” on the discovered model. Because the framework applies a classifi-
cation approach, the replay assigns each trace to a binary class: if a trace can
be completely replayed by the discovered model it belongs to the “fitting” class,
otherwise the trace is a part of the “non-fitting” class. The number of classes
could be extended to create a more fine-grained evaluation. However, we argue

7.2 Discovery Evaluation Framework 201

that determining the classes for partially fitting traces would require additional
research, which is outside the scope of this thesis.

Calculate metrics

The framework summarizes the performance of an algorithm using three stan-
dard metrics adopted from the data mining and information retrieval domain:
precision, recall and F-measure. Traditionally these metrics are based on:

• True Positives: the number of real traces that fit the discovered model.

• False Positives: the number of false traces that fit the discovered model.

• False Negatives: the number of real traces that do not fit the discovered
model.

• True Negatives: the number of false traces that do not fit the discovered
model.

The precision metric refers to the percentage of traces that fit the original
model from all the traces that fit the discovered model.

Precision =
True Positives

(True Positives + False Positives)

Inversely, the recall metric refers to the percentage of traces that fit the discov-
ered model from all the traces that fit the original model.

Recall =
True Positives

(True Positives + False Negatives)

The framework uses the F1 variation of the F-measure. This statistic refers to
the harmonic average of the precision and recall metrics.

F1 =
2 · Precision · Recall
(Precision + Recall)

Statistical analysis

The evaluation framework allows users to compare the performance of algo-
rithms and to study the effect of control-flow characteristics on the performance
of the algorithm. The statistical analysis based on the evaluation results de-
pends on the objectives of the experiment and the corresponding hypotheses

202 A Framework for Benchmarking Process Discovery Techniques

to be tested. Therefore, the framework does not incorporate specific statistical
techniques, instead it can be used with a whole range of exploratory, descriptive,
and causal statistical techniques to test any hypothesis that can be expressed in
terms of precision, recall, F1 score, and characteristics of log and model. We
believe that this will benefit the adoption of the framework for all types of eval-
uation studies, rather than serve a specific purpose.

7.2.3 Extensibility of the Framework

As claimed before, the framework reported in this chapter is not bound to Petri
nets or any other modeling notation. Concretely, we included Petri-net-based
and declarative-model-based approaches in the benchmark. As a consequence,
it is extensible to incorporate new discovery algorithms, independently of the
notations in which these algorithms generate the model. Note that in such cases,
the framework workflow (illustrated in Figure 7.1) is not affected because the
corresponding blocks are not bound to a specific implementation.

To add a new algorithm to the implementation of the framework, it is nec-
essary to (1) plug-in the new algorithm as a new instantiation of block Discover
process model from event data (discussed in Section 7.2.2) and (2) plug-in a new
conformance checker, if needed, for the notation used by the discovery algo-
rithm. Note that it is not necessary to change the instantiation of block Generate
process models. Any model generator in any notation that can represent the pat-
terns defined in Section 7.2.2, such as process trees, can be employed. These
models are only used to generate the event logs with fitting and non-fitting
traces and are not directly compared with the models that are discovered.

For example, consider the case that one wants to evaluate an algorithm that
discovers a BPMN model while limiting the number of changes to the current
implementation. The implementation of the algorithm needs to be plugged
into RapidProM. Also, a conformance checker for BPMN models needs to be
available in the implementation. As a matter of fact, this conformance checker
is already available in the implementation. First, the BPMN model is converted
into a Petri net that is trace equivalent: each execution of the BPMN is possible
in the Petri net, and vice versa [89]. Second, the Petri-net conformance checker
can be employed. The trace equivalence between the BPMN and the Petri net
models guarantees that every trace that is diagnosed as fitting/unfitting using
the equivalent Petri net will also be as such with respect to the original BPMN
model.

7.3 Experiments 203

7.3 Experiments

The framework presented in this chapter has been implemented as a process
mining workflow (see Chapter 4). Therefore, other researchers can replicate
experiments with little effort by just executing the workflow. In this way, our
framework facilitates repeated process discovery evaluation, e.g. it becomes
trivial to evaluate another set of algorithms or to assess the algorithm’s perfor-
mance with regard to other data characteristics (e.g. noise, control-flow pat-
terns, etc.).

The framework was operationalized in RapidProM (presented in Chapter 4),
which contains instantiations for all the blocks mentioned in Section 7.2.2. Fig-
ure 7.5 illustrates the implemented workflow.

Figure 7.5: Concrete implementation of the framework into a RapidMiner workflow. In
Step 1, a collection of models is generated from a population settings pa-
rameter. In Step 2, for each generated model, an event log is created. In
Step 3, each event log is used to rediscover a model using different miners
(left side), which are checked for conformance with respect to fitting and
non-fitting traces (right side). Finally, results are processed.

The experiments were based on the following discovery algorithms: Alpha+
miner [167], Heuristics miner [189], ILP miner [170], Inductive miner [102]
and Declare miner [37]. The first four discovery algorithms produce Petri nets,
which require a suitable conformance checker. The choice has fallen on the

204 A Framework for Benchmarking Process Discovery Techniques

alignment-based conformance-checking technique presented in [114] that, dif-
ferently from token-based algorithms [131], is able to deal with invisible transi-
tions and duplicate activity labels. Note that the Alpha+ and Heuristics miners
can yield models that are unsound (e.g., they contain deadlocks). In those cases,
conformance checkers cannot replay traces on such models, hence the result will
indicate that none of the test traces fit the discovered model. The Declare miner
produces declarative process models, hence, it requires a different conformance
checker. For this purpose, we chose the conformance checker presented in [42].
However, other conformance checkers for declarative models such as [19, 31]
can be used instead.

Excluding the ILP miner, the other algorithms were used with the default
configuration. The ILP miner was configured to generate models in which the
final marking is the empty marking i.e., no remaining tokens. Any other con-
figuration generates process models in which the ILP miner does not state what
the final marking is, which would require a model inspection by a human. The
human involvement would hinder the possibility of an automatic workflow.

We conducted two rounds of experiments. In both experiments, the same
implemented workflow (showed in Figure 7.5) was used. However, different
parameters were used in each experiment in order to tailor it towards specific
purposes. The first round validates the usefulness of the proposed framework
through an experiment consisting of a detailed empirical analysis of the pro-
cess discovery algorithms mentioned above. The experimental setup of the first
round is reported in Section 7.3.1, where the results are analyzed and discussed.
In the second experiment round, the flexibility of the framework and its support
for large-scale experiments are validated by extending the first round to exper-
iments five times larger. Section 7.3.2 reports on the second (extended) round
of experiments.

The implemented workflow that executes the experiments presented in this
section (see Figure 7.5) is publicly available, and can be downloaded from:
https://www.dropbox.com/s/2bsyksdqwnvai47/DiscoveryBenchmark.zip?

dl=0. The reader is encouraged to download and use the workflow to re-
produce the experiment results or extend the framework to other discovery
algorithms or process characteristics.

7.3.1 First Experiment

As mentioned earlier, the goal of this framework is to analyze and compare the
accuracy of process discovery techniques to rediscover process models based on
observed executions, i.e., event logs. The population of process models that

https://www.dropbox.com/s/2bsyksdqwnvai47/DiscoveryBenchmark.zip?dl=0
https://www.dropbox.com/s/2bsyksdqwnvai47/DiscoveryBenchmark.zip?dl=0

7.3 Experiments 205

we aim to rediscover is generated by varying a number of parameters, which
identify the probability of occurrences of typical process characteristics, such as
parallel branches, silent transitions and infrequent paths. Section 7.2.2 has dis-
cussed the blocks which, so far, our framework allows for and how the probabil-
ities influence the generated process models. In the first round of experiments,
the population of models is generated by varying the probability of duplicate
activities and by enabling or disabling the presence of infrequent paths. In
this way, we can study the impact of infrequent behavior and of different fre-
quencies of duplicate activities on the accuracy of process discovery techniques.
Section 7.3.2 will report on the extended experiment where the probability of
the other process characteristics are also varied.

Therefore, the experimental design includes all the combinations of three
independent variables: process discovery technique used (i.e., miner), presence
or absence of infrequent paths and the probability of having duplicate activities.
The parameter values used in this experiment are summarized in Table 7.2. In
total, the 70 possible combinations are included in the experiment: 5 discov-
ery techniques × 2 levels of infrequent behavior × 7 probabilities of duplicate
activities.

Table 7.2: Summary of the possible parameter values included in the experiment: 70
(5× 7× 2) value combinations.

Parameter Type Parameter Values considered

Miner Miner Alpha+ [167], Declare [37],
Heuristics [189], ILP [170], Induc-
tive [102]

Model size (# act)
min 15

mode 30
max 60

sequence (s) 0.46
Probability of exclusive choice (e) 0.35

basic c-f parallelism (p) 0.19
pattern inclusive choice (i) 0

loop (l) 0
Probability of silent transitions 0
advanced c-f duplicate activities 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

pattern long-term dependency 0
infrequent paths true, false

206 A Framework for Benchmarking Process Discovery Techniques

As mentioned above, the other process characteristics are not taken into
account in this analysis. The size of the model is defined by a fixed triangular
distribution from 15 to 60 activities, with a mode of 30 activities per model. The
probability of non-exclusive choice (OR) and of loops are set to zero and, hence,
these two constructs do not occur. The probability of sequence, exclusive choice
and parallelism is set and kept fixed to values 46%, 35% and 19%, respectively.
These values have been determined after analysing their frequencies in the large
collections of models reported in [98]. In this work, Kunze et al. have observed
that 95% of the models consist of activities connected in sequences, 70% of the
models consist of activities, sequences and XOR connectors and 38% consist of
sequences, activities and AND connectors (see Fig. 4b of the paper). Assuming
independence of occurrence probability of sequences, AND and XOR, it follows
that:

P (sequence) = 0.95
P (sequence ∧XOR) = P (sequence)× P (XOR) = 0.70 ⇒ P (XOR) = 0.74
P (sequence ∧AND) = P (sequence)× P (AND) = 0.38 ⇒ P (AND) = 0.4

When these values are normalized to 1, the final probabilities of the constructs
are obtained.

For each discovery technique a random sample of 62 process models is
drawn. The sample size of 62 models allows us to study the effect of process
discovery techniques, infrequent paths and different probabilities of duplicate-
activity occurrences (and their interactions) using a fixed effects ANOVA anal-
ysis [48] with significance level α = 0.05 and power 1 − β = 0.98. This power
indicates the probability to detect a significant effect when two mining algo-
rithms actually differ by a relatively small difference. In total 4340 process
models (70 settings × 62 models per setting) were generated.

Figures 7.6a and 7.6b show two examples of the generated models in a Petri
net notation: the first shows a relatively simple model with no duplicate activi-
ties, while the second shows a larger model with plenty of duplicate activities.

For each of the obtained process models, an event log containing between
200 and 1000 traces is generated (See Section 7.2.2). For each generated log,
we can calculate the completeness i.e., the ratio of unique traces in the log to
all possible unique traces according to the model using the technique described
in [76]. Figure 7.7 shows a histogram of the completeness of the event logs
generated in this experiment.

The effect of process-discovery techniques, infrequent paths and different
probabilities of duplicate-activity occurrences can be analyzed using one-way
ANOVA analysis if the assumptions of homogeneity of variances and normality

7.3 Experiments 207

(a) Simpler model without duplicate activities.

(b) More complex model with duplicate activities.

Figure 7.6: Samples of the models generated in this experiment.

Figure 7.7: Distribution of completeness of logs wrt. their respective process models.
Completeness is measured as the fraction of traces allowed by the model
that are present in the event log.

of the dependent variable hold [48]. However, both assumptions were violated
for every dependent variable i.e., F1, recall and precision. Therefore, the non-
parametric Kruskall-Wallis test (KW) [136] was applied instead.

KW is used for testing whether k independent samples are from different

208 A Framework for Benchmarking Process Discovery Techniques

populations. It starts by ranking all the data from the different samples to-
gether: assign the highest score a rank 1 and the lowest a rank N , where N
is the total number of observations in the k samples. Then, the average rank-
ing for each sample is computed, e.g. the mean of sample j is denoted as R̄j .
With n the number of observations in each sample, the test statistic KW, which
follows a χ2 distribution with k − 1 degrees of freedom, can be calculated as:
KW = [12

(N(N+1))

∑k
j=1 nR̄

2
j]− 3(N +1). If the calculated KW is significant, then

it indicates that at least one of the samples is different from at least one of the
others. Subsequently, the multiple comparison post hoc test is applied to de-
termine which samples are different. More specifically, for all pairs of samples
Ri and Rj it is tested whether they differ significantly from each other using

the inequality: |Ri − Rj | ≥ zα/k(k−1)

√
N(N+1)

12 (2n). The zα/k(k−1) value can
be obtained from a normal distribution table given a significance level α. The
formula adjusts this α with a Bonferroni correction to compensate for multiple
comparisons. If the absolute value of the difference in average ranks is greater
than or equal to the critical value i.e., the right side of the equation, then the
difference is significant.

Finally, the Jonckheere test [136] can be used to test for a significant trend
between the k samples. First, arrange the samples according to the hypothe-
sized trend, e.g. in case of a positive trend from smallest hypothesized mean
to highest hypothesized mean. Then count the number of times an observation
in sample i precedes an observation in sample j, denoted as Uij ∀i < j. The
Jonckheere test statistic J is the total number of these counts: J =

∑k
i<j Uij .

When J is greater than the critical value for a given significance level α, then
the trend between the k samples is significant.

The Effect of Process Discovery Technique

The goal is to learn the effect of a process discovery technique on each of the
dependent variables: recall, precision and F1 score. The other variables (i.e.,
infrequent paths level and probability of duplicate activities) are part of the
error term.

We apply the KW method, to test whether the average rank differs between
the five process discovery techniques (i.e., samples). In this case we ranked all
the 4340 averages over a 10-fold cross validation for recall, precision and F1

score values ignoring sample membership (i.e. discovery technique). Note that
the samples are ranked only after all the recall, precision and F1 score values
have been calculated. The highest value for recall, precision and F1 score gets

7.3 Experiments 209

rank 1 (lowest rank), while the lowest absolute value gets rank 4340 (highest
rank).

Then we computed the average ranking per miner i.e., the average position
of a discovered model by that miner for that quality metric. The samples are
ranked all together on a scale from 1 to 4340. Then, for each miner, we select
the samples that were used with such miner, and calculate their average rank
for each quality metric. A higher average ranking means worse performance.
The ranking summary is shown in Table 7.3.

Table 7.3: Average ranks per miner (n = 4340). Each cell indicates the average ranking
for a specific performance dimension (row header) and for a specific miner
(column header). One can compare miners by comparing the average ranks
within one row.

Alpha+ Declare Heuristics ILP Inductive

Recall 2912.37 2424.87 3299.76 558.54 1656.94
Precision 2649.08 2605.64 3261.80 1060.34 1275.62
F1 score 2851.28 2535.53 3293.33 727.16 1445.18

Based on the average rankings in Table 7.3, the order suggested between
process discovery techniques is: ILP ≺ Inductive ≺ Declare ≺ Alpha+ ≺ Heuris-
tics for recall, precision and F1 scores. It indicates that the ILP miner creates the
best models in terms of recall, precision and F1 scores. The Inductive miner out-
performs the Declare and Alpha+ miners, which in turn outperform the Heuris-
tics miner. The results of the KW test confirm that the differences in average
rankings between the five miners are statistically significant (significance level
α = 0.05). Moreover, the multiple comparison post-hoc test (cf. supra) also
confirms the statistical significance of the differences between algorithms, as
shown in Table 7.4.

The Effect of Infrequent Paths

This analysis tests whether the presence/absence of infrequent paths3 has an
impact on the average ranking of the five process discovery techniques for re-
call, precision and F1 scores. The effect of duplicate activities is a part of the

3Infrequent paths are denoted with an imbalance in execution probabilities of the output-
branches of each exclusive choice construct in the model which results in an event log containing
infrequent behavior.

210 A Framework for Benchmarking Process Discovery Techniques

Table 7.4: Results of the statistical tests to study the effect of discovery algorithms on F1

scores.

Kruskall-Wallis rank sum test
KW χ2 = 2691.8 degrees of freedom = 4 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
Alpha+ - Declare 315.75 168.83 True
Alpha+ - Heuristics 442.05 168.83 True
Alpha+ - ILP 2124.12 168.83 True
Alpha+ - Inductive 1406.10 168.83 True
Declare - Heuristics 757.80 168.83 True
Declare - ILP 1808.37 168.83 True
Declare - Inductive 1090.35 168.83 True
Heuristic - ILP 2566.17 168.83 True
Heuristic - Inductive 1848.15 168.83 True
ILP - Inductive 718.02 168.83 True

error term. Firstly, the sample of size 4340 is split into two subsets: 2170
samples with infrequent behavior and 2170 samples without infrequent behav-
ior. For each subset, the samples were ranked from 1 to 2170 according to
their precision, recall and F1 score values. This division is called blocking (see
Section 7.2) which is done to isolate the variation in recall, precision and F1

scores attributable to the absence/presence of infrequent paths. Secondly, the
KW test is applied to each subset. Table 7.5 contains the average rankings per
process discovery technique grouped by metric and experiments with and with-
out infrequent behavior. These rankings again suggest the same order between
process discovery techniques in all cases: ILP ≺ Inductive ≺ Declare ≺ Alpha+
≺ Heuristics.

In the absence of infrequent behavior, multiple comparison post-hoc tests
show that all the miners have statistically-significant differences with all the
other miners. However, this is not the case in the presence of infrequent be-
havior, as the multiple comparison post-hoc test shows that the Alpha+ and
Declare miners do not have a statistically-significant difference in terms of F1

scores. Table 7.6 shows a summary of the statistical post-hoc test results for the
F1 scores in the presence of infrequent behavior.

Note that only the difference between the Alpha+ and Declare miners in the

7.3 Experiments 211

Table 7.5: Average ranks per miner in terms of recall, precision and F1 Scores.

(a) Without infrequent behavior (n=2170)

Alpha+ Declare Heuristics ILP Inductive

Recall 1490.35 1144.75 1670.96 296.58 824.83
Precision 1310.13 1322.56 1639.10 507.50 648.18
F1 score 1461.35 1232.10 1669.64 337.78 726.61

(b) With infrequent behavior (n=2170)

Alpha+ Declare Heuristics ILP Inductive

Recall 1424.36 1267.79 1631.71 258.24 845.37
Precision 1333.31 1291.56 1621.94 551.55 629.12
F1 score 1394.88 1277.99 1628.01 383.95 742.65

Table 7.6: Results of the statistical tests to study the effect of the miner on F1 scores in
the presence of infrequent behavior.

Kruskall-Wallis rank sum test
KW χ2 = 1261.8 degrees of freedom = 4 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
Alpha+ - Declare 116.88 119.39 False
Alpha+ - Heuristics 233.12 119.39 True
Alpha+ - ILP 1010.92 119.39 True
Alpha+ - Inductive 652.22 119.39 True
Declare - Heuristics 350.01 119.39 True
Declare - ILP 894.04 119.39 True
Declare - Inductive 535.33 119.39 True
Heuristic - ILP 1244.05 119.39 True
Heuristic - Inductive 885.35 119.39 True
ILP - Inductive 358.70 119.39 True

presence infrequent behavior is not statistically significant for F1 scores. There-
fore, one cannot accept the assumption that infrequent paths do not influence
process discovery techniques.

212 A Framework for Benchmarking Process Discovery Techniques

The Effect of Duplicate Activities

The analysis investigates how the accuracy of each process discovery technique
(in terms of precision, recall and F1 score) is influenced by the probability of
duplicate activities (i.e., the average percentage of duplicated visible activity
labels in the process models). The effect of infrequent behavior is a part of
the error term. Figure 7.8 illustrates the average F1 scores for all the process
discovery techniques over different probabilities of duplicate activities.

Figure 7.8: F1 scores for process discovery techniques for different probabilities of du-
plicate activities

This graph indicates a general negative trend i.e., the probability of dupli-
cate activities has a negative effect on F1 scores. To determine whether such
a trend is statistically significant, an in-depth analysis is performed. First, the
4340 samples are divided into five subsets of 868 samples each, grouped by the
process discovery technique. The samples of each subset were ranked from 1
to 868 according to their precision, recall and F1 score values. As such, the
variation in accuracy associated with the discovery technique is isolated. Then,
similar to the analysis above, the KW test is applied to compare the average
rankings of the discovered models. Table 7.7 contains one subtable for each
process discovery technique with the average ranks for all three metrics by the
probability of duplicate activities.

For the Alpha+ miner, the data (shown in Table 7.7a) seems to suggest that
as the probability of duplicate activities increases, the models generated by Al-
pha+ miner deteriorate in terms of recall, precision and F1 score. To test this
impression statistically, we will rely on the KW and Jonckheere tests. The re-
sults of these statistical tests and the multiple pair-wise comparison between
different probabilities of duplicate activities for the Alpha+ miner is presented

7.3 Experiments 213

Table 7.7: Average ranks of process discovery techniques per probability of duplicate
activities in terms of recall, precision and F1 scores.

(a) Alpha+ miner (n=868)

Prob. Duplicate
0 0.05 0.10 0.15 0.20 0.25 0.30

Activities

Recall 339.47 417.21 428.08 451.02 435.54 479.52 490.66
Precision 346.37 421.59 423.21 449.60 431.10 478.01 491.62
F1 score 339.46 417.56 427.86 450.78 435.69 479.36 490.78

(b) Declare miner (n=868)

Prob. Duplicate
0 0.05 0.10 0.15 0.20 0.25 0.30

Activities

Recall 456.86 451.45 462.90 428.41 427.99 393.00 420.86
Precision 450.21 442.10 457.47 432.26 440.84 382.23 436.36
F1 score 451.70 445.89 460.29 431.36 431.54 393.97 426.71

(c) Heuristics miner (n=868)

Prob. Duplicate
0 0.05 0.10 0.15 0.20 0.25 0.30

Activities

Recall 432.08 429.27 435.26 428.28 442.85 437.97 435.79
Precision 431.96 429.40 434.90 428.14 442.76 438.51 435.83
F1 score 432.04 429.34 435.19 428.27 442.85 438.06 435.75

(d) ILP miner (n=868)

Prob. Duplicate
0 0.05 0.10 0.15 0.20 0.25 0.30

Activities

Recall 466.09 438.65 457.05 462.85 416.74 418.97 381.15
Precision 172.53 295.21 369.48 431.76 521.84 604.08 646.60
F1 score 185.64 288.92 370.51 430.34 519.42 602.04 644.64

(e) Inductive miner (n=868)

Prob. Duplicate
0 0.05 0.10 0.15 0.20 0.25 0.30

Activities

Recall 239.90 339.92 415.75 462.62 492.83 515.94 574.54
Precision 241.90 331.42 405.01 478.28 496.85 490.82 597.22
F1 score 219.71 339.45 410.69 474.73 500.88 505.77 590.27

214 A Framework for Benchmarking Process Discovery Techniques

in Table 7.8. Both tests show that there is statistically significant negative trend
in the relative quality of the generated models as the probability of duplicate
activities increases. A pairwise comparison of each probability of duplicate ac-

Table 7.8: Results of the statistical tests to study the effect of duplicate activities on F1

scores for the Alpha+ miner.

Kruskall-Wallis rank sum test
KW χ2 = 44.29 degrees of freedom = 6 p-value < 6.485e−8

Jonckheere-Terpstra test
JT = 140560 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 78.10 96.73 False
0.0-0.1 88.40 96.73 False
0.0-0.15 111.32 96.73 True
0.0-0.2 96.23 96.73 False
0.0-0.25 139.90 96.73 True
0.0-0.3 151.32 96.73 True
0.05-0.1 10.30 96.73 False
0.05-0.15 33.22 96.73 False
0.05-0.2 18.13 96.73 False
0.05-0.25 61.80 96.73 False
0.05-0.3 73.21 96.73 False
0.1-0.15 22.92 96.73 False
0.1-0.2 7.83 96.73 False
0.1-0.25 51.50 96.73 False
0.1-0.3 62.92 96.73 False
0.15-0.2 15.09 96.73 False
0.15-0.25 28.58 96.73 False
0.15-0.3 40.0 96.73 False
0.2-0.25 43.67 96.73 False
0.2-0.3 55.09 96.73 False
0.25-0.3 11.42 96.73 False

tivities does not provide a clear picture how this trend looks like for recall, with
many comparisons statistically insignificant. For precision and F1 on the other
hand, the quality of the models decreases significantly whenever the probability
of duplicate activities increases from 0% to more than or equal to 15%.

For the Declare miner, increasing probabilities of duplicate activities seems

7.3 Experiments 215

to have a positive impact on F1 scores (see Table 7.7b). However, the KW and
Jonckheere tests, presented in Table 7.9, confirm that there is no evidence of a
trend in recall, precision and F1 score as the probability of duplicate activities
increases.

Table 7.9: Results of the statistical tests to study the effect of duplicate activities on F1

scores for the Declare miner.

Kruskall-Wallis rank sum test
KW χ2 = 6.099 degrees of freedom = 6 p-value = 0.4122

Jonckheere-Terpstra test
JT = 168806 p-value = 0.066

The models discovered using the Heuristics miner seem insensitive to the
probability of duplicate activities (see Table 7.7c). The KW and Jonckheere
tests, presented in Table 7.10, confirm that there is indeed statistically insuffi-
cient evidence of a trend in recall, precision and F1 score as the probability of
duplicate activities increases.

The results for the ILP miner in Table 7.7d suggest a positive trend in the
probability of duplicate activities in terms of recall! This will be discussed later
in this section. However, in terms of precision, the ILP miner shows high sen-
sitivity to the probability of duplicate activities. The KW and Jonckheere tests
confirm both statements, as shown in Table 7.11. The pairwise comparisons of
duplicate activities presented in this table reveals the significant negative trend
in terms of F1 scores of the generated models as the probability of duplicate
activities increases.

The findings for the Inductive miner indicate that as the probability of du-
plicate activities increases, the model quality in terms of recall, precision and
F1 score deteriorates, as shown in Table 7.7e. This effect, though, seems to
level off as we reach higher probabilities of duplicate activities. The KW and
Jonckheere tests show that there is indeed a significant negative trend in the
relative quality of the generated models as the probability of duplicate activities
increases, as shown in Table 7.12. However, at a probability of around 15% of
duplicate activities, this effect seems to have reached a plateau and stays stable.

7.3.2 Second (Extended) Experiment

The above experiments have validated the usefulness of the proposed evalua-
tion framework to support the benchmark and sensitivity analysis evaluation

216 A Framework for Benchmarking Process Discovery Techniques

Table 7.10: Results of the statistical tests to study the effect of duplicate activities on F1

scores for the Heuristics miner.

Kruskall-Wallis rank sum test
KW χ2 = 1.4786 degrees of freedom = 6 p-value = 0.9609

Jonckheere-Terpstra test
JT = 160165 p-value = 0.255

Table 7.11: Results of the statistical tests to study the effect of duplicate activities on F1

scores for the ILP miner.

Kruskall-Wallis rank sum test
KW χ2 = 331.81 degrees of freedom = 6 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 81029 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 103.28 96.73 True
0.0-0.1 184.87 96.73 True
0.0-0.15 244.71 96.73 True
0.0-0.2 333.78 96.73 True
0.0-0.25 416.40 96.73 True
0.0-0.3 459.0 96.73 True
0.05-0.1 81.59 96.73 False
0.05-0.15 141.42 96.73 True
0.05-0.2 230.50 96.73 True
0.05-0.25 313.12 96.73 True
0.05-0.3 355.72 96.73 True
0.1-0.15 59.83 96.73 False
0.1-0.2 148.91 96.73 True
0.1-0.25 231.53 96.73 True
0.1-0.3 274.13 96.73 True
0.15-0.2 89.07 96.73 False
0.15-0.25 171.70 96.73 True
0.15-0.3 214.29 96.73 True
0.2-0.25 82.63 96.73 False
0.2-0.3 125.22 96.73 True
0.25-0.3 42.60 96.73 False

7.3 Experiments 217

Table 7.12: Results of the statistical tests to study the effect of duplicate activities on F1

scores for the Inductive miner.

Kruskall-Wallis rank sum test
KW χ2 = 180 degrees of freedom = 6 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 105512 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 119.75 96.73 True
0.0-0.1 190.98 96.73 True
0.0-0.15 255.02 96.73 True
0.0-0.2 281.17 96.73 True
0.0-0.25 286.07 96.73 True
0.0-0.3 370.57 96.73 True
0.05-0.1 71.24 96.73 False
0.05-0.15 135.27 96.73 True
0.05-0.2 161.43 96.73 True
0.05-0.25 166.32 96.73 True
0.05-0.3 250.82 96.73 True
0.1-0.15 64.04 96.73 False
0.1-0.2 90.19 96.73 False
0.1-0.25 95.08 96.73 False
0.1-0.3 179.58 96.73 True
0.15-0.2 26.15 96.73 False
0.15-0.25 31.05 96.73 False
0.15-0.3 115.55 96.73 True
0.2-0.25 4.90 96.73 False
0.2-0.3 89.40 96.73 False
0.25-0.3 84.50 96.73 False

objectives. The proposed framework is also flexible as it allows users to easily
setup extended experiments. Here, we have extended the above experiment
with other control-flow characteristics. The probability of the basic characteris-
tics, sequence, parallel and exclusive choice, is set the same as in the previous
experiments. In this experiment, for each process characteristic, we have var-
ied the probability of its occurrence while setting the probability of the others
to zero. Instead of 4340 observations as in the first experiment, the extended
experiment results in 21700 observations. Figure 7.9 illustrates how the differ-

218 A Framework for Benchmarking Process Discovery Techniques

ent algorithms perform in terms of F1 score with varying probabilities of the
constructs.

(a) Duplicate activities (b) Loops

(c) OR (d) Silent transitions

(e) Long-term dependencies

Figure 7.9: F1 scores for process discovery techniques for different probabilities of pro-
cess control-flow characteristics.

It is clear that the ILP and Inductive miner perform significantly better than
the Alpha+, Declare and Heuristics miner. In fact, this is not surprising because
the Alpha+ and Heuristics miners are not guaranteed to produce sound mod-
els, which allow executions to be carried out till completion. Models discovered
with Alpha+ and Heuristics miner can contain deadlocks, livelocks, and other
anomalies [156]. When a model is indeed not sound, it cannot replay traces
until the end and, hence, the confusion matrix may contain few true positives
(often none), causing precision, recall and F1 scores to be very low (often zero).
This is not trivial because, although the theory already postulated it, it was not
clear how much the lack of soundness guarantee was practically affecting the

7.3 Experiments 219

results. Ultimately this means that the Alpha+ miner, Declare miner and Heuris-
tics miner can be useful to gain an initial insight into the general structure of the
process but should not be used for more precise analysis such as conformance
checking.

Looking at Fig. 7.9, the ILP miner tends to perform better than Inductive
miner in terms of F1 score. This is observed for all constructs and all occurrence
probabilities considered in this experiment. In particular, for such constructs as
silent transitions and long-term dependencies, the F1 score is steadily around 1,
which indicates almost perfect precision and recall. This result is far from being
trivial: as discussed in [170], the ILP miner focuses on producing models that
can replay every trace of the event log, without trying to maximize precision.
Furthermore, because ILP miner only aims at replaying the traces in the event
log used for discovery, one would expect that a different event log, e.g., used
for testing, would not let the discovered models score high in recall, either.

These findings are supported by visually comparing the models that the ILP
miner generates and those from the Inductive miner, such as the models pre-
sented in Figures 7.10 and 7.11 respectively discovered through the Inductive
and ILP miner.

Figure 7.10: Model discovered by the Inductive miner.

The red boxes in these figures illustrate the unprecise parts of the model.
For the Inductive miner model, the transitions in the box can be executed in
any order and, because of the loop, an arbitrary number of time. Of course,
in the reality, these transitions should occur in a more precise order; but the
miner is unable to “see it”. Conversely, for the model discovered through the
ILP miner, the only “source of imprecision” is related to the “floating transition”
a but it is just one out of 26 transitions. As discussed in Section 7.2.2, to punish
for imprecise behavior, our framework injects noise into fitting traces. In case

220 A Framework for Benchmarking Process Discovery Techniques

Figure 7.11: Model discovered by the ILP miner.

of the models by the ILP miner, the probability that the noise would involve the
only “floating transition” a is low. However, the probability that noise affects
activities present in precise regions of the model is high. Such deviations in
very precise regions are easily detected, resulting in high F1 scores for the ILP
miner. The same reasoning is shared among most of models.

Another interesting result for both the Inductive miner and the ILP miner
is that the values of F1 score seem not to be really affected by the amount
of occurrences of the process constructs, except for duplicate activities and,
limitedly, from the OR construct. The OR is known to be a hard construct and
neither of the two miners provides specific support for it (for Inductive miner,
at least for the version being evaluated). For duplicate activities, this can be
explained by the fact that both ILP and Inductive miner do not natively support
mining models where different transitions share the same activity label. This
means that duplicate activities are causing the creation of loops: a transition
without input places is a loop (see above), which would underfit the behavior
observed in the event log, thereby yielding lower precision.

7.4 Conclusions 221

7.4 Conclusions

Existing empirical evaluation frameworks for process discovery techniques have
several important drawbacks. This chapter presented a new evaluation frame-
work to overcome the existing limitations. The framework allows researchers
to benchmark discovery algorithms as well as to perform a sensitivity analysis
to evaluate whether certain model or log characteristics have a significant effect
on an algorithm’s performance. It is independent from the discovered model’s
modeling notation by adopting a classification approach that uses the knowl-
edge of the original (reference) model to be rediscovered. Additionally, the
framework allows to generalize the evaluation results to a user specified model
population taking into account the size of the event logs, the applied noise op-
erators and parameter settings of the employed discovery algorithms. Finally,
the design of the framework as a process mining workflow enables automating,
sharing and extending evaluation experiments.

The framework has been validated by conducting an extensive experiment
involving five process discovery algorithms that produce models in different no-
tations, five control-flow characteristics and two levels of infrequent behavior.
The experiment has shown the usefulness and flexibility of the framework. Ad-
ditionally, the analysis of the experiment results has led to several non-trivial
insights on discovery algorithms in the context of the populations of processes
included in the experiments. Firstly, the evaluation results have illustrated that
the inability of the Alpha+ and Heuristics miner to always discover sound mod-
els strongly affects the quality results. Secondly, the ILP miner handled the
incompleteness of the event logs well as it discovered models with high recall
and precision. Thirdly, the amount of occurrences of loops, silent transitions
and long-term dependencies have only slightly affected the recall and precision
scores of both the Inductive and ILP miner. Finally, the results indicate that the
ILP and Inductive miner greatly outperform the Alpha+, Declare and Heuristics
miner in all the considered scenarios.

As limitations of this framework, we have to mention that this experiment
was conducted was conducted over populations of block-structured processes,
and that specific types of noise were used. Therefore, future work aims at ex-
tending the populations that can be generated for further experimenting with
even more noise types.

Chapter 8
A Framework for
Benchmarking Concept Drift
Detection Techniques

Processes evolve and change over time. This is only natural as they have to
adapt to a dynamic context that includes new laws and regulations, changing
customer preferences and demands and new competitors.

In the context of process mining, a concept drift is described as a change in a
process over time. It is important to detect concept drifts in event data in order
to obtain simpler, more precise and more realistic models out of event data, so
that they can be used to obtain new insights about the process (see Challenge
“Dealing with concept drift” in [152]).

As discussed in Chapter 1, concept drifts can also be considered as a form
of process variability where different variants of the process are distributed over
time. Any change in the process can be related to different variants of the
process e.g., one describing the process before and one describing the process
after the change. As an example, consider that processes evolve over time:
activities that were once necessary can become obsolete and are removed from
the process. Also, new activities can be incorporated into the process as a result
of new regulations. As a consequence, the difficulty of analyzing a process
can be related to the amount and impact of changes in it: the more changes a
process has had, the more difficult it is to analyze. It is unlikely that a model

224 A Framework for Benchmarking Concept Drift Detection Techniques

that represents the behaviour of several different process variants combined
will have a better precision than a collection of models where each represents a
different process variant.

Concept drift detection is not new: These techniques have been developed
since the 80’s. Many existing data mining techniques can be used to detect
concept drift e.g., support vector machines, and sliding windows. See [56] for
an extensive survey on concept drift detection techniques in the context of data
mining. There are many applications of concept drift techniques to a range of
problems. The work presented in [195] discusses an exhaustive taxonomy of
concept drift applications to various types of problems in data mining.

Concept drift detection techniques have also been proposed in the context
of process mining. However, these approaches do not perform an exhaustive
comparison with respect to other techniques. Some of these techniques do
a comparison over a small and ad-hoc collection of event logs obtained from
manually-designed process models, where drift is manually inserted. There is
the need for a framework that allows the objective and large-scale comparison
of concept drift techniques in process mining.

Moreover, there is no standard way to evaluate concept drift approaches
in process mining. For example, sliding-window-based approaches are evalu-
ated by the size of the window that is needed to detect a drift, while other
approaches (e.g., decision-tree-based) cannot use such metrics. Therefore, it is
also important to unify and standardize the way that concept drift techniques
are evaluated in a process mining setting, such that the evaluation is compatible
with all present and future concept drift detection techniques.

This chapter proposes a framework for benchmarking concept drift detec-
tion techniques in the form of a process mining workflow (see Chapter 4) that
allows a standardized evaluation and an exhaustive comparison of concept drift
detection techniques in the context of process mining.

The remainder of this chapter is structured as follows. Section 8.1 elaborates
on the concept drift and discusses related work. Section 8.2 proposes a novel
framework for benchmarking concept drift techniques in process mining in the
form of a process mining workflow and describes the building blocks used in
it. Section 8.3 discusses the implementation of the framework and provides a
description of the experiments. Then, the obtained results are discussed. Finally,
Section 8.4 concludes the chapter.

8.1 Related Work 225

8.1 Related Work

The term concept drift [134] is used in the field of data mining to generically de-
scribe changes in data over time. The underlying assumption is that the system
that generates such data is subject to changes, and when the system changes,
the observed behavior of the system (i.e., the data) will reflect such changes.
Since the systems and their explicit changes are often not available and well-
defined, concept drift techniques aim to discover such changes from the ob-
served data itself.

The work presented in [20] proposes three challenges in concept drift de-
tection: change point detection (i.e., detect that a process change has taken
place), change localization and characterization (i.e., to characterize the nature
of change, and identify the region(s) of change (localization) in a process), and
change process discovery (i.e., the discovery of the change process describing the
second-order dynamics). It also proposes two classes of concept drift detection:
online (i.e., changes need to be discovered in near real time) and offline (i.e.,
the presence of changes or the occurrence of drifts do not need to be uncovered
in a real time). Moreover, Bose [20] defines four types of concept drift: sudden
drift (i.e., a substitution of a process by another variant of the process, where
both processes do not coexist in time), gradual drift (i.e., a substitution of a
process by another variant of the process, where both processes do coexist for
some time, and the first process is gradually discontinued), recurring drift (i.e.,
a set of process variants reappear after some time) and incremental drift (i.e., a
drift is composed by several small incremental drifts).

In this chapter, we consider recurring and incremental drifts simply as a
composition of sudden and/or gradual drifts. Hence, only sudden and gradual
drifts will be considered in this chapter. Figure 8.1 illustrates these two types of
concept drift.

In the context of data mining, the work presented in [4] proposes an evalu-
ation criteria to compare concept drift detection techniques based on the well-
known concepts of precision, recall and F1 score, and applies it to several tech-
niques using a small collection of datasets. To the best of our knowledge, there
are no available frameworks for benchmarking concept drift detection tech-
niques in a process mining context.

In the context of process mining, several concept drift techniques have been
developed in recent years [20, 33, 109, 111, 112, 116]. Even the process vari-
ant detection technique presented in Chapter 6 can be used to detect concept
drift (i.e., by using the “next activity” attribute as the dependent variable and
the “timestamp” attribute as the independent variable). All these techniques

226 A Framework for Benchmarking Concept Drift Detection Techniques

Process Variant #1

Process Variant #2

P
ro

ce
ss

 E
xe

cu
ti

o
n

Time

Process Variant #3
Sudden Drift

Gradual Drift

Figure 8.1: Types of concept drift in processes

work nicely and are evaluated using a few sample event logs simulated from
manually-designed models. However, since most of these techniques only fo-
cus on change point detection, we will only focus on change point detection
techniques in an offline setting in order to provide a “fair” benchmarking frame-
work. It is important to note that online techniques can also work in an offline
setting, but not the other way around.

8.2 Concept Drift Evaluation Framework

The framework presented in this chapter aims to evaluate the ability of process-
oriented concept drift detection algorithms to detect control-flow changes in
processes. Similarly to the process discovery benchmarking framework pre-
sented in Chapter 7, this framework is designed based on the principles of sci-
entific workflows and experimental design. The former captures the complete
evaluation experiment in a workflow that can be automated, reused, refined
and shared with other researchers [8]. Such advantages were discussed in de-
tail in Section 7.2. The latter allows for precise answers that a researcher seeks
to answer with the evaluation experiment [93]. As described in Section 7.2,
the three cornerstones of good experimental design are: randomization, repli-
cation and blocking [55]. The three cornerstones together are fundamental to
make the experiments scientifically sound (e.g., avoid bias or wrong conclu-
sions). Therefore, the framework proposed in this chapter incorporates each of

8.2 Concept Drift Evaluation Framework 227

the cornerstones.
To integrate the steps needed for empirically evaluating process-oriented

concept drift detection algorithms, the framework is built as a process mining
workflow (see Chapter 4).

The remainder of the section will discuss the design of the framework (Sec-
tion 8.2.1) and its building blocks (Section 8.2.2) in more detail.

8.2.1 The Design of the Framework

The framework focuses on evaluating control-flow concept drift detection algo-
rithms. Therefore, other process related perspectives (e.g., data and resources)
are not presented here, but can of course be supported in a similar way. More-
over, the framework aims at evaluation instead of predicting the best performing
algorithm given an event log. The framework enables two main objectives: ei-
ther benchmarking different concept drift detection algorithms, or performing
sensitivity analysis e.g., what effect does a control-flow characteristic or event
log characteristic have on algorithm performance.

Figure 8.2 illustrates the framework instantiating the “large-scale experi-
ment” use case (see Section 4.4.3). The framework uses the process mining

For each concept drift detection technique...

For each model...

Generate event data

with concept drift from

models (GenerED)

Analyze event

data (AnalyzeED)

Calculate

metrics
E

Event log
with concept

drifts

R

Detected drift
points

R

Real drift points

Generate process models

(GeneM)

MMM

Concept
drift

parameters

P

Population
parameters

P

Statistical

analysis

Original Model

Figure 8.2: Framework for concept drift detection algorithm evaluation, presented as
an analysis scenario. Grey boxes represent process mining building blocks.
White boxes represent non-process-mining operators.

building blocks defined in Section 4.2, represented as grey boxes. It also con-

228 A Framework for Benchmarking Concept Drift Detection Techniques

tains non-process-specific blocks, represented as white boxes. Such blocks rep-
resent generic data-processing functionalities (e.g., calculate metrics) that com-
plement the process mining building blocks in order to obtain the desired anal-
ysis results.

The framework enforces the consecutive execution of data generation, con-
cept drift detection, quality measurement and statistical analysis.

Similarly to Chapter 7, the first step i.e., the data generation, is triggered by
the objective of the experiment. As a result, the objective determines the desired
control-flow behavior to be included in the event logs. The specification of
control-flow behavior defines a population of process models. This population
definition is the start of the data generation phase.

For each concept drift detection algorithm to be tested, multiple instances of
the “generate process models” block run in parallel. The generation results in
multiple random samples of process models from the same population.

Each model (“original model”) is then used by the block “generate event data
with concept drift from models” to create one event log (i.e., a random sample of
traces from all possible traces allowed by the model) that contains concept drift
of the behavior in the process, according to some parameter definition. The
results of this block are an event log with concept drift, and a set of drift points
i.e., points in time when a drift was forced. The samples of process models,
event logs and drift points constitute the ground truth.

Next, in the block “analyze event data” an algorithm to detect concept drift
is applied in each event log. The result of this block is a set of “discovered” drift
points in time for which the technique detected that there was a concept drift.

Subsequently, the framework measures the quality of the concept drift de-
tection algorithm by comparing, for each event log, the drift points “discovered”
by the algorithm with the original drift points used to generate the event log.
These results are then combined in a confusion matrix in the block “calculate
metrics”. This is discussed in the next section. Based on that matrix, one can
compute the well-known recall and precision metrics to evaluate the quality of
the concept drift detection algorithms.

Finally, the block “statistical analysis” tests the hypotheses formulated in the
context of the objectives.

Similarly to Chapter 7, this framework’s design has the property that no two
concept drift detection techniques are applied on the same event log in order to
reduce the selection bias. Furthermore, for each generated model - randomly
drawn from a predefined population of models - we generate only a single event
log that includes concept drift. Consequently, all discovered concept drifts and
any corresponding quality metrics are independent observations, which is an

8.2 Concept Drift Evaluation Framework 229

important assumption made by many standard statistical techniques.
Finally, the framework’s design based on the experimental design principles

enables the users to obtain algorithm’s performance measures that are indepen-
dent from specific process models and event logs. More specifically, this starts
from the generation of (preferably large1) random samples of process models
and logs from a population, which are then used to estimate the performance
of an algorithm with regard to that population. This contrasts with evaluations
based on a small non-random sample of (manually created) process models and
event logs as it could influence the performance estimate to only reflect these
particular models and logs.

8.2.2 Building Blocks

The previous section described the design of the framework, and briefly de-
scribed the blocks that conform it. This section elaborates on each of the blocks
presented above.

Generate process models

This building block was already introduced in Chapter 7. Hence, the reader
is referred to Section 7.2.2 for more details about this building block and its
parameters. As a summary, this building block generates a random sample of
process models from a population of models. The input of this block is a set of
parameters describing the population characteristics. The user can specify such
population characteristics by assigning probabilities to control-flow characteris-
tics of the model (e.g., parallelism) and setting the size of the models in terms of
visible activities, through the use of the same parameters defined in Table 7.1,
presented in Section 7.2.2.

In this framework (similarly to Chapter 7) process models are also gener-
ated as process trees [158], which support for all the constructs/patterns men-
tioned in Section 7.2.2 e.g., parallelism, loops, inclusive and exclusive choice.
To feature the artificial, random generations of process trees, the framework
applies the technique and implementation reported in [88], as mentioned in
Section 7.2.2. Concretely, the user defines a population of process models by
setting values for the parameters of this block, as described in Table 7.1.

1One can define the required sample size based on the desired power of the statistical analysis
in advance, see [38].

230 A Framework for Benchmarking Concept Drift Detection Techniques

Generate event data with concept drift from models

For each generated model, this block creates an event log with concept drift
based on a set of parameters that describe the characteristics of the concept
drifts to be included in the resulting event log. The input of this block is a
process model (i.e., the “original” model) and a set of parameters. Concretely,
the user can define the following parameters for generating an event log with
concept drift:

Table 8.1: Parameters used to create an event log with concept drift.

Parameter Type Parameter Value set

Model Number of drifts N

changes Type of change {add, remove, swap
fragments}

Type of drift {sudden, gradual}
Drift Duration of stable period R+

properties Duration of drift period (gradual drift) R+

Transition function (gradual drift) {linear, exponential}
Event log Time between cases R+

density Time between events R+

Accuracy Epsilon R+

The functionality of this block is illustrated in Figure 8.3. This block takes
the original process model and makes modifications to it according to the pa-
rameters “number of drifts” and “type of change”. If the number of drifts is
set to more than one, then all subsequent modifications (except the first one)
will be applied to the already modified models (i.e., incremental drifts) instead
of modifying the original model again. This results in a set of “modified” pro-
cess models. Then, an event log is built by sampling traces from such set of
“original” and “modified” models according to the duration distributions and
sampling probabilities defined by the parameters.

Sampling probabilities determine the specific model from which a trace is
sampled. For example, a sudden drift between models A and B will change the
sampling probabilities of model A from 1 (before the drift) to 0 (after the drift)
and of B in an inverse way. In the case of gradual drifts, such sample proba-
bilities do not change so abruptly, but more gradually over time. The duration
of a gradual drift is set by the parameter “duration of drift period”. Within a
gradual drift, the sampling probabilities can change over time in different ways,

8.2 Concept Drift Evaluation Framework 231

M

Concept drift
parameters

Original
process model

P

M
Generate event data from

models (GenerED)

E

R

Modify process model

(ModifyM)
MM’

If # drifts > 1

Event log
with concept

drift

Real drift
points

Modified
process

model(s)

Figure 8.3: Inner composition of the “Generate event data with concept drift from mod-
els" block. A process model is modified a given number of times. Then, an
event log is sampled from the resulting collection of models (original and
modified) according to some parameters.

and are defined by the “transition function” parameter. An example of this is
illustrated in Figure 8.4, where two gradual drifts are shown. The first (left) has
a linear transition function for the sampling probabilities of models A and B i.e.,
the sampling probabilities of both models change linearly over time until traces
are no longer sampled from model A (sampling probability = 0) and are only
sampled from model B (sampling probability = 1). The second (right) has an
exponential transition function for the sampling probabilities of models B and C
i.e., the sampling probabilities of both models change exponentially over time
until traces are no longer sampled from model B (sampling probability = 0) and
are only sampled from model C (sampling probability = 1).

The “duration of stable period” parameter can be used to define how much
“training” data can be used by the concept drift detection techniques. For ex-
ample, short “stable periods” lead to little event data available for describing
the (initial) stable states of the process, hence making it harder for techniques
to detect drifts. This is also combined with the last two parameters (i.e., “time
between cases” and “time between events”) to determine the density of event
data over time. For example, the user can prefer to have many co-existing traces
(i.e., a short “time between cases) that are long-running and spread over time
(i.e., a long “time between events”). Note that these last two parameters also
apply, in the case of gradual drifts, to the “duration of drift period”.

The results of this block are an event log that contains concept drift, and the

232 A Framework for Benchmarking Concept Drift Detection Techniques

Time

M
o

d
el

 A

Sa
m

pl
in

g
P

ro
ba

bi
lit

y 1

0

Time

M
o

d
el

 B

Sa
m

p
lin

g
Pr

o
b

ab
ili

ty 1

0

Time

M
o

d
e

l C

Sa
m

pl
in

g
P

ro
b

ab
ili

ty 1

0

Linear gradual drift from
model A to model B

Exponential gradual drift
from model B to model C

Figure 8.4: Example of linear and exponential transition functions for sampling proba-
bilities of different models in gradual drifts.

set of points in time in which such drifts occurred i.e., the “real” drift points.

Analyze event data

This block represents the application of a concept drift detection technique to
the event log with concept drift obtained from the previous block. Concept drift
detection can be seen as a type of event log analysis: an event log is used as
the input, and a set of “discovered” drift points in time is obtained as a result.
These “discovered” drift points will be used as an input in the next block.

As claimed before, the framework reported in this chapter is extensible to
incorporate new concept drift detection techniques, as long as they produce a
set of points in time in which it detected drift. This is only possible because this
block is not bound to a specific implementation.

8.2 Concept Drift Evaluation Framework 233

Calculate metrics

The framework summarizes the performance of a concept drift detection tech-
nique by using three standard metrics adopted from the data mining and infor-
mation retrieval domain: precision, recall and F-measure. In the case of concept
drift [4], they are based on the following metrics:

• True Positives (TP): the number of real drifts that were discovered by the
technique.

• False Positives (FP): the number of drifts discovered by the technique that
do not match with any real drift.

• False Negatives (FN): the number of real drifts that were not discovered
by the technique.

In this case, true negatives (i.e., points in time in which there is no “discovered”
nor “real” drift) are not defined, because they are infinite.

Given the fact that time is a continuous variable, the “discovered” drift point
in time will never exactly match the “real” drift. Therefore, an interval of cor-
rectness (i.e., epsilon) is used for this purpose. If the distance between a “dis-
covered” drift point and a “real” drift point is less or equal than epsilon, then it
is considered as a true positive.

It is important to note that a “discovered” drift can be associated to only
one “real” drift and viceversa, in order to prevent techniques from benefitting
by detecting the same drift many times. Also note that, in the case of gradual
drifts, any “discovered” drift point detected within a drift period will not be
considered as a false positive, since gradual drifts can also be seen as a sequence
of “smaller” sudden drifts.

Figure 8.5 illustrates this through an example of a mapping between discov-
ered drifts and real drifts. The discovered drift point d1 is mapped to the sudden
real drift r1 because it is located within its interval of correctness ϵ. Even though
the discovered drift d2 is also located within the same epsilon, it is not mapped
to r1 because d1 is. Hence, from d1 and d2, only the first is considered as a true
positive. The second cannot be a false positive because it is not incorrect i.e.,
there is indeed a drift in that moment. Hence, in order to prevent techniques
from discovering the same drift multiple times and benefitting in the process, it
is not considered in the quality metrics. The discovered drift d3 is considered as
a false positive because it cannot be related to any real drift. The sudden real
drift r2 is considered as a false negative, because there is no discovered drift
within its interval of correctness ϵ. The gradual drift that starts in r3 and ends

234 A Framework for Benchmarking Concept Drift Detection Techniques

in r4 is mapped to the discovered drift d4 and is considered as a true positive.
The same gradual drift is discovered again in d5. In fact, a gradual drift can
be seen as a continuous sequence of drifts. Hence, any drift discovered during
a gradual drift period is indeed correct. However, in this framework, d5 (and
also d2) is not considered as a true positive in order to prevent techniques from
discovering the same drift multiple times and benefitting from this.

Like in the previous chapter, we define the quality metrics for concept drift
detection techniques based on the metrics defined above. The precision metric
mentioned before refers to the percentage of “real” drifts that were correctly
detected by the technique from all the “discovered” drifts.

Precision =
True Positives

(True Positives + False Positives)

Inversely, the recall metric refers to the percentage of “real” drifts that were
correctly detected by the technique from all the “real” drifts in the event data.

Recall =
True Positives

(True Positives + False Negatives)

The framework uses the F1 variation of the F-measure. This statistic refers to
the harmonic average of the precision and recall metrics.

F1 =
2 · Precision · Recall
(Precision + Recall)

Statistical analysis

The evaluation framework allows users to compare the performance of algo-
rithms and to study the effect of control-flow characteristics on algorithm per-

Time

Time

(R)eal Drifts

(D)iscovered Drifts

1

±ε

1 2 3

2

±ε

3

±ε

4

4 5

sudden gradualsudden

TP FN

FP

TP

Figure 8.5: Mapping of discovered drifts and real drifts for calculating quality metrics.

8.3 Experiments 235

formance. The statistical analysis based on the evaluation results depends on
the objectives of the experiment and the corresponding hypotheses to be tested.
Therefore, the framework does not incorporate specific statistical techniques,
instead it can be used with a whole range of exploratory, descriptive and causal
statistical techniques to test any hypothesis that can be expressed in terms of
precision, recall, F1 score, and characteristics of log and model. The authors
believe that this will benefit the adoption of the framework for all types of eval-
uation studies, rather than serve a specific purpose.

8.3 Experiments

The framework presented in this chapter has been is implemented a process
mining workflow (see Chapter 4). Therefore, other researchers can replicate
experiments with little effort by just executing the workflow. In this way, our
framework facilitates repeated concept drift detection evaluation, e.g., it be-
comes trivial to evaluate another set of algorithms or to assess the algorithm’s
performance with respect to other data characteristics (e.g. noise, control-flow
patterns, etc.).

The framework was operationalized in RapidProM (presented in Chapter 4),
which contains instantiations for all the blocks mentioned in Section 8.2.2. Fig-
ure 8.6 illustrates the implemented workflow.

The experiments were based on the following concept drift detection tech-
niques: ProDrift [111] is used twice, each with a different option: event-stream-
based (i.e., ProDrift (event)) and trace-stream-based (i.e., ProDrift (trace)), Con-
ceptDrift [116] and VariantFinder i.e., the process variant detection technique
presented in Chapter 6.

All the techniques were used with the default configuration. Naturally, the
parameter configuration can have a huge impact on the technique’s perfor-
mance. However, the objective of this section does not relate to finding the best
parameters of each algorithm, but to study how these techniques are affected
by other variables e.g., the type and quantity of drifts.

For this purpose, we conducted an experiment that validates the usefulness
of the proposed framework through a large-scale experiment consisting of a de-
tailed empirical analysis of the concept drift detection techniques mentioned
above in many different scenarios. Note that the experiment performed in
this section is around ten times larger than the experiment presented in Sec-
tion 7.3.2.

The implemented workflow that executes the experiments presented in this

236 A Framework for Benchmarking Concept Drift Detection Techniques

Figure 8.6: Concrete implementation of the framework into a RapidMiner workflow. In
Step 1, a collection of models is generated from a population settings param-
eter. In Step 2, for each generated model, a set of two models modified with
concept drift is created. In Step 3, the original and the two modified models
are used to create an event log with concept drift according to the specified
parameters. In Step 4, a concept drift detection technique is used to detect
the points of drift. In Step 5, these are then compared with the original drift
points. Finally, results are processed.

section (see Figure 8.6) is publicly available, and can be downloaded from:
https://www.dropbox.com/s/7gnwmp4pgoas1s2/ConceptDriftBenchmark.

zip?dl=0. The reader is encouraged to download and use the workflow to
reproduce the experiment results or extend the framework to other concept
drift detection algorithms or process characteristics. The remainder of this
section describes the experimental setup and discusses the results obtained
from it.

As mentioned earlier, the goal of this framework is to analyze and compare
the accuracy of concept drift detection techniques to rediscover concept drifts
based on a population of observed executions i.e., event logs. In the experiment,
the population of event logs with concept drift is generated by varying several
parameters, such as the probability of parallelism in the underlying model, the
type of drift and change in the process, the duration of stable and drifting pe-
riods, the density of event data in such periods, and the interval of correctness
(i.e., epsilon).

In this way, we can e.g., study the impact of parallelism in a process on the
accuracy of concept drift detection techniques. The accuracy can also be eval-
uated in many different concept drift scenarios e.g., when parts of the process
are removed in a sudden drift.

Therefore, the experimental design includes all the combinations of these

https://www.dropbox.com/s/7gnwmp4pgoas1s2/ConceptDriftBenchmark.zip?dl=0
https://www.dropbox.com/s/7gnwmp4pgoas1s2/ConceptDriftBenchmark.zip?dl=0

8.3 Experiments 237

independent variables. The parameter combinations considered in this experi-
ment for such variables are summarized in Table 8.2.

Table 8.2: Parameter combinations considered in the experiment.

Parameter Type Parameter Considered Values

Technique Approach ProDrift (events) [111], ProDrift
(runs) [111], VariantFinder (Chapter 6),
ConceptDrift [116]

Model size (# act)
min 10
mode 20
max 30
sequence (s) (1 − p) ∗ 0.57

Probability of exclusive choice (e) (1 − p) ∗ 0.43
basic c-f parallelism (p) {0.0, 0.1, 0.2, 0.3}
pattern inclusive choice (i) 0

loop (l) 0
Probability of silent transitions 0
advanced c-f duplicate activities 0

pattern long-term dependency 0
infrequent paths false

Model Number of drifts 2
changes Type of change {add, remove, swap fragments}

Type of drift {sudden, gradual}
Drift Duration of stable period exponential(1 year)

properties Duration of drift period (gradual
drift)

exponential({0.5, 1, 1.5} months)

Transition function (gradual drift) {linear, exponential}
Event log Time between cases exponential({0.5, 1, 1.5} days)
density Time between events exponential(1 day)

Accuracy Epsilon {1, 25, 50} days

In total, 3024 possible parameter combinations are included in the exper-
iment: 432 combinations for sudden drift (i.e., 4 concept drift detection tech-
niques × 4 probabilities of parallelism × 3 types of changes × 3 different ep-
silons × 3 distributions that define the time between cases) and 2592 combina-
tions for gradual drift (i.e., 4 concept drift detection techniques× 4 probabilities
of parallelism × 3 types of changes × 3 different epsilons × 3 distributions that
define the time between cases × 3 durations of a drift period × 2 drift transition
functions). Note that the last two “Drift properties” defined in Table 8.2 (i.e.,
“duration of drift period” and “transition function”) apply only in the case of
gradual drifts, hence, there is a different number of parameter combinations for
sudden and gradual drifts.

Given the high number of parameter combinations, other process character-
istics (defined in Section 8.2.2) were not taken into account in this analysis.
Concretely, the probability of non-exclusive choice (OR) and of loops are set to
zero and, hence, these two constructs do not occur. The size of models is de-

238 A Framework for Benchmarking Concept Drift Detection Techniques

fined by a fixed triangular distribution from 10 to 30 activities, with a mode of
20 activities per model. The ratio of the probability of sequence and exclusive
choice set and kept fixed to 46/35 (i.e., the same as the “fixed” values used in
the previous chapter) and after a probability of parallelism is set to p, the re-
mainder 1 − p is distributed among the probabilities of sequence and exclusive
choice using this ratio. These values have been determined after analyzing their
frequencies in the large collections of models, as reported in [98]. The reader
is referred to Section 7.3.1 for a detailed explanation of this choice.

We also fixed some drift-related characteristics (defined in Section 8.2.2) in
order to reduce the number of parameter combinations. Concretely, we defined
a fixed “number of drifts” to 2 concept drifts per event log, a fixed “duration of
stable periods” (where no drifts occur) defined as an exponential function with
a mean of 1 year, and a fixed “time between events” defined as an exponential
function with a mean of 1 day.

For each parameter combination a random sample of 68 process models is
drawn. The sample size of 68 models allows us to study the interactions of
the eight variables described before using a fixed effects ANOVA analysis [48]
with significance level α = 0.05 and power 1 − β = 0.99. This power indicates
the probability to detect a significant effect when two concept drift detection
algorithms actually differ by a small difference. In total (i.e., sum of all combi-
nations), 205,632 (i.e., 3024×68) different process models were generated. For
each of the obtained process models, an event log with concept drift is gener-
ated (See Section 7.2.2). The exact size of an event log is not defined a priori,
as it will depend on other parameters defined above, such as the “time between
cases” and the “duration of stable period”.

The effects and interactions of the eight variables defined before can be an-
alyzed using one-way ANOVA analysis if the assumptions of homogeneity of
variances and normality of the dependent variable hold [48]. However, sim-
ilarly to Chapter 7, both assumptions were also violated for every dependent
variable, i.e. F1, recall and precision. Therefore, the non-parametric Kruskall-
Wallis test (KW) [136] was applied instead. Finally, the Jonckheere test [136]
is used to test for a significant trend in the data. See Section 7.3.1 for a detailed
explanation of both tests.

The remainder of this section reports on the analysis of the experimental
results, where we measure the effect of each variable defined in Table 8.2 on
recall, precision and F1 score. The remainder of this section is then organized
as follows. Section 8.3.1 describes the effect of the concept drift detection tech-
niques on the accuracy of drift point detection. Section 8.3.2 describes the effect
of parallelism on the accuracy of drift point detection. Section 8.3.3 describes

8.3 Experiments 239

the effect of the type of drift (i.e., sudden or gradual) on the accuracy of drift
point detection. Section 8.3.4 describes the effect of the type of change in a pro-
cess (i.e., add, remove or swap fragments of the process) on the accuracy of drift
point detection. Section 8.3.5 describes the effect of the time between cases on
the accuracy of drift point detection. Finally, Section 8.3.6 describes the effect
of the duration and transition functions of gradual drift on the accuracy of drift
point detection.

8.3.1 The Effect of Concept Drift Detection Technique

The first goal of this experiment is to learn the effect of the concept drift detec-
tion technique (i.e., the “approach” variable) on each of the dependent vari-
ables: recall, precision and F1 score. In other words, we want to analyze
whether some techniques have better overall quality metrics than others. All
other independent variables are part of the error term.

For this purpose, we apply the KW method, to test whether the average
rank differs between the four concept drift detection techniques (i.e., samples).
In this case we ranked all the 205,632 values for recall, precision and F1 scores
ignoring sample membership (i.e., concept drift detection technique). The high-
est value for recall, precision and F1 score gets rank 1 (lowest rank), while the
lowest absolute value gets rank 205,632 (highest rank). Then we computed the
average ranking per concept drift detection technique. A lower average ranking
means better performance. The ranking summary is shown in Table 8.3.

Table 8.3: Average ranks of concept drift detection techniques (n = 205,632). Each
cell indicates the average ranking for a specific performance dimension (row
header) and for a specific concept drift detection technique (column header).

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 115,363.4 109,061.4 121,185.4 65,655.8
Precision 107,123.1 114,104.7 109,996.1 80,042.1
F1 score 109,259.7 114,162.8 113,295.4 74,548.1

Based on the average rankings in Table 8.3, the order suggested between
concept drift detection techniques is: VariantFinder ≺ ConceptDrift ≺ ProDrift
(trace) ≺ ProDrift (event) for recall, precision and F1 scores. It means that the
VariantFinder is the most accurate for finding drift points in terms of recall, pre-
cision and F1 scores. The ConceptDrift technique outperforms both versions of
ProDrift. The results of the KW test confirm that the all differences in average
rankings between the four concept drift detection techniques are statistically

240 A Framework for Benchmarking Concept Drift Detection Techniques

significant (significance level α = 0.05). Moreover, the multiple comparison
post-hoc test (cf. supra) also confirms the statistical significance of the differ-
ences between techniques. Table 8.4 shows a summary of the statistical test
results for the F1 scores.

Table 8.4: Results of the statistical tests to study the effect of concept drift detection
technique on F1 scores for detecting sudden drift.

Kruskall-Wallis rank sum test
KW χ2 = 19602 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
ConceptDrift - ProDrift (event) 4903.02 976.82 True
ConceptDrift - ProDrift (trace) 4035.66 976.82 True
ConceptDrift - VariantFinder 34711.64 976.82 True
ProDrift (event) - ProDrift (trace) 867.36 976.82 False
ProDrift (event) - VariantFinder 39614.66 976.82 True
ProDrift (trace) - VariantFinder 38747.30 976.82 True

However, these results do not suggest which one is the “best” overall tech-
nique. It is important to note that the VariantFinder approach only works in
an offline setting, while the other approaches also work in an online setting.
Also, it is important to note that these techniques were used with default pa-
rameters. Naturally, a good selection of parameter values can have an huge
impact on accuracy. However, hyperparameter analysis is outside the scope of
this experiment.

Computation time should also be considered when choosing a technique.
Figure 8.7 shows the average computation times for each technique included in
this experiment. We can observe a trade-off between F1 score and computation
time: the VariantFinder approach is the most accurate yet the slowest technique,
while the ProDrift (trace) approach is not as accurate yet is the fastest technique
by far.

Hence, it is recommended to carefully consider these factors when choose a
technique, based on the analysis conditions, purpose and desired accuracy.

8.3.2 The Effect of Parallelism

This analysis investigates how the accuracy of each concept drift detection tech-
nique (in terms of precision, recall and F1 score) is influenced by the average

8.3 Experiments 241

Figure 8.7: Average calculation time for each concept drift detection technique.

percentage of “parallelism” constructs in the process models (i.e., the “probabil-
ity of parallelism” variable). The effect of the other independent variables is a
part of the error term.

Figure 8.8 illustrates the average F1 scores for all the concept drift detection
techniques over different probabilities of parallelism.

Figure 8.8: F1 scores for concept drift detection for different probabilities of parallelism
in the process.

This graph indicates a negative trend (i.e., the probability of parallelism
has a negative effect on F1 scores) for the VariantFinder and ProDrift (trace)
approaches, while it indicates a positive trend for the ConceptDrift and ProDrift

242 A Framework for Benchmarking Concept Drift Detection Techniques

(event) approaches.
To determine whether such trends are statistically significant, an in-depth

analysis is performed. First, the sample is divided into subsets grouped by con-
cept drift detection technique. Each subset then contains 51,480 values for
recall, precision and F1 score values ignoring sample membership (i.e., concept
drift detection technique). As such, the variation in accuracy associated with the
approach is isolated. Then, similar to the analysis above, the KW test is applied
to compare the average rankings of recall, precision and F1 score values.

Table 8.5 contains one subtable for each concept drift detection technique
with the average ranks for all three metrics by the probability of parallelism.

For the ConceptDrift approach, the data (shown in Table 8.5a) seems to sug-
gest that as the probability of parallelism increases, its accuracy for detecting
drift points increases as well in terms of recall, precision and F1 score. To test
this impression statistically, we will rely on the KW and Jonckheere tests. The
results of these statistical tests and the multiple pair-wise comparison between
different probabilities of parallelism for the ConceptDrift approach are presented
in Table 8.6. Both tests show that there is indeed a statistically significant pos-
itive trend in the F1 scores as the probability of parallelism increases. The
pairwise comparison of each probability of parallelism is very clear about how
this trend looks like for F1 scores, with all comparisons statistically significant.

Similarly, for the ProDrift (event) approach, the data (shown in Table 8.5b)
also suggest a positive correlation between the probability of parallelism and the
quality of the drift detection. To test this impression statistically, we will again
rely on the KW and Jonckheere tests. The results of these statistical tests and the
multiple pair-wise comparison between different probabilities of parallelism for
the ProDrift (event) approach are presented in Table 8.7. Both tests show that
there is also a strong trend in the relative quality of concept drift detection as the
probability of parallelism increases. A pairwise comparison of each probability
of parallelism confirms that all comparisons are statistically significant.

Unlike the approaches described above, for the ProDrift (trace) approach, the
data (shown in Table 8.5c) suggest a negative correlation between the proba-
bility of parallelism and the recall, precision and F1 scores. This means that the
quality of detection seems to degrade for increasing levels of parallelism. To test
this impression statistically, we will again rely on the KW and Jonckheere tests.
The results of these statistical tests and the multiple pair-wise comparison be-
tween different probabilities of parallelism for the ProDrift (trace) approach are
presented in Table 8.8. Both tests show that there is indeed evidence of a neg-
ative trend in the relative quality of concept drift detection as the probability of
parallelism increases. A pairwise comparison of each probability of parallelism

8.3 Experiments 243

Table 8.5: Average ranks of concept drift detection techniques per probability of paral-
lelism in terms of precision, recall and F1 scores.

(a) ConceptDrift [116] (n = 51,480)

Prob. Parallelism 0 0.1 0.2 0.3

Recall 27,022.82 26,149.63 25,379.68 24,265.87
Precision 26,826.53 26,115.59 25,420.84 24,455.05
F1 score 26,935.68 26,150.53 25,406.23 24,325.56

(b) ProDrift (event) [111] (n = 51,480)

Prob. Parallelism 0 0.1 0.2 0.3

Recall 28,587.52 26,582.24 24,597.07 23,051.17
Precision 27,776.88 26,120.49 24,835.70 24,084.93
F1 score 27,813.16 26,157.47 24,811.47 24,035.90

(c) ProDrift (trace) [111] (n = 51,480)

Prob. Parallelism 0 0.1 0.2 0.3

Recall 24,592.10 25,053.44 26,077.07 27,095.39
Precision 24,678.22 25,044.76 26,039.83 27,055.20
F1 score 24,634.35 25,055.18 26,059.91 27,068.56

(d) VariantFinder [Ch. 6] (n = 51,480)

Prob. Parallelism 0 0.1 0.2 0.3

Recall 28,671.65 26,285.22 24,588.50 23,272.63
Precision 22,861.34 25,149.99 26,918.15 27,888.52
F1 score 23,711.50 25,187.16 26,551.51 27,367.84

shows that most comparisons are statistically significant, except for the range
[0.0 - 0.1]. This mean that, even though there is a trend, it is weaker than the
trends found for the other approaches described above.

Finally, for the VariantFinder approach, the data (shown in Table 8.5d) sug-
gests that increasing probabilities of parallelism have a positive effect on recall,
but a negative effect on precision and F1 scores. To test this impression statis-
tically, we will again rely on the KW and Jonckheere tests. The results of these

244 A Framework for Benchmarking Concept Drift Detection Techniques

Table 8.6: Results of the statistical tests to study the effect of parallelism on F1 scores for
the ConceptDrift approach.

Kruskall-Wallis rank sum test
KW χ2 = 303.38 degrees of freedom = 3 p-value = 2.2e−16

Jonckheere-Terpstra test
JT = 523103696 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.1 785.15 488.41 True
0.0-0.2 1529.45 488.41 True
0.0-0.3 2610.12 488.41 True
0.1-0.2 744.30 488.41 True
0.1-0.3 1824.97 488.41 True
0.2-0.3 1080.67 488.41 True

Table 8.7: Results of the statistical tests to study the effect of parallelism on F1 scores for
the ProDrift (event) approach.

Kruskall-Wallis rank sum test
KW χ2 = 661.5 degrees of freedom = 3 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 535992606 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.1 1655.69 488.41 True
0.0-0.2 3001.69 488.41 True
0.0-0.3 3777.26 488.41 True
0.1-0.2 1346.00 488.41 True
0.1-0.3 2121.57 488.41 True
0.2-0.3 775.57 488.41 True

statistical tests and the multiple pair-wise comparison between different proba-
bilities of parallelism for the VariantFinder approach is presented in Table 8.9.
Both tests show strong evidence of a negative trend in the relative quality in
terms of F1 score as the probability of parallelism increases. A pairwise com-
parison of each probability of parallelism only confirms this strong negative
trend: all comparisons are statistically significant.

8.3 Experiments 245

Table 8.8: Results of the statistical tests to study the effect of parallelism on F1 scores for
the ProDrift (trace) approach.

Kruskall-Wallis rank sum test
KW χ2 = 332.17 degrees of freedom = 3 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 468834226 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.1 420.82 488.41 False
0.0-0.2 1425.56 488.41 True
0.0-0.3 2434.20 488.41 True
0.1-0.2 1004.73 488.41 True
0.1-0.3 2013.38 488.41 True
0.2-0.3 1008.64 488.41 True

Table 8.9: Results of the statistical tests to study the effect of parallelism on F1 scores for
the VariantFinder approach.

Kruskall-Wallis rank sum test
KW χ2 = 463 degrees of freedom = 3 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 455492769 p-value = 0.0002

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.1 1475.65 488.41 True
0.0-0.2 2840.01 488.41 True
0.0-0.3 3656.33 488.41 True
0.1-0.2 1364.35 488.41 True
0.1-0.3 2180.68 488.41 True
0.2-0.3 816.32 488.41 True

In summary, we can note that increasing levels of parallelism in a process
produces a positive effect in the accuracy of the ConceptDrift and ProDrift (event)
approaches, and a negative effect in the accuracy of the ProDrift (trace) and
VariantFinder approaches.

246 A Framework for Benchmarking Concept Drift Detection Techniques

8.3.3 The Effect of Type of Drift

This analysis tests whether the “type of drift” (i.e., sudden or gradual) has an
impact on the average ranking of the four concept drift detection techniques
for recall, precision and F1 scores. The effect of all the other independent vari-
ables is part of the error term. Firstly, the sample is split into two subsets:
experiments with sudden drift (29,376 values for recall, precision and F1 score)
and experiments with gradual drift (176,256 values for recall, precision and F1

score). This division is called blocking (see Section 7.2) which is done to isolate
the variation in recall, precision and F1 scores attributable to the type of drift.
Secondly, the KW test is applied to each subset. Table 8.10 shows the average
rankings per approach, grouped by the type of drift.

Table 8.10: Average ranks of concept drift detection techniques in terms of precision,
recall and F1 scores for different types of drift.

(a) Sudden drift (n = 29,376)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 14,821.43 15,613.23 17,757.42 10,561.92
Precision 13,826.38 16,198.78 17,013.38 11,715.46
F1 score 13,846.78 16,180.57 17,075.99 11,650.66

(b) Gradual drift (n = 176,256)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 100,826.81 93,360.57 103,252.97 55,073.65
Precision 93,275.95 97,953.11 92,966.28 68,318.66
F1 score 95,775.35 98,003.42 96,126.46 62,608.77

Unlike the analysis presented in Section 8.3.1, the order suggested by this
analysis differs for sudden and gradual drift.

For sudden drift, the order suggested is: VariantFinder ≺ ConceptDrift ≺ Pro-
Drift (event) ≺ ProDrift (trace). The KW test and multiple comparison post-hoc
tests indicated that all the approaches have statistically-significant differences
with all the other approaches.

For gradual drift, the order suggested differs from sudden drift, and is: Vari-
antFinder ≺ ConceptDrift ≺ ProDrift (trace) ≺ ProDrift (event). Unlike the case
of sudden drift, multiple comparison post-hoc test show that, for gradual drift,
the ConceptDrift and ProDrift (trace) approaches do not have a statistically-
significant difference in terms of F1 scores. Table 8.11 shows a summary of
the statistical post-hoc test results for the F1 scores for gradual drift.

8.3 Experiments 247

Table 8.11: Results of the statistical tests to study the effect of concept drift detection
technique on F1 scores for gradual drift.

Kruskall-Wallis rank sum test
KW χ2 = 18264 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
ConceptDrift - ProDrift (event) 2228.07 904.36 True
ConceptDrift - ProDrift (trace) 351.11 904.36 False
ConceptDrift - VariantFinder 33166.57 904.36 True
ProDrift (event) - ProDrift (trace) 1876.96 904.36 True
ProDrift (event) - VariantFinder 35394.64 904.36 True
ProDrift (trace) - VariantFinder 33517.68 904.36 True

Note that only the difference between the ConceptDrift and ProDrift (trace)
approaches in the presence of gradual drift is not statistically significant for F1

scores. Therefore, one cannot accept the assumption that the type of drift does
not influence concept drift detection techniques.

8.3.4 The Effect of Type of Change

This analysis tests whether the “type of change” variable (i.e., add fragment,
remove fragment, swap fragment) has an impact on the average ranking of
the four concept drift detection techniques for recall, precision and F1 scores.
The effect of all the other variables are a part of the error term. Firstly, the
sample is split into three subsets depending on the type of change. Each subset
contains 68,544 values for recall, precision and F1 scores. Secondly, the KW
test is applied to each subset. Table 8.12 contains the average rankings per
concept drift detection technique grouped by the type of change included in the
experiment.

These rankings (particularly for F1 score) indicate that for each type of
change, there is a different ordering:

“add fragment”: VariantFinder ≺ ConceptDrift ≺ ProDrift (event) ≺ ProDrift
(trace)

“remove fragment”: VariantFinder≺ ConceptDrift≺ ProDrift (trace)≺ ProDrift
(event)

248 A Framework for Benchmarking Concept Drift Detection Techniques

Table 8.12: Average ranks per concept drift detection technique in terms of F1 scores.

(a) Type of change = “add fragment” (n = 68,544)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 37,339.11 36,224.63 41,382.03 22,144.23
Precision 34,628.75 38,211.44 38,289.51 25,960.30
F1 score 35,379.04 38,276.27 39,332.26 24,102.43

(b) Type of change = “remove fragment” (n = 68,544)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 36,103.29 37,032.86 39,500.70 24,453.15
Precision 33,768.64 39,283.46 36,520.79 27,517.11
F1 score 34,343.68 39,155.18 37,443.88 26,147.27

(c) Type of change = “swap fragment” (n = 68,544)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 41,821.45 35,899.60 40,390.44 18,978.52
Precision 38,841.20 36,456.73 35,096.23 26,695.84
F1 score 39,626.78 36,612.76 36,430.59 24,419.87

“swap fragment”: VariantFinder ≺ ProDrift (trace) ≺ ProDrift (event) ≺ Con-
ceptDrift

This leads to the assumption that the concept drift techniques are heavily
influenced by the type of change. For the types of change “add fragment” and
“swap fragment”, the KW and multiple comparison post-hoc tests show that all
the techniques have statistically-significant differences with all the other tech-
niques. However, this is not the case for the type of change “remove fragment”,
as the multiple comparison post-hoc test shows that the ProDrift (event) and
ProDrift (trace) techniques do not have a statistically-significant difference in
terms of F1 score. Table 8.13 shows a summary of the statistical post-hoc test
results for the F1 scores for the type of change “remove fragment”.

Note that only the difference between the ProDrift (event) and ProDrift (trace)
techniques for the type of change “remove fragment” is not statistically signif-
icant for F1 scores. However, all the other comparisons are highly significant.
We can conclude that the type of change has (in general) a considerable impact
on the accuracy of concept drift detection techniques.

8.3 Experiments 249

Table 8.13: Results of the statistical tests to study the effect of the concept drift detection
technique on F1 scores for the type of change “remove fragment”.

Kruskall-Wallis rank sum test
KW χ2 = 7080.3 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
ConceptDrift - ProDrift (event) 3014.02 563.97 True
ConceptDrift - ProDrift (trace) 3196.19 563.97 True
ConceptDrift - VariantFinder 15206.90 563.97 True
ProDrift (event) - ProDrift (trace) 182.16 563.97 False
ProDrift (event) - VariantFinder 12192.88 563.97 True
ProDrift (trace) - VariantFinder 12010.71 563.97 True

8.3.5 The Effect of Time Between Cases

This analysis investigates how the accuracy of each concept drift detection tech-
nique (in terms of precision, recall and F1 score) is influenced by the “time
between cases” variable. The time between cases can influence the “density” of
cases in time: a higher value will likely generate event logs with traces more
spaced between each other in terms of time, and a lower value will provoke
traces to be closer to each other in terms of time, hence, their overlap in a
timescale increases. The effect of the other independent variables is part of the
error term.

Figure 8.9 illustrates the average F1 scores for all the concept drift detection
techniques over different times between cases.

This graph indicates a general negative trend (i.e., a “longer” time between
cases has a negative effect on F1 scores) for the ProDrift (trace), ConceptDrift
and ProDrift (event) approaches, while it seems not to affect the VariantFinder
approach.

To determine whether such trends are statistically significant, the sample is
divided into subsets grouped by concept drift detection technique. Each subset
then contains 51,480 values for recall, precision and F1 score values ignoring
sample membership (i.e., concept drift detection technique). As such, the vari-
ation in accuracy associated with the approach is isolated. Then, similar to
the analysis described in Section 8.3.2, the KW test is applied to compare the
average rankings of recall, precision and F1 score values

Table 8.14 contains one subtable for each concept drift detection technique

250 A Framework for Benchmarking Concept Drift Detection Techniques

Figure 8.9: F1 scores for concept drift detection techniques for different values of “time
between cases”.

with the average ranks for all three metrics by the different values of time be-
tween cases.

The data shown in Table 8.14a seems to confirm the initial belief that, for the
ProDrift (trace), ConceptDrift and ProDrift (event) approaches, when the “time
between cases” increases, their accuracy for detecting drift points decreases in
terms of recall, precision and F1 score. To test this belief statistically, we will
rely on the KW and Jonckheere tests. The results of these statistical tests and the
multiple pair-wise comparison between different times between cases indicated
that there is indeed a statistically significant negative trend in the F1 scores as
the time between cases increases. The pairwise comparison of each value of the
“time between cases” variable is determinant about how this trend looks like for
F1 scores, with all comparisons statistically significant.

Unlike the analysis presented above, the data shown in Table 8.14a seems to
confirm that the accuracy of the VariantFinder approach is not affected by the
time between cases. To statistically validate this claim, we applied the KW and
Jonckheere tests. The results of these statistical tests are shown in Table 8.15.
The KW test shows that there are statistically significant differences in terms of
F1 scores for different “time between cases”. However, the Jonckheere test indi-
cates that there is no statistically-significant trend (either positive or negative)
in the accuracy of the VariantFinder approach.

In summary, we can note that increasing “time between cases” (i.e., event
logs with more overlap between cases) has an negative impact in the accuracy
of all the approaches included in the experiment. Moreover, only for the Vari-

8.3 Experiments 251

Table 8.14: Average ranks of concept drift detection techniques for different times be-
tween cases in terms of precision, recall and F1 scores.

(a) ConceptDrift [116] (n = 51,480)

Time between Cases (days) 0.5 1 1.5

Recall 23,929.91 26,154.42 27,029.17
Precision 23,717.08 26,189.75 27,206.67
F1 score 23,740.31 26,194.51 27,178.68

(b) ProDrift (event) [111] (n = 51,480)

Time between Cases (days) 0.5 1 1.5

Recall 21,456.37 26,215.38 29,441.74
Precision 22,578.75 25,829.75 28,704.99
F1 score 22,480.16 25,862.37 28,770.97

(c) ProDrift (trace) [111] (n = 51,480)

Time between Cases (days) 0.5 1 1.5

Recall 22,253.65 26,311.06 28,548.79
Precision 22,673.18 26,177.63 28,262.69
F1 score 22,317.18 26,308.03 28,488.29

(d) VariantFinder [Ch.6] (n = 51,480)

Time between Cases (days) 0.5 1 1.5

Recall 24,442.34 25,576.55 27,094.61
Precision 25,982.54 25,519.01 25,611.95
F1 score 25,886.24 25,466.45 25,760.81

antFinder approach there was no negative trend. It is important to note that,
from all the approaches, VariantFinder is the only one that does not use sliding
windows, but uses all the data available at once.

252 A Framework for Benchmarking Concept Drift Detection Techniques

Table 8.15: Results of the statistical tests to study the effect of time between cases on F1

scores for the VariantFinder approach.

Kruskall-Wallis rank sum test
KW χ2 = 7.4227 degrees of freedom = 2 p-value = 0.02445

Jonckheere-Terpstra test
JT = 441959079 p-value = 0.4132

8.3.6 The Effect of the Duration and Transition Functions of
Gradual Drifts

This analysis focuses on the effect of two variables related to gradual drift (“Du-
ration of Drift Period” and “Drift Transition Function”) on the accuracy of each
concept drift detection technique in terms of precision, recall and F1 score.

The “Duration of Drift Period” variable influences amount of cases that are
sampled during a period of gradual drift: a higher value will provide more
observations (i.e., cases) of that drift period that can be used by the approaches
to detect concept drift. The effect of the other independent variables is a part
of the error term.

First, we analyze the effect of the “Duration of Drift Period” variable on the
accuracy of approaches. Figure 8.10 illustrates the average F1 scores for all the
concept drift detection techniques over different duration of drift periods.

Figure 8.10: F1 scores for concept drift detection techniques for different values of “du-
ration of drift period”.

This graph indicates that the duration of drift periods seems not to affect

8.3 Experiments 253

the accuracy of the approaches. To validate this claim, the sample related to
gradual drift (176,256 values for recall, precision and F1 score) is divided into
subsets grouped by concept drift detection technique. Each subset then con-
tains 44,064 values for recall, precision and F1 score values ignoring sample
membership (i.e., concept drift detection technique). As such, the variation in
accuracy associated with the approach is isolated.

Table 8.16 contains one subtable for each concept drift detection technique
with the average ranks for all three accuracy variables by different duration of
drift periods.

The data shown in Table 8.16a seems to indicate that the accuracy of the
ConceptDrift approach is negatively affected by increasing durations of drift pe-
riods. To statistically validate this claim, we applied the KW and Jonckheere
tests. The results of these statistical tests are shown in Table 8.18.

To the contrary, the data shown in Table 8.16b seems to indicate that the ac-
curacy of the ProDrift (event) (in terms of F1 score) is not affected by increasing
durations of drift periods. To statistically validate this claim, we applied the KW
test, which indicated that there are no significant differences in F1 scores over
increasing durations of drift periods (p-value = 0.2653). Therefore, we confirm
that the duration of drift periods does not affect the accuracy of the ProDrift
(event) approach.

For the ProDrift (trace) approach, the data shown in Table 8.16a seems to
indicate that the accuracy of the approach is positively affected by increasing
durations of drift periods. To statistically validate this claim, we applied the
KW, Jonckheere and pairwise comparison post-hoc tests. The results of these
statistical tests are shown in Table 8.18.

The test results confirm that there is indeed a statistically-significant positive
trend on the accuracy of the approach over increasing durations of drift periods.
Only in the range between 1 and 1.5 months of duration of drift periods there
is no statistically-significant difference.

Finally, for the VariantFinder approach, the data shown in Table 8.16b seems
to indicate that the accuracy (in terms of F1 score) is not affected by increasing
durations of drift periods. To statistically validate this claim, we applied the
KW test, which indicated that there are no significant differences in F1 scores
over increasing durations of drift periods (p-value = 0.3437). Therefore, we
confirm that the duration of drift periods does not affect the accuracy of the
VariantFinder approach.

The remainder of this section describes the analysis performed to study the
effect of the “drift transition function” variable in the accuracy (in terms of re-
call, precision and F1 scores) of the four concept drift detection approaches

254 A Framework for Benchmarking Concept Drift Detection Techniques

Table 8.16: Average ranks of concept drift detection techniques for different durations
of drift periods in terms of precision, recall and F1 scores.

(a) ConceptDrift [116] (n = 44,064)

Duration of Drift Period (months) 0.5 1 1.5

Recall 21,829.07 21,977.09 22,291.34
Precision 21,820.46 21,975.55 22,301.49
F1 score 21,825.41 21,972.06 22,300.03

(b) ProDrift (event) [111] (n = 44,064)

Duration of Drift Period (months) 0.5 1 1.5

Recall 22,125.66 21,983.11 21,988.72
Precision 22,160.51 21,991.71 21,945.28
F1 score 22,152.41 21,977.03 21,968.06

(c) ProDrift (trace) [111] (n = 44,064)

Duration of Drift Period (months) 0.5 1 1.5

Recall 22,532.43 21,899.29 21,665.78
Precision 22,526.32 21,926.06 21,645.12
F1 score 22,537.43 21,907.28 21,652.79

(d) VariantFinder [Ch.6] (n = 44,064)

Duration of Drift Period (months) 0.5 1 1.5

Recall 21,684.05 21,991.31 22,422.15
Precision 22,167.39 21,943.37 21,986.75
F1 score 22,136.37 21,922.27 22,038.87

included in the experiment. The “Drift Transition Function” variable defines the
function that shapes the change of sampling probabilities during a drift period.
In this experiment, we considered two different transition functions: linear (i.e.,
the sampling probabilities change linearly during the drift period) and exponen-
tial (i.e., the sampling probabilities have large changes in the beginning of the
drift period, and then the changes become smaller by the end of the drift pe-
riod). The effect of all the other independent variables is part of the error term.

8.3 Experiments 255

Table 8.17: Results of the statistical tests to study the effect of the duration of drift peri-
ods on F1 scores for the ConceptDrift approach.

Kruskall-Wallis rank sum test
KW χ2 = 15.202 degrees of freedom = 2 p-value = 0.0005

Jonckheere-Terpstra test
JT = 318960882 p-value = 0.0004

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.5-0.1 146.64 355.34 False
0.5-1.5 474.62 355.34 True
1.0-1.5 327.97 355.34 False

Table 8.18: Results of the statistical tests to study the effect of the duration of drift peri-
ods on F1 scores for the ProDrift (trace) approach.

Kruskall-Wallis rank sum test
KW χ2 = 57.839 degrees of freedom = 2 p-value = 2.757e−13

Jonckheere-Terpstra test
JT = 332266195 p-value = 0.0004

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.5-0.1 630.14 355.34 True
0.5-1.5 884.63 355.34 True
1.0-1.5 254.48 355.34 False

Firstly, the sample is split into two subsets: observations with linear and expo-
nential drift transition function, each with 88,128 values for recall, precision
and F1 score. Table 8.19 shows the average rankings per approach, grouped by
drift transition function.

The data suggests that in both cases, the ordering of approaches in terms
of their average F1 score rank is the same: VariantFinder ≺ ConceptDrift ≺
ProDrift (trace) ≺ ProDrift (event). We confirmed this claim by applying the
KW and multiple pairwise post-hoc comparison tests. Table 8.20 shows the test
results for linear drift transition functions. Table 8.21 shows the test results for
exponential drift transition functions.

These tests indicate the exact same statistical differences between approaches,

256 A Framework for Benchmarking Concept Drift Detection Techniques

Table 8.19: Average ranks of concept drift detection techniques in terms of precision,
recall and F1 scores for different drift transition function.

(a) Linear Drift Transition Function (n = 88,128)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 50,349.27 46,684.71 51,619.53 27,604.50
Precision 46,586.44 48,914.36 46,562.63 34,194.57
F1 score 47,839.87 48,956.02 48,116.68 31,345.44

(b) Exponential Drift Transition Function (n = 88,128)

ConceptDrift [116] ProDrift (event) [111] ProDrift (trace) [111] VariantFinder [Ch.6]

Recall 50,478.06 46,675.97 51,634.18 27,469.78
Precision 46,690.04 49,039.21 46,403.71 34,125.04
F1 score 47,936.07 49,047.98 48,009.71 31,264.24

Table 8.20: Results of the statistical tests to study the effect of concept drift detection
technique on F1 scores for linear drift transition functions.

Kruskall-Wallis rank sum test
KW χ2 = 9096.4 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
ConceptDrift - ProDrift (event) 1116.14 639.48 True
ConceptDrift - ProDrift (trace) 276.80 639.48 False
ConceptDrift - VariantFinder 16494.43 639.48 True
ProDrift (event) - ProDrift (trace) 839.34 639.48 True
ProDrift (event) - VariantFinder 17610.58 639.48 True
ProDrift (trace) - VariantFinder 16771.24 639.48 True

regardless of the drift transition function used: only the difference between the
ConceptDrift and ProDrift (trace) approaches is not statistically-significant.

Therefore, we can confirm that the drift transition function has no significant
effect in the accuracy (in terms of F1 score) of the four concept drift detection
approaches included in the experiment.

8.4 Conclusions 257

Table 8.21: Results of the statistical tests to study the effect of concept drift detection
technique on F1 scores for exponential drift transition functions.

Kruskall-Wallis rank sum test
KW χ2 = 9168.2 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α = 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
ConceptDrift - ProDrift (event) 1111.90 639.48 True
ConceptDrift - ProDrift (trace) 73.64 639.48 False
ConceptDrift - VariantFinder 16671.83 639.48 True
ProDrift (event) - ProDrift (trace) 1038.26 639.48 True
ProDrift (event) - VariantFinder 17783.74 639.48 True
ProDrift (trace) - VariantFinder 16745.47 639.48 True

8.4 Conclusions

This chapter presented a novel evaluation framework for benchmarking con-
cept drift detection techniques. The framework allows researchers to bench-
mark different approaches as well as to perform a sensitivity analysis to eval-
uate whether certain process and drift characteristics have an impact on the
accuracy drift point detection. It allows to generalize the evaluation results to
a user specified model population, also taking into account several properties
that characterize concept drift in processes. Finally, the design of the frame-
work as a process mining workflow enables automating, sharing and extending
evaluation experiments.

The framework has been validated by conducting an extensive experiment
involving four concept drift detection approaches that detect drift points in time
and seven other variables related to process characteristics and concept drift
characteristics. The experiment has shown the usefulness and flexibility of the
framework. Additionally, the analysis of the experiment results has led to sev-
eral non-trivial insights on concept drift detection techniques. Firstly, the evalu-
ation results have shown that increasing levels of parallelism in the model have
mixed effects on the evaluated techniques. Some techniques become more ac-
curate and others become less accurate. Secondly, the type of change in the
process (e.g., add or remove a fragment) has a much larger effect on the ac-
curacy of the approaches than the actual type of drift (i.e., sudden or grad-
ual). Thirdly, the type of drift transition function (i.e., linear or exponential)
has no effect on the accuracy of the approaches considered in the experiments.

258 A Framework for Benchmarking Concept Drift Detection Techniques

Lastly, the VariantFinder technique introduced in Chapter 6 was successfully
used to detect concept drift, even though it was not its initial usage purpose.
The VariantFinder technique had a better accuracy yet a worse efficiency (i.e.,
computation time) than all the other evaluated techniques in the context of the
experiments performed in this chapter.

Overall, all the techniques considered in the experiment present a trade-
off between accuracy and computation time, and users should carefully choose
which technique to use depending on the specific analysis settings.

A limitation of this experiment is that is merely theorical, as it covers all
types of concept drift equally. An empirical study would be interesting e.g.,
measuring which types of concept drit are more common in real life, and then
analyze how the different techniques can deal with them.

Part IV

Case Studies

260

Chapter 9
SLA Compliance Analysis in a
Claim Management Process

Disclaimer: The data used in this chapter is subject to a non-disclosure agree-
ment signed by the author and by Telefónica. Therefore, the data is not publicly
available.

Service-level agreements (SLA) are often signed by organizations in order to
maintain a certain level of service by the use of penalties or rewards. Service-
levels below the agreement usually lead to the provider of the service being
penalized. A tasty example of an SLA are those pizza delivery places that will
deliver your pizza in less than 30 minutes, or it’s free.

SLA compliance can be related to the performance of the service’s under-
lying processes. Processes that perform better will lead to an increased SLA
compliance. Therefore, it is important to analyze the different factors that af-
fect SLA compliance and relate these factors to variants of the process in order
to learn the best practices and identify their inefficiencies.

By using the tools and techniques proposed in Part II, we can discover, com-
pare and analyze the process variants that are related to lower and higher SLA
compliance. This chapter presents an example of this analysis in the context of
a real use-case using real process data as input.

The remainder or this chapter is structured as follows. Section 9.1 intro-
duces the context of this case study. Section 9.2 describes the experiments per-
formed, and the obtained results. Section 9.3 discusses the results and their

262 SLA Compliance Analysis in a Claim Management Process

impact on the company. Finally, section 9.4 concludes the chapter.

9.1 Context

Telefónica is a Spanish broadband and telecommunication provider with its head
quarter located in Madrid. It operates in Europe, Asia, North and South Amer-
ica, being one of the biggest telecommunication providers in the world. In the
remainder of this chapter, we will refer to Telefónica as simply “the company”.
The company offers different solutions for commercial as well as business cus-
tomers. For their corporate services, the company runs a system that manages
claims (usually created by the customer) from different services in the form of
tickets.

The remainder of this section describes the claim management process, the
dataset used, the process SLAs defined by the company, and the purpose of the
analysis in the form of process questions.

9.1.1 Process Description

The claim management process relates to the actions executed by the company in
order to handle claims of customers that have a problem with a given service. In
the process of solving the claim, the ticket can be in different states. Figure 9.1
shows a hand-made model of the claim management process, which was made
by the company.

The process is described as follows: Claims are created usually by the cus-
tomer (i.e., the “New” state is reached), then they are activated when an em-
ployee starts working on the claim (i.e., the “Active” state). When there is an
interruption of the service, the service needs to be restored first (i.e., the “Re-
stored” state) and the employees will work on the problem that caused it until
it is solved (i.e., the “Solved” state) and finally the claim is closed (i.e., the
“Closed” state). Claims can be cancelled (i.e., the “Cancelled” state) or delayed
(i.e., the “Delayed” state) anytime, regardless of the current state. Delayed
claims can be reactivated at any time as well. Delays are commonly caused by
missing information that the customer has to provide in order to identify the
problem.

9.1 Context 263

Figure 9.1: Hand-made model of the flow of a claim. The boxes represent the possible
states of a claim. The arrows indicate the possible state changes. This model
was provided by the company.

9.1.2 Event Data

The data presented in this chapter (provided by the company) contains the
logged execution of the claim management process in the form of CSV (i.e.,
comma-separated-values) files. It contains 8296 claims (i.e., cases) and 40965
state changes (i.e., events) in total, with an average of 5 state changes per
claim. This data was recorded between January 2015 and December 2016 for
three services, codenamed: GSIM, JASPER, and SM2M. Table 9.1 illustrates the
event attributes contained in the data.

The data includes four different possible severities for a claim, based on the
impact and urgency of the issue: critical, major, minor and slight.

Note that the attribute Time_of_week is used to bin timestamps (i.e., the
Date attribute) into six values that indicate different times of the week: LV_M
(weekday mornings), LV_T (weekday evenings), LV_N (weekday nights), SD_M
(weekend mornings), SD_T (weekend evenings), and SD_N (weekend nights).

Also note that claims can be created by the customer (i.e., “isChild” = 0) or

264 SLA Compliance Analysis in a Claim Management Process

Table 9.1: Event attributes contained in the data

Name Description

Id the id of a claim
Service the service related to the claim
Date the timestamp of activity
Modified_by the person that executed the activity
Responsible.Operator the person responsible for the claim’s SLAs
Responsible.group the group responsible for the claim’s SLAs
Assigned.group the group to which the claim was assigned
Operation the activity that was executed
initial.Severity the initial severity of the claim, defined when the

claim was created
update.Severity the current severity of the claim1

Severity the final severity of the claim, when the claim was
solved

Originator the person that created the claim
Originator.Group the group to which the originator belongs
Time_of_week the time of the week, based on the Date attribute
IsChild whether the claim is a subdivision of another

claim (1) or not (0)

can be created by an employee as a subdivision of a bigger parent claim (i.e.,
“isChild” = 1). The company’s domain experts indicated that the child claims
are given priority because their processing time affects the SLA’s of the parent
claim.

It is important to state that the raw data delivered to us did not include any
explicit information about SLA compliance.

9.1.3 SLAs

The company defined several SLAs based on process performance metrics, on
the service and on the severity of the claim, which define how quickly the com-
pany has to manage claims in order to not being penalized. The process perfor-
mance metrics considered are listed as follows.

Response time : The time it takes for an employee to start working on the

9.1 Context 265

ticket. This is measured as the time passed since a claim was created in
the system (i.e., reached the “New” state) until it has been activated (i.e.,
reached the “Active” state for the first time).

Restoration time : The time it takes until the service is working again in the
case of service interruption. This is measured as the time passed since
a claim was created in the system (i.e., reached the “New” state) until
the service is restored (i.e., reached the “Restored” state). Alternatively, if
there was no interruption of the service, then the time between the “New”
and “Solved” states is considered instead.

Resolution time : The time it takes until the problem that caused the mal-
function or interruption of the service is solved. This is measured as the
time passed since a claim was created in the system (i.e., reached the
“New” state) until the problem is solved by the company (i.e., reached the
“Solved” state).

Each of these performance metrics define an SLA for each of the three ser-
vices and four severities of a claim, as illustrated in Table 9.2.

It is important to note that when a claim is in the “Delayed” state, the time
spent there does not affect SLA compliance. Claims are normally delayed so
that the SLAs defined for the services are not affected by situations out of the
company’s control.

The company defined that the restoration time SLAs for minor and slight
claims related to the SM2M and GSIM services are measured only during agreed
standard business hours (from 9 am to 5 pm, Spain local time). Also Note that
the company defines resolution time SLAs only for critical and major severity
claims related to the SM2M service.

9.1.4 Analysis Purpose

The company asked us to analyze the compliance of the process with respect
to the SLAs defined above in order to obtain insights about which are the best
practices and which are the points of improvement of the process, with the
purpose of improving SLA compliance.

Concretely, the company asked the following questions about the process:

PQ1: What is the overall SLA compliance of the process?

PQ2: Which claims are less (or more) likely to comply with their SLA?

266 SLA Compliance Analysis in a Claim Management Process

Table 9.2: SLAs defined for the claim management process.

(a) Response Time SLAs

Service
Severity

Critical Major Minor Slight

GSIM 15 min 45 min 120 min 180 min
Jasper 15 min 45 min 120 min 180 min
SM2M 15 min 30 min 60 min 60 min

(b) Restoration Time SLAs

Service
Severity

Critical Major Minor Slight

GSIM 6 hrs 24 hrs 48 hrs 80 hrs
Jasper 6 hrs 24 hrs - -
SM2M 5 hrs 12 hrs 48 hrs 80 hrs

(c) Resolution Time SLAs

Service
Severity

Critical Major Minor Slight

GSIM - - - -
Jasper - - - -
SM2M 96 hrs 480 hrs - -

PQ3: What are the differences between claims that complied with their SLA
and claims that did not?

In the next section we will address each one of these questions in detail.

9.2 Experiments

This section reports on the experiments performed in order to answer each of
the three process questions asked by the company. As stated before in Sec-
tion 9.1.2, the raw data does not include explicit SLA compliance information.
Therefore, we first need to perform a data preparation step. The purpose of this
step is to add explicit SLA compliance information to the data, which will be

9.2 Experiments 267

used in the rest of the experiments.

9.2.1 Data Preparation

As mentioned earlier, when a claim is in the “Delayed” state, the time spent
there does not affect SLA compliance. Moreover, some SLAs are measured only
during agreed standard business hours (from 9 am to 5 pm, Spain local time).
However, the recorded timestamps (i.e., the Date attribute) do not account for
this and just record the timestamp when the state of a claim changed. Hence,
we cannot directly use the timestamps to calculate SLA compliance.

SLA-aware Time Measurement

To address the issue described above, we created a new event attribute named
SLA time, which is based on the timestamp attribute with some modifications:
Initially, the SLA time attribute has the same value as the timestamp attribute for
all the events related to a claim. Every time that the claim reaches the “Delayed”
state, the value of the SLA time attribute is copied to subsequent events until the
claim leaves the “Delayed” state. Then, for all following events, the value of the
SLA time attribute is calculated as the difference between the timestamp of the
event and the time spent by the claim in the “Delayed” state. If a claim is
delayed again, then the same procedure is applied again.

Additionally, we modified the SLA time attribute further in the case of claims
whose SLAs are measured only during agreed standard business hours (i.e.,
weekdays from 9 am to 5 pm, Spain local time). In such cases, the SLA time
attribute is modified to consider only the time spent within agreed standard
business hours. Note that local public holidays do not affect standard business
hours since people processing the claims are located in different parts of the
world.

As a result, the newly-created SLA time attribute can be used for the purpose
of SLA compliance checking.

Checking SLA Compliance

As mentioned earlier, SLAs are defined for each service and severity of claims,
as described in Table 9.2. For example, a major severity claim related to the
GSIM service has a response time SLA of 45 minutes, a restoration time SLA of
24 hours, but has no resolution time SLA.

268 SLA Compliance Analysis in a Claim Management Process

In this case study, SLA compliance is measured on the earliest possible occa-
sion. This means that if a claim reaches a state related to a SLA several times,
only the first one is considered. For example, the response time SLA compliance
is checked only when a claim reaches the “Active” state for the first time. The
same applies for the restoration time and resolution time SLAs, related to the
“Restored” and “Solved” states.

Note that, in some cases, SLA compliance cannot be checked because the
claim never reaches the state related to such SLA. For example, a claim that is
cancelled after being created and does not reach the “Active” state, or a claim
being processed that has not reached such state yet. Therefore, the response
time SLA cannot be checked for such claim.

We used the SLA time attribute created before to check, for each claim and
for each SLA defined for it, if it complied with the SLA (1) or not (0). Concretely,
for each claim we created three new case-level attributes: response compliance,
restoration compliance and resolution compliance. These attributes indicate if
the claim complied or not with the response time, restoration time and resolution
time SLAs defined for it, respectively.

With this SLA compliance information added explicitly to the dataset, we
can proceed to answer the process questions described before.

9.2.2 Overall SLA Compliance Diagnostic

This section addresses the first process question: What is the overall SLA compli-
ance of the process? (PQ1).

We do this analysis by looking at the overall compliance of the response time,
restoration time and resolution time SLAs through the use of simple descriptive
statistics. Note that this question can be answered without using process-aware
techniques, because now the SLA compliance information is explicitly men-
tioned in the following data attributes: response compliance, restoration com-
pliance and resolution compliance.

Firstly, we analyzed if there is a “cascade effect” between the different SLAs.
Intuitively, claims that complied with their response time SLA should be more
likely to comply with their restoration time SLA than claims that did not comply
with their first SLA. However, the data shows that there is no clear correlation
between these SLAs. On the one hand, from the 182 claims that failed their
response time SLA, 172 claims (94% approx) complied with their restoration
time SLA. On the other hand, from the 6723 claims that complied with their
response time SLA, 6088 claims (91% approx) complied with their restoration

9.2 Experiments 269

time SLA. The statistical tests indicated that the difference between the response
time SLAs of both groups is not significant2.

Since the compliance of the SLAs defined for the process are not correlated
(e.g., a claim can fail its response time SLA but comply with its restoration time
SLA) we proceed to analyze them separately.

With respect to the response time SLA, from the 8296 claims recorded in the
dataset, 91 claims never reached the “Active” state, thus are not included in
the analysis. From the 8205 claims that did reach the “Active” state, only 7828
claims (95% approx) complied with their response time SLA.

We are also interested in analyzing if there are SLA compliance differences
for the three services and four claim severities found in the data. Figure 9.2
shows the overall compliance with the Response SLAs for different services and
claim severities. We can observe that the SM2M service has a much higher

Figure 9.2: Response Time SLA compliance (avg) by service and severity of claims.

response time SLA compliance than the other two services.
With respect to the restoration time SLA, from the 8296 claims recorded in

the dataset, 1391 claims never reached the “Restored” nor the “Solved” state,
thus are not included in the analysis. From the 6905 claims that reached the
“Restored” state (or the “Solved” state if there was no service interruption),
6342 claims (91% approx) complied with their restoration time SLA.

Like the previous SLA, we also analyzed if there are SLA compliance differ-
ences for the three services and four claim severities found in the data. Fig-

2The statistical test used was the rank-based non-parametric Mann-Whitney U test.

270 SLA Compliance Analysis in a Claim Management Process

ure 9.3 shows the overall compliance with the Restoration SLAs for different
services and claim severities. We can observe that in the case of the GSIM and

Figure 9.3: Restoration SLA by service and severity of claims.

JASPER service, the restoration time SLA compliance is better (in average) than
the response time SLA. We can also observe that all services and severities have
a restoration time SLA compliance of approximately 90% or more.

Finally, we analyzed the resolution time SLA. Note that this SLA is only de-
fined for the SM2M service and only for critical and major severity claims. From
the 8296 claims recorded in the dataset, 212 claims are related to the SM2M
service and have a critical or major severity, and only 178 of such claims reached
the “Solved” state. From these, 128 claims (72% approx) complied with their
resolution time SLA.

Unlike previous SLAs, the resolution time SLA is defined only for one service
and two severities. Because of this reason, and because the number of claims
that were checked for compliance with the resolution time SLA is low (thus, not
very representative), we did not split them further in this analysis.

9.2.3 Correlating Claims to SLA Compliance

This section addresses the second process question: Which claims are less (or
more) likely to comply with their SLA? (PQ2).

In order to answer this question, we need to find the variants of the process
that are more correlated to SLA compliance. For this purpose, we use the pro-

9.2 Experiments 271

cess variant detection technique introduced in Chapter 6. This technique allow
us to find process variants with statistically-significant differences in the data.

Before finding the process variants, we need to choose the right abstractions
to represent the claim management process.

First, we created a transition system that represents the process based on
an abstraction where the last event of trace prefixes is considered (i.e., only
directly-follows relations are considered). We used the following state and tran-
sition abstraction: given the event log L, a trace σ ∈ PL and an event e ∈ EL,
rs(σ) = attn(σ(|σ|)) and ra(e) = attn(e). This is illustrated in Figure 9.4a.

(a) Only the last event of trace pre-
fixes is considered. (b) The last two events of trace prefixes are considered.

Figure 9.4: Transition systems that represent the behavior of the claim management pro-
cess using different abstractions.

We can observe a natural loop between the “Delayed” and “Active” states.
This is explained by the fact that claims can be delayed several times. How-
ever, by using this abstraction we cannot distinguish between claims that are

272 SLA Compliance Analysis in a Claim Management Process

solved or restored with delays and the claims that are solved or restored with-
out delays. Therefore, we created a new transition system that represents the
process based on the abstraction where the last two events are considered:
rs(σ) = ⟨attn(σ(|σ|)), attn(σ(|σ| − 1))⟩ and ra(e) = attn(e). Unlike the pre-
vious transition system, we used this abstraction in this experiment to include
more than just directly-follows relations. This transition system is illustrated in
Figure 9.4b.

We can observe that now there is a clear distinction between claims that have
been delayed and those that have not been delayed (i.e., non-delayed claims go
from the “Active, New” state directly to the “Restored, Active” or “Solved, Active”
states).

Starting from this transition system, we looked for process variants in the
process. The remainder of this section describes the analysis performed for
each SLA.

Finding Variants over Response Time SLA Compliance

In this experiment, we aim to find process variants that are correlated to the
response time SLA using the Variant Finder tool presented in Chapter 6. For
this purpose, the response compliance attribute is selected as the dependent
variable. All the other attributes are selected as independent variables. We only
analyzed the variants found in the “New” and “Active, New” states presented in
Figure 9.4b, because the other states are not related to the response time SLA.

The process variants found in the “New” state are shown in Figure 9.5. We

Figure 9.5: Results of the Process Variant Finder tool: attributes correlated to the re-
sponse time SLA in the “New” state.

can observe that the attribute that is most correlated to the response compliance

9.2 Experiments 273

in the “New” state is the Service attribute. The results indicate a clear response
compliance difference between the GSIM and JASPER services, and the SM2M
service, with the latter having better response compliance. We can also observe
that within the GSIM and JASPER services, there is a clear difference between
claims that were created on weekday mornings (i.e., LV_M) and claims created
in any other time of the week: claims created in weekday mornings have a much
higher response compliance.

Now, we proceed to analyze the response compliance variants found in the
“Active, New” state. The process variants found in the “Active, New” state are
shown in Figure 9.6.

Figure 9.6: Results of the Process Variant Finder tool: attributes correlated to the re-
sponse time SLA in the “Active, New” state.

Similarly to the previous analysis, we can observe that in the “Active, New”
state there is also a considerable response compliance difference between the
GSIM and JASPER services, and the SM2M service. However, in this case we can
observe that within the GSIM and JASPER services, there is a clear difference
between claims that were processed on weekday nights (i.e., LV_N) or in week-
end evenings (i.e., SD_T), and claims that were processed on other times of the
week, with the former having a lower response compliance than the latter.

Surprisingly, at this point of the process the severity of the claim does not
seem to have a strong correlation with the response compliance.

Finding Variants over Restoration Time SLA Compliance

In this experiment, we aim to find process variants that are correlated to the
restoration time SLA using the Variant Finder tool presented in Chapter 6. This

274 SLA Compliance Analysis in a Claim Management Process

time, the dependent variable is set as the restoration compliance attribute. All
the other attributes are selected as independent variables.

We found several variants in the “Delayed, Active” state shown in Figure 9.4b.
These are illustrated in Figure 9.7.

Figure 9.7: Results of the Process Variant Finder tool: attributes correlated to the restora-
tion time SLA in the “Delayed, Active” state.

For all the claims that get delayed at least once (i.e., the claims that reach
the “Delayed, Active” state, which is approximately 20% of all claims) we can
observe that claims with a slight severity have a better restoration compliance
than other more-severe claims. Moreover, from the claims with a slight severity,
those that are related to the GSIM service have a better restoration compliance
than claims related to the SM2M service.

Additionally, we found process variants in the transition between the “Active,
New” and the “Solved, Active” states (see Figure 9.4b). These are illustrated in
Figure 9.8. These variants are related to claims that were solved without being
delayed and without a service interruption (i.e., no restoration was needed).
These claims ammount to approximately 50% of all claims.

We can observe that claims that are derived from other bigger claims (i.e., is-
Child = 1) have a lower restoration compliance than claims that are not derived
from other claims.

Finding Variants over Resolution Time SLA Compliance

In this experiment, we aim to find process variants that are correlated to the
resolution time SLA using the Variant Finder tool presented in Chapter 6. This
time, the resolution compliance attribute is selected as the dependent variable.
All the other attributes are selected as independent variables. Note that this

9.2 Experiments 275

Figure 9.8: Results of the Process Variant Finder tool: attributes correlated to the restora-
tion time SLA in the transition between the “Active, New” and the “Solved,
Active” states.

SLA is only defined for the SM2M service and only for critical and major sever-
ity claims. In total, only 178 claims have a value of 0 or 1 for the resolution
compliance attribute.

Figure 9.9 shows the process variants found in the “Closed, Solved” state,
which considers all claims that were solved and then closed, regardless of delays
and service restorations. These correspond to approximately 90% of the claims
that have a value for the resolution compliance attribute.

Figure 9.9: Results of the Process Variant Finder tool: attributes correlated to the resolu-
tion time SLA in the “Closed, Solved” state.

We can observe that the severity attribute has the strongest correlation with
the resolution compliance attribute. Claims that have a critical severity have a
lower resolution compliance than claims with a major severity.

Now that we know which claims are less (or more) likely to comply with

276 SLA Compliance Analysis in a Claim Management Process

their SLA, we proceed to find the most significant differences between them.

9.2.4 Comparing SLA-Compliant and SLA-Non-Compliant Claims

This section addresses the third process question: What are the differences be-
tween claims that complied with their SLA and claims that did not? (PQ3).

In the previous section we found several process variants that are closely
related to data attributes. An interesting analysis is to compare these variants
against each other in order to find the differences and similarities between them.
We did compare the different services and claim severities and found several dif-
ferences. This analysis was presented to the company and positive feedback was
obtained. However, such analysis is out of the scope of the questions asked by
the company. So, in this section we will focus on the actual question mentioned
above.

As mentioned in the data preparation step (see Section 9.2.1) three at-
tributes were created in order to explicitly denote wether claims complied with
their SLAs or not: response compliance, restoration compliance and resolution
compliance. These attributes are related to the response time, restoration time
and resolution time SLAs respectively. For any claim, the response compliance,
restoration compliance and resolution compliance attributes can have a value of
1 or 0, depending on if it complied with the corresponding SLA or not.

In the remainder of this section, we will compare claims based on their
compliance to the different SLAs defined for the process.

Comparing Variants over Response Time SLA Compliance

In order to compare claims that comply with their response time SLA or not, we
first split the data based on the response compliance attribute using the process
cube tool introduced in Chapter 3. As a result, we obtained two process vari-
ants: one containing all the claims (7828) that complied with their response
time SLA (i.e., response compliance = 1) and another containing all the claims
(377) that failed to comply with such SLA (i.e., response compliance = 0).

We compared these two process variants against each other using the pro-
cess comparator technique presented in Chapter 5. Note that for building the
underlying transition system, we used the same abstraction used in the previous
section (i.e., using the last two events of trace prefixes).

It is important to note that the response time SLA measures the very first
part of the process (i.e., from the “New” state to the “Active, New” state). At
this point of the process, nothing else has happened in the claim yet, but when

9.2 Experiments 277

comparing the two process variants, we found several control-flow differences
between them, as illustrated in Figure 9.10.

Figure 9.10: Control-flow comparison results between claims that complied with their
resolution time SLA and claims that did not.

Note that, in this figure, blue colors represent states or transitions in which
the compliant claims (i.e., response compliance = 1) reach such state or tran-
sition with a frequency that is significantly higher than non-compliant claims
(i.e., response compliance = 0). Red colors represent the opposite.

We can observe that from the “Active, New” state (where the response time
SLA is measured) we have mainly three next possible states: “Solved, Active”,
“Restored, Active” and “Delayed, Active”.

For claims that were directly solved and there was no interruption of the
service (i.e., reached the “Solved, Active” state), we can observe that 43% of
the compliant claims followed this path and got directly solved without delays.
On the other hand, only 1% of the non-compliant claims followed this path.

278 SLA Compliance Analysis in a Claim Management Process

The difference is obviously significant, hence the blue color of the transition
between the “Active, New” and the “Solved, Active” states.

For claims that were restored (i.e., reached the “Restored, Active” state),
we noticed that 26% of the compliant traces and 20% of the non-compliant
traces go through this path. However, this difference is not statistically signifi-
cant, hence the black color of the transition between the “Active, New” and the
“Restored, Active” states.

For the claims that were delayed (i.e., reached the “Delayed, Active” state),
we observe that while 26% of the compliant claims followed this path, 75%
of the non-compliant traces followed this path as well. The difference is again
obviously significant, hence the red color of the transition between the “Active,
New” and the “Delayed, Active” states.

These differences tell us that non-compliant claims are more prone to delays,
whereas compliant claims are more prone to get solved without delays or service
interruptions.

From the data available for this analysis it is not easy to guess what the
reason behind this difference is. Perhaps the information provided in the claim
is related to them getting delayed. For example employees could choose to start
working on easier claims over other claims with difficult problems or insufficient
information.

Comparing Variants over Restoration Time SLA Compliance

Similarly to the previous analysis, we split the data based on the restoration com-
pliance attribute (which measures compliance with the restoration time SLA)
using the process cube tool introduced in Chapter 3. As a result, we obtained
two process variants: one containing all the claims (6342) that complied with
their restoration time SLA (i.e., restoration compliance = 1) and another con-
taining all the claims (563) that failed to comply with such SLA (i.e., restoration
compliance = 0).

Again, we compared these two process variants against each other using the
process comparator technique presented in Chapter 5.

Figure 9.11 shows the results of the control-flow comparison between these
variants.

We can first observe that there are less significant differences between these
variants than in the previous analysis. However, the “Delayed, Active” state
presents an interesting analysis opportunity. We can observe that 19% of the
compliant claims and 27% of the non-compliant claims reach this state. The
difference is significant, hence the red color of the state. Then, we compared

9.2 Experiments 279

Figure 9.11: Control-flow comparison results between claims that complied with their
restoration time SLA and claims that did not.

the business rules (represented as decision trees) that can be used to predict
the next state to be reached in both variants (see Section 5.2.2 for more info on
business rule comparison).

Figure 9.12 shows the results of the business rules comparison between the
two variants in the state “Delayed, Active”.

Note that the decision tree learned form the non-compliant claims is not
shown in Figure 9.12 because it classifies all claims in the “Active, Delayed”
state.

We can observe that after the “Delayed, Active” state, most compliant claims
related to the GSIM service get activated again (i.e., they reach the “Active, De-
layed” state). This is not the case for the JASPER and SM2M services, where
compliant claims get restored directly after the delay (i.e., they reach the “Re-
stored, Delayed” state). This means that claims are being restored while being

280 SLA Compliance Analysis in a Claim Management Process

(a) Decision tree learned from the compliant claims.

(b) Agreement/disagreement decision tree.

Figure 9.12: Decision trees learned in the decision point (state) “Delayed, Active”.

delayed.
Since all non-compliant claims tend to get activated (i.e., reach the “Active,

Delay” state), the agreement/disagreement tree is quite obvious: only for claims
related to the GSIM service there is an agreement, hence they follow the same
control-flow (i.e., the “Active, Delayed” state). Claims related to the other two
services reach different states depending if they are compliant (i.e., the “Re-
stored, Delayed” state) or not (i.e., the “Active, Delayed” state).

In theory, claims that are in a delayed state cannot reach the restored state
directly: they have to go through the active state. As we have shown in the
above analysis, this is not the case. This phenomenon will be discussed in detail
in Section 9.3

Comparing Variants over Resolution Time SLA Compliance

This time we split the data based on the resolution compliance attribute (which
measures compliance with the resolution time SLA) using the process cube tool
introduced in Chapter 3. As a result, we obtained two process variants: one
containing all the claims (128) that complied with their resolution time SLA
(i.e., resolution compliance = 1) and another containing all the claims (50)
that failed to comply with such SLA (i.e., resolution compliance = 0). Note
that the resolution time SLA is only defined for the SM2M service and only for
critical and major severity claims.

9.2 Experiments 281

Again, we compared these two process variants against each other using the
process comparator technique presented in Chapter 5.

First we compared the variants from the control-flow perspective, but no
significant differences were found. Then, we compared the variants from the
performance perspective. Figure 9.13 shows the results of the performance com-
parison between compliant and non-compliant claims based on their elapsed
time.

Figure 9.13: Performance comparison results between claims that complied with their
resolution time SLA and claims that did not.

We can observe that there are three states that contain statistically signifi-
cant differences in terms of elapsed time: “Closed, Solved”, “Active, New’ and
“Solved, Restored”.

First of all, the “Closed, Solved” state (highlighted in red) presents signifi-
cant differences, but such differences are not interesting for the purpose of our
analysis because the closure of claims is not considered by any SLA. This is
because the closure of claims is done by the customer, not the company.

The “Active, New” state (highlighted in blue) is reached by compliant claims
in 2.5 minutes in average, while non-compliant claims reach this state much
faster: 46 seconds in average. Even though the difference is significant, both

282 SLA Compliance Analysis in a Claim Management Process

variants still have a very low response time, which is even lower than all the
defined SLAs for the process (see Table 9.2).

With respect to the “Solved, Restored” state, besides stating the obvious (i.e.,
non-compliant claims take longer to get solved) we have to look at the previous
state: “Restored, Active”. Notice that such state is not colored, hence there are
no significant differences in terms of elapsed time between compliant and non-
compliant claims. This means that the compliance or non-compliance of the
resolution time SLA is mostly determined after the restoration of the service. In
fact, the time elapsed between the “Restored, Active” and the “Solved, Restored”
states is approximately 6 days for claims that ended up complying with the
resolution SLA and 28 days for non-compliant claims. Given the available data,
it is difficult to know the reason for such performance differences; It can be
related to the information contained in the claim (e.g., the type of problem).

9.3 Discussion: The Delayed State

As mentioned before, we observed that there is a difference on how the delayed
state is used in different claims. Recall that time in this state is stopped and,
therefore, it does not count towards any SLA. As shown in Figure 9.1, it is clear
that delayed claims can either become active again or can get cancelled by the
customer. The first scenario means that a ticket was delayed because it required
some input from the customer. After the input is obtained, the claim is set to
active again. Then, work on the claim can continue. This means that the actual
work is done in the active state, which naturally counts for SLA compliance.

In our analysis, however, we noticed that an irregularity occurs: claims are
being restored directly after being delayed (i.e., without being activated). In
this scenario, a claim is delayed because of the same reasons. Nevertheless, it
is seems that the actual work is done while the claim is in the delayed state,
and not in an active state, hence the time does not count towards the SLA.
Employees use this trick to pause the time and work on cases. When things are
working again, they switch to the restored state. Of course, this is not in line
with the purpose of the delayed state, which is to protect the company from
being penalized for insufficient information in a claim.

This behaviour can be observed in cases across all services and severities,
and it is clearly beneficial for the company in the sense that such “time savings”
positively impact SLA compliance. Therefore, less cases fail their SLAs and the
company has to pay less compensation.

We presented these obtained results and analysis to the company. They

9.4 Conclusion 283

were surprised that this situation existed, and rapidly fixed the problem. As a
consequence, a change was made in the process: in May 2017, the system that
supports the process was modified so that claims were no longer allowed to go
directly from being in a delayed state to a restored state. From that point in
time, all delayed claims have to become active before a service restoration can
be done. In the future, we want to analyze the actual impact of such change in
the process on SLA compliance.

9.4 Conclusion

In this chapter, we presented an application of the tools and techniques intro-
duced in this thesis to analyze SLA compliance of a claim management process
using real process data. Concretely, we found insights that are not obtainable
using other current tools and techniques. We used process cubes (see Chapter 3)
to split the data as needed for the different experiments. We used the process
variant finder (see Chapter 6) to find the attributes contained in the data that
are correlated to SLA compliance. Finally, we used the process comparator (see
Chapter 5) to compare the claims that complied with their SLAs and those that
didn’t.

We analyzed the compliance of the process for the different SLAs defined by
the company, obtaining multiple useful insights that were communicated to the
company. For example, we discovered that claims related to the SM2M service
have a good overall response time SLA compliance. However, for the GSIM and
JASPER services, we discovered that the time of the week (e.g., weekday/week-
end, morning/evening) is closely related to the response time SLA compliance:
claims created in weekday mornings had much higher compliance with this SLA,
regardless of the severity of the claim.

Furthermore, we discovered a misuse of the delayed state, in which employ-
ees can work on a delayed claim without counting the time for SLA compliance.
The company immediately corrected this after we informed them about this
phenomenon, by making changes in the system that supports the process so
that this behavior is not allowed anymore.

Chapter 10
Business Process Reporting in
Education

Disclaimer: The data used in this chapter is subject to a non-disclosure agree-
ment signed by the author and by Eindhoven University of Technology. Therefore,
the data is not publicly available.

Business Process Reporting (BPR) refers to the provision of structured infor-
mation about processes in a regular basis, and its purpose is to support decision
makers. Reports can be used to analyze and compare processes from many per-
spectives (e.g., behavior, performance, costs, time). In order to be effective,
BPR presents some challenges:

1. It should provide insights using metric-based characteristics (e.g., bottle-
necks, throughput time, resource utilization) and behavioral characteris-
tics (e.g., deviations, frequent patterns) of processes.

2. It should be repeatable (i.e., not require great efforts to repeat the analy-
sis).

3. It should be able to analyze the data with different granularity levels (i.e.,
analyze an organization as a whole or analyze its branches individually).

This chapter shows through a case study how process mining workflows (see
Chapter 4) and process cubes (see Chapter 3) can be concretely used for business
process reporting, addressing the three challenges mentioned above.

286 Business Process Reporting in Education

The case study presented in this chapter refers to a business-process report-
ing service at Eindhoven University of Technology. The service produces a report
each quartile (i.e., two-month academic period) for each course that is provided
with video lectures. The report is sent to the responsible lecturer and provides
insights about the relations between the students’ usage of video lectures and
their final grades on the course, among other educational data analysis results.

The usefulness of the reports is evaluated with dozens of lecturers through-
out two evaluation rounds in different academic periods. During the first eval-
uation round, an initial set of reports was sent to lecturers and feedback was
collected through an evaluation form. The feedback was used to restructure the
report. Then, a set of restructured reports was sent to lecturers and a group
of them were interviewed to assess if the insights contained in the report were
better perceived. The results show that, indeed, this is the case.

The remainder of this chapter is organized as follows. Section 10.1 provides
an overview of the case study and discusses related work. Section 10.2 discusses
the structure of the reports sent and the results of the two evaluation rounds
with the lecturers. Finally, Section 10.3 concludes the chapter.

10.1 Context

The Eindhoven University of Technology is a top-ranked Dutch university. Despite
being relatively young (it was founded in 1956) it is ranked as one of the top
100 universities in the world1. It has over 11.000 students from more than 80
nationalities.

Amongst many services, Eindhoven University of Technology provides video
lectures for many courses for study purposes and to support students who are
unable to attend face-to-face lectures for various reasons. There are three dif-
ferent types of video lectures. The first are recordings of real-life lectures of the
actual (or previous) academic period. The second type replace the actual real-
life lectures in courses that implement flipped-classroom learning styles. Finally,
the third type are complementary to the real-life lectures of the course, as is the
case of e.g., video tutorials. Student usage of video lectures and their course
grades are logged by the University’s IT systems.

The remainder of this section describes the video lecture usage process, the
dataset used, the purpose of this case study and related works.

199th place according to QS Ranking 2018

10.1 Context 287

10.1.1 Process Description

For any given course that offers video lectures to the students that take it, the
video lecture usage process considers all the views of the video lectures of a
given course, where each student that watches video lectures is related to a
different case of the process. Hence, each video lecture view is considered as an
activity of the process. Video lectures can be watched by students in any order
and as many times as they want. Finally, the students take a final exam for the
course, which in this case is the final activity of the video lecture usage process.

The video lectures are numbered by the lecturer in the sense that they define
the ideal order in which students should watch them, e.g., from lecture 1 to
lecture n. However, within the ideal order, students can watch the same video
lecture several times in a row. This could be because of many partial views that,
in total, complete the video lecture, or because students watch it multiple times
due to the complexity or difficulty of its contents. Figure 10.1 describes the
ideal video lecture usage process followed by students for a given course with n
video lectures.

Video
Lecture 1

Video
Lecture 2

Video
Lecture 3

Video
Lecture N

Exam

Figure 10.1: Model of the “ideal” video lecture usage process for students of a given
course.

10.1.2 Event Data

The video lecture usage process is supported by several IT systems. The data
related to student’s personal information and their grades are registered in the
university’s information systems. The data related to video lecture views is
supported the a third-party system named Mediasite. Such data has to be pe-
riodically extracted from both systems manually given technical and political
difficulties (i.e., access permissions).

The data used in this case study relates to the academic years 2014-2015
and 2015-2016, and it contains 336.462 video lecture views and 159.134 course
grades of 11.367 students, 8.893 video lectures and 1.750 courses.

288 Business Process Reporting in Education

The data is extracted from the different IT systems in the form of three data
tables: video lecture views, course grades and personal information of students of
the University. Each student and course has a unique identifier code (i.e., stu-
dent id, course code). The data attributes available are described in Table 10.1.

Table 10.1: Event Data

(a) Student Data Attributes

Name Description

Student Id the anonymized unique ID of the student
Gender the gender of the student
Nationality the nationality of the student
Address the postal code related to the student’s registered address
Ed. Code the code of the academic program in which the student is enrolled

(b) Videolecture View Data Attributes

Name Description

Student Id the anonymized unique ID of the student
Lecture Name the name / number of the videolecture
Subject Code the code of the course that provides the videolecture
Timestamp the timestamp at the start of the view
Coverage the time spent watching the videolecture (excluding pauses)
Duration the time spent watching the videolecture (including pauses)
Quartile the quartile in which the view happened
Academic Year the academic year in which the view happened

(c) Course Grades Data Attributes

Name Description

Student Id the anonymized unique ID of the student
Subject Code the code of the course
Date the date of the exam
Quartile the quartile in which the course was taken by the student
Academic Year the academic year in which the course was taken by the student
Grade the grade obtained by the student

10.1 Context 289

These tables are merged into a single event data table using opportune joins
between them. An anonymized fragment of the resulting data is presented in
Table 10.2.

Table 10.2: A fragment of event data generated from the University’s system: each row
corresponds to an event.

Student Id Nat. Ed. Code Course Code Activity Quartile Acad. Year Timestamp Grade ...
1025 Dutch BIS 2II05 Lecture 1 1 2014-2015 03/09/2012 12:05 6 ...
1025 Dutch BIS 2II05 Lecture 2 1 2014-2015 10/09/2012 23:15 6 ...
1025 Dutch BIS 1CV00 Lecture 10 3 2014-2015 02/03/2012 15:36 7 ...
2220 Spanish INF 1CV00 Lecture 1 3 2014-2015 20/03/2013 16:24 8 ...
1025 Dutch BIS 2II05 Exam 2 2014-2015 13/12/2012 12:00 6 ...
2220 Spanish INF 1CV00 Lecture 4 3 2014-2015 25/03/2013 11:12 8 ...
2220 Spanish INF 1CV00 Exam 3 2014-2015 04/04/2013 12:00 8 ...

...

The data reveals enormous variability, e.g., thousands of students watch
video lectures for thousands of courses and every course has a different set of
video lectures, and they have different cultural and study backgrounds, which
leads to different behavior. Therefore, we need to provide different reports and,
within a report, we need to perform a comparative analysis of the students when
varying the grade.

10.1.3 Analysis Purpose

The purpose of this case study is to show how raw data extracted from the Uni-
versity’s IT systems can be transformed into reports that show insights about
students’ video lecture usage and its relation with course grades by using pro-
cess mining, process cubes and analytic workflows.

The reports are composed of three sections: course information, core statis-
tics and advanced analytics, as shown in Figure 10.2. An example report, where
student information has been anonymized, can be downloaded from https:

//www.dropbox.com/s/565zz94rdo6gg2r/report.zip?dl=0. The analysis re-
sults refer to all students who registered for the course exam, independently
whether or not they participated in it.

The course information section provides general information, such as the
course name, the academic year, the number of students, etc. The core statistics
section provides aggregate information about the students, such as their gen-
der, nationality, enrolled bachelor or master program, along with course grades
distribution and video lecture views. The advanced analytics section contains
process-oriented diagnostics obtained through process mining techniques.

https://www.dropbox.com/s/565zz94rdo6gg2r/report.zip?dl=0
https://www.dropbox.com/s/565zz94rdo6gg2r/report.zip?dl=0

290 Business Process Reporting in Education

Figure 10.2: Overview of the case study: University data is transformed into reports by
using process mining, process cubes and analytic workflows.

10.1.4 Related Work

This section discusses the related work done around business process report-
ing and educational data analysis. Related work about analytic workflows and
process cubes is discussed in Chapters 4 and 3 respectively.

Business Process Reporting

Business Process Intelligence (BPI) is defined by [63] as the application of Busi-
ness Intelligence (BI) techniques to business processes. However, behavioral
properties of processes (e.g., control-flow) cannot be represented using tradi-
tional BI tools. Alternatively, Castellanos et al. [34] provides a broader defini-
tion: BPI exploits process information by providing the means for analyzing it to
give companies a better understanding of how their business processes are ac-

10.1 Context 291

tually executed. It incorporates not only metric-based process analysis, but also
process discovery, monitoring and conformance checking techniques as possible
ways to understand a process.

Business Process Reporting can be defined as the structured and periodical
production of reports containing analysis of process data obtained through BPI
techniques.

Business process management suites (e.g., SAP, Oracle) usually provide pro-
cess reporting capabilities. Often, these process reporting capabilites are an
adaptation of general-purpose reporting tools (e.g., Crystal Reports, Oracle Dis-
coverer) to process data [63]. These general-purpose reporting tools are unable
to analyze the data from a process perspective (e.g., discover a model).

Most process mining tools (e.g., ProM, Disco) are able to analyze from a
process perspective, but they lack reporting capabilities. Others, such as Celonis,
offer business process reporting capabilities. However, they are limited to only
a few process-perspective analysis components, and each report instance has to
be created manually. Furthermore, the event data used as input for the report
can only be filtered from the original event data; the granularity level cannot
be changed. Also, most of these tools do not allow the comparison of process
variants (e.g., students with different grades).

Given the limitations described above, in this chapter we used a combina-
tion of process mining, analytic workflows and process cubes to provide fully
automated process-oriented reports.

Educational Data Analysis

The analysis of educational data and the extraction of insights from it is related
to two research communities: Educational Data Mining and Learning Analytics.

Educational data mining (EDM) is an emerging interdisciplinary research
area that deals with the development of methods to explore data originating in
an educational context. EDM uses computational approaches to analyze edu-
cational data in order to study educational questions [62, 129]. For example,
knowledge discovered by EDM algorithms can be used not only to help teachers
to manage their classes, understand their students’ learning processes and re-
flect on their own teaching methods, but also to support a learner’s reflections
on the situation and provide feedback to learners. An extensive survey on the
state of the art of EDM is presented in [129]

Learning analytics (LA) is defined by [137] as the measurement, collection,
analysis and reporting of data about learners and their contexts, for purposes
of understanding and optimising learning and the environments in which it

292 Business Process Reporting in Education

occurs. According to [54], the difference between EDM and LA is that they ap-
proach different challenges driving analytics research. EDM focuses on the tech-
nical challenge (e.g., How can we extract value from these big sets of learning-
related data?), while LA focuses on the educational challenge (e.g., How can
we optimise opportunities for online learning?). A discussion on the differ-
ences, similarities and collaboration opportunities between these two research
communities is presented in [138].

Several process mining techniques (e.g., Fuzzy Miner [64]) have been ap-
plied successfully in the context of EDM [149] for analyzing study curriculums
followed by students. Notably, the work introduced by [110] aims to obtaining
better models (i.e., in terms of model quality) for higher education processes
by performing data preprocessing and semantic log purging steps. However,
most of these techniques are not suitable for analyzing video lecture usage by
students, given the inherent lack of structure of such processes.

In this chapter, we will use existing and new process mining techniques to
obtain insights of student behavior from an educational point of view.

10.2 Experiments

Before we generate a report for each course instance, we need to split the
dataset first. For this purpose, we used the Process Mining Cube (PMC) tool
introduced in Chapter 3. As mentioned before, the starting point is the event
data obtained from multiple joins of the tables extracted from the University’s
systems (see Table 10.2 for an example fragment of the data)

Using the obtained event data, we created a process cube with the following
dimensions: Student Id, Student Gender, Student Nationality, Student Educa-
tion Code, Course Code, Activity, Grade, Timestamp, Quartile and Academic
Year.

After slicing and dicing the cube, thousands of cells are produced: one for
each combination of values of the “Course Code”, “Quartile” and “Course Grade”
dimensions. Each cell corresponds to an event log that can be analyzed using
process mining techniques.

For each resulting cell of the cube, we created an automatically-generated
report. Figure 10.3 represents the creation of the reports from event data as an
abstract analysis scenario, based on the building blocks defined in Chapter 4.

For automatically generating the course reports we used RapidProM (intro-
duced in Chapter 4), which extends the RapidMiner analytic workflow tool with
process mining techniques. Figure 10.4a illustrates the analytic workflow that

10.2 Experiments 293

Figure 10.3: Abstract analysis scenario for generating reports from event data

is used to generate each report. Figure 10.4b shows the explosion of the “Se-
quence Models” section of the analytic workflow.

The operators shown in Figure 10.4 are used for different purposes: Multi-
pliers allow one to use the output of an operator as input for many operators.
Filter operators select a subset of events based on defined criteria. Process min-
ing operators are used to produce analysis results. For example, the operators
highlighted in blue in Figure 10.4b produce a sequence model from each filtered
event data.

The complete RapidProM implementation of the analytic workflow used in
this case study is available at https://www.dropbox.com/s/g9spsziyv55vsro/
single.zip?dl=0. Readers can execute this workflow in RapidMiner to gener-
ate a report using the sample event log available at https://www.dropbox.

com/s/r3gczshxqxh6a6d/Sample.xes?dl=0.2

We applied our approach that combines process mining, analytic workflows
and process cubes to this case study in two evaluation rounds. The remainder
of this section describe the work, reports, results and the feedback obtained on
each round.

2When running the workflow, make sure that the Read File operator points to the sample event
log and the "HTML output directory" parameter of the Generate Report operator points to the desired
output folder.

https://www.dropbox.com/s/g9spsziyv55vsro/single.zip?dl=0
https://www.dropbox.com/s/g9spsziyv55vsro/single.zip?dl=0
https://www.dropbox.com/s/r3gczshxqxh6a6d/Sample.xes?dl=0
https://www.dropbox.com/s/r3gczshxqxh6a6d/Sample.xes?dl=0

294 Business Process Reporting in Education

(a) Advanced Analytics section sub-workflow

(b) Explosion of the “Sequence Models” sub-workflow

Figure 10.4: Implemented analytic workflow used to generate the reports. Each instance
of a course can be automatically analyzed in this way resulting in the report
described.

10.2 Experiments 295

10.2.1 Initial Report

The first evaluation round was conducted in August 2015 and it used the event
data corresponding to the academic year 2014-2015. The data used in this
round contains 246.526 video lecture views and 110.056 course grades of 8.122
students, 8.437 video lectures and 1.750 courses. Concretely, we automatically
generated a total of 8.750 course reports for 1750 courses given at the Univer-
sity in each of the 5 quartiles (i.e., 4 normal quartiles + interim quartile) of
the academic year 2014-2015. For reliability of our analysis, we only selected
the reports of courses where, on average, each student watched at least 3 video
lectures. In total, 89 courses were selected and their reports were sent to the
corresponding lecturers.

Section 10.2.1 shows the first report structure through an example of the
reports sent to lecturers in this evaluation round. It also provides a detailed
analysis of the findings that we could extract from the report for a particular
course. Along with the report, we also sent an evaluation form to the lecturers.
The purpose of the evaluation forms is to verify whether lecturers were able to
correctly interpret the analysis contained in the report. The results obtained in
the first evaluation round are discussed in Section 10.2.1.

Structure of the Report

To illustrate the structure, contents and value of the reports, we selected an
example course: “Introduction to modeling - from problems to numbers and
back” given in the third quartile of the academic year 2014-2015 by the Inno-
vation Sciences department at the University. This course is compulsory for all
first-year students from all programs at the University. In total, 1621 students
attended this course in the period considered. This course is developed in a
“flipped classroom” setting, where students watch online lectures containing
the course topics and related contents, and in the classroom, they engage these
topics in practical settings with the guidance of the instructor.

The video lectures provided for this course are mapped onto weeks (1 to 7).
Within each week, video lectures are numbered to indicate the order in which
students should watch them (i.e., 1.1 correspond to the first video lecture of
the first week). As indicated by the course’s lecturer, the first video lectures of
each week contain the course topics for that week, and the last video lectures
of each week contain complementary material (e.g., workshops, tutorials). The
number of video lectures provided for each week depends on the week’s topics
and related activities, hence, it varies.

296 Business Process Reporting in Education

Students’s behavior can be analyzed from many perspectives. As mentioned
in Section 10.1.4, several process mining techniques have been applied in the
context of educational data analysis [149].

Initially, we applied traditional process model discovery techniques (e.g.,
Fuzzy Miner [64], ILP Miner [170], Inductive Visual Miner [103]) to the ed-
ucational data. However, given the unstructured nature of this data (i.e., stu-
dents watching video lectures), the produced models were very complex (i.e.,
spaghetti or flower models) and did not provide clear insights. Therefore, we
opted for other process mining techniques that could help us understand the
behavior of students:

Figure 10.5.a shows for each video lecture the number of students that
watched it. We can observe that the number of students that watch the video
lectures decreases as the course develops: most students watched the video
lectures corresponding to the first week (i.e., 1.X) but less than half of them
watched the video lectures corresponding to the last week (i.e., 7.X). Note that
within each week, students tend to watch the first video lectures (i.e., X.1, X.2)
more than the last ones (i.e., X.5, X.6). This was discussed with the course’s
lecturer. It is explained by the fact that, as mentioned before, the first video lec-
tures of each week contain the topics, and the last ones contain complementary
material.

Figure 10.5.b shows for each student group (i.e., grouped by their grade)
the level of conformance, averaged over all students in that group, of the real
order in which students watch video lectures, compared with the “natural” or
logical order, namely with watching them in sequence (i.e., from 1.1 to 7.4).
The conformance level of each student is measured as the replay fitness of the
data over a process model that contains only the “natural” sequential order. The
replay fitness was calculated using conformance checking techniques [157]. We
can observe that students with higher grades have higher levels of conformance
than students with lower grades.

Figure 10.5.c shows the grade distribution for this course where each bar is
composed by two parts corresponding to the number of students who watched
at least one (red part) video lecture and the number of students who did not
(blue part). We can observe that the best students (i.e., with a grade of 8 or
above) use video lectures. On the other hand, we observe that watching video
lectures does not guarantee that the student will pass the course, as shown in
the columns of students that failed the course (i.e. grade ≤ 5).

Figure 10.6 shows dotted charts [140] highlighting the temporal distribution
of video-lecture watching for two student groups: (a) students that failed the
course with a grade of 5, and (b) students that passed the course with a grade of

10.2 Experiments 297

Figure 10.5: Analysis results contained in the report of the course 0LEB0:
(a) Number of students that watched each video lecture
(b) Conformance with the natural viewing order by course grade
(c) Grades distribution for students who watched video lectures (in red) or
did not (in blue)

298 Business Process Reporting in Education

6 or 7. Each row corresponds to a student and each dot in a row represents that
student watching a video lecture or taking the exam. Note that both charts show
a gap where very few video lectures were watched, which is highlighted in the
pictures through an oval. This gap coincides with the Carnaval holidays. We can
observe that, in general, students that failed watched fewer video lectures. Also
note that in Fig. 10.6.a the density of events heavily decreases after the mid-
term exam (highlighted through a vertical dashed line). This could be explained
by students being discouraged after a bad mid-term result. This phenomenon
is also present in (b), but not equally evident. We can also observe that most
students tend to constantly use video lectures. This is confirmed by the low
number of students with only a few associated events.

(a) Grade = 5 (failed) (b) Grade = 6 or 7 (passed)

Figure 10.6: Dotted charts for students grouped by their course grades

Figure 10.7 shows sequence analysis models that, given any ordered se-
quence of activities, reflects the frequency of directly-follows relations3 as per-
centage annotations and as the thickness of edges. The highest deviations from
the ordered sequence order are highlighted in colored edges (i.e., black edges
correspond to the natural order). This technique was tailored for the genera-
tion of reports and it is implemented using a customized RapidProM extension.
When comparing (a) students that passed the course with a grade of 6 or 7 with

3The frequency of directly-follows relations is defined for any pair of activities (A,B) as the ratio
between the number of times that B is directly executed after A and the total number of times that
A is executed.

10.2 Experiments 299

(b) students that had a grade of 8 or 9, we can observe that both groups tend
to make roughly the same deviations. Most of these deviations correspond to
specific video lectures being skipped. These skipped video lectures correspond
in most cases to complementary material. In general, one can observe that the
thickness (i.e., frequency) of the arcs denoting the “natural” order (i.e., black
arcs) is higher for (b), i.e., those with higher grades. Note that at the begin-
ning of each week we can observe a recovery effect (i.e., the frequencies of the
natural order tend to increase).

(a) Grade = 6 or 7 (b) Grade = 8 or 9

Figure 10.7: Sequence analysis for students grouped by their course grades.

Lecturers Evaluation

In addition to the qualitative analysis for some courses like such as the course
analyzed in Section 10.2.1, we have also asked lecturers for feedback through

300 Business Process Reporting in Education

an evaluation form linked to each report.4 The evaluation form provided 30
statements about the analysis contained in the reports (e.g., “Higher grades are
associated with a higher proportion of students watching video lectures”, “Video
lecture views are evenly distributed throughout the course period”). Lectur-
ers evaluated each statement on the basis of the conclusions that they could
draw from the report. For each of the 30 statements, lecturers could decide if
they agreed or disagreed with the statement, or, alternatively, indicate that they
could not evaluate the statement (i.e., “I don’t know”).

In total, 24 of the 89 lecturers answered the evaluation form. Out of the 720
(24 x 30) possible statement evaluations, 437 statements were answered with
“agree” or “disagree”. The remaining cases in which the statement could not be
evaluated can be explained by three possible causes: the statement is unclear,
the analysis is not understandable, or the data shows no conclusive evidence.

In the case that a statement was evaluated with “agree” or “disagree”, we
compared the provided evaluation with our own interpretation of the same
statement for that report and classified the response as correct or incorrect. In
the case that a statement was not evaluated, the respose was classified as un-
known.

Table 10.3 shows a summary of the response classification for each section
of the report. In total, 89% of the statement evaluations were classified as cor-
rect. This indicates that lecturers were capable to correctly interpret the analysis
provided in the reports. Note that the Conformance section had the highest rate
of unknown classifications (63.5%). This could be related to understandability
issues of the analysis presented in that section.

Table 10.3: Summary of the classification of statement evaluations performed by lectur-
ers

Statement Core Statistics Advanced Analytics Section Sub Total Total (%)Evaluation Section Conformance Temp. Dist. Seq. Analysis
Correct 261 30 67 32 390 (89%) 61%Incorrect 28 5 8 6 47 (11%)

Unknown 95 61 69 58 283 39%

The evaluation form also contained a few general questions. One of such
questions was: “Do you think this report satisfies its purpose, which is to pro-
vide insights about student behavior?”, for which 7 lecturers answered “yes”, 4
lecturers answered “no” and 13 lecturers answered “partially”. All the lecturers

4The evaluation form is available at https://www.dropbox.com/s/09y4ypklt70y6d9/form.

zip?dl=0

https://www.dropbox.com/s/09y4ypklt70y6d9/form.zip?dl=0
https://www.dropbox.com/s/09y4ypklt70y6d9/form.zip?dl=0

10.2 Experiments 301

that responded “partially” provided written feedback indicating the improve-
ments they would like to see in the report. Some of the related comments
received were: “It would be very interesting to know if students: a) did NOT
attend the lectures and did NOT watch the video lectures, b) did NOT attend
the lectures, but DID watch the video lectures instead, c) did attend the lectures
AND watch the video lectures too. This related to their grades”, “The report
itself gives too few insights/hides insights”, “It is nice to see how many students
use the video lectures. That information is fine for me and all I need to know”,
and “I would appreciate a written explanation together with your diagrams,
next time”. Another question in the evaluation form was: “Do you plan to in-
troduce changes in the course’s video lectures based on the insights provided by
this report?”, for which 4 lecturers answered “yes” and 20 answered “no”. The
results show that the analysis is generally perceived as useful, but that more
actionable information is needed, such as face-to-face lecture attendance. How-
ever, this information is currently not being recorded by the TU/e. The feedback
provided by lecturers was used to improve the report. These improvements are
discussed in the next Section.

10.2.2 Final Report

We modified the reports based on the feedback obtained in the first evalua-
tion round. The detail of the changes is presented in Section 10.2.2. To assess
the quality of the improved report, we conducted a second evaluation round,
which was conducted in March 2016 and it used the event data correspond-
ing to the first two quartiles of the academic year 2015-2016. The data used
in this round contains 89.936 video lecture views and 49.078 course grades of
10.152 students, 2.718 video lectures and 1.104 courses. Concretely, we au-
tomatically generated a total of 2.208 course reports for 1104 courses given at
the University in each of the 2 first quartiles of the academic year 2015-2016.
For reliability of our analysis, we only selected the reports of courses where, on
average, each student watched at least 3 video lectures. In total, 56 courses
were selected and their reports were sent to the corresponding lecturers.

Section 10.2.2 shows the changes introduced in the report based on the
feedback obtained from lecturers in the first evaluation round. It also provides
examples of the findings that several lecturers could extract from the report.
Along with the report, we also sent an evaluation form to the lecturers. The
purpose of the evaluation forms is to verify whether lecturers were able to cor-
rectly interpret the analysis contained in the improved report. Unfortunately, in
this evaluation round no lecturer answered the evaluation form. Therefore, we

302 Business Process Reporting in Education

held face-to-face meetings with four lecturers, where the results included in the
report were discussed. The insights obtained in these meetings are discussed in
Section 10.2.2.

Changes in the Report

According to the feedback obtained from lecturers (reported in Table 10.3 in
Section 10.2.1), the most problematic sections (i.e., highest rate of unknown
classifications) were the Conformance (63.5% unknown) and Sequential Analy-
sis (60.4% unknown) sections of the report (described in Section 10.2.1).

Given this feedback and the fact that the interpretation of a specific replay fit-
ness value can be misleading for non-process-mining-experts, the conformance
section was replaced for a section that describes the compliance of students with
the “natural” order of watching video lectures based on simpler calculations,
defined as follows.

Definition 10.1 (Compliance Score). For any given student, their compliance
score (CS) w.r.t. the natural order is calculated as CS =

∑n−1
i=1

df(ai,ai+1)
count(ai)

, where
df(ai, ai+1) is the number of times that the student watched lecture ai+1 directly
after ai, count(ai) is the number of times that the student watched the lecture ai
and n is the number of video lectures available for the course.

This new compliance score is easier to interpret: a value of X means that
X percent of the video lectures watched by the student were watched in the
natural order.

Figure 10.8 shows an example of the new compliance section of the report.
It refers to the course “5ECC0 - Electronic circuits 2” (more details will be given
later). Figure 10.8.a shows the average compliance scores according to the stu-
dent’s grades, while Figure 10.8.b shows the distribution of students according
to their compliance scores.

Regarding the Sequence Analysis section, we simplified the explanatory text
of this section in the report. However, this section presents inherent difficulties
associated to the analysis of process models: most lecturers are not familiar with
process models. Previously, sequence models only referred to frequency devi-
ations. In this round, we decided to incorporate sequence models that show
performance information. In these sequence models, an arc indicates the time
between the start of the source activity (i.e., video lecture or exam) and the
start of the target activity. From these models, one can observe if a given lec-
ture is being fully watched, or if students are skipping most of it after watching

10.2 Experiments 303

(a) Average student compliance with the “natural” order according to the student’s grades

(b) Student distribution over compliance level by range.

Figure 10.8: New compliance section of the report for an example course (5ECC0 - Elec-
tronic circuits 2)

a few minutes. Figure 10.9 shows an example of a sequence model annotated
with performance information. This model was obtained from one of the course
reports (7U855 - Research methods for the built environment) sent in this eval-
uation round. From these models we can get interesting insights about the
students’ behavior on this course. For example, in Figure 10.9.a (i.e., students
that obtained a 6 or a 7 in the exam) the arrow between Lecture 01 and Lecture
02 states that students that watched Lecture 02 directly after Lecture 01, started
watching Lecture 02 14 seconds (in average) after started watching Lecture 01.
However, in Figure 10.9.b (i.e., students that obtained a 8, 9 or 10 in the exam)
this specific behavior is not observed.

304 Business Process Reporting in Education

(a) Grade = 6 or 7. (b) Grade > 7.

Figure 10.9: Sequence models annotated with performance information for students
grouped by their grade. The models were obtained from the report of
course 7U855 - Research methods for the built environment.

Lecturers Evaluation

As mentioned before, from the 56 reports sent to lecturers in this evaluation
round, we obtained no responses to the corresponding evaluation forms. There-
fore, we held face-to-face meetings with four lecturers from different depart-
ments of the University to discuss the report in general, and to evaluate if the
changes introduced in this evaluation round did actually improve the under-
standability of the report.

In the remainder of this section, we summarize the insights obtained by
lecturers when discussing the reports in the face-to-face meetings.

The first lecturer we met was responsible for the course 1CV00 - Determin-
istic Operations Management, provided by the Industrial Engineering depart-
ment. In this course, lectures are grouped by topic (i.e., 2 lectures per topic)
and topics are independent from each other. Figure 10.10.a shows the distri-

10.2 Experiments 305

bution of students according to their compliance scores for this course. In this
chart, we can observe that students have a very low compliance score in gen-
eral, and it had no correlation with grades. The lecturer defined this behavior
as “expected” since the course topics are independent. Figure 10.10.b shows the
dotted chart containing all the students of the course. Here we can observe two
peaks of video lecture usage in weeks 4 and 7 (highlighted with vertical yellow
lines), but without context information, we cannot explain why they happened.
The lecturer immediately identified these two peaks as the two mid-term exams
that are part of the course. The interpretation given by the lecturer was that
students were using the video lectures to study for these exams. This behavior
was expected by the lecturer, but in the past he did not have the information to
either confirm or deny it.

(a) Student distribution over compliance level by
range. Compliance scores are relatively low.

(b) Dotted chart for all the students enrolled in
the course. Video lecture usage peaks are
highlighted with yellow vertical lines.

Figure 10.10: Analysis results included in the report of the course 1CV00.

The second lecturer was responsible for the course 4EB00 - Thermodynam-
ics, provided by the Mechanical Engineering department. In this course, some
topics build on top of knowledge acquired in previous topics, but others are in-
dependent. Figure 10.11.a shows, for each lecture, the total number of views.
We can observe that Lecture 02a and Lecture 05a had the highest number of
views. The lecturer determined that this behavior was expected, since Lecture
02a contained most of the definitions and knowledge that students needed to
“remember” from previous courses. On the other hand, Lecture 05a was re-
lated to Entropy, which was the most difficult topic of the course for students.

306 Business Process Reporting in Education

Figure 10.11.b shows the average student compliance with the “natural” or-
der according to the student’s grades. We can observe that there is a negative
correlation between the compliance scores and the grades. According to the
lecturer: “A possible explanation of this could be that students with bad grades
could have skipped face-to-face lectures and then needed to watch all the video
lectures, while good students attended face-to-face lectures and only watched
some video lectures if they needed to clarify something”.

(a) Number of views of each video lec-
ture of the course. Lectures 02a and
05a were the most watched by stu-
dents (highlighted in red).

(b) Average student compliance with the “natural” order
according to the student’s grades. There seems to be
a negative correlation between compliance scores and
grades.

Figure 10.11: Analysis results included in the report of the course 4EB00.

The third lecturer was responsible for the course 5ECC0 - Electronic Circuits
2, provided by the Electrical Engineering department. In this course, all the
topics were related, every topic built-up on the previous one. Figure 10.8.a
showed the average student compliance with the “natural” order according to
the student’s grades. We can observe a positive correlation between compliance

10.2 Experiments 307

scores and grades. The lecturer was positively surprised by this finding, but he
considered that the correlation was not strong. Figure 10.12 shows a fragment
of the sequence model with frequency deviations for two different groups of
students of the course (i.e., those with a grade lower than 5, and those with a
grade equal to 6 or 7). We can observe in Figure 10.12.a that Lecture 01c is being
skipped by 13% of the students that watched the Lecture 01b. This behavior
does not occur for students with higher grades (shown in Figure 10.12.b). The
lecturer then considered this finding as “unexpected, but positive”, since Lecture
01c consists of the basic topics from the previous course (i.e., Electronic Circuits
1) and it was meant to refresh student’s knowledge. According to the lecturer,
the fact that students did not need to watch it is positive.

(a) Grade < 5. (b) Grade = 6 or 7.

Figure 10.12: Fragment of the sequence model with frequency deviations for all stu-
dents. In (a), Lecture 1c is being skipped. These charts were included in
the report of the course 5ECC0 - Electronic Circuits 2.

308 Business Process Reporting in Education

The fourth lecturer was responsible for the course 5XCA0 - Fundamentals
of Electronics, provided by the Electrical Engineering department. This course
considers topics are relatively independent from each other. Figure 10.13.a
shows, for each lecture, the total number of views. It is interesting to notice
that the Lecture 05a, the video lecture most watched by students (highlighted in
red) is an instruction lecture (i.e., a lecture that consists of exercises instead of
topics). Given this finding, the lecturer has expressed the intention of splitting
that video lecture, for the next executions of the course, into a series of 10-
minute web lectures comprehending all the different types of exercises covered
in the video lecture. Figure 10.13.b shows the student distribution over ranges
of compliance score. It is clear from the chart that most students have a very
low compliance score w.r.t. the “natural” viewing order. This was justified by
the lecturer through the following statement: “The topics are relatively discon-
nected, and it seems that most students would watch only specific lectures”.

The general comments that we received from lecturers are summarized as
follows. “It would be interesting to see the correlation with face-to-face lectures
to see if students use video lectures as a replacement or as a complement for
them”. “Video lectures are very good for the middle students. good students do
not seem to need them as much”. “I should split the most visited video lectures
into a series of web lectures (i.e., 10 minute recordings of specific topics) so
I could really know which topics are the most difficult for the students”. “Stu-
dents tend to use exercise lectures much more intensively than the actual theory.
They seem to be exam-oriented, as they prepare mostly watching exercises”.

Regarding the report itself, again we received suggestions to incorporate
face-to-face lecture attendance. As mentioned in Section 10.2.1, it is very diffi-
cult to record face-to-face attendance of students for technical reasons. Other
lecturers suggested that we incorporate student feedback into the report. We
certainly recognize the potential that incorporating the students’ feedback on
the report could have in the insights that the lecturer can obtain from it. We
plan to incorporate this feedback and its potentially positive effects in the re-
ports for the next quartile.

10.3 Conclusion

This chapter has illustrated the benefits of combining the complementary ap-
proaches of process cubes and analytic workflows in the field of process min-
ing. In particular, the combination is beneficial when process mining techniques
need to be applied on large, heterogenous event data of multidimensional na-

10.3 Conclusion 309

(a) Number of views of each video lec-
ture of the course. Lecture 05a was
the most watched by students (high-
lighted in red).

(b) Student distribution over compliance level by range.
Most students have a very low compliance score (i.e.,
between 0% and 10%).

Figure 10.13: Analysis results included in the report of the course 5XCA0.

ture.
To demonstrate such benefits, we applied the combined approach in a large

scale case study where we provide reports for lecturers. These reports corre-
late the grades of students with their behavior while watching the available
video lectures. We evaluated the usefulness of the reports in two evaluation
rounds. The second evaluation round presented an improved report, which was
modified based on the feedback obtained in the first evaluation round. Unlike
existing Learning Analytics approaches, we focus on dynamic student behavior.
Also, descriptive analytics would not achieve similar analysis results because
they do not consider the process perspective, such as the ordering of watching
video lectures.

Educational data has been analyzed by some disciplines in order to under-

310 Business Process Reporting in Education

stand and improve the learning processes [54,62,129,137,138], even employ-
ing process cubes [161]. However, these analyses were mostly focused on in-
dividual courses. No research work has previously been conducted to allow
large-scale process mining analysis where reports are automatically generated
for any number of courses. Our approach has made it possible by integrating
process mining with analytic workflows, which have been devised for large-scale
analysis, and process cubes, which provide the capabilities needed to perform
comparative analyses.

As future work, the report generation will be extended to Massive Open On-
line Courses (MOOCs) given by Eindhoven University of Technology. This type
of courses are particularly interesting due to the fact that face-to-face lectures
are not used: video lectures are the main channel used by students for accessing
the course topics. For example, over 100.000 people from all over the world
registered for the first two executions of the MOOC Process Mining: Data science
in Action.5 We also plan to apply this analysis to the courses provided by the
European Data Science Academy (EDSA).6

5http://www.coursera.org/course/procmin
6http://edsa-project.eu

http://www.coursera.org/course/procmin
http://edsa-project.eu

Chapter 11
Comparative Analysis of
Business Process Outsourcing
Services

Disclaimer: The data used in this chapter is subject to a non-disclosure agreement
signed by the author and by Xerox Services. Therefore, the data is not publicly
available.

Business process outsourcing (BPO) is the contracting of business activities
and functions (usually non-primary) to a third-party provider. BPO services
usually include payroll, human resources (HR), accounting and customer/call
center relations.

BPO organizations tend to specialize in providing services in a large-scale
e.g., to many different companies. In such a way, they can benefit from larger-
scale operations by reducing their marginal costs. However, given the different
nature of their clients and their processes, usually BPO organizations have to
adapt their services to fit different requirements. This leads to a natural variabil-
ity in the way that such services (i.e., business processes) are executed. Process
variants may manifest due to differences in the nature of clients, local regula-
tions, type and urgency of cases, SLAs, etc. It is crucial for BPO organizations to
gain insights on such process variants in order to learn from best-practices, find
root causes for inefficiencies, and improve their competitiveness in the global

312 Comparative Analysis of Business Process Outsourcing Services

market.
In this chapter, we use the tools and techniques proposed in Part II to per-

form a comparative analysis of a digitalization service process for several types
of documents in a BPO organization, considering multiple perspectives such as
control-flow and performance.

The remainder or this chapter is structured as follows. Section 11.1 intro-
duces the context of this case study. Section 11.2 describes the experiments
performed, and the obtained results. Section 11.3 discusses the results and
their impact on the company. Finally, section 11.4 concludes the chapter.

11.1 Context

Xerox Corporation is a Fortune-500 USA-based global corporation that sells print
and digital document products and services in more than 160 countries. In
2016, Xerox Corporation separated its Xerox Services division that handled all
business process service operations into a new company named Conduent, which
has now over 85,000 employees in more than 40 countries. One of the business
process service operations provided by Xerox Services is business process out-
sourcing.

One of the many BPO services offered by Xerox Services (currently by Con-
duent) is the digitalization of paper-printed health insurance forms, which usu-
ally include both handwriting and printed information.

The remainder of this section describes the document digitalization process,
the dataset used, and the purpose of the analysis in the form of process ques-
tions.

11.1.1 Process Description

This case study relates to the transaction processing business unit within Xerox
Services. More specifically, we analyzed the process pertaining to the data entry
back-office operations of insurance claim forms.

Figure 11.1 shows two examples of such forms, submitted in paper by a US
healthcare-related organization, that are digitalized by Xerox Services.

Forms submitted to and by the insurance providers need to be digitized be-
fore the claims can be processed. Business Process Outsourcing (BPO) organiza-
tions such as Xerox Services assist the insurance providers in this process. In
the digitalization process, each case refers to the data entry operations of one

11.1 Context 313

Figure 11.1: Example of two paper-printed forms digitalized by Xerox Services. The UB-
04 (on the right) form is a claim form used by hospitals, nursing facilities,
in-patient, and other facility providers. The correspondence claim form
(on the left) defines a request for additional information in order for a
claim to be considered clean, to be processed correctly or for a payment
determination to be made.

instance of an insurance claim form. Xerox Services handles the data entry
operations of millions of insurance claim forms per month.

Forms received by Xerox Services are classified and sorted depending on
the type of form e.g., HCFA, UB04, Dental, correspondence claim, etc. More
fine-grained classifications further refining each type are possible (e.g., HCFA
standard, HCFA careplus, etc), thereby defining a taxonomy. Different classes
in this taxonomy are divided into so-called batches. Each batch relates to a set
of forms of one specific type (e.g., HCFA standard) to be processed. Each type
of form is handled differently: many steps involved in the processing of a form
may not be performed in the handling of other forms.

314 Comparative Analysis of Business Process Outsourcing Services

Figure 11.2 shows a process model generated with the Disco tool that repre-
sents the control-flow of the process based on its observed executions including
different batches related to different forms. The unreadability and complexity

Figure 11.2: Process Model that represents all the behavior included in the event data
related to different batches.

of this model further confirms the need to analyze the variability within the
process.

11.1.2 Event Data

Xerox handles millions of transactions every day. In this chapter, we only con-
sider the transactions of one month (i.e., November 2015) related to one US-
based client. This raw data obtained from Xerox contains information on 94 dif-
ferent batches (i.e., form types) and contains more than 40 million rows of data
that can be related to events in the process. Table 11.1 shows an anonymized
extract of the data obtained from Xerox.

The DCN attribute is related to a particular form being processed. Hence,
it indicates the case ID of the process. The BATCHNAME attribute indicates the
batch (i.e., type of insurance claim form) of the form being processed. The TASK
attribute refers to the activity being executed. The START and STOP attributes
indicate the moment when each avtivity was started and completed. Finally,
the USER and LOCATION attributes indicate the resource that is executing the
activity and its location.

It is important to note that the process is heavily automatized, and humans
are seldom involved in its execution. For example, the resource “MrAuto” (the
most frequent one) indicates that the activity was performed automatically by
a system. Other resources with an id number (e.g., 30192788) correspond to
humans, which are usually related to very specialized and infrequent tasks such
as visual confirmations and checks.

11.1 Context 315

Table 11.1: A fragment of raw data generated by Xerox’s systems

BATCHNAME DCN TASK START STOP USER LOCATION

BATCH_1 151102000076 OCRFlowValve 02/11/2015 11:27:46 02/11/2015 11:27:47 MrAuto Kochi
BATCH_1 151102000076 Images2Humana 02/11/2015 11:44:29 02/11/2015 11:44:32 MrMQClaims Kochi
BATCH_1 151102602347 OCRFlowValve 02/11/2015 13:01:04 02/11/2015 13:01:04 MrAuto Domestic
BATCH_1 151102602348 OCRFlowValve 02/11/2015 13:01:04 02/11/2015 13:01:04 MrAuto Domestic
BATCH_1 151102602347 Images2Humana 02/11/2015 13:14:43 02/11/2015 13:14:46 MrMQClaims Domestic
BATCH_1 151102602348 Images2Humana 02/11/2015 13:14:43 02/11/2015 13:14:46 MrMQClaims Domestic
BATCH_1 151102000076 KeyFlowValve 03/11/2015 01:15:30 03/11/2015 01:15:30 MrAuto Kochi

...
BATCH_6 151106807336 DomesticRouter 07/11/2015 00:56:10 07/11/2015 00:56:11 MrAuto Cebu
BATCH_6 151106807336 ToCebu 07/11/2015 00:57:10 07/11/2015 00:57:16 MrAuto Cebu
BATCH_6 151106807336 EnrollmentTracker 07/11/2015 06:58:57 07/11/2015 06:58:58 MrAuto Cebu
BATCH_6 151106807336 OCRReview 07/11/2015 07:11:58 07/11/2015 07:11:58 MrAuto Cebu

...
BATCH_11 151106010641 QIMiner 10/11/2015 21:33:59 10/11/2015 21:34:06 MrAuto India
BATCH_11 151106010641 XMLToX12 10/11/2015 21:36:26 10/11/2015 21:36:28 ClaimsX12 India
BATCH_11 151106010641 Transmit 10/11/2015 21:37:14 10/11/2015 21:37:19 MrDentalBind India
BATCH_11 151106010641 TransmitACK 10/11/2015 21:37:22 10/11/2015 21:37:22 MrX12Ack India
BATCH_11 151106010641 Verify 11/11/2015 07:29:00 11/11/2015 07:35:00 30212621 India
BATCH_11 151106010641 Corrects 11/11/2015 07:57:00 11/11/2015 07:59:00 30192788 India

...

Also note that a row of this raw data does not necessarily correspond to
a single event, but can be related to multiple events e.g., a single row can be
related to two events (i.e., a “start” and an “end” event) using the its START and
END attributes).

11.1.3 Analysis Purpose

Xerox is interested in analyzing the processes followed across different batches
and wants to obtain usable insights on their executions. To obtains such in-
sights, we analyzed the data presented above in order to answer the following
research questions:

PQ1: What are the workflows followed by the different batches, what do they
have in common, and where do they differ?

PQ2: Can we come up with a standardized process model that covers all batches?

PQ3: Are there particular paths that influence process performance, and are
these paths common across the batches?

In the next section we will address how to answer each one of these ques-
tions in detail.

316 Comparative Analysis of Business Process Outsourcing Services

11.2 Experiments

This section reports on the experiments performed in order to answer each of
the four process questions asked by Xerox.

The first thing to notice about this dataset is the large amount of different
batches (i.e., 94 different batches). Performing a pair-wise comparison of these
94 batches leads to 4.371 different combinations. Many of these batches are
very different from each other, as they correspond to completely different forms.
Comparing very different batches will result in obvious differences, and will
not provide usable insights. Not all pair-wise comparisons are relevant for the
analysis purpose presented above. Hence, we will focus on detecting interesting
comparisons (i.e., batches that are similar to each other) in order to reduce the
number of combinations to analyze.

Several pre-processing steps are performed in order to focus on some of
the batches. Then, such batches are compared to each other so that we can
obtain actionable and useful insights in order to answer the research questions
described in Section 11.1.3.

Figure 11.3 illustrates the experimental design including all the steps per-
formed in this experiment:

1. Data
Preprocessing

XES Log

2. Scoping
Analysis

α-attributes

Log α1

Log αn

:

Cases in top n of
attribute α

3a. Discovery

Log α1

Log αn

:

Raw Data

Model α1

Model αn

3b. Cross
Comparison

:

Comparison Matrix

Log αz

Log αy

Log αx

4. In-Depth
Comparison

3c. Clustering
5. Interpretation
and Validation

Process Mining Tool Results

Figure 11.3: Experimental design: steps included in the experiments over Xerox data

11.2 Experiments 317

These steps can be grouped into three phases:

1. Data preparation and scoping: This phase corresponds to steps 1 and 2
in Figure 11.3.

Input: the raw data as shown in Section 11.1.2.

Output: a set of all the event logs corresponding to the most frequent
batches.

2. Identification of interesting batch comparisons: This phase corresponds
to steps 3a, 3b and 3c in Figure 11.3.

Input: a set of event logs corresponding to the most frequent batches.

Output: a clustering over the set of event logs corresponding to the
most frequent batches. Each cluster contains batches that are similar to
each other.

3. In-depth batch comparison: This phase corresponds to steps 4 and 5 in
Figure 11.3.

Input: a set of clusters containing batches that are similar to each
other.

Output: answers to the research questions described in Section 11.1.3

The execution of the first two phases is supported by the use of a process
mining workflow (introduced in Chapter 4) that automatically performs tasks
such as data processing, analysis scoping and batch clustering, as shown in
Figure 11.4.

Figure 11.4: The RapidProM workflow used for the first two phases of the experiment

The execution of the third phase is supported by the use of the process com-
parator tool (introduced in Chapter 5)

The concrete execution of each phase and its steps are presented as follows.

318 Comparative Analysis of Business Process Outsourcing Services

11.2.1 Data Preparation and Scoping

As mentioned earlier, we can divide this phase into two steps: data preparation
and scoping analysis (i.e., steps 1 and 2 in Figure 11.3).

In the data preparation step, we performed several data transformations on
the raw input data (described in Section 11.1.2) These concrete transformations
were implemented as the process mining (sub) workflow shown in Figure 11.5,
and are described as follows:

1. We enriched the set of attributes based on the research questions. Since
we are interested in analyzing different batches, we set the attribute BATCHNAME
as the α attribute to be used in the comparison process.

2. We refined the raw input data into event level data. Each row in the raw
input data includes two timestamps (i.e., start and end), therefore we
divided each row into two events based on that (i.e., one start event and
one end event).

3. We removed incomplete cases from the data. Based on statistics on the
start and end activities for all cases, we removed the ones that have start
or end activities that are not frequently observed. In this experiment, we
removed 318,002 cases. The resulting data contains a total of 936,720
cases and 31,660,750 events.

Figure 11.5: The RapidProM (sub) workflow used for the data preparation step.

As a result of this step, the raw input data was transformed into usable event
data.

In the scoping analysis step, we took the usable event data obtained from
the previous step, and we filtered out the infrequent batches based on their

11.2 Experiments 319

frequency of occurrence (i.e., number of traces). The scoping analysis step was
implemented as the process mining (sub) workflow shown in Figure 11.6.

Figure 11.6: The RapidProM (sub) workflow used for the scoping analysis step.

We first aggregated all the events based on their BATCHNAME values. Then,
we filtered the popular batches based on their occurrence frequency. Note that
there are 94 different batches in our log. However, in order to scope the analysis
into a feasible experiment, we selected the 10 most frequent ones. Their corre-
sponding batch identifiers are 1, 4, 2, 11, 7, 18, 3, 58, 23, and 30 respectively,
each having between 424,560 and 8,684,476 cases, as shown in Table 11.2.

As a result of this step, we selected the event data corresponding to each of
the ten most frequent batches batch and transformed it into ten event logs (i.e.,
one per batch).

11.2.2 Identification of Interesting Batch Comparisons

Given the set of event logs related to the most frequent batches obtained from
previous phase, the next phase is to identify interesting batch comparisons. To

320 Comparative Analysis of Business Process Outsourcing Services

Table 11.2: The 10 most frequent batches in the data

Batch # number of cases

BATCH_1 8.684.476
BATCH_4 6.886.488
BATCH_2 4.184.606
BATCH_11 2.339.760
BATCH_7 2.054.370
BATCH_18 1.151.046
BATCH_3 1.002.792
BATCH_58 549.328
BATCH_23 476.996
BATCH_30 424.560

do this, we need to cluster batches based on their similarity. In this way we can
avoid comparing notoriously-different batches and focus only on those that are
similar to each other in order to analyze them and learn from their differences.
As mentioned earlier, this phase corresponds to steps 3a (i.e., discovery), 3b
(i.e., cross-comparison) and 3c (i.e., clustering) as shown in Figure 11.3.

Figure 11.7 shows the process mining (sub) workflow that implements the
discovery and cross-comparison steps of this phase (i.e., steps 3a and 3b).

The purpose of these two steps is to compare the selected batches based on
the analysis of their high-level process models. These models can be retrieved
by process discovery techniques. There are several well-known discovery al-
gorithms in literature, such as the Alpha miner [167], ILP miner [170] and
Inductive Miner [102]. Considering the amount of events in our logs as well as
the quality of the discovered processes (e.g., soundness and fitness), we have
chosen the Inductive miner in the implementation of the discovery step of this
phase (i.e., step 3a). Besides the fact that the Inductive Miner is the state-of-
the-art process discovery, other techniques incline to produce models that are
unable to replay the log well, create erroneous models, or have excessive run
times. The output of step 3a is a collection of process models: one for each
selected batch.

In step 3b, we used the cross-conformance technique (i.e., conformance check-
ing of a model with respect to a different event log) in order to compare the
batches. This concept is introduced in [28], where the so-called comparison ta-
ble is presented. A comparison table consists of rows (i.e., event logs), columns

11.2 Experiments 321

Figure 11.7: The RapidProM (sub) workflow used in this phase for steps 3a (i.e., discov-
ery) and 3b (i.e., cross-comparison) of the experimental design.

(i.e., process models) and cells contain metrics. In this table, there are three
types of metrics, namely process model metrics, event log metrics, and compari-
son metrics. Process model metrics are metrics calculated using only the process
model, such as total number of nodes in the process model, cyclicity, or con-
currency in the process model. Event log metrics are metrics calculated based
on the event logs only, such as the total number of traces and events, average
trace duration, etc. Finally, comparison metrics are calculated using both event
logs and process models. They are used to compare modeled and observed be-
havior and they include metrics such as fitness, precision, generalization, and
simplicity.

In this experiment, we used the fitness comparison metric to measure the
conformance and cross-conformance of the sub-logs (i.e., batches) and the dis-
covered models obtained from the previous step. We choose fitness rather than
the other metrics due to the need of Xerox Services to have process models
which allow for most of the observed behavior.

Table 11.3 shows the results of the cross comparison step (using the fitness
metric) between logs and models related to the selected batches. Each row
represents a log of a particular batch n (Logn), and each column represents a
discovered model from a particular batch m (Modelm). Each cell contains the

322 Comparative Analysis of Business Process Outsourcing Services

fitness value after replaying a log into a process model.

Table 11.3: Comparison table showing the comparison metric (i.e., fitness) between logs
and models of the selected batches. Cell (x,y) indicates the replay fitness of
the event log related to batch x with respect to the process model related to
batch y.

Model1 Model2 Model3 Model4 Model7 Model11 Model18 Model23 Model30 Model58

Log1 0.71 0.71 0.41 0.35 0.56 0.56 0.42 0.36 0.38 0.61
Log2 0.63 0.62 0.40 0.22 0.46 0.45 0.41 0.23 0.16 0.48
Log3 0.39 0.39 0.79 0.56 0.40 0.40 0.79 0.59 0.41 0.30
Log4 0.26 0.26 0.42 0.65 0.26 0.26 0.42 0.66 0.33 0.22
Log7 0.58 0.59 0.46 0.36 0.69 0.69 0.46 0.39 0.44 0.51
Log11 0.48 0.48 0.18 0.25 0.60 0.61 0.18 0.26 0.47 0.38
Log18 0.37 0.37 0.71 0.48 0.40 0.40 0.71 0.51 0.47 0.30
Log23 0.26 0.26 0.42 0.63 0.26 0.26 0.42 0.66 0.27 0.22
Log30 0.24 0.24 0.29 0.26 0.24 0.23 0.29 0.27 0.66 0.31
Log58 0.55 0.55 0.26 0.25 0.42 0.42 0.26 0.26 0.38 0.65

Based on these cross-conformance checking results, we grouped the sub-logs
(i.e., batches) into clusters using k-means clustering. We chose this clustering
algorithm because domain experts from Xerox indicated that a batch belongs
to a cluster and cannot overlap to other clusters. Nevertheless, other non-
overlapping clustering algorithms can be used instead.

Figure 11.8 shows the process mining (sub) workflow that implements the
clustering step of this phase (i.e., step 3c in Figure 11.3).

In concrete, we used the rows of the cross-conformance matrix presented
above as observations to perform a k-means clustering. We chose to use the rows
because we want to cluster the batches themselves, not their process models
(columns).

Figure 11.9 shows the result of the clustering of batches. For each batch, it
indicates its membership probability related to each of the defined clusters. In
this experiment, we used k = 3 clusters.

Based on these results, we can relate each batch to one of the three clusters.
Finally, the composition of each batch is as follows:

• cluster 0: batches 3, 4, 18 and 23.

• cluster 1: batches 1, 2, 7, 11 and 58.

• cluster 2: batch 30.

The resulting clusters contain groups of “interesting” comparable (i.e., relatively-
similar) batches. Now, in-depth comparative batch analysis can be performed
within any cluster. Note that cluster 2 contains only one batch. This can be
caused by the fact that batch 30 is very different from all other batches.

11.2 Experiments 323

Figure 11.8: The RapidProM (sub) workflow used in this phase for step 3c (i.e., cluster-
ing) of the experimental design.

Figure 11.9: Results of the clustering step: The y-axis represents the cluster membership
probabilities of batches. A batch will be related to the cluster with the
maximal membership probability.

11.2.3 In-Depth Batch Comparison

Once clusters of comparable batches have been identified in the previous phase,
we can proceed to phase 3 of the experiment: in-depth comparison of the

324 Comparative Analysis of Business Process Outsourcing Services

batches (i.e., step 4 in Figure 11.3) and interpretation and validation of the
results (i.e., step 5 in Figure 11.3). In order to perform an in-depth comparison
of the batches, we used the process comparison technique introduced in Chap-
ter 5 for this purpose. This technique detects statistically significant differences
between sub-logs in terms of control-flow and performance. The results of this
technique identify those parts of the process where differences occur.

We first applied the process comparator tool to the four sub-logs of cluster
0 to get a list of pair-wise comparisons of sub-logs, sorted by similarity, i.e.,
percentage of control-flow differences. This pair-wise list generation function is
explained in detail in Section 5.3. The results were:

1. batch 3 vs. batch 18 (38.04% control-flow differences)

2. batch 4 vs. batch 23 (42.03% control-flow differences)

3. batch 3 vs. batch 23 (72.16% control-flow differences)

4. batch 18 vs. batch 23 (73.40% control-flow differences)

5. batch 3 vs. batch 4 (78.43% control-flow differences)

6. batch 4 vs. batch 18 (78.64% control-flow differences)

This means that, in terms of control-flow, batches 4 and 18 are the most
dissimilar pair within cluster 0, and batches 3 and 18 are the most similar.

In order to illustrate the in-depth comparison step, in the remainder of this
section we will focus on analyzing the differences between batches 4 and 18
and between batches 3 and 18.

First, we checked for differences between batches 4 and 18 (the most dissim-
ilar in cluster 0). Figure 11.10 shows an example of the control-flow differences
found between batches 4 and 18. The dark-blue colored states are executed only
in batch 18, and never in batch 4. These states are related to optical character
recognition (OCR) in forms.

Moreover, an example of the performance differences found between batches
4 and 18 is shown in Figure 11.11. Note that the duration of the activity Entry is
statistically significantly higher in batch 18 compared to in batch 4. This activity
refers to manual entry of form content.

Then, we checked for differences between batches 3 and 18 (the most similar
in cluster 0). Figure 11.10 shows a significant difference in the frequency of
execution of the process fragment related to the transformation of data from
XML to the X12 format, and the transmission and acknowledgment of that data.

11.2 Experiments 325

.

From this node, the left branch is only
executed by batch 18 (group A), while
the right branch is only executed by
batch 4 (group B).

Figure 11.10: Example of control-flow differences between batch 18 (group A) and batch
4 (group B). The activities ToOCR, Images2Humana, FromOCR, FixAfte-
rOCR are executed only in batch 18.

Figure 11.11: Example of performance differences between found batch 18 (group A)
and batch 4 (group B). The average duration of the Entry activity is 44
mins for batch 18 and 5 mins for batch 4.

This fragment is almost always executed in batch 18. However, it is executed
only in approximately 93% of the cases in batch 3. Similarly, the Cleanup activity
is executed in only 5% of the cases in batch 18 against 12% of the cases in batch
3. From a performance point of view, we see that there is a significant difference
in the average duration of cases until the execution of the Cleanup activity (22
days in batch 3 vs. 10 days in batch 18). However, it is important to also note
that the standard deviation of the duration until Cleanup is very high relative to
the average duration.

326 Comparative Analysis of Business Process Outsourcing Services

.

.

.

Activities in orange
ovals are executed
in batch 18 (group B)
more frequently
than in batch 3

(group A).

Cleanup activity is executed in 12.31% of the
cases in batch 3 vs 5.3% in batch 18

Different average case duration
(22 days vs 10 days)

Figure 11.12: Example of differences found between batch 3 (group A) and batch 18
(group B).

11.3 Discussion

For the interpretation and validation of the results (i.e., step 5 in Figure 11.3),
we presented the experiment results to a domain expert from Xerox, who con-
firmed our results by explaining the differences found in the batches.

According to the domain expert, the control-flow differences in Figure 11.10
are attributed to the fact that the two batches deal with different types of forms.
Batch 18 deals with UB-04 forms (shown in Figure 11.1): a claim form used
by hospitals, nursing facilities, in-patient, and other facility providers. These
forms are filled by healthcare providers and they can contain handwriting (e.g.,
disease codes, diagnosis, etc.), so OCR is needed. In contrast, batch 4 deals
with claim correspondence forms i.e., reply forms from the provider (shown in
Figure 11.1). These forms are typically digital. Hence, there is no need for OCR.

The domain expert also stated that the performance difference shown in
Figure 11.11 is attributed to the fact that the forms related to batch 4 (i.e.,
correspondence forms) are usually smaller than the forms related to batch 18
(i.e., UB-04 forms), and have little content to be entered manually. Hence, the
average duration of Entry activity in batch 4 is lower. Although these differ-
ences between batch 18 and 4 are insightful, they are not very surprising once

11.4 Conclusion 327

explained. Similarly, the differences in duration in the manual entry of smaller
vs. larger forms in terms of page and image count are to be expected as well.

The differences between batches 3 and 18 have also provided interesting
actionable insights. Both the batches 3 and 18 correspond to a similar type of
form (UB-04) and are expected to have very similar behavior. The remarkable
differences in the frequencies in the process fragment are statistically significant
and unexpected by the domain expert. Hence, they need to be investigated fur-
ther. The observed differences in duration until the Cleanup activity could be
explained by the fact that, in the analyzed process, a lot of (sub) batch process-
ing is involved, and as such, cases sometimes need to wait for other cases in
order to be processed.

During these experiments, we have obtained the results to answer the re-
search questions posed in Section 11.1.3. Now, we will address them explicitly:

Regarding question 1 (i.e., what are the workflows followed by the different
batches, what do they have in common, and where do they differ?) our answer
is detailed in Section 11.2.3, where concrete differences are found in terms of
control-flow and performance.

Regarding question 2 (i.e., can we come up with a standardized process
model that covers all batches?), our answer is no. Batches related to different
forms will require different activities (e.g., some batches require OCR and others
do not, as shown in Figure 11.10).

Regarding question 3 (i.e., are there particular paths that influence process
performance, and are these paths common across the batches?), our answer is
yes for the first part and no for the second part. For example doing OCR requires
more time than not doing it. However these paths are not commong across the
batches. They occur only in batches related to certain forms.

11.4 Conclusion

In this chapter, we presented an application of the tools and techniques intro-
duced in this thesis to perform a comparative analysis of business process out-
sourcing services provided by Xerox that relate to a form digitalization process.
The process pertains to the data entry back-office operations of insurance claim
forms. The organization is interested in analyzing the processes followed across
different batches.

As there are 94 batches in total, it was not feasible to compare each pair
of batches in detail. We used process mining workflows (see Chapter 4) to pre-
process the data and cluster the batches based on their similarity. Then, we used

328 Comparative Analysis of Business Process Outsourcing Services

the process comparator tool (see Chapter 5) to perform an in-depth comparison
of the batches within a cluster.

Finally, the results were interpreted and validated by domain experts, and
the discovered insights and actions were delivered to the process owners.

Through the use of the tools and techniques introduced in this thesis, we
could obtain very meaningful results, which have been confirmed by a do-
main expert and transformed into actionable insights, such as studying the root
causes and contextual circumstances for the most important differences.

Part V

Closure

330

Chapter 12
Conclusions

This chapter concludes this thesis by first highlighting the contributions in-
cluded in it. Then, it discusses the limitations of this thesis. Finally, it describes
future work related to the topics included in this thesis.

12.1 Contributions Review

This section summarizes how each of the five research contributions presented
in Section 1.4 were addressed in this thesis. These contributions are described
as follows.

Process Cubes: A technique to support the interactive and consistent explo-
ration of process variants.

An important feature in modern process mining is the ability to analyze and
compare different variants (behaviors) of the process from different perspec-
tives. In such way, organizations are able to see how processes can be improved
by understanding differences between groups of cases, departments, etc.

In Chapter 3, we introduced process cubes as a way to organize, split and
explore event data by using different data dimensions to split such event data
into process variants. This way of splitting event data helps exposing differences
between such variants, e.g., by using process variant comparison techniques.

We implemented this idea in our PMC tool, and we encourage the process
mining community to use it. Such tool was used effectively in several case

332 Conclusions

studies presented in Part IV. In these case studies, the use of the PMC tool led
to important insights that were confirmed by domain experts.

Process Variant Comparison: A technique to compare process variants.

Processes may change because of the influence of several factors, such as
the period of the year, the geographical location of the process execution or the
resource unit in charge. This leads to different process variants. The problem
of comparing process variants is highly relevant, as it can show organizations
which and why some of these variants perform better than others, or are exe-
cuted differently.

In Chapter 5, we introduced a new technique based on transition systems
that detects statistically-significant differences between process variants in terms
of any measurement annotations (e.g., control-flow frequency, performance).
This technique also shows the similarities and differences of the business rules
(i.e., decision-making) between process variants, using only event logs as the
input. Also, this technique can be combined with the previous contribution:
process variants obtained from a process cube can be compared with this tech-
nique.

We implemented this technique in our Process Comparator tool. This tool
was applied in several case studies presented in Part IV, in which we showed
that the approach enables users to pinpoint important differences between pro-
cess variants that previous approaches failed to provide. The insights obtained
with this tool were confirmed and valued by domain experts.

Process Variant Detection: A technique to detect relevant process variants in
a general setting.

One of many interesting types of analysis in process mining is to find (and
then compare) process variants. However, in many real-life situations, event
logs are made available without any additional domain knowledge about the
data. This lack of domain knowledge makes finding process variants to be more
difficult and cumbersome, as it requires extensive trial-and-error by the analyst.

In Chapter 6, we introduced an approach that is able to detect relevant pro-
cess variants in any process perspective (in the form of event attributes) by
splitting any other (combination of) event attributes. This technique can be
combined with the previous contributions: identified process variants can be
used by a process cube to split the event data into such variants, which then can
be used in process mining workflows or compared using the process comparison
tool.

This approach has been implemented in our Process Variant Finder tool. Us-

12.1 Contributions Review 333

ing this tool, we were able to successfully identify points of process variability
(i.e., variants) inside both artificial and real-life event logs and we were able to
detect process variants without the use of domain knowledge, confirming such
variability using process comparison techniques, as presented in the case stud-
ies included in Part IV. Therefore, our approach provides a viable solution to
process variant detection, even when no domain knowledge is available.

Process Mining Workflows: Support the execution of process mining work-
flows.

Current scientific workflow systems are not tailored towards the analysis of
processes based on models and logs. Tools like RapidMiner and KNIME can
model analysis workflows but do not provide any process mining capabilities.
The focus of these tools is mostly on traditional data mining and reporting ca-
pabilities that tend to use tabular data. On the other hand, process mining tools
like ProM, Disco, Celonis, Everflow, QPR, MyInvenio, Minit, PM4PY, bupaR, etc.
do not fully provide explicit workflow support.

In Chapter 4, we introduced process mining workflows by proposing several
generic process mining building blocks that can be chained together to create
such workflows. We identified five generic use cases for typical process mining
analysis and provided conceptual and concrete workflows for them.

The whole approach is implemented as RapidProM, which is a ProM-based
extension for RapidMiner. This tool was used in several case studies presented
in Part IV, in which we exploited the advantages of process mining workflows
for producing massive quantities of process-mining-based reports, and for com-
bining process mining techniques with traditional data mining operations in the
same workflow.

Benchmark Frameworks: Develop replicable and sound benchmarks.

Existing empirical evaluation frameworks in process mining have several
drawbacks. Two of the main drawbacks are the replicability and soundness of
the results. The first relates to the fact that experimental results are difficult to
replicate using existing empirical evaluation frameworks in process mining, as
they require multiple manual steps that are sensitive to parameterizations, in-
cluding ad-hoc cleaning and preprocessing of the event data. The second relates
to the fact that in most empirical evaluation frameworks in process mining, ex-
periments are performed over manually-selected samples of event data and/or
process models and then generalized to populations of processes that they do
not represent.

In Part III we introduced two empirical evaluation frameworks for process

334 Conclusions

mining that overcame these limitations by combining process mining workflows
and statistical analysis.

In Chapter 7, we presented a framework that allows researchers to bench-
mark discovery algorithms as well as to perform a sensitivity analysis to evalu-
ate whether certain model or log characteristics have a significant effect on an
algorithm’s performance. It is independent from the discovered model’s mod-
eling notation by adopting a classification approach that uses the knowledge of
the original (reference) model to be rediscovered. Additionally, the framework
allows to generalize the evaluation results to a user specified model population.

In Chapter 8, we introduced an evaluation framework for benchmarking
concept drift detection techniques. The framework allows researchers to bench-
mark different approaches as well as to perform a sensitivity analysis to eval-
uate whether certain process and drift characteristics have an impact on the
accuracy drift point detection. It allows to generalize the evaluation results to
a user specified model population, also taking into account several properties
that characterize concept drift in processes.

Both frameworks have been validated by conducting extensive experiments
that led to non-trivial insights on discovery and concept drift detection algo-
rithms in the context of the populations of processes included in the exper-
iments. Finally, the design of both framework as process mining workflows
enable automating, sharing and extending these evaluation experiments.

12.2 Limitations

The previous section indicated how the different research contributions were
addressed by the techniques and tools introduced in this thesis. In this Section,
we will discuss the main limitations of these techniques and tools and propose
ideas of how these limitations could be overcome in the future.

Regarding the PMC tool (introduced in Chapter 3), this tool has a set of
functions that allows to perform all the described basic operations. However,
more advanced functions such as direct integration to databases and custom
hiding/merging cells of a cube are not implemented, as this tool is still a proto-
type. We invite interested readers to access the source code on GIT and make
improvements to this tool.

With respect to the process comparator technique (introduced in Chapter 5),
so far it can only compare annotations based on control-flow frequency and
performance. Other types of annotations (e.g., cost, resource usage) can be
easily added. However, the main limitation of this technique is that it still relies

12.3 Future Work 335

on comparing one (process or group) versus another, projecting the differences
onto a combined model. It would be even more useful to be able to compare
many processes at the same time in a n-to-n fashion. However, if this n-to-n
comparison would be naively projected onto a single combined model, it could
lead to a visually overloaded result that would be difficult to read and ana-
lyze. We believe that alternative representations of comparison results must be
investigated in order to achieve this.

Regarding the process variant detection tool (introduced in Chapter 6), it cur-
rently relies on the user indicating the independent variable (i.e., the variable
in which we want to analyze variability). It would be much more useful if the
user did not need to make such selection, specially in the case where no domain
knowledge is available. Moreover, The tool only works in an offline setting (i.e.,
it does not work with event streams). A nice feature would be to adapt it to
work with sliding windows so it can also work in an online setting.

12.3 Future Work

The techniques, tools and experiments developed and introduced in this thesis
are also subject to improvements. This section describes our proposals for future
work on them.

The process mining workflow technique (introduced in Chapter 4) has been
successfully implemented as an extension of RapidMiner, but such as it is, it
is only available to RapidMiner users. We would like to port this implementa-
tion to other platforms such as Knime or as stand-alone libraries so that these
workflow can be used by a wider part of the research community.

The process comparison technique (introduced in Chapter 5) works very well
comparing variants 1-to-1, but further work is needed to extend this comparison
to n-to-n variants simultaneously.

Regarding both large-sacale experimental benchmarks introduced in Part III,
we would like to continue expanding the list of model populations, modelling
algorithms and notations used in the experiments in order to make even more
robust assertions about the obtained results.

Last, but not least, we would like to integrate all of the tools and techniques
introduced in Part II into a single integrated suite intended for the initial explo-
ration of process data, identification and comparison of process variants, and
their automated analysis.

336 Conclusions

Bibliography

[1] IEEE standard for extensible event stream (XES) for achieving interoper-
ability in event logs and event streams. IEEE Std 1849-2016, pages 1–50,
Nov 2016. (Cited on page 70.)

[2] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van
Dongen, and Wil M. P. van der Aalst. Alignment based precision check-
ing. In Business Process Management Workshops, volume 132, pages
137–149. Springer Berlin Heidelberg, 2013. (Cited on pages 105, 108,
and 110.)

[3] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van
Dongen, and Wil M. P. van der Aalst. Measuring precision of modeled
behavior. Information Systems and e-Business Management, 13(1):37–67,
2015. (Cited on pages 105, 108, and 110.)

[4] Samaneh Aminikhanghahi and Diane J. Cook. A survey of methods for
time series change point detection. Knowledge and Information Systems,
51(2):339–367, May 2017. (Cited on pages 225 and 233.)

[5] Rachmadita Andreswari and Mohammad Arif R. Olap cube processing of
production planning real-life event log: A case study. In Proceedings of
the 2018 International Conference on Industrial Enterprise and System En-
gineering (IcoIESE 2018), pages 148–153. Atlantis Press, 2019/03. (Cited
on page 53.)

[6] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
Fabrizio Maria Maggi, Andrea Marrella, Massimo Mecella, and Allar Soo.

338 BIBLIOGRAPHY

Automated Discovery of Process Models from Event Logs: Review and
Benchmark. IEEE Transactions on Knowledge and Data Engineering, May
2018. (Cited on page 188.)

[7] Roger Barga and Dennis Gannon. Scientific versus business workflows. In
Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields, ed-
itors, Workflows for e-Science, pages 9–16. Springer Verlag, Berlin, 2007.
(Cited on page 83.)

[8] Adam Barker and Jano van Hemert. Scientific workflow: A survey
and research directions. In Parallel Processing and Applied Mathematics,
pages 746–753. Springer Berlin Heidelberg, 2008. (Cited on pages 189
and 226.)

[9] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, To-
bias Koetter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and
Bernd Wiswedel. Knime: The Konstanz information miner. In Christine
Preisach, Hans Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker,
editors, Data Analysis, Machine Learning and Applications, Studies in
Classification, Data Analysis, and Knowledge Organization, pages 319–
326. Springer Berlin Heidelberg, 2008. (Cited on pages 81 and 84.)

[10] Alessandro Berti, Sebastiaan J van Zelst, and Wil van der Aalst. Process
Mining for Python (PM4Py): Bridging the Gap Between Process-and Data
Science. page 13–16, 2019. (Cited on page 84.)

[11] Alfredo Bolt, Massimiliano de Leoni, and Wil M. P. van der Aalst. Sci-
entific workflows for process mining: building blocks, scenarios, and
implementation. International Journal on Software Tools for Technology
Transfer, 18(6):607–628, Nov 2016. (Cited on pages 26 and 368.)

[12] Alfredo Bolt, Massimiliano de Leoni, and Wil M. P. van der Aalst. A
visual approach to spot statistically-significant differences in event logs
based on process metrics. In Selmin Nurcan, Pnina Soffer, Marko Ba-
jec, and Johann Eder, editors, Advanced Information Systems Engineering,
pages 151–166, Cham, 2016. Springer International Publishing. (Cited
on pages 26, 123, and 368.)

[13] Alfredo Bolt, Massimiliano de Leoni, and Wil M.P. van der Aalst. Process
variant comparison: Using event logs to detect differences in behavior

BIBLIOGRAPHY 339

and business rules. Information Systems, 74:53 – 66, 2018. Informa-
tion Systems Engineering: selected papers from CAiSE 2016. (Cited on
pages 26, 123, and 368.)

[14] Alfredo Bolt, Massimiliano De Leoni, Wil M.P. van der Aalst, and Pierre
Gorissen. Exploiting process cubes, analytic workflows and process min-
ing for business process reporting: A case study in education. In P. Cer-
avolo and S. Rinderle-Ma, editors, Data-Driven Process Discovery and
Analysis (SIMPDA 2015), December 9-11, 2015, Vienna, Austria, CEUR
Workshop Proceedings, pages 33–47. CEUR-WS.org, 2015. 5th Interna-
tional Symposium on Data-Driven Process Discovery and Analysis, SIM-
PDA 2015 ; Conference date: 09-12-2015 Through 11-12-2015. (Cited
on page 369.)

[15] Alfredo Bolt and Marcos Sepúlveda. Process remaining time prediction
using query catalogs. In Niels Lohmann, Minseok Song, and Petia Wohed,
editors, Business Process Management Workshops, pages 54–65, Cham,
2014. Springer International Publishing. (Cited on page 370.)

[16] Alfredo Bolt and Wil M. P. van der Aalst. Multidimensional process min-
ing using process cubes. In Khaled Gaaloul, Rainer Schmidt, Selmin
Nurcan, Sérgio Guerreiro, and Qin Ma, editors, Enterprise, Business-
Process and Information Systems Modeling, pages 102–116, Cham, 2015.
Springer International Publishing. (Cited on pages 25 and 368.)

[17] Alfredo Bolt, Wil M. P. van der Aalst, and Massimiliano de Leoni. Finding
process variants in event logs. In Hervé Panetto, Christophe Debruyne,
Walid Gaaloul, Mike Papazoglou, Adrian Paschke, Claudio Agostino
Ardagna, and Robert Meersman, editors, On the Move to Meaningful
Internet Systems. OTM 2017 Conferences, pages 45–52, Cham, 2017.
Springer International Publishing. (Cited on pages 26 and 368.)

[18] A.J. Bolt Iriondo, M. de Leoni, W.M.P. van der Aalst, and P. Gorissen.
Business process reporting using process mining, analytic workflows and
process cubes: A case study in education. In C. Paolo and R.-M. Stefanie,
editors, Data-Driven Process Discovery and Analysis, Lecture Notes in Busi-
ness Information Processing, pages 28–53, Germany, 2017. Springer. 5th
International Symposium on Data-Driven Process Discovery and Analysis
(SIMPDA 2015, SIMPDA 2015 ; Conference date: 09-12-2015 Through
11-12-2015. (Cited on page 369.)

340 BIBLIOGRAPHY

[19] Diana Borrego and Irene Barba. Conformance checking and diagnosis for
declarative business process models in data-aware scenarios. Expert Sys-
tems with Applications, 41(11):5340 – 5352, 2014. (Cited on page 204.)

[20] R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indrè Žliobaite,
and Mykola Pechenizkiy. Dealing with concept drifts in process mining.
IEEE Transactions on Neural Networks and Learning Systems, 25(1):154–
171, Jan 2014. (Cited on page 225.)

[21] R. P. Jagadeesh Chandra Bose and Wil M.P. van der Aalst. Context Aware
Trace Clustering: Towards Improving Process Mining Results. In Proceed-
ings of the 2009 SIAM International Conference on Data Mining, pages
401–412, 2009. (Cited on page 159.)

[22] Cynthia Brewer. Designing Better Maps: A Guide for Gis Users. Environ-
mental Systems Research, 2004. (Cited on pages 132 and 134.)

[23] Joos C. A. M. Buijs. Environmental permit application pro-
cess (‘wabo’), coselog project, municipality 1. 10.4121/uuid:

c45dcbe9-557b-43ca-b6d0-10561e13dcb5, 2014. (Cited on page 5.)

[24] Joos C. A. M. Buijs. Environmental permit application pro-
cess (‘wabo’), coselog project, municipality 2. 10.4121/uuid:

34b4f6f4-dbe0-4857-bf75-5b9e1138eb87, 2014. (Cited on page 5.)

[25] Joos C. A. M. Buijs. Environmental permit application pro-
cess (‘wabo’), coselog project, municipality 3. 10.4121/uuid:

a8ed945d-2ad8-480e-8348-cf7f06c933b3, 2014. (Cited on page 5.)

[26] Joos C. A. M. Buijs. Environmental permit application pro-
cess (‘wabo’), coselog project, municipality 4. 10.4121/uuid:

e8c3a53d-5301-4afb-9bcd-38e74171ca32, 2014. (Cited on page 5.)

[27] Joos C. A. M. Buijs. Environmental permit application pro-
cess (‘wabo’), coselog project, municipality 5. 10.4121/uuid:

c399c768-d995-4086-adda-c0bc72ad02bc, 2014. (Cited on page 5.)

[28] Joos C. A. M. Buijs and Hajo A. Reijers. Comparing business process vari-
ants using models and event logs. In Ilia Bider, Khaled Gaaloul, John
Krogstie, Selmin Nurcan, Henderik A. Proper, Rainer Schmidt, and Pn-
ina Soffer, editors, Enterprise, Business-Process and Information Systems
Modeling, pages 154–168, Berlin, Heidelberg, 2014. Springer Berlin Hei-
delberg. (Cited on page 320.)

10.4121/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5
10.4121/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5
10.4121/uuid:34b4f6f4-dbe0-4857-bf75-5b9e1138eb87
10.4121/uuid:34b4f6f4-dbe0-4857-bf75-5b9e1138eb87
10.4121/uuid:a8ed945d-2ad8-480e-8348-cf7f06c933b3
10.4121/uuid:a8ed945d-2ad8-480e-8348-cf7f06c933b3
10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
10.4121/uuid:c399c768-d995-4086-adda-c0bc72ad02bc
10.4121/uuid:c399c768-d995-4086-adda-c0bc72ad02bc

BIBLIOGRAPHY 341

[29] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. On the role of fitness, precision, generalization and simplicity in
process discovery. In Robert Meersman, Hervé Panetto, Tharam Dillon,
Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani Pearson, Alois
Ferscha, Sonia Bergamaschi, and Isabel F. Cruz, editors, On the Move
to Meaningful Internet Systems (OTM), volume 7565 of Lecture Notes
in Computer Science, pages 305–322. Springer Berlin Heidelberg, 2012.
(Cited on page 104.)

[30] Andrea Burattin. PLG2: multiperspective process randomization with
online and offline simulations. In Proceedings of the BPM Demo Track
2016 Co-located with the 14th International Conference on Business Process
Management (BPM 2016), volume 1789 of CEUR Workshop Proceedings,
pages 1–6. CEUR-WS.org, 2017. (Cited on pages 189 and 195.)

[31] Andrea Burattin, Fabrizio M. Maggi, and Alessandro Sperduti. Confor-
mance checking based on multi-perspective declarative process mod-
els. Expert Systems with Applications, 65:194 – 211, 2016. (Cited on
page 204.)

[32] Andrea Burattin and Alessandro Sperduti. PLG: a framework for the
generation of business process models and their execution logs. In
Michael zur Muehlen and Jianwen Su, editors, Business Process Man-
agement Workshops, pages 214–219, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. (Cited on pages 94 and 195.)

[33] Josep Carmona and Ricard Gavaldà. Online techniques for dealing with
concept drift in process mining. In Jaakko Hollmén, Frank Klawonn,
and Allan Tucker, editors, Advances in Intelligent Data Analysis XI, pages
90–102, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. (Cited on
page 225.)

[34] Malu Castellanos, Ana Karla Alves de Medeiros, Jan Mendling, Barbara
Weber, and Anton J. M. M. Weijers. Business process intelligence. In
Jorge Cardoso and Wil M. P. van der Aalst, editors, Handbook of Research
on Business Process Modeling, chapter 21, pages 456–480. IGI Global,
Hershey, PA, USA, 2009. (Cited on page 290.)

[35] Surajit Chaudhuri and Umeshwar Dayal. An overview of data ware-
housing and OLAP technology. SIGMOD Rec., 26(1):65–74, March 1997.
(Cited on page 51.)

342 BIBLIOGRAPHY

[36] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and S Yu Philip. Graph
olap: a multi-dimensional framework for graph data analysis. Knowledge
and Information Systems, 21(1):41–63, 2009. (Cited on page 51.)

[37] Claudio Di Ciccio and Massimo Mecella. On the discovery of declarative
control flows for artful processes. ACM Transactinons on Managemet In-
formation Systems, 5(4):24:1–24:37, January 2015. (Cited on pages 203
and 205.)

[38] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 1988. (Cited on pages 131, 194, and 229.)

[39] Raffaele Conforti, Marlon Dumas, Luciano García-Bañuelos, and Mar-
cello La Rosa. BPMN miner: Automated discovery of BPMN process
models with hierarchical structure. Information Systems, 56:284 – 303,
2016. (Cited on page 38.)

[40] Carsten Cordes, Thomas Vogelgesang, and Hans-Jürgen Appelrath. A
generic approach for calculating and visualizing differences between pro-
cess models in multidimensional process mining. In Business Process
Management Workshops, volume 202 of Lecture Notes in Business Informa-
tion Processing, pages 383–394. Springer International Publishing, 2015.
(Cited on page 122.)

[41] Thomas H. Davenport. Process Innovation: Reengineering Work through
Information Technology. Harvard Business School Press, Boston, Mas-
sachusetts, 1993. (Cited on page 3.)

[42] Massimiliano de Leoni, Fabrizio M. Maggi, and Wil M.P. van der Aalst.
An alignment-based framework to check the conformance of declarative
process models and to preprocess event-log data. Information Systems,
47:258 – 277, 2015. (Cited on page 204.)

[43] Massimiliano. De Leoni and Felix Mannhardt. Road traffic fine manage-
ment process, 2015. (Cited on page 42.)

[44] Massimiliano de Leoni and Wil M. P. van der Aalst. Data-Aware Pro-
cess Mining: Discovering Decisions in Processes Using Alignments. In
28th ACM symposium on Applied Computing (SAC’13), pages 1454–1461.
ACM, 2013. (Cited on page 135.)

BIBLIOGRAPHY 343

[45] Massimiliano de Leoni, Wil M.P. van der Aalst, and Marcus Dees. A Gen-
eral Process Mining Framework for Correlating, Predicting and Cluster-
ing Dynamic Behavior based on Event Logs. Information Systems, 56:235
– 257, 2016. (Cited on pages 34, 35, 105, 160, and 168.)

[46] Jochen De Weerdt. Business process discovery: new techniques and appli-
cations. PhD thesis, KU Leuven, 2012. (Cited on page 188.)

[47] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Bae-
sens. A Multi-dimensional Quality Assessment of State-of-the-art Process
Discovery Algorithms Using Real-life Event Logs. Information Systems,
37(7):654–676, November 2012. (Cited on pages 185 and 188.)

[48] Angela Dean, Daniel Voss, and Danel Draguljić. Design and Analysis of
Experiments. Springer-Verlag New York, 1999. (Cited on pages 190, 191,
206, 207, and 238.)

[49] Claudia Diamantini, Domenico Potena, and Emanuele Storti. Mining
usage patterns from a repository of scientific workflows. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages
152–157, New York, NY, USA, 2012. ACM. (Cited on page 84.)

[50] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management. Springer, 2013. (Cited on
pages 83 and 145.)

[51] Iulia. Efremova, Alejandro Montes Garcia, Alfredo. Bolt, and Toon G.K.
Calders. Who are my ancestors? : retrieving family relationships from
historical texts. In P. Braslavski , I. Markov, P. Pardalos, Y. Volkovich,
D.I. Ignatov , S. Koltsov, and O. Koltsova, editors, Information Retrieval,
Communications in Computer and Information Science, pages 121–129,
Germany, 2015. Springer. (Cited on page 370.)

[52] Dirk Fahland and Wil M.P. van der Aalst. Model repair — aligning process
models to reality. Information Systems, 47:220 – 243, 2015. (Cited on
page 105.)

[53] Mohammadreza Fani Sani, Wil van der Aalst, Alfredo Bolt, and Javier
García-Algarra. Subgroup discovery in process mining. In Witold
Abramowicz, editor, Business Information Systems, pages 237–252,
Cham, 2017. Springer International Publishing. (Cited on page 369.)

344 BIBLIOGRAPHY

[54] Rebecca Ferguson. Learning analytics: drivers, developments and chal-
lenges. International Journal of Technology Enhanced Learning, 4(5-
6):304–317, 2012. (Cited on pages 292 and 310.)

[55] Ronald A. Fisher. The Design of Experiments, volume 12. Oliver and Boyd
Edinburgh, 1960. (Cited on pages 190 and 226.)

[56] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM Comput.
Surv., 46(4):44:1–44:37, March 2014. (Cited on pages 160 and 224.)

[57] Daniel Garijo, Pinar Alper, Khalid Belhajjame, Óscar Corcho, Yolanda
Gil, and Carole A. Goble. Common motifs in scientific workflows: An
empirical analysis. Future Generation Comp. Syst., 36:338–351, 2014.
(Cited on page 84.)

[58] Christian W. Günther. Process Mining in Flexible Environments. PhD
thesis, Technische Universiteit Eindhoven, 2009. (Cited on pages 106
and 200.)

[59] Carole A. Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Da-
nius Michaelides, David Newman, Mark Borkum, Sean Bechhofer, Marco
Roos, Peter Li, and David De Roure. myExperiment: A repository and
social network for the sharing of bioinformatics workflows. Nucleic Acids
Research, 38(suppl 2):W677–W682, 2010. (Cited on page 83.)

[60] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team.
Galaxy: a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life sciences.
Genome Biology, 11(8):R86, 2010. (Cited on page 83.)

[61] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Ro-
bust process discovery with artificial negative events. Journal of Machine
Learning Research, 10(Jun):1305–1340, 2009. (Cited on page 189.)

[62] Petrus J. B. Gorissen. Facilitating the use of recorded lectures: analysing
students’ interactions to understand their navigational needs. PhD the-
sis, Eindhoven University of Technology, 2013. (Cited on pages 291
and 310.)

[63] Daniela Grigori, Fabio Casati, Malu Castellanos, Umeshwar Dayal,
Mehmet Sayal, and Ming-Chien Shan. Business process intelligence.

BIBLIOGRAPHY 345

Computers in Industry, 53(3):321 – 343, 2004. Process / Workflow Min-
ing. (Cited on pages 290 and 291.)

[64] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining –
adaptive process simplification based on multi-perspective metrics. In
Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors, Business
Process Management: 5th International Conference, BPM 2007, Brisbane,
Australia, September 24-28, 2007. Proceedings, pages 328–343, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. (Cited on pages 16, 69,
104, 292, and 296.)

[65] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data
Mining. MIT Press, Cambridge, MA, USA, 2001. (Cited on page 83.)

[66] Markus Hofmann and Ralf Klinkenberg. RapidMiner: Data Mining Use
Cases and Business Analytics Applications. Chapman and Hall/CRC, 2013.
(Cited on pages 81, 84, and 100.)

[67] Bart Hompes, Joos C. A. M. Buijs, Wil M. P. van der Aalst, Prabhakar
Dixit, and Johannes Buurman. Detecting change in processes using com-
parative trace clustering. In 5th International Symposium on data-driven
process discovery and analysis (SIMPDA), pages 95–108, 2015. (Cited on
page 160.)

[68] Bart F. A. Hompes, Joos C. A. M. Buijs, and Wil M. P. van der Aalst.
A generic framework for context-aware process performance analysis.
In Proceedings of CoopIS 2016, pages 300–317. Springer International
Publishing, 2016. (Cited on page 160.)

[69] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recur-
sive partitioning: A conditional inference framework. Journal of Com-
putational and Graphical Statistics, 15(3):651–674, 2006. (Cited on
page 168.)

[70] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. CTREE: Conditional
inference trees. Cran. R_project, 2015. (Cited on page 171.)

[71] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole A. Goble,
Matthew R. Pocock, Peter Li, and Tom Oinn. Taverna: A tool for building
and running workflows of services. Nucleic Acids Research, 34:729–732,
2006. (Cited on pages 81 and 83.)

346 BIBLIOGRAPHY

[72] IEEE Task Force on Process Mining. Process Mining Case
Studies. http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:

process_mining_case_studies, 2013. (Cited on pages 9 and 21.)

[73] Sergey Ivanov, Anna Kalenkova, and Wil M. P. van der Aalst. BPMNDif-
fViz: A tool for BPMN models comparison. In Proceedings of the BPM
Demo Session 2015 Co-located with the 13th International Conference on
Business Process Management (BPM 2015), Innsbruck, Austria, September
2, 2015., pages 35–39, 2015. (Cited on page 122.)

[74] Stefan Jablonski, Maximilian Röglinger, Stefan Schönig, and Ka-
trin Maria Wyrtki. Multi-perspective clustering of process execution
traces. Enterprise Modelling and Information Systems Architectures
(EMISAJ) – International Journal of Conceptual Modeling, 14(2):1–22,
2019. (Cited on page 160.)

[75] R.P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Abstractions in
process mining: A taxonomy of patterns. In Business Process Management
(BPM 2009), volume 5701 of Lecture Notes in Computer Science, pages
159–175. Springer Berlin Heidelberg, 2009. (Cited on page 123.)

[76] Gert Janssenswillen, Benoît Depaire, and Toon Jouck. Calculating the
number of unique paths in a block-structured process model. In Pro-
ceedings of the International Workshop on Algorithms & Theories for the
Analysis of Event Data 2016, pages 138–152. CEUR Workshop Proceed-
ings, 2016. (Cited on page 206.)

[77] Gert Janssenswillen, Benoît Depaire, Marijke Swennen, Mieke Jans, and
Koen Vanhoof. bupar: Enabling reproducible business process analysis.
Knowledge-Based Systems, 163:927 – 930, 2019. (Cited on page 84.)

[78] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: a
Classification Perspective. Cambridge University Press, 2011. (Cited on
page 189.)

[79] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A
systematic study. Intelligent data analysis, 6(5):429–449, 2002. (Cited
on page 193.)

[80] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and
practical use, volume 1. Springer Science & Business Media, 2013. (Cited
on page 36.)

http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies

BIBLIOGRAPHY 347

[81] Micheline Kamber Jiawei Han, Jian Pei. Data Mining: Concepts and Tech-
niques. Elsevier, 2011. (Cited on page 47.)

[82] Tao Jin, Jianmin Wang, and Lijie Wen. Generating benchmarks by ran-
dom stepwise refinement of Petri nets. In Proceedings of the Workshops of
the 31st International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency, and of the 10th International Confer-
ence on Application of Concurrency to System Design, volume 827 of CEUR
Workshop Proceedings, pages 403–417. CEUR-WS.org, 2010. (Cited on
page 195.)

[83] Tao Jin, Jianmin Wang, and Lijie Wen. Efficiently querying business
process models with beehivez. In Proceedings of the Demo Track of the
Nineth Conference on Business Process Management 2011, volume 820 of
CEUR Workshop Proceedings, pages 1–6. CEUR-WS.org, 2011. (Cited on
page 195.)

[84] Toon Jouck. Empirically Evaluating Process Mining Algorithms: Towards
Closing the Methodological Gap. PhD thesis, Hasselt University, 2018.
(Cited on page 185.)

[85] Toon Jouck, Alfredo Bolt, Benoît Depaire, Massimiliano de Leoni, and
Wil MP van der Aalst. An integrated framework for process discovery al-
gorithm evaluation. Technical report, https://arxiv.org/abs/1806.07222,
2018. (Cited on pages 26, 185, and 370.)

[86] Toon Jouck and Benoît Depaire. Ptandloggenerator: A generator for ar-
tificial event data. In Proceedings of the BPM Demo Track 2016 Co-located
with the 14th International Conference on Business Process Management
(BPM 2016), Rio de Janeiro, Brazil, September 21, 2016., pages 23–27,
2016. (Cited on pages 94, 102, and 104.)

[87] Toon Jouck and Benoît Depaire. Simulating Process Trees Using Discrete-
Event Simulation. Technical Report, Hasselt University, February 2017.
(Cited on page 189.)

[88] Toon Jouck and Benoît Depaire. Generating Artificial Data for Empiri-
cal Analysis of Control-flow Discovery Algorithms: A Process Tree and
Log Generator. Business & Information Systems Engineering, vol 3/2018,
pages 1–18, March 2018. (Cited on pages 189, 195, 197, and 229.)

348 BIBLIOGRAPHY

[89] Anna Kalenkova, Massimiliano de Leoni, and Wil M. P. van der Aalst.
Discovering, analyzing and enhancing BPMN models using prom. In Pro-
ceedings of the BPM Demo Sessions 2014 Co-located with the 12th Interna-
tional Conference on Business Process Management (BPM 2014), volume
1295 of CEUR Workshop Proceedings, pages 36–40. CEUR-WS.org, 2014.
(Cited on page 202.)

[90] Valeriia Kataeva and Anna A. Kalenkova. Applying graph grammars for
the generation of process models and their logs. In Proceedings of the
Spring/Summer Young Researchers’ Colloquium on Software Engineering,
number 8, 2014. (Cited on page 195.)

[91] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg,
Jörn Kohlhammer, and Guy Melançon. Visual analytics: Definition, pro-
cess, and challenges. In Andreas Kerren, JohnT. Stasko, Jean-Daniel
Fekete, and Chris North, editors, Information Visualization, volume 4950
of Lecture Notes in Computer Science, pages 154–175. Springer Berlin Hei-
delberg, 2008. (Cited on page 96.)

[92] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete
guide to dimensional modeling. John Wiley & Sons, 2011. (Cited on
pages 47 and 51.)

[93] Roger E. Kirk. Experimental Design. John Wiley and Sons, 1982. (Cited
on pages 189, 190, and 226.)

[94] Christopher Klinkmüller and Ingo Weber. Analyzing control flow infor-
mation to improve the effectiveness of process model matching tech-
niques. Decision Support Systems, 100:6–14, 2017. Smart Business Pro-
cess Management. (Cited on page 122.)

[95] Christopher Klinkmüller and Ingo Weber. Every apprentice needs a
master: Feedback-based effectiveness improvements for process model
matching. Information Systems, 95:101612, 2021. (Cited on page 122.)

[96] Janez Kranjc, Vid Podpečan, and Nada Lavrač. Clowdflows: A cloud
based scientific workflow platform. In PeterA. Flach, Tijl De Bie, and
Nello Cristianini, editors, Machine Learning and Knowledge Discovery in
Databases, volume 7524 of Lecture Notes in Computer Science, pages 816–
819. Springer Berlin Heidelberg, 2012. (Cited on page 83.)

BIBLIOGRAPHY 349

[97] Simone Kriglstein, Günter Wallner, and Stefanie Rinderle-Ma. A visual-
ization approach for difference analysis of process models and instance
traffic. In Business Process Management, volume 8094 of Lecture Notes
in Computer Science, pages 219–226. Springer Berlin Heidelberg, 2013.
(Cited on page 122.)

[98] Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and Mathias
Weske. Towards Understanding Process Modeling — the Case of the
BPM Academic Initiative. In International Workshop on Business Process
Modeling Notation, pages 44–58. Springer, 2011. (Cited on pages 206
and 238.)

[99] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco Dijkman. Busi-
ness process model merging: An approach to business process consolida-
tion. ACM Trans. Softw. Eng. Methodol., 22(2):11:1–11:42, March 2013.
(Cited on page 122.)

[100] Marcello La Rosa, Hajo A. Reijers, Wil M. P. van der Aalst, Remco M.
Dijkman, Jan Mendling, Marlon Dumas, and Luciano García-Bañuelos.
Apromore: An advanced process model repository. Expert Systems with
Applications, 38(6):7029–7040, 2011. (Cited on pages 84 and 94.)

[101] Geetika T. Lakshmanan, Szabolcs Rozsnyai, and Fei Wang. Investigating
clinical care pathways correlated with outcomes. In Business Process Man-
agement (BPM 2013), volume 8094 of Lecture Notes in Computer Science,
pages 323–338. Springer Berlin Heidelberg, 2013. (Cited on page 123.)

[102] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discov-
ering block-structured process models from event logs - a constructive
approach. In José-Manuel Colom and Jörg Desel, editors, Application
and Theory of Petri Nets and Concurrency: 34th International Conference,
PETRI NETS 2013, Milan, Italy, June 24-28, 2013. Proceedings, pages
311–329, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. (Cited
on pages 37, 69, 74, 76, 86, 94, 104, 110, 112, 203, 205, and 320.)

[103] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Explor-
ing processes and deviations. In Fabiana Fournier and Jan Mendling, ed-
itors, Business Process Management Workshops: BPM 2014 International
Workshops, Eindhoven, The Netherlands, September 7-8, 2014, Revised
Papers, pages 304–316, Cham, 2015. Springer International Publishing.
(Cited on pages 106 and 296.)

350 BIBLIOGRAPHY

[104] Frank Leymann and Dieter Roller. Production workflow - concepts and
techniques. Prentice Hall, 2000. (Cited on page 83.)

[105] Xiaolei Li and Jiawei Han. Mining approximate top-k subspace anoma-
lies in multi-dimensional time-series data. In Proceedings of the 33rd
international conference on Very large data bases, pages 447–458. VLDB
Endowment, 2007. (Cited on page 51.)

[106] Richard Littauer, Karthik Ram, Bertram Ludäscher, William Michener,
and Rebecca Koskela. Trends in use of scientific workflows: Insights
from a public repository and recommendations for best practice. IJDC,
7(2):92–100, 2012. (Cited on page 84.)

[107] Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang,
Ismail Ari, and Abhay Mehta. E-cube: Multi-dimensional event sequence
processing using concept and pattern hierarchies. In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pages 1097–1100.
IEEE, 2010. (Cited on page 51.)

[108] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew B. Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Sci-
entific workflow management and the Kepler system. Concurrency and
Computation: Practice and Experience, 18(10):1039–1065, 2006. (Cited
on pages 81 and 83.)

[109] Daniela Luengo and Marcos Sepúlveda. Applying clustering in process
mining to find different versions of a business process that changes over
time. In Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, editors,
Business Process Management Workshops, pages 153–158, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg. (Cited on page 225.)

[110] Linh Thao Ly, Conrad Indiono, Jürgen Mangler, and Stefanie Rinderle-
Ma. Data Transformation and Semantic Log Purging for Process Mining,
pages 238–253. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
(Cited on page 292.)

[111] A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar. Detecting sudden and
gradual drifts in business processes from execution traces. IEEE Transac-
tions on Knowledge and Data Engineering, 29(10):2140–2154, Oct 2017.
(Cited on pages 225, 235, 237, 239, 243, 246, 248, 251, 254, and 256.)

BIBLIOGRAPHY 351

[112] Abderrahmane Maaradji, Marlon Dumas, Marcello La Rosa, and Alireza
Ostovar. Fast and accurate business process drift detection. In Business
Process Management: 13th International BPM Conference, pages 406–422.
Springer International Publishing, 2015. (Cited on pages 160 and 225.)

[113] Henry B. Mann and Donald R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The Annals of
Mathematical Statistics, 18(1):50–60, 03 1947. (Cited on page 131.)

[114] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M. P.
van der Aalst. Balanced Multi-perspective Checking of Process Confor-
mance. Computing, 98(4):407–437, 2016. (Cited on page 204.)

[115] Ronny S. Mans, Wil M. P. van der Aalst, and H. M. W. Verbeek. Sup-
porting process mining workflows with RapidProM. In Lior Limonad and
Barbara Weber, editors, Proceedings of the BPM Demo Sessions 2014 Co-
located with the 12th International Conference on Business Process Manage-
ment (BPM), volume 1295 of CEUR Workshop Proceedings, pages 56–60.
CEUR-WS.org, 2014. (Cited on pages 84 and 100.)

[116] Jevgeni. Martjushev, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der
Aalst. Change point detection and dealing with gradual and multi-
order dynamics in process mining. In Raimundas Matulevičius and Mar-
lon Dumas, editors, Perspectives in Business Informatics Research, pages
161–178, Cham, 2015. Springer International Publishing. (Cited on
pages 160, 225, 235, 237, 239, 243, 246, 248, 251, 254, and 256.)

[117] Jose-Norberto Mazón, Jens Lechtenbörger, and Juan Trujillo. A survey on
summarizability issues in multidimensional modeling. Data & Knowledge
Engineering, 68(12):1452–1469, 2009. (Cited on page 51.)

[118] Tom M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997. (Cited on page 83.)

[119] Hoang Nguyen, Marlon Dumas, Marcello La Rosa, Fabrizio M. Maggi,
and Suriadi Suriadi. Mining business process deviance: A quest for ac-
curacy. In On the Move to Meaningful Internet Systems (OTM 2014), vol-
ume 8841 of Lecture Notes in Computer Science, pages 436–445. Springer
Berlin Heidelberg, 2014. (Cited on page 123.)

[120] Tapio Niemi, Marko Niinimäki, Peter Thanisch, and Jyrki Nummen-
maa. Detecting summarizability in olap. Data & Knowledge Engineering,
89(Supplement C):1–20, 2014. (Cited on page 51.)

352 BIBLIOGRAPHY

[121] Irene Ntoutsi, Alexandros Kalousis, and Yannis Theodoridis. A general
framework for estimating similarity of datasets and decision trees: ex-
ploring semantic similarity of decision trees. In Proceedings of the 2008
SIAM International Conference on Data Mining, pages 810–821. SIAM,
2008. (Cited on page 123.)

[122] Petra Perner. How to compare and interpret two learnt decision trees
from the same domain? In Proceedings of the 27th International Con-
ference on Advanced Information Networking and Applications Workshops
(WAINA), pages 318–322. IEEE, 2013. (Cited on page 123.)

[123] Michael E. Porter. Competitive Advantage: Creating and Sustaining Supe-
rior Performance (1985). Free Press, 2008. (Cited on page 4.)

[124] John R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–
106, 1986. (Cited on page 135.)

[125] John R. Quinlan. C4. 5: Programs for Machine Learning. Elsevier, 2014.
(Cited on pages 137 and 168.)

[126] Joel Ribeiro and Josep Carmona. A method for assessing parameter im-
pact on control-flow discovery algorithms. In Transactions on Petri Nets
and Other Models of Concurrency XI, pages 181–202. Springer Berlin Hei-
delberg, 2016. (Cited on page 188.)

[127] Joel Ribeiro, Josep Carmona, Mustafa Misir, and Michele Sebag. A rec-
ommender system for process discovery. In Business Process Manage-
ment, pages 67–83. Springer International Publishing, 2014. (Cited on
page 188.)

[128] Joel T. S. Ribeiro and Anton J. M. M. Weijters. Event cube: Another
perspective on business processes. In Robert Meersman, Tharam Dillon,
Pilar Herrero, Akhil Kumar, Manfred Reichert, Li Qing, Beng-Chin Ooi,
Ernesto Damiani, Douglas C. Schmidt, Jules White, Manfred Hauswirth,
Pascal Hitzler, and Mukesh Mohania, editors, On the Move to Meaning-
ful Internet Systems: OTM 2011: Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece, Octo-
ber 17-21, 2011, Proceedings, Part I, pages 274–283, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. (Cited on page 52.)

BIBLIOGRAPHY 353

[129] C. Romero and S. Ventura. Educational data mining: A review of the state
of the art. IEEE Transactions on Systems, Man, and Cybernetics (Part C: Ap-
plications and Reviews), 40(6):601–618, Nov 2010. (Cited on pages 291
and 310.)

[130] Anne Rozinat, A. K. Alves de Medeiros, Christian W. Günther, Anton J.
M. M. Weijters, and Wil M. P. van der Aalst. Towards an Evaluation
Framework for Process Mining Algorithms. BPM Center Report, 07-06,
2007. (Cited on page 188.)

[131] Anne Rozinat and Wil M. P. van der Aalst. Conformance Checking
of Processes Based on Monitoring Real Behavior. Information Systems,
33(1):64–95, 2008. (Cited on page 204.)

[132] Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and
Nataliya Mulyar. Workflow Controlflow patterns: A Revised View. BPM
Center Report, 06-22, 2006. (Cited on page 195.)

[133] August-Wilhelm Scheer and Markus Nüttgens. Aris architecture and ref-
erence models for business process management. In Wil M. P. van der
Aalst, Jörg Desel, and Andreas Oberweis, editors, Business Process Man-
agement, volume 1806 of Lecture Notes in Computer Science, pages 376–
389. Springer Berlin Heidelberg, 2000. (Cited on page 94.)

[134] Jeffrey C. Schlimmer and Richard H. Granger, Jr. Beyond incremental
processing: Tracking concept drift. In Proceedings of the Fifth AAAI Na-
tional Conference on Artificial Intelligence, AAAI’86, pages 502–507. AAAI
Press, 1986. (Cited on page 225.)

[135] Alexander Seeliger, Timo Nolle, and Max Mühlhäuser. Detecting Concept
Drift in Processes Using Graph Metrics on Process Graphs. In Proceedings
of the 9th Conference on Subject-oriented Business Process Management,
pages 6:1–6:10. ACM, 2017. (Cited on page 160.)

[136] Sidney Siegel and N. J. Castellan Jr. Nonparametric statistics for the be-
havioral sciences. Mcgraw-Hill, New York, 2 edition, 1988. (Cited on
pages 207, 208, and 238.)

[137] G. Siemens. Learning analytics: The emergence of a discipline. Ameri-
can Behavioral Scientist, 57(10):1380–1400, 2013. (Cited on pages 291
and 310.)

354 BIBLIOGRAPHY

[138] George Siemens and Ryan S. J. d. Baker. Learning analytics and ed-
ucational data mining: Towards communication and collaboration. In
Proceedings of the 2nd International Conference on Learning Analytics and
Knowledge, LAK ’12, pages 252–254, New York, NY, USA, 2012. ACM.
(Cited on pages 292 and 310.)

[139] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace
clustering in process mining. In Danilo Ardagna, Massimo Mecella, and
Jian Yang, editors, Business Process Management Workshops: BPM 2008
International Workshops, Milano, Italy, September 1-4, 2008. Revised Pa-
pers, pages 109–120, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg. (Cited on page 159.)

[140] Minseok Song and Wil M. P. van der Aalst. Supporting process mining by
showing events at a glance. In Proceedings of the 17th Annual Workshop
on Information Technologies and Systems (WITS), pages 139–145, 2007.
(Cited on pages 105 and 296.)

[141] Mirko Sonntag, Dimka Karastoyanova, and Ewa Deelman. Bridging the
gap between business and scientific workflows: Humans in the loop of
scientific workflows. In Sixth International Conference on e-Science, e-
Science 2010, 7-10 December 2010, Brisbane, QLD, Australia, pages 206–
213, 2010. (Cited on page 83.)

[142] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Joerges, and Chris-
tian Kubczak. Model-driven development with the jABC. In Eyal Bin,
Avi Ziv, and Shmuel Ur, editors, Hardware and Software, Verification and
Testing, volume 4383 of Lecture Notes in Computer Science, pages 92–108.
Springer Berlin Heidelberg, 2007. (Cited on page 83.)

[143] Helmut Strasser and Christian Weber. The asymptotic theory of permu-
tation statistics. Mathematical Methods of Statistics, 8:220–250, 1999.
(Cited on page 168.)

[144] Jo Swinnen, Benoît Depaire, Mieke J. Jans, and Koen Vanhoof. A pro-
cess deviation analysis – a case study. In Business Process Management
Workshops, volume 99 of Lecture Notes in Business Information Processing,
pages 87–98. Springer Berlin Heidelberg, 2012. (Cited on page 123.)

[145] Alifah Syamsiyah, Alfredo Bolt, Long Cheng, Bart F. A. Hompes, R. P.
Jagadeesh Chandra Bose, Boudewijn F. van Dongen, and Wil M. P.

BIBLIOGRAPHY 355

van der Aalst. Business process comparison: A methodology and case
study. In Witold Abramowicz, editor, Business Information Systems, pages
253–267, Cham, 2017. Springer International Publishing. (Cited on
page 369.)

[146] Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, and Wil M. P. van der
Aalst. The imprecisions of precision measures in process mining. Infor-
mation Processing Letters, 135:1 – 8, 2018. (Cited on page 188.)

[147] Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields.
Workflows for e-Science: Scientific Workflows for Grids. Springer Verlag,
Berlin, 2007. (Cited on page 83.)

[148] Farbod Taymouri, Marcello La Rosa, and Josep Carmona. Business pro-
cess variant analysis based on mutual fingerprints of event logs. In
Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik
Pant, editors, Advanced Information Systems Engineering, pages 299–318,
Cham, 2020. Springer International Publishing. (Cited on page 123.)

[149] Nikola Trcka, Mykola Pechenizkiy, and Wil M. P. van der Aalst. Process
mining from educational data. In Handbook of educational data min-
ing, chapter 9, pages 123–142. CRC Press, London, 2010. (Cited on
pages 292 and 296.)

[150] Kenneth J. Turner and Paul S. Lambert. Workflows for quantitative data
analysis in the social sciences. International Journal on Software Tools for
Technology Transfer, pages 1–18, 2014. (Cited on page 84.)

[151] Nick van Beest, Marlon Dumas, Luciano García-Bañuelos, and Marcello
La Rosa. Log delta analysis: Interpretable differencing of business pro-
cess event logs. In Proceedings of the 13th International Conference on
Business Process Management (BPM’15), pages 386–405, 2015. (Cited on
pages 122 and 123.)

[152] Wil van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco
Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter
van den Brand, Ronald Brandtjen, Joos Buijs, Andrea Burattin, Josep
Carmona, Malu Castellanos, Jan Claes, Jonathan Cook, Nicola Costan-
tini, Francisco Curbera, Ernesto Damiani, Massimiliano de Leoni, Pav-
los Delias, Boudewijn F. van Dongen, Marlon Dumas, Schahram Dust-
dar, Dirk Fahland, Diogo R. Ferreira, Walid Gaaloul, Frank van Gef-
fen, Sukriti Goel, Christian Günther, Antonella Guzzo, Paul Harmon,

356 BIBLIOGRAPHY

Arthur ter Hofstede, John Hoogland, Jon Espen Ingvaldsen, Koki Kato,
Rudolf Kuhn, Akhil Kumar, Marcello La Rosa, Fabrizio Maggi, Donato
Malerba, Ronny S. Mans, Alberto Manuel, Martin McCreesh, Paola Mello,
Jan Mendling, Marco Montali, Hamid R. Motahari-Nezhad, Michael zur
Muehlen, Jorge Munoz-Gama, Luigi Pontieri, Joel Ribeiro, Anne Rozinat,
Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda, Jim Sinur,
Pnina Soffer, Minseok Song, Alessandro Sperduti, Giovanni Stilo, Casper
Stoel, Keith Swenson, Maurizio Talamo, Wei Tan, Chris Turner, Jan Van-
thienen, George Varvaressos, Eric Verbeek, Marc Verdonk, Roberto Vigo,
Jianmin Wang, Barbara Weber, Matthias Weidlich, Ton Weijters, Lijie
Wen, Michael Westergaard, and Moe Wynn. Process Mining Manifesto,
pages 169–194. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
(Cited on pages 14, 21, 22, 83, and 223.)

[153] Wil M. P. van der Aalst. A decade of business process management con-
ferences: Personal reflections on a developing discipline. In Alistair Bar-
ros, Avigdor Gal, and Ekkart Kindler, editors, Business Process Manage-
ment, volume 7481 of Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 2012. (Cited on page 86.)

[154] Wil M. P. van der Aalst. Decomposing process mining problems using pas-
sages. In Serge Haddad and Lucia Pomello, editors, Application and The-
ory of Petri Nets, volume 7347 of Lecture Notes in Computer Science, pages
72–91. Springer Berlin Heidelberg, 2012. (Cited on pages 92 and 98.)

[155] Wil M. P. van der Aalst. Process cubes: Slicing, dicing, rolling up
and drilling down event data for process mining. In Minseok Song,
Moe Thandar Wynn, and Jianxun Liu, editors, Asia Pacific Business Pro-
cess Management: First Asia Pacific Conference, AP-BPM 2013, Beijing,
China, August 29-30, 2013. Selected Papers, pages 1–22, Cham, 2013.
Springer International Publishing. (Cited on pages 51, 52, 53, and 79.)

[156] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016. (Cited on pages vii, 4, 9, 15, 19, 36, 39, 93, 95,
96, 108, 126, 145, 185, 188, 193, 198, and 218.)

[157] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Don-
gen. Replaying history on process models for conformance checking and
performance analysis. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(2):182–192, 2012. (Cited on pages 69, 106, 108,
and 296.)

BIBLIOGRAPHY 357

[158] Wil M. P. van der Aalst, Joos Buijs, and Boudewijn van Dongen. Towards
improving the representational bias of process mining. In Karl Aberer,
Ernesto Damiani, and Tharam Dillon, editors, Data-Driven Process Dis-
covery and Analysis: First International Symposium, SIMPDA 2011, Cam-
pione d’Italia, Italy, June 29 – July 1, 2011, Revised Selected Papers, pages
39–54, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. (Cited on
pages 37 and 229.)

[159] Wil M. P. van der Aalst, Alexander Dreiling, Florian Gottschalk, Michael
Rosemann, and Monique H. Jansen-Vullers. Configurable process mod-
els as a basis for reference modeling. In Christoph J. Bussler and Armin
Haller, editors, Business Process Management Workshops, volume 3812 of
Lecture Notes in Computer Science, pages 512–518. Springer Berlin Hei-
delberg, 2006. (Cited on page 96.)

[160] Wil M. P. van der Aalst and Schahram Dustdar. Process mining put
into context. IEEE Internet Computing, 16(1):82–86, 2012. (Cited on
page 119.)

[161] Wil M. P. van der Aalst, Shengnan Guo, and Pierre Gorissen. Comparative
process mining in education: An approach based on process cubes. In
Paolo Ceravolo, Rafael Accorsi, and Philippe Cudre-Mauroux, editors,
International Symposium of Data-Driven Process Discovery and Analysis:
SIMPDA 2013, pages 110–134. Springer Berlin Heidelberg, 2015. (Cited
on pages 53 and 310.)

[162] Wil M. P. van der Aalst, Vladimir Rubin, Henricus M. W. Verbeek,
Boudewijn F. van Dongen, Ekkart Kindler, and Christian W. Günther. Pro-
cess mining: a two-step approach to balance between underfitting and
overfitting. Software & Systems Modeling, 9(1):87, Nov 2008. (Cited on
pages 41, 42, 104, and 132.)

[163] Wil M. P. van der Aalst, Helen Schonenberg, and Minseok Song. Time
prediction based on process mining. Information Systems, 36(2):450 –
475, 2011. Special Issue: Semantic Integration of Data, Multimedia, and
Services. (Cited on page 128.)

[164] Wil M. P. van der Aalst and Minseok Song. Mining social networks:
Uncovering interaction patterns in business processes. In Jörg Desel,
Barbara Pernici, and Mathias Weske, editors, Business Process Manage-
ment, volume 3080 of Lecture Notes in Computer Science, pages 244–260.
Springer Berlin Heidelberg, 2004. (Cited on page 104.)

358 BIBLIOGRAPHY

[165] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003. (Cited on page 83.)

[166] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede,
Natalia Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe T. Wynn.
Soundness of workflow nets: classification, decidability, and analysis.
Formal Aspects of Computing, 23(3):333–363, 2011. (Cited on page 94.)

[167] Wil M. P. Van der Aalst, Ton Weijters, and Laura Maruster. Workflow
mining: Discovering process models from event logs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1128–1142, 2004. (Cited on
pages 37, 86, 94, 104, 190, 203, 205, and 320.)

[168] Wil M.P. van der Aalst. Relating process models and event logs-21 con-
formance propositions. In ATAED@ Petri Nets/ACSD, pages 56–74, 2018.
(Cited on page 188.)

[169] Wil MP van der Aalst, Alfredo Bolt, and Sebastiaan J van Zelst. Rapid-
prom: mine your processes and not just your data. arXiv preprint
arXiv:1703.03740, 2017. (Cited on pages 26, 100, and 370.)

[170] Jan M. E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens,
and Alexander Serebrenik. Process discovery using integer linear pro-
gramming. In Kees M. van Hee and Rüdiger Valk, editors, Applica-
tions and Theory of Petri Nets, volume 5062 of Lecture Notes in Computer
Science, pages 368–387. Springer Berlin Heidelberg, 2008. (Cited on
pages 104, 203, 205, 219, 296, and 320.)

[171] Boudewijn F. van Dongen. Real-life event logs - hospital log. 10.

4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54, 2011. (Cited
on page 15.)

[172] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. Verbeek,
A. J. M. M. Weijters, and Wil M. P. van der Aalst. The prom framework:
A new era in process mining tool support. In Applications and Theory
of Petri Nets 2005, 26th International Conference, ICATPN 2005, Miami,
USA, June 20-25, 2005, Proceedings, pages 444–454, 2005. (Cited on
pages 8, 21, 84, 100, 143, and 171.)

[173] Yoran P. J. M. van Oirschot. Using Trace Clustering for Configurable Pro-
cess Discovery Explained by Event Log Data. Master’s thesis, Eindhoven

10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

BIBLIOGRAPHY 359

University of Technology, Eindhoven, the Netherlands, 2014. (Cited on
page 159.)

[174] Sebastiaan J. van Zelst, Alfredo Bolt , and Boudewijn F. van Dongen. Tun-
ing alignment computation: an experimental evaluation. CEUR Work-
shop Proceedings, pages 6–20, 2017. Workshop on Algorithms and
theories for the analysis of event data (ATAED2017), 26-27 June 2017,
Zaragoza, Spain. (Cited on page 369.)

[175] Sebastiaan J. van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F. van
Dongen, and Wil M. P. van der Aalst. Online conformance checking:
relating event streams to process models using prefix-alignments. Inter-
national Journal of Data Science and Analytics, 8:269–284, 2019. (Cited
on page 368.)

[176] Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen.
Computing alignments of event data and process models, pages 1–26. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). Springer, Ger-
many, January 2018. (Cited on page 369.)

[177] Seppe K. L. M. vanden Broucke and Jochen De Weerdt. Fodina: A ro-
bust and flexible heuristic process discovery technique. Decision Support
Systems, 100:109–118, August 2017. (Cited on page 188.)

[178] Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and
Bart Baesens. Determining process model precision and generalization
with weighted artificial negative events. IEEE Transactions on Knowledge
and Data Engineering, 26(8):1877–1889, 2014. (Cited on page 189.)

[179] Seppe K. L. M. vanden Broucke, Cédric Delvaux, João Freitas, Taisiia
Rogova, Jan Vanthienen, and Bart Baesens. Uncovering the relation-
ship between event log characteristics and process discovery techniques.
In Business Process Management Workshops, pages 41–53, Cham, 2014.
Springer International Publishing. (Cited on page 188.)

[180] Panos Vassiliadis. A survey of extract-transform-load technology. IJDWM,
5(3):1–27, 2009. (Cited on page 21.)

[181] Henricus M. W. Verbeek, Twan Basten, and Wil M. P. van der Aalst.
Diagnosing workflow processes using woflan. The Computer Journal,
44(4):246–279, 2001. (Cited on page 105.)

360 BIBLIOGRAPHY

[182] Thomas Vogelgesang. Improving interactivity in multidimensional pro-
cess mining: The interactive pmcube explorer tool. In Proceedings of
the BPM Demo Track 2017 Co-located with the 15th International Con-
ference on Business Process Management (BPM 2017), volume 1920 of
CEUR Workshop Proceedings, pages 1–5. CEUR-WS.org, 2017. (Cited on
page 53.)

[183] Thomas Vogelgesang, Hans-Jürgen Appelrath, et al. Multidimensional
process mining: a flexible analysis approach for health services research.
In Proceedings of the Joint EDBT/ICDT 2013 Workshops, pages 17–22.
ACM, 2013. (Cited on page 53.)

[184] Thomas Vogelgesang and Hans-Jürgen Appelrath. Pmcube: A data-
warehouse-based approach for multidimensional process mining. In
Manfred Reichert and Hajo A. Reijers, editors, Business Process Manage-
ment Workshops: BPM 2015, 13th International Workshops, Innsbruck,
Austria, August 31 – September 3, 2015, Revised Papers, pages 167–178,
Cham, 2016. Springer International Publishing. (Cited on pages 52
and 53.)

[185] Jianmin Wang, Raymond K. Wong, Jianwei Ding, Qinlong Guo, and Lijie
Wen. Efficient Selection of Process Mining Algorithms. IEEE Transactions
on Services Computing, 6(4):484–496, 2013. (Cited on page 188.)

[186] Ingo H. C. Wassink, Paul E. van der Vet, Katy Wolstencroft, Pieter B. T.
Neerincx, Marco Roos, Han Rauwerda, and Timo M. Breit. Analysing
scientific workflows: Why workflows not only connect web services. In
2009 IEEE Congress on Services, Part I, SERVICES I 2009, Los Angeles, CA,
USA, July 6-10, 2009, pages 314–321, 2009. (Cited on page 84.)

[187] Philip Weber, Behzad Bordbar, and Peter Tino. A Framework for the Anal-
ysis of Process Mining Algorithms. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 43(2):303–317, 2013. (Cited on page 188.)

[188] Jochen De Weerdt, Seppe vanden Broucke, Jan Vanthienen, and Bart
Baesens. Active Trace Clustering for Improved Process Discovery. IEEE
Transactions on Knowledge and Data Engineering, 25(12):2708–2720,
2013. (Cited on page 159.)

[189] Anton J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering
workflow models from event-based data using Little Thumb. Integrated

BIBLIOGRAPHY 361

Computer-Aided Engineering, 10(2):151–162, 2003. (Cited on pages 94,
104, 190, 203, and 205.)

[190] Bernard L. Welch. The generalization of ‘student’s’ problem when several
different population variances are involved. Biometrika, 34(1-2):28–35,
1947. (Cited on page 131.)

[191] Alexander Wickert and Anna-Lena Lamprecht. jABCstats: An extensible
process library for the empirical analysis of jABC workflows. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Specialized Techniques and Applica-
tions, volume 8803 of Lecture Notes in Computer Science, pages 449–463.
Springer Berlin Heidelberg, 2014. (Cited on page 84.)

[192] David Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,
1992. (Cited on page 124.)

[193] Moe T. Wynn, Erik Poppe, Jingxin Xu, Arthur H. M. ter Hofstede, Ross
Brown, Azzurra Pini, and Wil M. P. van der Aalst. Processprofiler3d: A
visualisation framework for log-based process performance comparison.
Decision Support Systems, 100:93 – 108, 2017. Smart Business Process
Management. (Cited on page 123.)

[194] Reng Zeng, Xudong He, Jiafei Li, Zheng Liu, and Wil M. P. van der Aalst.
A method to build and analyze scientific workflows from provenance
through process mining. In 3rd Workshop on the Theory and Practice
of Provenance, TaPP’11, Heraklion, Crete, Greece, June 20-21, 2011, 2011.
(Cited on page 84.)

[195] Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. An Overview of Con-
cept Drift Applications, pages 91–114. Springer International Publishing,
Cham, 2016. (Cited on page 224.)

Summary

Comparative Process Mining: Analyzing Variability in
Process Data

Modern organizations may have a large number of processes with different
characteristics. Most of them are supported by information systems ranging
from excel sheets to ERP systems. Such systems leave a data footprint that
consists of recorded executions of processes i.e., event data.

Process mining is a research discipline that is concerned with discovering,
monitoring and improving real processes by extracting knowledge from event
data readily available in today’s systems. Process mining supports the extrac-
tion of insights from data about the overall and inner behavior contained in
any given process. Hundreds of different process mining techniques have been
proposed in literature.

In real-life, business processes are not static: They must adapt to constant
environment changes (e.g., customer preferences, legal regulations, new com-
petitors). Like any live species, organizations (and their business processes)
also evolve according to Darwinian evolution: The best to adapt is the one that
thrives. It is not uncommon for organizations that the same business process
has to adapt to different contexts simultaneously, which leads to variability in
the process: different “variants” are born from the adaptation of the process to
each context. In many scenarios, splitting a process into variants can effectively
reduce its variability (hence, its complexity), making them easier to analyze.
It also enables many types of analysis e.g., comparing the different variants of
the process in order to identify the best practices and detect differences and
similarities between variants.

This thesis addresses the problem of analyzing process variability by propos-
ing techniques and tools that use event data to identify variants within a pro-

364 Summary

cess, split them, compare them, and automate their analysis. We propose a
technique to identify process variants from process event data that guarantees
statistically significant differences between them. We also propose a technique
to split process event data into process variants identified before. In order to
compare the process variants found so far, we propose a technique that finds
and pinpoints the statistically significant differences between them, so that they
can be analyzed. Additionally, we proposed a technique to express and au-
tomate process mining experiments in a standardized, transparent, repeatable
way. Finally, this thesis adds to the body of scientific knowledge by the appli-
cation of the aforementioned techniques in real scenarios: working with large
companies that shared their data with us and actually used the results reported
in this thesis for concrete process improvements.

In summary, this thesis proposes to address variability in process data start-
ing by establishing the notion of process variants as a core abstraction to rep-
resent the adaptation of the process to different situations and contexts. Then,
this thesis proposes several techniques to identify, split and compare them and
automate their analysis. Finally, several case-study applications prove that these
techniques work using real-life data from known companies.

Acknowledgments

During the (long) writing process of this thesis, several people had an impact
on me and my work.

First of all, I want to thank my promotor Wil van der Aalst. Under his tough
but excellent guidance, I acquired several skills that are invaluable nowadays
in my life. He also mentored me personally and, in a way, shaped me into the
researcher that I am today.

I want to thank my co-promotor Hajo Reijers for his unique personal touch
that helped me push through some difficult situations, and also a special thanks
to Massimiliano de Leoni, who was my daily supervisor over the course of two
years. We had some heated discussions, but ultimately his supervision resulted
in one of the most productive periods of my life.

I also wanted to thank Eric for his infinite patience and support towards me
related to ProM coding. Without the support of the secretariat (thanks to Riet,
Jose and specially Ine: you were always there when I needed something) this
whole process would have been much more difficult, so many thanks to you.

Any PhD student knows that work is only half of a student’s life. I would
like to mention a very special group of people: my fellow PhD students with
which I shared so many discussions, tears, laughs, drinks, stories, bbqs and wild
karaoke nights: Bas, Edu, Maikel, Niek, Alok, Felix, Sander, Xixi, Shiva, Alifah,
Bart, Mohammadreza, Elham, Dennis, Cong, Joos, Marcus, Long, Marie, Nour,
Petar, Rafal, Shengnan, Vadim and many others.

Furthermore, I would like to thank my fellow musicians from the city of
Eindhoven: Owen, Raquel, Pauraig, Llaima, Akash, Ashok, Antoine, Waldo,
Mohsen, Anita, Jack, Javier, Mikele, Carmine, Davide, Jamie, and all the great
people I met at Music with Strangers. Music saved me so many times, mostly
through musicians like you.

Finally, I would like to thank my family for their support and love during

366 Acknowledgments

good and bad times. My heart goes with you always.

Alfredo José Bolt Iriondo
Eindhoven, January 2023

Curriculum Vitae

Alfredo José Bolt Iriondo was born on 28-12-1985 in Santiago, Chile. After
finishing Industrial Engineering in 2010 at Pontificia Universidad Católica de
Chile in Santiago, Chile, he studied a Master’s in Computer Science at Ponti-
ficia Universidad Católica de Chile in Santiago, Chile. In 2012 he graduated
with maximum distinction within the Department of Computer Science on the
topic of Process Mining. From 2012 to 2014 he worked as a Consultant in Busi-
ness Process Management. From 2014 he started a PhD project at Eindhoven
University of Technology at Eindhoven, The Netherlands, of which the results
are presented in this dissertation. Since 2018 he is employed as an Assistant
Professor at Universidad Finis Terrae in Santiago, Chile.

List of Publications

Alfredo José Bolt Iriondo has the following publications:

Journals

• Alfredo Bolt, Massimiliano de Leoni, and Wil M. P. van der Aalst. Scientific
workflows for process mining: building blocks, scenarios, and implemen-
tation. International Journal on Software Tools for Technology Transfer,
18(6):607–628, Nov 2016

• Alfredo Bolt, Massimiliano de Leoni, and Wil M.P. van der Aalst. Process
variant comparison: Using event logs to detect differences in behavior and
business rules. Information Systems, 74:53 – 66, 2018. Information Sys-
tems Engineering: selected papers from CAiSE 2016

• Sebastiaan J. van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F. van
Dongen, and Wil M. P. van der Aalst. Online conformance checking: relat-
ing event streams to process models using prefix-alignments. International
Journal of Data Science and Analytics, 8:269–284, 2019

Proceedings and Congres Contributions

• Alfredo Bolt and Wil M. P. van der Aalst. Multidimensional process mining
using process cubes. In Khaled Gaaloul, Rainer Schmidt, Selmin Nurcan,
Sérgio Guerreiro, and Qin Ma, editors, Enterprise, Business-Process and In-
formation Systems Modeling, pages 102–116, Cham, 2015. Springer Inter-
national Publishing

• Alfredo Bolt, Massimiliano de Leoni, and Wil M. P. van der Aalst. A visual
approach to spot statistically-significant differences in event logs based on
process metrics. In Selmin Nurcan, Pnina Soffer, Marko Bajec, and Johann
Eder, editors, Advanced Information Systems Engineering, pages 151–166,
Cham, 2016. Springer International Publishing

• Alfredo Bolt, Wil M. P. van der Aalst, and Massimiliano de Leoni. Find-
ing process variants in event logs. In Hervé Panetto, Christophe Debruyne,
Walid Gaaloul, Mike Papazoglou, Adrian Paschke, Claudio Agostino Ardagna,
and Robert Meersman, editors, On the Move to Meaningful Internet Sys-
tems. OTM 2017 Conferences, pages 45–52, Cham, 2017. Springer Inter-
national Publishing

• Alifah Syamsiyah, Alfredo Bolt, Long Cheng, Bart F. A. Hompes, R. P. Ja-
gadeesh Chandra Bose, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. Business process comparison: A methodology and case study. In
Witold Abramowicz, editor, Business Information Systems, pages 253–267,
Cham, 2017. Springer International Publishing

• Mohammadreza Fani Sani, Wil van der Aalst, Alfredo Bolt, and Javier
García-Algarra. Subgroup discovery in process mining. In Witold Abramow-
icz, editor, Business Information Systems, pages 237–252, Cham, 2017.
Springer International Publishing

• Sebastiaan J. van Zelst, Alfredo Bolt , and Boudewijn F. van Dongen. Tun-
ing alignment computation: an experimental evaluation. CEUR Workshop
Proceedings, pages 6–20, 2017. Workshop on Algorithms and theories
for the analysis of event data (ATAED2017), 26-27 June 2017, Zaragoza,
Spain

• Alfredo Bolt, Massimiliano De Leoni, Wil M.P. van der Aalst, and Pierre
Gorissen. Exploiting process cubes, analytic workflows and process mining
for business process reporting: A case study in education. In P. Ceravolo
and S. Rinderle-Ma, editors, Data-Driven Process Discovery and Analysis
(SIMPDA 2015), December 9-11, 2015, Vienna, Austria, CEUR Workshop
Proceedings, pages 33–47. CEUR-WS.org, 2015. 5th International Sym-
posium on Data-Driven Process Discovery and Analysis, SIMPDA 2015 ;
Conference date: 09-12-2015 Through 11-12-2015

• A.J. Bolt Iriondo, M. de Leoni, W.M.P. van der Aalst, and P. Gorissen. Busi-
ness process reporting using process mining, analytic workflows and pro-
cess cubes: A case study in education. In C. Paolo and R.-M. Stefanie,
editors, Data-Driven Process Discovery and Analysis, Lecture Notes in Busi-
ness Information Processing, pages 28–53, Germany, 2017. Springer. 5th
International Symposium on Data-Driven Process Discovery and Analysis
(SIMPDA 2015, SIMPDA 2015 ; Conference date: 09-12-2015 Through
11-12-2015

• Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen. Com-
puting alignments of event data and process models, pages 1–26. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). Springer, Germany,
January 2018

• Iulia. Efremova, Alejandro Montes Garcia, Alfredo. Bolt, and Toon G.K.
Calders. Who are my ancestors? : retrieving family relationships from
historical texts. In P. Braslavski , I. Markov, P. Pardalos, Y. Volkovich,
D.I. Ignatov , S. Koltsov, and O. Koltsova, editors, Information Retrieval,
Communications in Computer and Information Science, pages 121–129,
Germany, 2015. Springer

Master Thesis

• Alfredo Bolt and Marcos Sepúlveda. Process remaining time prediction
using query catalogs. In Niels Lohmann, Minseok Song, and Petia Wohed,
editors, Business Process Management Workshops, pages 54–65, Cham, 2014.
Springer International Publishing

Technical Reports (Non-Refereed)

• Wil MP van der Aalst, Alfredo Bolt, and Sebastiaan J van Zelst. Rapid-
prom: mine your processes and not just your data. arXiv preprint arXiv:1703.03740,
2017

• Toon Jouck, Alfredo Bolt, Benoît Depaire, Massimiliano de Leoni, and
Wil MP van der Aalst. An integrated framework for process discovery al-
gorithm evaluation. Technical report, https://arxiv.org/abs/1806.07222,
2018

SIKS Dissertations

2011-01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent Gaussian Models.

2011-02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Operational Semantics of an Organization-

Oriented Programming Language.

2011-03 Jan Martijn van der Werf (TU/e), Compositional Design and Verification of Component-Based Information

Systems.

2011-04 Hado Philip van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis and empirical evalua-

tion of temporal-difference learning algorithms.

2011-05 Bas van de Raadt (VUA), Enterprise Architecture Coming of Age - Increasing the Performance of an Emerg-

ing Discipline.

2011-06 Yiwen Wang (TU/e), Semantically-Enhanced Recommendations in Cultural Heritage.

2011-07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human Computer Interaction.

2011-08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dialogues.

2011-09 Tim de Jong (OU), Contextualised Mobile Media for Learning.

2011-10 Bart Bogaert (TiU), Cloud Content Contention.

2011-11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Perspective.

2011-12 Carmen Bratosin (TU/e), Grid Architecture for Distributed Process Mining.

2011-13 Xiaoyu Mao (TiU), Airport under Control; Multiagent Scheduling for Airport Ground Handling.

2011-14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets.

2011-15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence for Information Retrieval.

2011-16 Maarten Schadd (UM), Selective Search in Games of Different Complexity.

2011-17 Jiyin He (UvA), Exploring Topic Structure: Coherence, Diversity and Relatedness.

2011-18 Mark Ponsen (UM), Strategic Decision-Making in complex games.

2011-19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles.

2011-20 Qing Gu (VUA), Guiding service-oriented software engineering - A view-based approach.

2011-21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented Systems.

2011-22 Junte Zhang (UvA), System Evaluation of Archival Description and Access.

2011-23 Wouter Weerkamp (UvA), Finding People and their Utterances in Social Media.

2011-24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordination with Virtual Humans

On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior.

2011-25 Syed Waqar ul Qounain Jaffry (VUA), Analysis and Validation of Models for Trust Dynamics.

2011-26 Matthijs Aart Pontier (VUA), Virtual Agents for Human Communication - Emotion Regulation and Involvement-

Distance Trade-Offs in Embodied Conversational Agents and Robots.

2011-27 Aniel Bhulai (VUA), Dynamic website optimization through autonomous management of design patterns.

2011-28 Rianne Kaptein (UvA), Effective Focused Retrieval by Exploiting Query Context and Document Structure.

2011-29 Faisal Kamiran (TU/e), Discrimination-aware Classification.

2011-30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the mystery of emotions.

2012
2012-01 Terry Kakeeto (TiU), Relationship Marketing for SMEs in Uganda.

2012-02 Muhammad Umair (VUA), Adaptivity, emotion, and Rationality in Human and Ambient Agent Models.

2012-03 Adam Vanya (VUA), Supporting Architecture Evolution by Mining Software Repositories.

2012-04 Jurriaan Souer (UU), Development of Content Management System-based Web Applications.

2012-05 Marijn Plomp (UU), Maturing Interorganisational Information Systems.

2012-06 Wolfgang Reinhardt (OUN), Awareness Support for Knowledge Workers in Research Networks.

2012-07 Rianne van Lambalgen (VUA), When the Going Gets Tough: Exploring Agent-based Models of Human Per-

formance under Demanding Conditions.

2012-08 Gerben de Vries (UvA), Kernel Methods for Vessel Trajectories.

2012-09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-Aware Service Platforms.

2012-10 David Smits (TU/e), Towards a Generic Distributed Adaptive Hypermedia Environment.

2012-11 J.C.B. Rantham Prabhakara (TU/e), Process Mining in the Large: Preprocessing, Discovery, and Diagnos-

tics.

2012-12 Kees van der Sluijs (TU/e), Model Driven Design and Data Integration in Semantic Web Information Sys-

tems.

2012-13 Suleman Shahid (TiU), Fun and Face: Exploring non-verbal expressions of emotion during playful interac-

tions.

2012-14 Evgeny Knutov(TU/e), Generic Adaptation Framework for Unifying Adaptive Web-based Systems.

2012-15 Natalie van der Wal (VUA), Social Agents. Agent-Based Modelling of Integrated Internal and Social Dy-

namics of Cognitive and Affective Processes..

2012-16 Fiemke Both (VUA), Helping people by understanding them - Ambient Agents supporting task execution

and depression treatment.

2012-17 Amal Elgammal (TiU), Towards a Comprehensive Framework for Business Process Compliance.

2012-18 Eltjo Poort (VUA), Improving Solution Architecting Practices.

2012-19 Helen Schonenberg (TU/e), What’s Next? Operational Support for Business Process Execution.

2012-20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfac-

ing.

2012-21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval.

2012-22 Thijs Vis (TiU), Intelligence, politie en veiligheidsdienst: verenigbare grootheden?.

2012-23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of Affect

during Human Media Interaction.

2012-24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Document Retrieval.

2012-25 Silja Eckartz (UT), Managing the Business Case Development in Inter-Organizational IT Projects: A Method-

ology and its Application.

2012-26 Emile de Maat (UvA), Making Sense of Legal Text.

2012-27 Hayrettin Gürkök (UT), Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games.

2012-28 Nancy Pascall (TiU), Engendering Technology Empowering Women.

2012-29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval.

2012-30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective Decision Making.

2012-31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher Order Cognitive Skills Improve-

ment, Building Capacity and Infrastructure.

2012-32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and reasoning.

2012-33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON).

2012-34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications.

2012-35 Evert Haasdijk (VUA), Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular

Robotics.

2012-36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling Processes.

2012-37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture Creation.

2012-38 Selmar Smit (VUA), Parameter Tuning and Scientific Testing in Evolutionary Algorithms.

2012-39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks.

2012-40 Agus Gunawan (TiU), Information Access for SMEs in Indonesia.

2012-41 Sebastian Kelle (OUN), Game Design Patterns for Learning.

2012-42 Dominique Verpoorten (OUN), Reflection Amplifiers in self-regulated Learning.

2012-43 Withdrawn, List of dissertations 2012.

2012-44 Anna Tordai (VUA), On Combining Alignment Techniques.

2012-45 Benedikt Kratz (TiU), A Model and Language for Business-aware Transactions.

2012-46 Simon Carter (UvA), Exploration and Exploitation of Multilingual Data for Statistical Machine Translation.

2012-47 Manos Tsagkias (UvA), Mining Social Media: Tracking Content and Predicting Behavior.

2012-48 Jorn Bakker (TU/e), Handling Abrupt Changes in Evolving Time-series Data.

2012-49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of reinforcement learning algo-

rithms in strategic interactions.

2012-50 Steven van Kervel (TUD), Ontology driven Enterprise Information Systems Engineering.

2012-51 Jeroen de Jong (TUD), Heuristics in Dynamic Scheduling; a practical framework with a case study in ele-

vator dispatching.

2013
2013-01 Viorel Milea (EUR), News Analytics for Financial Decision Support.

2013-02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store Database Technology for Efficient

and Scalable Stream Processing.

2013-03 Szymon Klarman (VUA), Reasoning with Contexts in Description Logics.

2013-04 Chetan Yadati(TUD), Coordinating autonomous planning and scheduling.

2013-05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns.

2013-06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience.

2013-07 Giel van Lankveld (TiU), Quantifying Individual Player Differences.

2013-08 Robbert-Jan Merk (VUA), Making enemies: cognitive modeling for opponent agents in fighter pilot simula-

tors.

2013-09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and Applications.

2013-10 Jeewanie Jayasinghe Arachchige (TiU), A Unified Modeling Framework for Service Design..

2013-11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in Overlay Services.

2013-12 Maryam Razavian (VUA), Knowledge-driven Migration to Services.

2013-13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated IT-based homecare services to

support independent living of elderly.

2013-14 Jafar Tanha (UvA), Ensemble Approaches to Semi-Supervised Learning Learning.

2013-15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications.

2013-16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent deliberation.

2013-17 Koen Kok (VUA), The PowerMatcher: Smart Coordination for the Smart Electricity Grid.

2013-18 Jeroen Janssens (TiU), Outlier Selection and One-Class Classification.

2013-19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling.

2013-20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Information Retrieval.

2013-21 Sander Wubben (TiU), Text-to-text generation by monolingual machine translation.

2013-22 Tom Claassen (RUN), Causal Discovery and Logic.

2013-23 Patricio de Alencar Silva (TiU), Value Activity Monitoring.

2013-24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning.

2013-25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support. A new way of representing

and implementing clinical guidelines in a Decision Support System.

2013-26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service Provisioning.

2013-27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance.

2013-28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry into the Information eXperi-

ence.

2013-29 Iwan de Kok (UT), Listening Heads.

2013-30 Joyce Nakatumba (TU/e), Resource-Aware Business Process Management: Analysis and Support.

2013-31 Dinh Khoa Nguyen (TiU), Blueprint Model and Language for Engineering Cloud Applications.

2013-32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking in a Lifelong Learner’s Pro-

fessional Development.

2013-33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere.

2013-34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search.

2013-35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction.

2013-36 Than Lam Hoang (TU/e), Pattern Mining in Data Streams.

2013-37 Dirk Börner (OUN), Ambient Learning Displays.

2013-38 Eelco den Heijer (VUA), Autonomous Evolutionary Art.

2013-39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enterprise Information Systems.

2013-40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games.

2013-41 Jochem Liem (UvA), Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge Engineering

Perspective on Qualitative Reasoning.

2013-42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning.

2013-43 Marc Bron (UvA), Exploration and Contextualization through Interaction and Concepts.

2014
2014-01 Nicola Barile (UU), Studies in Learning Monotone Models from Data.

2014-02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling Method.

2014-03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search Behavior and Solutions.

2014-04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and interface design - Three stud-

ies on children’s search performance and evaluation.

2014-05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic Capability.

2014-06 Damian Tamburri (VU), Supporting Networked Software Development.

2014-07 Arya Adriansyah (TU/e), Aligning Observed and Modeled Behavior.

2014-08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous Data Endpoints.

2014-09 Philip Jackson (TiU), Toward Human-Level Artificial Intelligence: Representation and Computation of

Meaning in Natural Language.

2014-10 Ivan Salvador Razo Zapata (VUA), Service Value Networks.

2014-11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support.

2014-12 Willem van Willigen (VUA), Look Ma, No Hands: Aspects of Autonomous Vehicle Control.

2014-12 Arlette van Wissen (VUA), Agent-Based Support for Behavior Change: Models and Applications in Health

and Safety Domains.

2014-14 Yangyang Shi (TUD), Language Models With Meta-information.

2014-15 Natalya Mogles (VUA), Agent-Based Analysis and Support of Human Functioning in Complex Socio-Technical

Systems: Applications in Safety and Healthcare.

2014-16 Krystyna Milian (VUA), Supporting trial recruitment and design by automatically interpreting eligibility

criteria.

2014-17 Kathrin Dentler (VUA), Computing healthcare quality indicators automatically: Secondary Use of Patient

Data and Semantic Interoperability.

2014-18 Mattijs Ghijsen (UvA), Methods and Models for the Design and Study of Dynamic Agent Organizations.

2014-19 Vinicius Ramos (TU/e), Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool

Support.

2014-20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal Text: The Missing Link.

2014-21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments.

2014-22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-supported scenario-based train-

ing.

2014-23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data Era.

2014-24 Davide Ceolin (VUA), Trusting Semi-structured Web Data.

2014-25 Martijn Lappenschaar (RUN), New network models for the analysis of disease interaction.

2014-26 Tim Baarslag (TUD), What to Bid and When to Stop.

2014-27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and Probabilistic Representations

of Uncertainty.

2014-28 Anna Chmielowiec (VUA), Decentralized k-Clique Matching.

2014-29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software.

2014-30 Peter de Cock (TiU), Anticipating Criminal Behaviour.

2014-31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufacturing and Product Support.

2014-32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data.

2014-33 Tesfa Tegegne (RUN), Service Discovery in eHealth.

2014-34 Christina Manteli (VUA), The Effect of Governance in Global Software Development: Analyzing Transactive

Memory Systems..

2014-35 Joost van Oijen (UU), Cognitive Agents in Virtual Worlds: A Middleware Design Approach.

2014-36 Joos Buijs (TU/e), Flexible Evolutionary Algorithms for Mining Structured Process Models..

2014-37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying.

2014-38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: improving usability through post-

processing..

2014-39 Jasmina Maric (TiU), Web Communities, Immigration, and Social Capital.

2014-40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT in Higher Education..

2014-41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in News Text.

2014-42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models.

2014-43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method Increments.

2014-44 Paulien Meesters (TiU), Intelligent Blauw: Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden..

2014-45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach.

2014-46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity.

2014-47 Shangsong Liang (UvA), Fusion and Diversification in Information Retrieval.

2015
2015-01 Niels Netten (UVA), Machine Learning for Relevance of Information in Crisis Response.

2015-02 Faiza Bukhsh (UVT), Smart auditing: Innovative Compliance Checking in Customs Controls.

2015-03 Twan van Laarhoven (RUN), Machine learning for network data.

2015-04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments.

2015-05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding.

2015-06 Farideh Heidari (TUD), Business Process Quality Computation - Computing Non-Functional Requirements

to Improve Business Processes.

2015-07 Maria-Hendrike Peetz (UVA), Time-Aware Online Reputation Analysis.

2015-08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for designing and evaluating organi-

zational interactions.

2015-09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems.

2015-10 Henry Hermans (OUN), OpenU: design of an integrated system to support lifelong learning.

2015-11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study of computing bisimulation and

joins.

2015-12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Effect of Context on Scientific

Collaboration Networks.

2015-13 Giuseppe Procaccianti (VU), Energy-Efficient Software.

2015-14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversations.

2015-15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Documentation.

2015-16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot Teamwork.

2015-17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties, Combinations and Trade-

offs.

2015-18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asymmetric Memories.

2015-19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners.

2015-20 Loïs Vanhée (UU), Using Culture and Values to Support Flexible Coordination Using Culture and Values to

Support Flexible Coordination.

2015-21 Sibren Fetter (OUN), Using Culture and Values to Support Flexible CoordinationUsing Peer-Support to Ex-

pand and Stabilize Online Learning.

2015-22 Zhemin Zhu (UT), Co-occurrence Rate Networks - Towards separate training for undirected graphical mod-

els.

2015-23 Luit Gazendam (VU), Using Culture and Values to Support Flexible CoordinationCataloguer Support in

Cultural Heritage.

2015-24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search Algorithms and Evaluation.

2015-25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection.

2015-26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Semantics and Structure.

2015-27 Sándor Héman (CWI), Updating compressed colomn stores.

2015-28 Janet Bagorogoza (TiU), Knowledge Management and High Performance; The Uganda Financial Institu-

tions Model for HPO.

2015-29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player and Two-Player Domains.

2015-30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-Learning.

2015-31 Yakup Koç (TUD), On the robustness of Power Grids.

2015-32 Jerome Gard (UL), Corporate Venture Management in SMEs.

2015-33 Frederik Schadd (UM), Ontology Mapping with Auxiliary Resources.

2015-34 Victor de Graaff (UT), Geosocial Recommender Systems.

2015-35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Perception and Effects in Human Robot

Interaction.

2016
2016-01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines.

2016-02 Michiel Meulendijk (UU), Optimizing medication reviews through decision support: prescribing a better

pill to swallow.

2016-03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker Support.

2016-04 Laurens Rietveld (VU), Publishing and Consuming Linked Data.

2016-05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Application in Explaining

Missing Answers.

2016-06 Michel Wilson (TUD), Robust scheduling in an uncertain environment.

2016-07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training.

2016-08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks from Unstructured

Data.

2016-09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Artefacts.

2016-10 George Karafotias (VU), Parameter Control for Evolutionary Algorithms.

2016-11 Anne Schuth (UVA), Search Engines that Learn from Their Users.

2016-12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Systems.

2016-13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in West Africa - An ICT4D

Approach.

2016-14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization.

2016-15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and Experiments.

2016-16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human Reward.

2016-17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms.

2016-18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web.

2016-19 Julia Efremova (TUE), Mining Social Structures from Genealogical Data.

2016-20 Daan Odijk (VU), Context & Semantics in News & Web Search.

2016-21 Alejandro Moreno Celleri (UT), From Traditional to Interactive Playspaces: Automatic Analysis of Player

Behavior in the Interactive Tag Playground.

2016-22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems.

2016-23 Fei Cai (UVA), Query Auto Completion in Information Retrieval.

2016-24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative and data model in-

dependent approach.

2016-25 Y. Kiseleva (TUE), Using Contextual Information to Understand Searching and Browsing Behavior.

2016-26 Dilhan J. Thilakarathne (VU), In or Out of Control: Exploring Computational Models to Study the Role

of Human Awareness and Control in Behavioural Choices, with Applications in Aviation and Energy Management

Domains.

2016-27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media.

2016-28 Mingxin Zhang (TUD), Large-scale agent-based social simulation: A study on epidemic prediction and con-

trol.

2016-29 Nicolas Höning (TUD), Understanding Geo-spatial Information on Social Media.

2016-30 Ruud Mattheij (UVT), The Eyes Have IT.

2016-31 Mohammad Khelghati (UT), Deep web content monitoring.

2016-32 Eelco Vriezekolk (UVT), Assessing Telecommunication Service Availability Risks for Crisis Organisations.

2016-33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one example.

2016-34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and Enactment.

2016-35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and Recommendation.

2016-36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior optimized for robot-

specific morphologies.

2016-37 Giovanni Sileno (UVA), Aligning Law and Action - a conceptual and computational inquiry.

2016-38 Andrea Minuto (UT), Materials that matter - Smart Materials meet Art & Interaction Design.

2016-39 Merijn Bruijnes, Believable Suspect Agents; Response and Interpersonal Style Selection for an Artificial Sus-

pect.

2016-40 Christian Detweiler (TUD), Accounting for Values in Design.

2016-41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing Institutional Design and

Enactment Governance.

2016-42 Spyros Martzoukos (UVA), Combinatorial and compositional aspects of bilingual aligned corpora.

2016-43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From Theory to Practice.

2016-44 Thibault Sellam (UVA), Automatic assistants for database exploration.

2016-45 Bram van Laar (UT), Experiencing Brain-Computer Interface Control.

2016-46 Jorge Gallego Perez (UT), Robots to Make you Happy.

2016-47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation networks.

2016-48 Tanja Buttler (TUD), Collecting Lessons Learned.

2016-49 Gleb Polevoy (TUD), Participation and Interaction in Projects: A Game-Theoretic Analysis.

2016-50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Performance Alignment in

IT-enabled Service Supply Chains.

2017
2017-01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime.

2017-02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using Argumentation.

2017-03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Autonomous Products

and Reconfigurable Manufacturing Machines.

2017-04 Mrunal Gawade (CWI), Multi-core parallelism in a column-store.

2017-05 Mahdieh Shadi (UVA), Collaboration Behavior; Enhancement in Co-development.

2017-06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search.

2017-07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly.

2017-08 Rob Konijn (VU), Detecting Interesting Differences:Data Mining in Health Insurance Data using Outlier

Detection and Subgroup Discovery.

2017-09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Variation in Text.

2017-10 Robby van Delden (UT), (Steering) Interactive Play Behavior.

2017-11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipointment.

2017-12 Sander Leemans (TUE), Robust Process Mining with Guarantees.

2017-13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through haptic technol-

ogy.

2017-14 Shoshannah Tekofsky (UVT), You Are Who You Play You Are: Modelling Player Traits from Video Game

Behavior.

2017-15 Peter Berck (RUN), Memory-Based Text Correction.

2017-16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines.

2017-17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution.

2017-18 Ridho Reinanda (UVA), Entity Associations for Search.

2017-19 Jeroen Vuurens (TUD), Proximity of Terms, Texts and Semantic Vectors in Information Retrieval.

2017-20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of Perceived Ben-

efits, Costs and Visibility.

2017-21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play on Worlds).

2017-22 Sara Magliacane (VU), Logics for causal inference under uncertainty.

2017-23 David Graus (UVA), Entities of Interest - Discovery in Digital Traces.

2017-24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning.

2017-25 Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines, with applications to Multi-

morbidity Analysis and Literature Search.

2017-26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch.

2017-27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s Preferences,

Perceptions and Behaviors.

2017-28 John Klein (VU), Architecture Practices for Complex Contexts.

2017-29 Adel Alhuraibi (UVT), From IT-BusinessStrategic Alignment to Performance: A Moderated Mediation Model

of Social Innovation, and Enterprise Governance of IT.

2017-30 Wilma Latuny (UVT), The Power of Facial Expressions.

2017-31 Ben Ruijl (UL), Advances in computational methods for QFT calculations.

2017-32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives.

2017-33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model of Computer-

Mediated Activity.

2017-34 Maren Scheffel (OUN), The Evaluation Framework for Learning Analytics.

2017-35 Martine de Vos (VU), Interpreting natural science spreadsheets.

2017-36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput Imaging.

2017-37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework that Enables Control

over Privacy.

2017-38 Abdullah Kayal (TUD), Normative Social Applications.

2017-39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive sensing methods

to increase noise robustness in ASR.

2017-40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control in Relation to

Emotions, Desires and Social Support For applications in human-aware support systems.

2017-41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes and a Smart En-

vironment to Provide Support for a Healthy Lifestyle.

2017-42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on ADHD datasets.

2017-43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval.

2017-44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Requirements Engi-

neering.

2017-45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement.

2017-46 Jan Schneider (OU), Sensor-based Learning Support.

2017-47 Yie Yang (TUD), Crowd Knowledge Creation Acceleration.

2017-48 Angel Suarez (OU), Collaborative inquiry-based learning.

2018
2018-01 Han van der Aa (VU), Comparing and Aligning Process Representations.

2018-02 Felix Mannhardt (TUE), Multi-perspective Process Mining.

2018-03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven Development of

Context-Aware Applications, and Behavior Prediction.

2018-04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric Engineering

Tasks.

2018-05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Process.

2018-06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Systems.

2018-07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems.

2018-08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems.

2018-09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations.

2018-10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through intelligent

technology.

2018-11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks.

2018-12 Xixi Lu (TUE), Using behavioral context in process mining.

2018-13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future: Exploring the added value of computa-

tional models for increasing the use of renewable energy in the residential sector.

2018-14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters.

2018-15 Naser Davarzani (UM), Biomarker discovery in heart failure.

2018-16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children.

2018-17 Jianpeng Zhang (TUE), On Graph Sample Clustering.

2018-18 Henriette Nakad (UL), De Notaris en Private Rechtspraak.

2018-19 Minh Duc Pham (VUA), Emergent relational schemas for RDF.

2018-20 Manxia Liu (RUN), Time and Bayesian Networks.

2018-21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing scenario-based serious

games.

2018-22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of Behaviours, Perceptions and

Emotions in Social Networks.

2018-23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis.

2018-24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepresence Robots.

2018-25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections.

2018-26 Roelof de Vries (UT), Theory-Based And Tailor-Made: Motivational Messages for Behavior Change Technol-

ogy.

2018-27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis.

2018-28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you feel.

2018-29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech.

2018-30 Wouter Beek (VU), The K in semantic web stands for knowledge: scaling semantics to the web.

2019
2019-01 Rob van Eijk (UL), Web privacy measurement in real-time bidding systems. A graph-based approach to RTB

system classification.

2019-02 Emmanuelle Beauxis- Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class Size Uncer-

tainty.

2019-03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event Data from

Real Life Data Sources.

2019-04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data.

2019-05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data.

2019-06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Heritage Datasets.

2019-07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms.

2019-08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes.

2019-09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in software systems.

2019-10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and Prediction.

2019-11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral Engagement in MOOCs.

2019-12 Jacqueline Heinerman (VU), Better Together.

2019-13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation.

2019-14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior & Improving Learning

Outcomes in Massive Open Online Courses.

2019-15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially Observable Environ-

ments.

2019-16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral Constraint (OCBC) Models.

2019-17 Ali Hurriyetoglu (RUN), Extracting actionable information from microtexts.

2019-18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication.

2019-19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents.

2019-20 Chide Groenouwe (UU), Fostering technically augmented human collective intelligence.

2019-21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and Design Pattern Detection.

2019-22 Martin van den Berg (VU), Improving IT Decisions with Enterprise Architecture.

2019-23 Qin Lin (TUD), Intelligent Control Systems: Learning, Interpreting, Verification.

2019-24 Anca Dumitrache (VU), Truth in Disagreement- Crowdsourcing Labeled Data for Natural Language Pro-

cessing.

2019-25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image description.

2019-26 Prince Singh (UT), An Integration Platform for Synchromodal Transport.

2019-27 Alessandra Antonaci (OUN), The Gamification Design Process applied to (Massive) Open Online Courses.

2019-28 Esther Kuindersma (UL), Cleared for take-off:Game-based learning to prepare airline pilots for critical sit-

uations.

2019-29 Daniel Formolo (VU), Using virtual agents for simulation and training of social skills in safety-critical cir-

cumstances.

2019-30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems.

2019-31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics.

2019-32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in Games.

2019-33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial Neural Networks.

2019-34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Features for Classification of Epilepsy

and PNES.

2019-35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning programming.

2019-36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master Complex Skills.

2019-37 Jian Fang (TUD), Database Acceleration on FPGAs.

2019-38 Akos Kadar (OUN), Learning visually grounded and multilingual representations.

2020
2020-01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour.

2020-02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic Graphical Models.

2020-03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Understanding.

2020-04 Maarten van Gompel (RUN), Context as Linguistic Bridges.

2020-05 Yulong Pei (TUE), On local and global structure mining.

2020-06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements Elicitation - An Ap-

proach and Tool Support.

2020-07 Wim van der Vegt (OUN), Towards a software architecture for reusable game components.

2020-08 Ali Mirsoleimani (UL), Structured Parallel Programming for Monte Carlo Tree Search.

2020-09 Myriam Traub (UU), Measuring Tool Bias & Improving Data Quality for Digital Humanities Research.

2020-10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining.

2020-11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods for Long-Tail Entity

Recognition Models.

2020-12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring Applicability in Personalised De-

pression Treatment.

2020-13 Marco Virgolin (CWI/ TUD), Design and Application of Gene-pool Optimal Mixing Evolutionary Algorithms

for Genetic Programming.

2020-14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases.

2020-15 Georgiadis Konstantinos (OU), Smart CAT: Machine Learning for Configurable Assessments in Serious

Games.

2020-16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling.

2020-17 Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences.

2020-18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with Uncertainties: Electricity

Markets in Renewable Energy Systems.

2020-19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems.

2020-20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations.

2020-21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could be.

2020-22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation through a modeling ap-

proach: the case of e-government in Zanzibar.

2020-23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying writing processes using

keystroke logging.

2020-24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling, human? Towards emotionally supportive

chatbots.

2020-25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining.

2020-26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based mixed-Integer opTimiza-

tion.

2020-27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational context.

2020-28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex skills with augmented

reality.

2020-29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference.

2020-30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst.

2020-31 Gongjin Lan (VU), Learning Better: From Baby to Better.

2020-32 Jason Rhuggenaath (TUE), Revenue management in online markets: pricing and online advertising.

2020-33 Rick Gilsing (TUE), Supporting service-dominant business model evaluation in the context of business model

innovation.

2020-34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information and Communication Technologies

for Development.

2020-35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production.

2021

2021-01 Francisco Xavier Dos Santos Fonseca (TUD), Location-based Games for Social Interaction in Public Space.

2021-02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social Practice Theory in Agent-Based Mod-

els.

2021-03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart Devices.

2021-04 Ioana Jivet (OU)), The Dashboard That Loved Me: Designing adaptive learning analytics for self-regulated

learning.

2021-05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems.

2021-06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with a social robot.

2021-07 Armel Lefebvre (UU), Research data management for open science.

2021-08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on Computational Thinking.

2021-09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and Non-Verbal Robots to Promote

Children’s Collaboration Through Play.

2021-10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning.

2021-11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision.

2021-12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs.

2021-13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and Facilitating Predictability for

Engagement in Learning.

2021-14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support.

2021-15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource Re-Configurations through the

Business Services Paradigm.

2021-16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues.

2021-17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues using deep neural net-

works.

2021-18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools and Formal Systems - Facilitat-

ing the Construction of Bayesian Networks and Argumentation Frameworks.

2021-19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification and Management.

2021-20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure Bias in Recommender Sys-

tems.

2021-21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes.

2021-22 Sihang Qiu (TUD), Conversational Crowdsourcing.

2021-23 Hugo Manuel Proença (LIACS), Robust rules for prediction and description.

2021-24 Kaijie Zhu (TUE), On Efficient Temporal Subgraph Query Processing.

2021-25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and Self-Adaptation to Create

Adaptive E-Health Mobile Applications.

2021-26 Benno Kruit (CWI & VU), Reading the Grid: Extending Knowledge Bases from Human-readable Tables.

2021-27 Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing Agents Who Want to

Connect With You.

2021-28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate Entrepreneurship Programs.

2022
2022-01 Judith van Stegeren (UT), Flavor text generation for role-playing video games.

2022-02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A Deep Learning Journey.

2022-03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement Learning For Personalized

Healthcare.

2022-04 Ünal Aksu (UU), A Cross-Organizational Process Mining Framework.

2022-05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-Parameterization.

2022-06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time Bidding.

2022-07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-located Collaboration Ana-

lytics.

2022-08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design.

2022-09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-Machine Approach.

2022-10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative Search Engines.

2022-11 Mirjam de Haas (TiU), Staying engaged in child-robot interaction, a quantitative approach to studying

preschoolers’ engagement with robots and tasks during second-language tutoring.

2022-12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases.

2022-13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge Graphs: Opportunities, Challenges,

and Methods for Learning on Real-World Heterogeneous and Spatially-Oriented Knowledge.

2022-14 Michiel Overeem (UU), Evolution of Low-Code Platforms.

2022-15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process Mining.

2022-16 Pieter Gijsbers (TU/e), Systems for AutoML Research.

2022-17 Laura van der Lubbe (VUA), Empowering vulnerable people with serious games and gamification.

2022-18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game Personalisation.

2022-19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation.

2022-20 Fakhra Jabeen (VUA), Dark Side of the Digital World - Computational Analysis of Negative Human Behav-

iors on Social Media.

2022-21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive Assessments.

2022-22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to foster Empathy, Immersion,

and Collaboration Skills in Video Games and Virtual Reality Simulations.

2022-23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents.

2022-24 Samaneh Heidari (UU), Agents with Social Norms and Values - A framework for agent based social simu-

lations with social norms and personal values.

2022-25 Anna L.D. Latour (LU), Optimal decision-making under constraints and uncertainty.

2022-26 Anne Dirkson (LU), Knowledge Discovery from Patient Forums: Gaining novel medical insights from patient

experiences.

2022-27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in video sequences.

2022-28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems.

2022-29 Jan Kolkmeier (UT-EEMCS), From Head Transform to Mind Transplant: Social Interactions in Mixed Real-

ity.

2022-30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays.

2022-31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing with Advanced Manufactur-

ing Process Management.

2022-32 Cezara Pastrav (UU), Social simulation for socio-ecological systems.

2022-33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion Management.

2022-34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion & Desire Regulation for

Behaviour Change.

2023
2023-01 Alfredo Bolt Iriondo (TUE), Comparative Process Mining: Analyzing Variability in Process Data.

	Abstract
	List of Figures
	List of Tables
	I Opening
	1 Introduction
	1.1 Process Mining
	1.2 Dealing with Variability in Processes
	1.3 Opportunities for Tool Support in Process Mining
	1.4 Contributions in this Thesis
	1.5 Thesis Structure

	2 Preliminaries
	2.1 Basic Notations
	2.2 Events as Observed Executions of a Process
	2.3 Process Modeling Notations
	2.3.1 Petri Nets
	2.3.2 Process Trees
	2.3.3 BPMN
	2.3.4 Transition Systems

	2.4 Running Example: Road Fines

	II Foundations
	3 Process Cubes
	3.1 Related Work
	3.2 Process Cubes
	3.2.1 Process Cube Structure
	3.2.2 Event Base as a Data Source for the Cube
	3.2.3 Materializing a Process Cube View
	3.2.4 Process Cube Operations

	3.3 Implementation
	3.4 Applications
	3.4.1 Creating a Process Cube
	3.4.2 Using a Process Cube
	3.4.3 Interaction with other Process Mining Techniques

	3.5 Conclusions

	4 Process Mining Workflows
	4.1 Related Work
	4.2 Process Mining Workflows
	4.2.1 Event Data Extraction
	4.2.2 Event Data Transformation
	4.2.3 Process Model Extraction
	4.2.4 Process Model and Event Analysis
	4.2.5 Process Model Transformations
	4.2.6 Process Model Enhancement

	4.3 Implementation
	4.4 Applications
	4.4.1 Result (Sub-)Optimality
	4.4.2 Parameter Sensitivity
	4.4.3 Large-Scale Experiments
	4.4.4 Repeating Questions
	4.4.5 Interaction with Process Cubes

	4.5 Conclusions

	5 Process Variant Comparison
	5.1 Related Work
	5.1.1 Model-based Behavior Comparison
	5.1.2 Log-based Behavior Comparison
	5.1.3 Business Rules Comparison

	5.2 Process Variant Comparison
	5.2.1 Comparing Behavior
	5.2.2 Comparing Business Rules

	5.3 Implementation
	5.4 Applications
	5.4.1 Using Synthetic Data
	5.4.2 Using Real Data

	5.5 Conclusions

	6 Process Variant Detection
	6.1 Related Work
	6.2 Process Variant Detection
	6.2.1 Defining Points of Interest in a Transition System
	6.2.2 Finding Variants in a Point of Interest

	6.3 Implementation
	6.4 Applications
	6.4.1 Connection to Process Cubes and Comparison to Arbitrary Splitting of Data

	6.5 Conclusions

	III Large-Scale Experimentation
	7 A Framework for Benchmarking Process Discovery Techniques
	7.1 Related work
	7.2 Discovery Evaluation Framework
	7.2.1 The Design and Use of the Evaluation Framework
	7.2.2 The Building Blocks of the Framework
	7.2.3 Extensibility of the Framework

	7.3 Experiments
	7.3.1 First Experiment
	7.3.2 Second (Extended) Experiment

	7.4 Conclusions

	8 A Framework for Benchmarking Concept Drift Detection Techniques
	8.1 Related Work
	8.2 Concept Drift Evaluation Framework
	8.2.1 The Design of the Framework
	8.2.2 Building Blocks

	8.3 Experiments
	8.3.1 The Effect of Concept Drift Detection Technique
	8.3.2 The Effect of Parallelism
	8.3.3 The Effect of Type of Drift
	8.3.4 The Effect of Type of Change
	8.3.5 The Effect of Time Between Cases
	8.3.6 The Effect of the Duration and Transition Functions of Gradual Drifts

	8.4 Conclusions

	IV Case Studies
	9 SLA Compliance Analysis in a Claim Management Process
	9.1 Context
	9.1.1 Process Description
	9.1.2 Event Data
	9.1.3 SLAs
	9.1.4 Analysis Purpose

	9.2 Experiments
	9.2.1 Data Preparation
	9.2.2 Overall SLA Compliance Diagnostic
	9.2.3 Correlating Claims to SLA Compliance
	9.2.4 Comparing SLA-Compliant and SLA-Non-Compliant Claims

	9.3 Discussion: The Delayed State
	9.4 Conclusion

	10 Business Process Reporting in Education
	10.1 Context
	10.1.1 Process Description
	10.1.2 Event Data
	10.1.3 Analysis Purpose
	10.1.4 Related Work

	10.2 Experiments
	10.2.1 Initial Report
	10.2.2 Final Report

	10.3 Conclusion

	11 Comparative Analysis of Business Process Outsourcing Services
	11.1 Context
	11.1.1 Process Description
	11.1.2 Event Data
	11.1.3 Analysis Purpose

	11.2 Experiments
	11.2.1 Data Preparation and Scoping
	11.2.2 Identification of Interesting Batch Comparisons
	11.2.3 In-Depth Batch Comparison

	11.3 Discussion
	11.4 Conclusion

	V Closure
	12 Conclusions
	12.1 Contributions Review
	12.2 Limitations
	12.3 Future Work

	Bibliography
	Summary
	Acknowledgments
	Curriculum Vitae
	SIKS dissertations

