10 research outputs found

    Stratification and domination in graphs.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.In a recent manuscript (Stratification and domination in graphs. Discrete Math. 272 (2003), 171-185) a new mathematical framework for studying domination is presented. It is shown that the domination number and many domination related parameters can be interpreted as restricted 2-stratifications or 2-colorings. This framework places the domination number in a new perspective and suggests many other parameters of a graph which are related in some way to the domination number. In this thesis, we continue this study of domination and stratification in graphs. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F (not necessarily induced in G) rooted at v. The F-domination number yF(GQ of G is the minimum number of red vertices of G in an F-coloring of G. Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we investigate the X-domination number of prisms when X is a 2-stratified 4-cycle rooted at a blue vertex where a prism is the cartesian product Cn x K2, n > 3, of a cycle Cn and a K2. In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 and is adjacent to a blue vertex and with the remaining vertex colored red. In particular, we show that for a tree of diameter at least three this parameter is at most two-thirds its order and we characterize the trees attaining this bound. (ii) We also investigate the F-domination number when F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex. We show that if G is a connected graph of order n in which every edge is in a triangle, then for n sufficiently large this parameter is at most (n — /n)/2 and this bound is sharp. In Chapter 4, we further investigate the F-domination number when F is a 2- stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. We show that for a connected graph of order n with minimum degree at least two this parameter is bounded above by (n —1)/2 with the exception of five graphs (one each of orders four, five and six and two of order eight). For n > 9, we characterize those graphs that achieve the upper bound of (n — l)/2. In Chapter 5, we define an f-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The f-domination number yz{G) of a graph G is the minimum number of red vertices of G in an f-coloring of G. Let G be a connected graph of order n > 4 with minimum degree at least 2. We prove that (i) if G has maximum degree A where A 4 with maximum degree A where A 5 with maximum degree A where

    Domination and F-Domination

    Get PDF
    This project is for MTH 466, Graph Theory and Combinatorics. A graph is a mathematical object that consists of two sets, a set of vertices and a set of edges in which an edge between two vertices denotes a relationship between those vertices. A dominating set of a graph G is a set of vertices S such that every vertex of G is a neighbor of some vertex in S. The domination number is the minimum number of vertices in a dominating set S. Let F be a graph whose vertex set is partitioned into two sets: blue vertices and red vertices. Let v be a designated blue vertex of F. An F-coloring of a graph G is a red-blue coloring of the vertices of G in which every blue vertex u belongs to a copy of F rooted at v. The F-domination number is the minimum number of red vertices in an F-coloring of G. We will compare the properties of the domination number and the F-domination number.https://ecommons.udayton.edu/stander_posters/3211/thumbnail.jp

    Restrained and Other Domination Parameters in Complementary Prisms.

    Get PDF
    In this thesis, we will study several domination parameters of a family of graphs known as complementary prisms. We will first present the basic terminology and definitions necessary to understand the topic. Then, we will examine the known results addressing the domination number and the total domination number of complementary prisms. After this, we will present our main results, namely, results on the restrained domination number of complementary prisms. Subsequently results on the distance - k domination number, 2-step domination number and stratification of complementary prisms will be presented. Then, we will characterize when a complementary prism is Eulerian or bipartite, and we will obtain bounds on the chromatic number of a complementary prism. We will finish the thesis with a section on possible future problems

    The diameter of the acyclic Birkhoff polytope

    Get PDF
    In this work we give an interpretation of vertices and edges of the acyclic Birkhoff polytope, , where T is a tree with n vertices, in terms of graph theory. We generalize a recent result relatively to the diameter of the graph .http://www.sciencedirect.com/science/article/B6V0R-4R70RHM-1/1/4f38cb080e47b5fa8e0d6c36588d41a

    Towards a new framework for domination

    Get PDF
    Dominating concepts constitute a cornerstone in Graph Theory. Part of the efforts in the field have been focused in finding different mathematical frameworks where domination notions naturally arise, providing new points of view about the matter. In this paper, we introduce one of these frameworks based in convexity. The main idea consists of defining a convexity in a graph, already used in image processing, for which the usual parameters of convexity are closely related to domination parameters. Moreover, the Helly number of this convexity may be viewed as a new domination parameter whose study would be of interest

    Characterizations in Domination Theory

    Get PDF
    Let G = (V,E) be a graph. A set R is a restrained dominating set (total restrained dominating set, resp.) if every vertex in V − R (V) is adjacent to a vertex in R and (every vertex in V −R) to a vertex in V −R. The restrained domination number of G (total restrained domination number of G), denoted by gamma_r(G) (gamma_tr(G)), is the smallest cardinality of a restrained dominating set (total restrained dominating set) of G. If T is a tree of order n, then gamma_r(T) is greater than or equal to (n+2)/3. We show that gamma_tr(T) is greater than or equal to (n+2)/2. Moreover, we show that if n is congruent to 0 mod 4, then gamma_tr(T) is greater than or equal to (n+2)/2 + 1. We then constructively characterize the extremal trees achieving these lower bounds. Finally, if G is a graph of order n greater than or equal to 2, such that both G and G\u27 are not isomorphic to P_3, then gamma_r(G) + gamma_r(G\u27) is greater than or equal to 4 and less than or equal to n +2. We provide a similar result for total restrained domination and characterize the extremal graphs G of order n achieving these bounds

    Department of Applied Mathematics Academic Program Review, Self Study / June 2010

    Get PDF
    The Department of Applied Mathematics has a multi-faceted mission to provide an exceptional mathematical education focused on the unique needs of NPS students, to conduct relevant research, and to provide service to the broader community. A strong and vibrant Department of Applied Mathematics is essential to the university's goal of becoming a premiere research university. Because research in mathematics often impacts science and engineering in surprising ways, the department encourages mathematical explorations in a broad range of areas in applied mathematics with specific thrust areas that support the mission of the school

    On stratification and domination in graphs

    No full text
    A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class), where the vertices in one class are colored red and those in the other class are colored blue. Let F be a 2-stratified graph rooted at some blue vertex v. An F-coloring of a graph is a red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of F rooted at v. The F-domination number γF(G)γ_F(G) is the minimum number of red vertices in an F-coloring of G. In this paper, we study F-domination, where F is a 2-stratified red-blue-blue path of order 3 rooted at a blue end-vertex. We present characterizations of connected graphs of order n with F-domination number n or 1 and establish several realization results on F-domination number and other domination parameters

    Simultaneous stratification and domination in graphs with minimum degree two

    No full text
    In this paper we continue the study of stratification and domination in graphs explored by Chartrand et al. in [4]. We define an F-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The F-domination number &#947F(G) of a graph G is the minimum number of red vertices of G in an F-coloring of G. Let G be a connected graph of order n &#8805 4 with minimum degree at least 2. We prove that (i) if G has maximum degree &#916 where &#916 &#8804 n − 2, then &#947F(G) &#8804 n − &#916 + 1, and (ii) if G &#8800= C7, then &#947F(G) &#8804 2n/3. Keywords: 2-stratified graphs, domination, restrained domination, total dominationQuaestiones Mathematicae 29(2006), 313–32
    corecore