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CHARACTERIZATIONS IN DOMINATION THEORY

by

ANDREW ROBERT PLUMMER

Under the Direction of Johannes H. Hattingh

ABSTRACT

Let G = (V, E) be a graph. A set R ⊆ V is a restrained dominating set (total re-

strained dominating set, resp.) if every vertex in V −R (V) is adjacent to a vertex in R

and (every vertex in V −R) to a vertex in V −R. The restrained domination number of

G (total restrained domination number of G), denoted by γr(G) (γtr(G)), is the smallest

cardinality of a restrained dominating set (total restrained dominating set) of G. If T

is a tree of order n, then γr(T ) ≥ dn+2
3
e. We show that γtr(T ) ≥ dn+2

2
e. Moreover, we

show that if n ≡ 0 mod 4, then γtr(T ) ≥ dn+2
2
e+ 1. We then constructively characterize

the extremal trees achieving these lower bounds. Finally, if G is a graph of order n ≥ 2

such that both G and G are not isomorphic to P3, then 4 ≤ γr(G) + γr(G) ≤ n + 2.

We provide a similar result for total restrained domination and characterize the extremal

graphs G of order n achieving these bounds.

INDEX WORDS: Domination, Restrained Domination, Total Restrained Domination,

Nordhaus-Gaddum, Dominating Set
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Chapter 1

Proem

In the first section of this chapter we present the notation and basic definitions that will be

used throughout this thesis. In Section 1.2, we précis the provenance and development of

the concept of domination, and of the variants restrained domination and total restrained

domination. We then give formal definitions of these concepts and state several results

previously established in this field of research. Finally, in Section 1.3, we delineate the

scope of the remainder of this thesis.

1.1 Definitions

A graph G consists of a finite nonempty set of vertices (singular vertex) and a (possibly

empty) set of unordered pairs of distinct vertices of G called edges. The vertex set of G is

denoted by V (G) (or simply V if the context is clear), while the edge set of G is denoted

by E(G) (or simply E). The number of vertices in V (G) is denoted by n(G) which is

also known as the order of the graph G. A graph G is trivial if n(G) = 1 and non-trivial

if n(G) ≥ 2. Unless otherwise specified, the symbol n(G) (or simply n) will be reserved
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exclusively for the order of a graph G. We write G = (V, E) to mean that the graph G

has vertex set V and edge set E.

The edge e = uv is said to join the vertices u and v. If e = uv is an edge of G, then

u and v are adjacent vertices, while u and e are incident, as are v and e. A graph G is

called complete if every two vertices of G are adjacent. We denote a complete graph of

order n by Kn. The degree of a vertex v in G is the number of edges incident with v

and is denoted degG(v) (or simply deg(v) if the context is clear). The minimum degree

(respectively, maximum degree) among the vertices of G is denoted by δ(G) (respectively,

∆(G)). If there is a vertex v ∈ V (G) such that deg(v) = 0, then v is called an isolated

vertex, if deg(v) = 1, then v is called an endvertex.

A path of G is a finite, alternating sequence v0, e1, v1, e2, . . . , vn−1, en, vn of vertices

and edges, beginning with vertex v0 and ending with vertex vn, such that ei = vi−1vi

and vi 6= vj for i, j = 1, 2, . . . , n and i 6= j. The number n (the number of occurrences

of edges) is called the length of the path. For convenience, we omit the edge and comma

syntax and instead write v0v1v2 . . . vn to indicate a path, unless otherwise specified. A

graph of order n that is a path is denoted by Pn. Therefore, Pn = v1v2 . . . vn indicates a

path of order n on the vertices v1, v2, . . . , vn. A cycle of G is a path v1v2 . . . vn (n ≥ 3)

with the additional edge vnv1. A graph of order n that is a cycle is denoted by Cn.

Therefore, Cn = v1v2 . . . vnv1 indicates a cycle of order n on the vertices v1, v2, . . . , vn.

Let u and v be distinct vertices of G. The distance between vertices u and v, denoted

by dG(u, v) (or simply d(u, v) if the context is clear) is the length of a shortest path

u . . . v, if such a path exist in G. We call a path of maximum length in G a diametrical

path in G. If there exists a path u . . . v in G we say that u is connected to v. The graph

G is itself connected if u is connected to v for every pair u, v of vertices of G. A graph

that is not connected is called disconnected. The trivial graph, then, is connected. A
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subgraph H of a graph G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph

H of G is a component of G if H is a maximal connected subgraph of G.

For a graph G = (V, E), let v ∈ V and let S ⊆ V . The open neighborhood of v

is NG(v) = {u ∈ V | uv ∈ E} (or simply N(v)) and the closed neighborhood of v is

NG[v] = {v} ∪ NG(v) (or simply N [v]). A vertex u ∈ N(V ) is called a neighbor of v.

The open neighborhood of S is defined by NG(S) = ∪v∈SNG(v) (or simply N(S)), and

the closed neighborhood of S by NG[S] = NG(S) ∪ S (or simply N [S]). For a vertex v

(respectively, an edge e) of G we denote by G−v (respectively, G−e) the graph obtained

from G by deleting the vertex v (respectively, the edge e).

A tree is a connected graph which has no cycles. We refer to a vertex of degree 1 in a

tree T as a leaf of T . A vertex adjacent to a leaf we call a remote vertex of T . A star is a

tree of order n comprising exactly n− 1 leaves. The trivial graph, then, is a star, and is

also called the trivial star. A star of order n ≥ 2 is called a non-trivial star. The vertex

of a non-trivial star which is not a leaf is called the center of the star. For consistency,

we consider P2 a star on two vertices with the center chosen arbitrarily. A galaxy is a

graph whose components are stars. A double star is a tree of order n comprising exactly

n− 2 leaves.

For a vertex v of a tree T , we shall use the expression, attach a Pm at v, to refer to

the operation of taking the union of T and a path Pm and joining one of the ends of this

path to v with an edge. For v ∈ V (T ) and a leaf ` of T , the path vx1 . . . xk` is called a

v−L endpath if deg xi = 2 for each i. If the vertex v need not be specified, a v−L path

is also called an endpath.
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1.2 Perlustration

The concept of domination is quite natural and appears in many situations in which

one desires an optimal covering of some sort. Lore has it that domination in graphs

derives from strategies in the game of chess, where one desires to cover (or dominate) the

squares of a chessboard using certain chess pieces. In 1862 de Jaenisch [6] considered the

problem of determining the minimum number of queens (with standard movement rules)

that can be placed on a chessboard such that each square is either occupied by a queen

or is occupiable by a queen in a single move.

The parallel between de Jaenisch’s chessboard problem and domination in graphs is

patent. Consider a standard chessboard and let the 64 squares comprise the vertex set

of a graph G. Let two vertices (squares) be adjacent in G if each square is occupiable in

a single move by a queen stationed on the other square. The graph G defined as such

is called the queen’s graph. Choosing a set of vertices that dominates G is tantamount

to positioning queens on the chessboard as to either occupy or potentially occupy (in

one move) each square. The domination number of G is the minimum number of queens

required to achieve the desired covering (see Figure 1.1).

Figure 1.1 The minimum number of queens that dominate the squares of a standard
chessboard.
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Domination in graphs was formalized by Berge (see [1], p. 40) in 1958, and Ore [17]

in 1962. We now provide the elements of the theory. A vertex v in a graph G dominates

itself and each of its neighbors. Hence, v dominates the vertices in N [v]. A set S ⊆ V is

a dominating set if every vertex not in S is adjacent to a vertex in S. The domination

number of G, denoted by γ(G), is the minimum cardinality of a dominating set. A

dominating set of cardinality γ(G) will be called a γ(G)-set. A minimal dominating set

is a dominating set that contains no dominating set as a proper subset. The concept of

domination in graphs, with its many variations, is now well studied in graph theory. The

recent book of Chartrand and Lesniak [3] includes a chapter on domination. A thorough

study of domination appears in [10, 11]. In demonstrating the development of the theory,

we give several known results.

Theorem 1.1 (Ore [17]) Let D be a dominating set of a graph G. Then D is a minimal

dominating set of G if and only if each v ∈ D has at least one of the following two

properties.

P1: There exists a vertex w ∈ V (G)−D such that N(w) ∩D = {v};

P2: The vertex v is adjacent to no other vertex of D.

Theorem 1.2 (Bollobás and Cockayne [2]) If G is a graph with no isolated vertex,

then there exists a minimum dominating set D of vertices of G in which every vertex has

property P1.

Theorem 1.3 (Ore [17]) If G is a graph with no isolated vertex and D is a minimal

dominating set of G, then V (G)−D is a dominating set of G.

Corollary 1.4 (Ore [17]) If G is a graph of order n with no isolated vertex, then

γ(G) ≤ n
2
.

Theorem 1.5 (Payan [18]) Let G be a graph of order n with minimum degree δ ≥ 2.

Then γ(G) ≤ n(1+ln(δ+1))
δ+1

.
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The most commonly addressed application of domination in graphs is that of net-

working. Consider a network of transceivers and let G be a graph with a vertex set

comprising the transceivers in the network. Two vertices (transceivers) are adjacent in

G if each transceiver is capable of receiving transmissions broadcasted by the other (e.g.

Figure 1.2).

Figure 1.2 A network N of transceivers and its corresponding graph G.

Choosing a set of vertices that dominates G is tantamount to selecting transceivers in the

network such that every transceiver is either broadcasting a signal or receiving a signal

broadcast (see Figure 1.3). The domination number of G is the minimum number of

transceivers required to achieve the desired covering.

Figure 1.3 The darkened transceivers cover N with a signal broadcast, as the darkened
vertices dominate G.

Now, suppose the network contains transceivers that broadcast and receive both a

primary signal and an auxiliary signal. Moreover, no transceiver broadcasts both signals

simultaneously, and a transceiver not broadcasting the primary signal must broadcast the

auxiliary signal. Again, let G be a graph with a vertex set comprising the transceivers in
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the network with two vertices (transceivers) adjacent in G if each transceiver is capable of

receiving transmissions broadcasted by the other. Choosing a set of vertices that domi-

nates G is tantamount to selecting transceivers in the network such that every transceiver

is either broadcasting the primary signal or receiving a primary signal broadcast. The

domination number of G is the minimum number of transceivers required to achieve the

desired covering.

Consider the transceivers not broadcasting the primary signal. We now require that

these transceivers also receive the auxiliary signal. This is the concept of restrained

domination. Choosing a set of vertices that dominates G with restraint is tantamount to

selecting transceivers in the network such that every transceiver is either broadcasting the

primary signal or receiving a primary signal broadcast, and each transceiver not broad-

casting the primary signal also receives an auxiliary signal broadcast (e.g. Figure 1.4).

The restrained domination number of G is the minimum number of transceivers required

to achieve the desired covering.

Figure 1.4 The darkened transceivers cover N with a primary signal broadcast while
the remaining transceivers receive the auxiliary signal. The darkened vertices constitute
a restrained dominating set of G.

Notice that a transceiver that receives transmissions from at most one other transceiver

cannot receive both the primary signal and the auxiliary signal. Hence, each transceiver

receiving transmissions from at most one other transceiver must broadcast the primary

signal. That is, each vertex with degree less than or equal to one must be included in

every restrained dominating set.
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The concept of restrained domination was introduced by Telle and Proskurowski [19],

albeit indirectly, as a vertex partitioning problem. Here conditions are imposed on a set

S, the complementary set V −S and on edges between the sets S and V −S. For example,

if we require that every vertex in V −S should be adjacent to some other vertex of V −S

(the condition on the set V −S) and to some vertex in S (the condition on edges between

the sets S and V − S), then S is a restrained dominating set.

Restrained domination in graphs was formalized by Domke et al. [8] in 1999. We

now provide the elements of the theory. Let G = (V, E) be a graph. A set S ⊆ V is a

restrained dominating set (abbreviated RDS) if every vertex not in S is adjacent to a

vertex in S and to a vertex in V −S. Every graph has a RDS, since S = V is such a set.

The restrained domination number of G, denoted by γr(G), is the minimum cardinality

of a RDS of G. A RDS of cardinality γr(G) will be called a γr(G)-set. In demonstrating

the development of the theory, we give several known results.

Theorem 1.6 (Domke et al. [8]) Let G be a graph of order n. Then γr(G) = n if and

only if G is a disjoint union of stars.

Let Tγr = {T | T is obtained from P4, P5 or P6 by attaching P1 at v, where v is an

remote vertex of the path}. Let Cγr = {C | C is C4 or C5 or C can be obtained from C3

by attaching P1 at no more than two of the vertices of the cycle}. Finally, let F = {F | F

is one of the bad graphs described in [7], p.240}.

Theorem 1.7 (Domke et al. [8]) Let G be a graph of order n. Then γr(G) = n− 2 if

and only if exactly one of the components of G is isomorphic to a graph G′ ∈ Tγr ∪ Cγr .

Theorem 1.8 (Domke et al. [7]) Let G be a connected graph of order n ≥ 3 with

δ(G) ≥ 2. If G /∈ F , then γr(G) ≤ n−1
2

.
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Theorem 1.9 (Domke et al. [7]) Let G be a graph of order n with minimum degree

δ ≥ 2. Then γr(G) ≤ n(1 + (1
δ
)

δ
δ−1 − (1

δ
)

1
δ−1 ).

Now, consider once again the network containing transceivers that broadcast and re-

ceive both a primary signal and an auxiliary signal. Recall that no transceiver broadcasts

both signals simultaneously, and a transceiver not broadcasting the primary signal must

broadcast the auxiliary signal. And again, let G be a graph with a vertex set comprising

the transceivers in the network with two vertices (transceivers) adjacent in G if each

transceiver is capable of receiving transmissions broadcasted by the other.

Suppose we desire to build redundancy into the network by requiring that all transcei-

vers in the network receive the primary signal, that is, reception of the primary signal is

total among the network of transceivers. Choosing a set of vertices that totally dominates

G with restraint is tantamount to selecting transceivers in the network such that every

transceiver is receiving a primary signal broadcast, and each transceiver not broadcasting

the primary signal also receives an auxiliary signal broadcast (e.g. Figure 1.5). The total

restrained domination number of G is the minimum number of transceivers required to

achieve the desired covering.

Figure 1.5 The darkened transceivers totally cover N with a primary signal broadcast
while the remaining transceivers receive the auxiliary signal. The darkened vertices
constitute a total restrained dominating set of G.

Notice that a transceiver that receives transmissions from no other transceiver re-

ceives neither the primary signal nor the auxiliary signal. Thus, we require that each

transceiver receives transmissions from at least one other transceiver. That is, total re-

strained domination is well-defined only on graphs with minimum degree at least one.
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Moreover, a transceiver that receives transmissions from exactly one other transceiver

cannot receive both the primary signal and the auxiliary signal. Hence, each transceiver

receiving transmissions from exactly one other transceiver must broadcast the primary

signal, and receive the primary signal from the one other transceiver. That is, each vertex

with degree equal to one, and its neighbor, must be included in every total restrained

dominating set.

We note that the concept of total restrained domination was introduced by Telle and

Proskurowski [19], albeit indirectly, as a vertex partitioning problem. Here conditions

are imposed on a set S, the complementary set V − S and on edges between the sets S

and V − S. For example, if we require that every vertex in V − S should be adjacent

to some other vertex of V − S (the condition on the set V − S) and to some vertex in

S (the condition on edges between the sets S and V − S), and every vertex in S is also

adjacent to some vertex in S (the condition on edges among vertices of S), then S is a

total restrained dominating set.

Total restrained domination in graphs was formalized by Chen, Ma and Sun [4] in

2005, and further studied by Zelinka [20] and Maritz [13]. We now provide the elements

of the theory. Let G = (V, E) be a graph. A set S ⊆ V is a total restrained dominating

set (abbreviated TRDS) if every vertex is adjacent to a vertex in S and every vertex

in V − S is also adjacent to a vertex in V − S. Every graph without isolated vertices

has a total restrained dominating set, since S = V is such a set. The total restrained

domination number of G, denoted by γtr(G), is the minimum cardinality of a TRDS

of G. A TRDS of cardinality γtr(G) will be called a γtr(G)-set. In demonstrating the

development of the theory, we give several known results.

Theorem 1.10 (Chen et al. [4]) Let T be a tree of order n ≥ 2. Then γtr(T ) ≥

∆(T ) + 1. Furthermore, γtr(T ) = ∆(T ) + 1 if and only if T is a star.



11

Theorem 1.11 (Maritz [13]) If G is a connected graph of order n ≥ 4, maximum

degree ∆ where ∆ ≤ n− 2, and minimum degree at least 2, then γtr(G) ≤ n− ∆
2
− 1; and

this bound is sharp.

Theorem 1.12 (Maritz [13]) If G is a connected bipartite graph of order n ≥ 5,

maximum degree ∆ where 3 ≤ ∆ ≤ n − 2, and minimum degree at least 2, then

γtr(G) ≤ n− 2
3
∆− 2

9

√
3∆− 8− 7

9
; and this bound is sharp.

1.3 Purview

The unifying theme of this thesis is the characterization of extremal graphs corresponding

to bounds on the graphical parameters restrained domination and total restrained dom-

ination. The characterizations are novel and simple, and the proof techniques employed

remain viable in other areas of domination theory. Thus, the purpose of this thesis is to

further the study of restrained domination and total restrained domination in graphs by

presenting original results in these fields, and by so doing, circulate the proof techniques

utilized herein.

In Chapter 2, we discuss restrained domination in trees. It is established in [9] that

if T is a tree of order n, then γr(T ) ≥ dn+2
3
e, and a characterization of trees achieving

this bound is given. We recount the characterization given in [9] and conclude by giving

a simpler, constructive characterization of the extremal trees T of order n achieving this

lower bound.

In Chapter 3, we discuss total restrained domination in trees. We prove that if T is

a tree of order n, then γtr(T ) ≥ dn+2
2
e. We then give a constructive characterization of

the extremal trees T of order n achieving this lower bound. Next, we show that if T is a

tree of order n ≡ 0 mod 4, then γtr(T ) ≥ dn+2
2
e+1. We again constructively characterize

the extremal trees T of order n achieving this lower bound.
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Finally, in Chapter 4, we discuss Nordhaus-Gaddum results for restrained domination

and total restrained domination in graphs. We bound the sum of the total restrained

domination numbers of a graph and its complement, and provide characterizations of the

extremal graphs achieving these bounds. It is known (see [8]) that if G is a graph of order

n ≥ 2 such that both G and G are not isomorphic to P3, then 4 ≤ γr(G)+γr(G) ≤ n+2.

We also provide characterizations of the extremal graphs G of order n achieving these

bounds.



Chapter 2

Restrained Domination in Trees

2.1 Introduction

In this chapter, we continue the study of a variation of the domination theme, namely

that of restrained domination [7, 8, 9, 12, 19]. Recall that a set S ⊆ V is a restrained

dominating set (abbreviated RDS) if every vertex not in S is adjacent to a vertex in S

and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is

the minimum cardinality of a RDS of G. A RDS of cardinality γr(G) will be called a

γr(G)-set.

It is known [9] that if T is a tree of order n, then γr(T ) ≥ dn+2
3
e. For n ≥ 1, let T n =

{T | T is a tree of order n such that γr(T ) = dn+2
3
e }. A constructive characterization of

the extremal trees T of order n achieving this lower bound was obtained in [9]. For the

purpose of stating this characterization, we define a type (1) operation on a tree T as

attaching a P2 at v where v is a vertex of T not belonging to some minimum RDS of

T , and a type (2) operation as attaching a P3 at v where v belongs to some minimum

RDS of T . For i = 1, 2, let Ti be the tree obtained from K(1, 3) by subdividing i edges

once.

13
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Let C3k = {T | T is a tree of order 3k which can be obtained from the tree T2 by a

finite sequence of operations of type (2)}. Let C3k+1 = {T | T is a tree of order 3k + 1

which can be obtained from P4 by a finite sequence of operations of type (2)}. Finally, let

C3k+2 = {T | T is a tree of order 3k+2 which can be obtained from P5 or from the tree T1

by a finite sequence of operations of type (2)}∪{T | T is a tree of order 3k+2 which can

be constructed from the tree T2 by a finite sequence of operations of type (2), followed

by one operation of type (1) and then by a finite sequence of operations of type (2)}. It

was established in [9] that

Theorem 2.1 For n ≥ 4, Tn = Cn.

The purpose of this chapter is to provide a simpler constructive characterization of

the extremal trees T of order n achieving this lower bound. The technique employed in

proving the characterization involves a diametrical argument that will be utilized again

in the next chapter.

2.2 Extremal trees T with γr(T ) = dn+2
3 e

Let T be the class of all trees T of order n such that γr(T ) = dn+2
3
e. We will constructively

characterize the trees in T . In order to state the characterization, we define three simple

operations on a tree T .

O1. Join a leaf or a remote vertex, or a vertex v or x of T on an endpath vxyz to a

vertex of K1, where n(T ) ≡ 1 mod 3.

O2. Join a remote vertex, or a vertex v of T which lies on an endpath vxz to a leaf of

P2, where n(T ) ≡ 0 mod 3 or n(T ) ≡ 1 mod 3.

O3. Join a leaf of T to ` disjoint copies of P3 for some ` ≥ 1.
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Let C be the class of all trees obtained from P2 or P4 by a finite sequence of Operations

O1– O3. We will show that T ∈ T if and only if T ∈ C. Let S be a γr(T
′)-set of T ′

throughout the proofs of the following lemmas.

Lemma 2.2 Let T ′ ∈ T be a tree of order n ≡ 1 mod 3. If T is obtained from T ′ by

Operation O1, then T ∈ T .

Proof. Let u be a leaf or a remote vertex, or a vertex w or x on an endpath wxyz of

T ′, and suppose T is formed by attaching the singleton v to u. Then S ∪ {v} is a RDS

of T , and so dn+3
3
e ≤ γr(T ) ≤ dn+2

3
e+ 1. Since n ≡ 1 mod 3, we have γr(T ) = dn(T )+2

3
e.

Thus, T ∈ T . 2

Lemma 2.3 Let T ′ ∈ T be a tree of order n ≡ 0 mod 3 or n ≡ 1 mod 3. If T is obtained

from T ′ by Operation O2, then T ∈ T .

Proof. Suppose v is a remote vertex or v lies on the endpath vxz and T is obtained

from T ′ by adding the path vyz′.

We show that v 6∈ S. First consider the case when v is a remote vertex adjacent

to a leaf z. Suppose v ∈ S. Then S ′ = S − {z} is a RDS of T ′′ = T ′ − z, and so

dn+1
3
e ≤ γr(T

′′) ≤ dn+2
3
e−1, which is a contradiction when n ≡ 0 mod 3 or n ≡ 1 mod 3.

Thus, v 6∈ S. In the case when v lies on the endpath vxz, one may show, as in the

previous paragraph, that x 6∈ S. But then v 6∈ S, as required.

In both cases, the set S ∪ {z′} is a RDS of T , and so dn+4
3
e ≤ γr(T ) ≤ dn+2

3
e + 1.

However, as n ≡ 0 mod 3 or n ≡ 1 mod 3, we have γr(T ) = dn+4
3
e = dn(T )+2

3
e. Thus,

T ∈ T . The proof is complete. 2

Lemma 2.4 Let T ′ ∈ T be a tree of order n. If T is obtained from T ′ by the Operation

O3, then T ∈ T .
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Proof. Let S be a γr(T
′)-set of T ′, and suppose v is a leaf of T ′. Then v ∈ S. Let

T be the tree which is obtained from T by adding the paths vxiyizi for i = 1, . . . , `.

Then S ∪`
i=1 {zi} is a RDS of T , and so dn+3`+2

3
e ≤ γr(T ) ≤ dn+2

3
e + `. Consequently,

γr(T ) = dn(T )+2
3

e, and so T ∈ T . 2

We are now in a position to prove the main result of this section.

Theorem 2.5 T ∈ C if and only if T ∈ T .

Proof. Suppose T ∈ C. We show that T ∈ T , by using induction on c(T ), the number

of operations required to construct the tree T . If c(T ) = 0, then T = P2 or T = P4,

both of which are in T . Assume, then, for all trees T ′ ∈ C with c(T ′) < k, where k ≥ 1

is an integer, that T ′ is in T . Let T ∈ C be a tree with c(T ) = k. Then T is obtained

from some tree T ′ by one of the Operations O1 – O3. But then T ′ ∈ C and c(T ′) < k.

Applying the inductive hypothesis to T ′, T ′ is in T . Hence, by Lemmas 2.2,2.3 or 2.4,

T ∈ T .

To show that T ∈ C for a nontrivial T ∈ T , we use induction on n, the order of the

tree T . If n = 2, then T = P2 ∈ C. If n = 3, then T /∈ T . If n = 4, then either T = P4

or T is a star. If T is a star then T /∈ T . If T = P4 then T ∈ C. Let T ∈ T be a tree

of order n ≥ 5, and assume for all trees T ′ ∈ T of order 4 ≤ n′ < n, that T ′ ∈ C. Since

n(T ) ≥ 5 and no stars are in T , diam(T ) ≥ 3.

If diam(T ) = 3, then T is a double star of order 5, has a remote vertex adjacent to

two leaves, and is therefore constructible from P4 by O1, whence T ∈ C. Thus, we may

assume diam(T ) ≥ 4. Throughout, S will be used to denote a γr(T )-set of T .

Claim 2.6 Suppose z is a leaf of T . If S−{z} is a RDS of T ′ = T − z, then n(T ′) ≡ 1

mod 3 and T ′ ∈ C.
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Proof. Suppose S − {z} is a RDS of T ′. Then dn−1+2
3

e ≤ γr(T
′) ≤ dn+2

3
e − 1. This

yields a contradiction when n ≡ 0 mod 3 or n ≡ 1 mod 3. Hence, n ≡ 2 mod 3, and

γr(T
′) = n+1

3
= dn(T ′)+2

3
e. Thus, T ′ ∈ T , with n(T ′) = n − 1 ≡ 1 mod 3. By the

induction assumption, T ′ ∈ C. �

Suppose vxz or vz is an endpath of T . If v, x ∈ S, then S − {z} is a RDS of

T ′ = T − z. By Claim 2.6, the tree T ′ = (T − z) ∈ C and T can be constructed from T ′

by Operation O1. Thus, if vxz or vz is an endpath of T , we may assume v, x 6∈ S.

Suppose v is a remote vertex adjacent to at least two leaves, and let z be a leaf

adjacent to v. Then S − {z} is a RDS of T ′ = T − z. By Claim 2.6, the tree T ′ =

(T − z) ∈ C and T can be constructed from T ′ by Operation O1. Thus, we may assume

that every remote vertex is adjacent to exactly one leaf.

Let T be rooted at a leaf r of a longest path. Let v be any vertex on a longest path

at distance diam(T )− 2 from r. Suppose v lies on the endpath vyz′. Then, by the above

remark, v, y 6∈ S.

Suppose deg(v) ≥ 3 and first assume v is a remote vertex adjacent to a leaf u. Since

diam(T) ≥ 4, v has a parent vertex v0. Suppose v0 ∈ S. Moreover, suppose deg(v) ≥ 4.

By Claim 2.6, v is adjacent to one leaf only, x is on an endpath vxz where x /∈ S. Since

v0 ∈ S, it follows that S ′ = S − {u, z} is a RDS for T ′ = T − u − x − z. Hence,

d (n−3)+2
3

e ≤ γr(T
′) ≤ dn+2

3
e − 2, which is a contradiction. Hence deg(v) = 3.

Consider T ′ = T − u. The vertex v in T ′ is on the endpath v0vyz′. Since v0 ∈ S, it

follows that S ′ = S − {u} is a RDS for T ′. Thus, by Claim 2.6, T ′ ∈ C and T can be

constructed from T ′ by Operation O1, whence T ∈ C. Therefore, we may suppose v0 /∈ S.

Then S ′ = S−{z′} is a RDS for T ′ = T −y−z′. Hence, d (n−2)+2
3

e ≤ γr(T
′) ≤ dn+2

3
e−1,

which is a contradiction when n ≡ 1 mod 3. Hence n ≡ 0 mod 3 or n ≡ 2 mod 3

and γr(T
′) = dn

3
e = dn(T ′)+2

3
e. Thus, T ′ ∈ T , with n(T ′) = n − 2 ≡ 0 mod 3 or
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n(T ′) = n− 2 ≡ 1 mod 3. By the induction assumption, T ′ ∈ C. The tree T can now be

constructed from T ′ by applying Operation O2, whence T ∈ C.

We now assume that v is not a remote vertex. Thus, v lies on the endpaths vxz and

vyz′. It follows that S ′ = S − {z′} is a RDS for T ′ = T − y − z′. Hence, by reasoning

similar to that in the previous paragraph, the tree T can be constructed from T ′ by

applying Operation O2, whence T ∈ C. Thus, we assume each vertex on a longest path

at distance diam(T )− 2 or diam(T )− 1 from r has degree two.

Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vx1y1z1

be an endpath of T . Then x1, y1 6∈ S, and so v ∈ S. Suppose deg(v) ≥ 3. If v is on

an endpath vxz, it follows that x, z ∈ S, and by the remark following Claim 2.6, T ∈ C.

Suppose v is a remote vertex adjacent to a leaf u. By Claim 2.6, u is the only leaf adjacent

to v. Moreover, S ′ = S − {u} is a RDS for T ′ = T − u. Thus, by Claim 2.6, T ′ ∈ C and

T can be constructed from T ′ by Operation O1, whence T ∈ C.

We may assume that v lies only on endpaths vxiyizi, for i = 1, . . . , `. Let e be the

edge that joins v with its parent, and let T (v) be the component of T − e that contains

v. Then T (v) consists of ` disjoint paths xiyizi (i = 1, . . . , `) with v joined to xi for

i = 1, . . . , `. Let i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we have xi 6∈ S,

yi 6∈ S and v ∈ S. Then S − ∪`
i=1{zi} is a RDS of T ′ = T − (T (v) − {v}), and so

dn−3`+2
3

e ≤ γr(T
′) ≤ dn+2

3
e − `, whence γr(T

′) = dn(T ′)+2
3

e. Thus, T ′ ∈ T , and by the

induction assumption, T ′ ∈ C. Note that v is a leaf of T ′. The tree T can now be

constructed from T ′ by applying Operation O3, whence T ∈ C. 2



Chapter 3

Total Restrained Domination in

Trees

3.1 Introduction

In this chapter, we continue the study of a variation of the domination theme, namely that

of total restrained domination [4, 13, 20]. Recall that a set S ⊆ V is a total restrained

dominating set (abbreviated TRDS) if every vertex is adjacent to a vertex in S and

every vertex of V − S is adjacent to a vertex in V − S. The total restrained domination

number of G, denoted by γtr(G), is the smallest cardinality of a TRDS of G. A TRDS

of cardinality γtr(G) will be called a γtr(G)-set.

We show that if T is a tree of order n, then γtr(T ) ≥ d(n + 2)/2e. Moreover, we

constructively characterize the extremal trees T of order n achieving this lower bound.

Lastly, we show that if T is a tree of order n ≡ 0 mod 4, then γtr(T ) ≥ dn+2
2
e+1, and also

constructively characterize the extremal trees T of order n achieving this lower bound.

19
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3.2 The Lower Bound

The following result was established in [4], using a more cumbersome proof. As we shall

see, this result will be useful in establishing a sharp lower bound on the total restrained

domination number of a tree.

Proposition 3.1 If n ≥ 2 is an integer, then γtr(Pn) = n− 2bn−2
4
c.

Proof. Suppose S is a TRDS of Pn, whose vertex set is V = {v1, . . . , vn}. Note that

v1, v2 ∈ S. Moreover, any component of V − S is of size exactly two. Each component

is adjacent to a vertex of S, which, in turn, is adjacent to another vertex of S. Suppose

there are m such components. Then 2m + 2m + 2 ≤ n and so m ≤ bn−2
4
c. Thus |S| =

n−2m ≥ n−2bn−2
4
c. On the other hand, V −{vi | i ∈ {3, 4, 7, 8, . . . , 4bn−2

4
c−1, 4bn−2

4
c}}

is a TRDS of Pn, whence γtr(Pn) = n− 2bn−2
4
c. 2

Corollary 3.2 If n ≥ 2 is an integer, then γtr(Pn) ≥ dn+2
2
e.

Proof. Since n− 2bn−2
4
c ≥ dn+2

2
e, the result follows from Proposition 3.1. 2

Let T = (V, E) be a tree and v, a, b ∈ V such that deg v ≥ 3 and a, b ∈ N(v). Let `b

be a leaf of the component of T − v that contains b. Then the tree T ′ which arises from

T by deleting the edge va and joining a to `b is called a (v, a, b)-pruning of T .

Theorem 3.3 If T is a tree of order n ≥ 2, then γtr(T ) ≥ dn+2
2
e.

Proof. We use induction on n. It is easy to check that the result is true for all trees

T of order n ≤ 8. Suppose, therefore, that the result is true for all trees of order less

than n, where n ≥ 9. Let γtr = min{γtr(T ) | T is a tree of order n}. We will show that

γtr ≥ dn+2
2
e.
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Let T = {T | T is a tree of order n such that γtr(T ) = γtr}. Among all trees in T ,

let T be chosen so that the sum s(T ) of the degrees of its vertices of degree at least 3 is

minimum. With respect to this, let T be chosen such that the number of leaves of T is

minimum. If s(T ) = 0, then T ∼= Pn, and so γtr = γtr(Pn) ≥ dn+2
2
e. Suppose, therefore,

that s(T ) ≥ 1. Since s(T ) ≥ 1, there exists a vertex v such that deg(v) ≥ 3. Let S be a

γtr(T )-set of T .

Claim 3.4 If v is a vertex of degree at least 3, then

(i) v 6∈ S,

(ii) v is adjacent to exactly one vertex of S,

(iii) deg(v) = 3.

Proof. Suppose v ∈ S. Then there exist a, b ∈ N(v) such that b ∈ S. Let T ′ be a

(v, a, b)-pruning of T . Then S is a TRDS of T ′, and so, by definition of γtr, we have

that γtr ≤ γtr(T
′) ≤ |S| = γtr. Hence, T ′ ∈ T . However, as T ′ has fewer leaves than T ,

we obtain a contradiction.

Thus, assume v 6∈ S and let a, b ∈ N(v) such that a 6∈ S and b ∈ S. If c ∈ N(v)−{a, b}

is in S, then, by considering the (v, b, c)-pruning of T , we obtain a contradiction as before.

We therefore assume that b is the only vertex in S which is adjacent to v.

Suppose deg(v) ≥ 4, let {c1, . . . , cdeg(v)−2} = N(v)− {a, b}, let c = c1 and let `b be a

leaf of the component of T − v that contains b. Let T ′ be the tree which arises from T by

deleting the edges vci for i = 1, . . . , deg(v)− 2 and joining c to `b, c2, . . . , cdeg(v)−2. Note

that degT ′(v) = degT ′(`b) = 2, degT ′(c) = deg(c) + deg(v)− 3 ≥ deg(c) + 1 ≥ 3, while all

other vertices have the same degree in T ′ as in T . On the one hand, if deg(c) = 2, then

s(T ′) = s(T ) − deg(v) + degT ′(c) = s(T ) − 1. On the other hand, if deg(c) ≥ 3, then

s(T ′) = s(T ) − deg(v) + deg(v) − 3 = s(T ) − 3. Then S is a TRDS of T ′. As T ′ ∈ T

and s(T ′) < s(T ), we obtain a contradiction in both cases. Thus, deg(v) = 3. �
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Claim 3.5 No two vertices of degree 3 are adjacent.

Proof. Using the notation employed in Claim 3.4, b is the only neighbor of v in S. By

Claim 3.4, deg(b) ≤ 2. If deg(c) = 3, then, by Claim 3.4, c is adjacent to a vertex in

V −S (other than v). Let T ′ be the (v, c, b)-pruning of T . Then S is a TRDS of T ′, and

so, by definition of γtr, we have that γtr ≤ γtr(T
′) ≤ |S| = γtr. Hence, T ′ ∈ T . However,

as T ′ has fewer leaves than T , we obtain a contradiction. �

Using the notation employed in the proof of Claim 3.4, the vertex b ∈ S and, as it

must be adjacent to another vertex in S, deg(b) = 2 (cf. Claim 3.4). Let b′ ∈ S be the

vertex adjacent to b and suppose b′ is not a leaf. Then, by Claim 3.4, deg(b′) = 2 . Let

b′′ be the neighbor of b′ different from b. Then S is a TRDS of a tree T ′ obtained from

T by deleting the edge b′b′′ and joining the vertex b′′ to some leaf of the component of

T − v containing c. Thus T ′ ∈ T and b′ is a leaf of T ′. Hence we may assume that b′ is

a leaf of T .

By Claim 3.5, deg(a) = deg(c) = 2. Let a′(c′, respectively) be the neighbor of a (c,

respectively) which is different from v. Necessarily, a′, c′ ∈ S. Then deg(a′) = deg(c′) = 2

(cf. Claim 3.4). As each vertex in S is adjacent to another vertex of S, there exist vertices

a′′ and c′′ in S which are adjacent to a′ and c′ respectively. We may assume, as we did

for b′, that a′′ is a leaf of T .

If n = 9, then γtr(T ) = 6 = dn+2
2
e. Suppose, therefore, that n ≥ 10. Let T ′ be

the component of T − cc′ containing c′. Then S ∩ V (T ′) is a TRDS of T ′, so that

|S∩V (T ′)| ≥ γtr(T
′). Hence, |S| ≥ 4+γtr(T

′). Applying the inductive hypothesis to the

tree T ′ of order n− 7, we have γtr(T
′) ≥ dn−5

2
e, and so γtr(T ) = |S| ≥ dn+3

2
e ≥ dn+2

2
e. 2
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3.3 Extremal trees T with γtr(T ) = dn(T )+2
2 e

Let T be the class of all trees T of order n(T ) such that γtr(T ) = dn(T )+2
2

e. We will

constructively characterize the trees in T . In order to state the characterization, we

define four simple operations on a tree T .

O1. Join a leaf or a remote vertex of T to a vertex of K1, where n(T ) is even.

O2. Join a vertex v of T which lies on an endpath vxz to a leaf of P3, where n(T ) is

even.

O3. Join a vertex v of T which lies on an endpath vx1x2z to a leaf of P3, where n(T ) is

even.

O4. Join a remote vertex or a leaf of T to a leaf of each of ` disjoint copies of P4 for

some ` ≥ 1.

Let C be the class of all trees obtained from P2 by a finite sequence of Operations

O1- O4. We will show that T ∈ T if and only if T ∈ C.

Lemma 3.6 Let T ′ ∈ T be a tree of even order n(T ′). If T is obtained from T ′ by one

of the Operations O1-O3, then T ∈ T .

Proof. Let S be a γtr(T
′)-set of T ′ throughout the proof of this result.

Case 1. T is obtained from T ′ by Operation O1.

Let u be a leaf or a remote vertex of T ′, and suppose T is formed by attaching

the singleton v to u. Then S ∪ {v} is a TRDS set of T , and so dn(T ′)+3
2

e ≤ γtr(T ) ≤

dn(T ′)+2
2

e+ 1. Since n(T ′) is even, we have γtr(T ) = dn(T )+2
2

e. Thus, T ∈ T .

Case 2. T is obtained from T ′ by Operation O2 or Operation O3.

Suppose v lies on the endpath vxz or vx1x2z and T is obtained from T ′ by adding

the path y1y2z
′ to T ′ and joining y1 to v. We show that v 6∈ S. First consider the case
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when v lies on the endpath vxz. Suppose v ∈ S. Then S ′ = S − {z} is a TRDS of

T ′′ = T ′−{z}, and so dn(T ′)+1
2

e ≤ γtr(T
′′) ≤ dn(T ′)+2

2
e− 1. However, as n(T ′) is even, we

have n(T ′)+2
2

≤ γtr(T
′′) ≤ n(T ′)+2

2
− 1, which is a contradiction. Thus, v 6∈ S. In the case

when v lies on the endpath vx1x2z, one may show, as in the previous paragraph, that

x1 6∈ S. But then v 6∈ S, as required.

In both cases, the set S ∪ {y2, z
′} is a TRDS of T , and so dn(T ′)+5

2
e ≤ γtr(T ) ≤

dn(T ′)+2
2

e + 2. However, as n(T ′) is even, we have γtr(T ) = n(T ′)+6
2

= dn(T )+2
2

e. Thus,

T ∈ T . The proof is complete. 2

Lemma 3.7 Let T ′ ∈ T be a tree of order n(T ′). If T is obtained from T ′ by the

Operation O4, then T ∈ T .

Proof. Let S be a γtr(T
′)-set of T ′, and suppose v is a remote vertex or a leaf of T ′.

Then v ∈ S. Let T be the tree which is obtained from T ′ by adding the paths uixiyizi

to T ′ and joining ui to v for i = 1, . . . , `. Then S ∪`
i=1 {yi, zi} is a TRDS of T , and so

dn(T ′)+4`+2
2

e ≤ γtr(T ) ≤ dn(T ′)+2
2

e+ 2`. Therefore, γtr(T ) = dn(T )+2
2

e, and so T ∈ T . 2

We are now in a position to prove the main result of this section.

Theorem 3.8 T is in C if and only if T is in T .

Proof. Assume T ∈ C. We show that T ∈ T , by using induction on c(T ), the number

of operations required to construct the tree T . If c(T ) = 0, then T = P2, which is in T .

Assume, then, for all trees T ′ ∈ C with c(T ′) < k, where k ≥ 1 is an integer, that T ′ is

in T . Let T ∈ C be a tree with c(T ) = k. Then T is obtained from some tree T ′ by one

of the Operations O1 – O4. But then T ′ ∈ C and c(T ′) < k. Applying the inductive

hypothesis to T ′, T ′ is in T . Hence, by Lemma 3.6 or Lemma 3.7 , T is in T .

To show that T ∈ C for a nontrivial T ∈ T , we use induction on n, the order of the

tree T . If n = 2, then T = P2 ∈ C. Let T ∈ T be a tree of order n ≥ 3, and assume for
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all trees T ′ ∈ T of order 2 ≤ n(T ′) < n, that T ′ ∈ C. Since n(T ) ≥ 3, diam(T ) ≥ 2. If

diam(T ) = 2, then T is a star with exactly two leaves, which can be constructed from P2

by applying Operation O1. Thus, T ∈ C. Since no double star is in T , we may assume

diam(T ) ≥ 4. Throughout S will be used to denote a γtr(T )-set of T .

Claim 3.9 Let z be a leaf of T . If S − {z} is a TRDS of T ′ = T − z, then T ∈ C.

Proof. Assume S − {z} is a TRDS of T ′. Then dn−1+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e − 1. This

yields a contradiction when n is even. Hence, n is odd, and γtr(T
′) = n+1

2
= dn(T ′)+2

2
e.

Thus, T ′ ∈ T , with n(T ′) = n− 1 even. By the induction assumption, T ′ ∈ C. The tree

T can now be constructed from T ′ by applying Operation O1, whence T ∈ C. �

Claim 3.9 implies that if vxz is an endpath of T , then we may assume v 6∈ S, since

otherwise the tree is constructible. Claim 3.9 also implies that every remote vertex of T

is adjacent to exactly one leaf, since otherwise it is constructible.

Claim 3.10 If u is a leaf of T and v is either another leaf of T or the remote vertex

adjacent to u, then S ′ = S − {u, v} is not a TRDS of T ′ = T − u− v.

Proof. Suppose, to the contrary, that S ′ is a TRDS of T ′. Then dn−2+2
2

e ≤ γtr(T
′) ≤

dn+2
2
e − 2. Thus, dn

2
e+ 2 ≤ dn+2

2
e, which yields a contradiction. �

Let T be rooted at a leaf r of a longest path. Let v be any vertex on a longest path at

distance diam(T )− 2 from r. Suppose v lies on the endpath vyz′. Then, by the remark

above, v 6∈ S, which implies that v is not adjacent to a leaf. If v also lies on the endpath

vxz, then S − {x, z} is a TRDS of T − x − z, which is a contradiction by Claim 3.10.

Thus, we assume each vertex on a longest path at distance diam(T )− 2 or diam(T )− 1

from r has degree two.
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Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vy1y2z
′

be an endpath of T . Then y1 6∈ S, and so v 6∈ S, which means all neighbors of v have

degree at least 2.

Assume v also lies on the path vxz, where z is a leaf. Then, since each remote vertex

is adjacent to exactly one leaf, vxz is an endpath. If v is dominated by a vertex other

than x, then S − {x, z} is a TRDS of T ′ = T − x − z, which is a contradiction (cf.

Claim 3.10). Hence, v is dominated only by x. Then S ′ = S − {y2, z
′} is a TRDS of

T ′ = T − y1 − y2 − z′ and so dn−3+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e − 2. This yields a contradiction

when n is even. Hence, n is odd and γtr(T
′) = n−1

2
= dn(T ′)+2

2
e. Thus, T ′ ∈ T , with

n(T ′) = n − 3 even. By the induction assumption, T ′ ∈ C. The tree T can now be

constructed from T ′ by applying Operation O2, whence T ∈ C.

Assume v lies on the path vx1x2z. Since x1 (x2, respectively) is on a longest path at

distance diam(T )−2 (diam(T )−1, respectively) from r, we have deg(x1) = 2 (deg(x2) =

2, respectively). This implies that vx1x2z is an endpath, and so x1 6∈ S. But then

S ′ = S−{x2, z} is a TRDS of T ′ = T−x1−x2−z. Thus, dn−3+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e−2.

This yields a contradiction when n is even. Hence, n is odd and γtr(T
′) = dn(T ′)+2

2
e. Thus,

T ′ ∈ T , with n(T ′) = n−3 even. By the induction assumption, T ′ ∈ C and T can now be

constructed from T ′ by applying Operation O3, whence T ∈ C. Thus, we assume each

vertex on a longest path at distance diam(T )− 3 from r has degree two.

Let v be any vertex on a longest path at distance diam(T ) − 4 from r. As P5 6∈ T ,

v 6= r and diam(T ) ≥ 5. Assume degT (v) ≥ 3. Let vy1y2y3z
′ be an endpath of T . But

then, as y2y3z
′ is an endpath of T , it follows that y2 6∈ S, which implies y1 6∈ S and

v ∈ S. Moreover, S ′ = S − {y3, z
′} is a TRDS of T ′ = T − y1 − y2 − y3 − z′. Thus,

dn−4+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e − 2, whence γtr(T

′) = dn(T ′)+2
2

e. We conclude that T ′ ∈ T ,

and by the induction assumption, T ′ ∈ C. If degT (v) = 2 or when v is a remote vertex,

then T can be constructed from T ′ by applying Operation O4.
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We now assume that degT (v) ≥ 3 and that v is not adjacent to a leaf. If v also lies

on the path vxz, where z is a leaf, then v 6∈ S, which is a contradiction. We therefore

assume that v lies on the path vx1x2z, where z is a leaf. Since x2 is a remote vertex, we

have deg(x2) = 2. As x1x2z is an endpath of T , it follows that x1 6∈ S. As x1 must be

adjacent to another vertex in V − S, vertex x1 lies on a path x1, u1, u2, z
′′. But then x1,

with deg(x1) ≥ 3, is a vertex at distance diam(T )− 3 on a longest path from r, which is

a contradiction.

Let e be the edge that joins v with its parent, and let T (v) be the component of

T − e that contains v. Then T (v) consists of ` disjoint paths uixiyizi (i = 1, . . . , `) with

v joined to ui for i = 1, . . . , `. Let i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we

have xi 6∈ S, ui 6∈ S and v ∈ S. Then S−∪`
i=1{yi, zi} is a TRDS of T ′ = T − (T (v)− v),

and so dn−4`+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e − 2`, whence γtr(T

′) = dn(T ′)+2
2

e. Thus, T ′ ∈ T , and

by the induction assumption, T ′ ∈ C. Note that v is a leaf of T ′. The tree T can now be

constructed from T ′ by applying Operation O4, whence T ∈ C. 2

Theorem 3.11 Let T be a tree of order n(T ). If n(T ) ≡ 0 mod 4, then γtr(T ) ≥

dn(T )+2
2

e+ 1.

Proof. We will show that every tree T in T = C has n(T ) 6≡ 0 mod 4, by using induction

on s(T ), the number of operations required to construct the tree T . If s(T ) = 0, then

T = P2, and 2 6≡ 0 mod 4. Assume, then, for all trees T ′ ∈ C with s(T ′) < k, where

k ≥ 1 is an integer, that n(T ′) 6≡ 0 mod 4. Let T ∈ C be a tree with s(T ) = k. Then T is

obtained from some tree T ′ by one of the Operations O1 – O4. Then T ′ ∈ C, and by the

induction hypothesis, n(T ′) 6≡ 0 mod 4. If T is obtained from T ′ by one of the Operations

O1 – O3, then n(T ′) ≡ 2 mod 4, and, since either a path of order one or a path of order

three is attached to T ′ to form T , n(T ) 66≡ 0 mod 4. Moreover, n(T ) = n(T ′) + 4 if T is

obtained from T ′ by Operation O4, whence n(T ) 66≡ 0 mod 4. The result now follows. 2
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3.4 Extremal trees T with γtr(T ) = dn(T )+2
2 e + 1

Let T ∗ = {T |T is a tree of order n(T ) ≡ 0 mod 4 such that γtr(T ) = dn+2
2
e + 1}. In

order to constructively characterize the trees in T ∗, we define the following operations

on a tree T :

O5. Join a leaf or a remote vertex v of T to a vertex of K1, where n(T ) ≡ 3 mod 4.

O6. Join a vertex v of T which lies on an endpath vxz to a vertex of K2, where n(T ) ≡ 2

mod 4.

O7. Join a vertex v of T which lies on an endpath vx1x2z to a vertex of K2, where

n(T ) ≡ 2 mod 4.

O8. Join a vertex v of T which lies on an endpath vxz to a leaf of P3, where n(T ) ≡ 1

mod 4.

O9. Join a vertex v of T which lies on an endpath vx1x2z to a leaf of P3, where n(T ) ≡ 1

mod 4.

Let I = {T |T is a tree obtained by applying one of the Operations O5 – O9 to

a tree T ′ ∈ C exactly once}. Let C∗ = {T |T is a tree obtained from a tree T ′ ∈ I by

applying Operation O4 to T ′ zero or more times}. We will show that T ∗ = C∗.

Lemma 3.12 Let T ′ ∈ C be a tree of order n(T ′) ≡ 3 mod 4. If T is obtained from T ′

by Operation O5, then T ∈ T ∗.

Proof. Let u be a leaf or a remote vertex of T ′, and suppose T is formed by attaching

the singleton v to u. Let S be a γtr(T
′)-set of T ′. Then S ∪{v} is a TRDS set of T , and

so, since n(T ) ≡ 0 mod 4, dn(T )+2
2

e+ 1 ≤ γtr(T ) ≤ |S|+ 1 = dn(T ′)+2
2

e+ 1 = dn(T )+1
2

e+ 1.

Hence, γtr(T ) = dn(T )+2
2

e+ 1, and so T ∈ T ∗. 2

Lemma 3.13 Let T ′ ∈ C be a tree of order n(T ′) ≡ 2 mod 4. If T is obtained from T ′

by either Operation O6 or Operation O7, then T ∈ T ∗.
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Proof. Let {u, v} be the vertex set of K2 and let S be a γtr(T
′)-set. The set S ∪ {u, v}

is a TRDS of T , and so, since n(T ) ≡ 0 mod 4, dn(T )+2
2

e + 1 ≤ γtr(T ) ≤ |S| + 2 =

dn(T ′)+2
2

e+ 2 = dn(T )
2
e+ 2. Hence, γtr(T ) = dn(T )+2

2
e+ 1, and so T ∈ T ∗. 2

Lemma 3.14 Let T ′ ∈ C be a tree of order n(T ′) ≡ 1 mod 4. If T is obtained from T ′

by either Operation O8 or Operation O9, then T ∈ T ∗.

Proof. Let S be a γtr(T
′)-set of T ′. Assume v lies on the endpath vxz or vx1x2z

and T is obtained from T ′ by adding the path y1y2z
′ to T ′ and joining y1 to v. We

show that v 6∈ S. First consider the case when v lies on the endpath vxz. Suppose

v ∈ S. Then x, z ∈ S, and S − {z} is TRDS of T ′′ = T ′ − z. Since n(T ′′) ≡ 0

mod 4, dn(T ′′)+2
2

e + 1 ≤ γtr(T
′′) ≤ |S| − 1 = dn(T ′)+2

2
e − 1 = dn(T ′′)+3

2
e − 1, and so

n(T ′′)+4
2

≤ n(T ′′)+2
2

, which is a contradiction. Thus, v 6∈ S. In the case when v lies on

the endpath vx1x2z, one may show, as in the previous paragraph, that x1 6∈ S. But

then v 6∈ S, as required. In both cases, the set S ∪ {y2, z
′} forms a TRDS of T , so that

dn(T )+2
2

e+1 ≤ γtr(T ) ≤ |S|+2 = dn(T ′)+2
2

e+2 = dn(T )−1
2

e+2. Hence, γtr(T ) = dn(T )+2
2

e+1,

and so T ∈ T ∗. 2

The proof of the following result is similar to that of Lemma 3.7.

Lemma 3.15 If T is obtained from T ′ ∈ T ∗ by Operation O4, then T ∈ T ∗.

Lemma 3.16 If T is in I, then T is in T ∗.

Proof. Assume T ∈ I. Then T is obtained from T ′ ∈ C by applying one of the

Operations O5 – O9 exactly once. Then, by Lemmas 3.12, 3.13 and 3.14, T ∈ T ∗. 2

Theorem 3.17 T is in C∗ if and only if T is in T ∗.
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Proof. Assume T ∈ C∗. We show that T ∈ T ∗, by using induction on c(T ), the number

of operations required to construct the tree T . If c(T ) = 0, then T ∈ I, and the result

follows from Lemma 3.16. Assume, then, for all trees T ′ ∈ C∗ with c(T ′) < k, where

k ≥ 1 is an integer, that T ′ is in T ∗. Let T ∈ C∗ be a tree with c(T ) = k. Then T is

obtained from some tree T ′ by applying Operation O4. But then T ′ ∈ C∗ and c(T ′) < k.

Applying the inductive hypothesis to T ′, T ′ is in T ∗. Hence, by Lemma 3.15, T is in T ∗.

To show that T ∈ C∗ for a nontrivial T ∈ T ∗, we employ induction on 4n, the order

of the tree T . Suppose n = 1. Then T ∼= K1,3 or T ∼= P4, and T can be constructed from

P3 ∈ C by applying Operation O5. Let T ∈ T ∗ be a tree of order 4n, where n ≥ 2, and

suppose T ′ ∈ C∗ for all trees T ′ ∈ T ∗ of order 4n′ where n′ < n. The only trees T with

diam(T ) ≤ 3 which are in T ∗ are K1,3 and P4. As 4n ≥ 8, it follows that diam(T ) ≥ 4.

Throughout S will be used to denote a γtr-set of T , i.e. |S| = dn+2
2
e+ 1.

Claim 3.18 If u and v are vertices of T such that T ′ = T − u − v is a tree and S ′ =

S − {u, v} is a TRDS of T ′, then n(T ′) ≡ 2 mod 4 and T ′ ∈ C.

Proof. As dn−2+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e + 1 − 2, we have γtr(T

′) = dn−2+2
2

e = dn(T ′)+2
2

e,

and so T ′ ∈ C. �

Claim 3.19 Let z be a leaf of T . If S − {z} is a TRDS of T ′ = T − z, then T ∈ C∗.

Proof. Assume S − {z} is a TRDS of T ′. Then dn−1+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e + 1 − 1 =

dn+2
2
e. Hence, n− 1 ≡ 3 mod 4 and γtr(T

′) = dn+1
2
e = dn(T ′)+2

2
e. Thus, T ′ ∈ C. The tree

T can now be constructed from T ′ by applying Operation O5, whence T ∈ C∗. �

Claim 3.19 implies that if vxz is an endpath of T , then we may assume v 6∈ S, since

otherwise the tree is constructible. Claim 3.19 also implies that every remote vertex of

T is adjacent to exactly one leaf, since otherwise it is constructible.
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Let T be rooted at a leaf r of a longest path. Let v be any vertex on a longest path at

distance diam(T )− 2 from r. Suppose v lies on the endpath vyz′. Then, by the remark

above, v 6∈ S, which implies that v is not adjacent to a leaf. If v also lies on the endpath

vxz, then S − {x, z} is a TRDS of T − x − z and so T ′ ∈ C (cf. Claim 3.18), whence

T ∈ C∗ (as it can be constructed from T ′ by applying Operation O6). Thus, we assume

each vertex on a longest path at distance diam(T )− 2 or diam(T )− 1 from r has degree

two.

Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vy1y2z
′

be an endpath of T . Then y1 6∈ S, and so v 6∈ S, which means all neighbors of v have

degree at least 2.

Assume v also lies on the path vxz, where z is a leaf. Then, since each remote vertex

is adjacent to exactly one leaf, vxz is an endpath. If v is dominated by a vertex other

than x, then S − {x, z} is a TRDS of T ′ = T − x − z and so T ′ ∈ C (cf. Claim 3.18),

whence T ∈ C∗ (as it can be constructed from T ′ by applying Operation O7). Hence, v

is dominated only by x. Then S ′ = S − {y2, z
′} is a TRDS of T ′ = T − y1 − y2 − z′ and

so dn−3+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e − 1. But then γtr(T

′) = dn−1
2
e = dn(T ′)+2

2
e. Thus, T ′ ∈ C.

The tree T can now be constructed from T ′ by applying Operation O8.

Assume v lies on the path vx1x2z. Since x1 (x2, respectively) is on a longest path at

distance diam(T )−2 (diam(T )−1, respectively) from r, we have deg(x1) = 2 (deg(x2) =

2, respectively). This implies that vx1x2z is an endpath, and so x1 6∈ S. But then

S ′ = S−{x2, z} is a TRDS of T ′ = T−x1−x2−z. Thus, dn−3+2
2

e ≤ γtr(T
′) ≤ dn+2

2
e−1.

But then γtr(T
′) = dn−1

2
e = dn(T ′)+2

2
e. Thus, T ′ ∈ C and so T can now be constructed

from T ′ by applying Operation O9. Thus, we assume each vertex on a longest path at

distance diam(T )− 3 from r has degree two.

Let v be any vertex on a longest path at distance diam(T )− 4 from r. As P5 6∈ T ∗,

v 6= r and diam(T ) ≥ 5. Assume degT (v) ≥ 3. Let vy1y2y3z
′ be an endpath of T . But
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then, as y2y3z
′ is an endpath of T , it follows that y2 6∈ S, which implies y1 6∈ S and

v ∈ S. Moreover, S ′ = S − {y3, z
′} is a TRDS of T ′ = T − y1 − y2 − y3 − z′. Thus,

dn−4+2
2

e + 1 ≤ γtr(T
′) ≤ dn+2

2
e − 1, whence γtr(T

′) = dn(T ′)+2
2

e + 1. We conclude that

T ′ ∈ T ∗, and by the induction assumption, T ′ ∈ C∗. If degT (v) = 2 or when v is a remote

vertex, then T can be constructed from T ′ by applying Operation O4, whence T ∈ C∗.

We therefore assume that degT (v) ≥ 3 and that v is not adjacent to a leaf. If v also

lies on the path vxz, where z is a leaf, then v 6∈ S, which is a contradiction. We now

asume that v lies on the path vx1x2z, where z is a leaf. Then, since x2 is a remote vertex,

we have deg(x2) = 2. As x1x2z is an endpath of T , it follows that x1 6∈ S. As x1 must be

adjacent to another vertex in V − S, vertex x1 lies on a path x1, u1, u2, z
′′. But then x1,

with deg(x1) ≥ 3, is a vertex at distance diam(T )− 3 on a longest path from r, which is

a contradiction.

Let e be the edge that joins v with its parent, and let T (v) be the component of

T − e that contains v. Then T (v) consists of ` disjoint paths uixiyizi (i = 1, . . . , `) with

v joined to ui for i = 1, . . . , `. Let i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we

have xi 6∈ S, ui 6∈ S and v ∈ S. Then S−∪`
i=1{yi, zi} is a TRDS of T ′ = T − (T (v)− v),

and so dn−4`+2
2

e + 1 ≤ γtr(T
′) ≤ dn+2

2
e − 2` + 1, whence γtr(T

′) = dn(T ′)+2
2

e + 1. Thus,

T ′ ∈ T ∗, and by the induction assumption, T ′ ∈ C∗. Note that v is a leaf of T ′. The tree

T can now be constructed from T ′ by applying Operation O4, whence T ∈ C∗. 2



Chapter 4

Nordhaus-Gaddum Results for

Restrained Domination and Total

Restrained Domination in Graphs

4.1 Introduction

In this chapter, we continue the study of restrained domination and total restrained

domination in graphs. Recall that a set S ⊆ V is a restrained dominating set (abbreviated

RDS), if every vertex in V − S is adjacent to a vertex in S and a vertex in V − S. The

restrained domination number of G, denoted by γr(G), is the minimum cardinality of a

RDS of G. A RDS of cardinality γr(G) will be called a γr(G)-set. A set S ⊆ V is a total

restrained dominating set, (abbreviated TRDS) if every vertex is adjacent to a vertex in

S and every vertex in V − S is also adjacent to a vertex in V − S. The total restrained

domination number of G, denoted by γtr(G), is the minimum cardinality of a TRDS of

G. A TRDS of cardinality γtr(G) will be called a γtr(G)-set.
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Recall that a set S ⊆ V is a dominating set (abbreviated herein as DS) if every

vertex not in S is adjacent to a vertex in S. The domination number of G, denoted

by γ(G), is the minimum cardinality of a DS of G. A DS of cardinality γ(G) will be

called a γ(G)-set. Nordhaus and Gaddum present best possible bounds on the sum of

the chromatic number of a graph and its complement in [16]. The corresponding result

for the domination number of a graph is presented by Jaeger and Payan in [15]: If G is

a graph of order n ≥ 2, then γ(G) + γ(G) ≤ n + 1. A best possible bound on the sum of

the restrained domination numbers of a graph and its complement is obtained in [8]:

Theorem 4.1 If G is a graph of order n ≥ 2 such that both G and G are not isomorphic

to P3, then 4 ≤ γr(G) + γr(G) ≤ n + 2.

A best possible bound on the sum of the total restrained domination numbers of a

graph and its complement is obtained in [4]:

Theorem 4.2 If G is a graph of order n ≥ 2 such that neither G nor G contains isolated

vertices or has diameter two, then γtr(G) + γtr(G) ≤ n + 4.

Let K be the graph obtained from K3 by matching the vertices of K2 to distinct

vertices of K3. Note that K is self-complementary, K nor K contains isolated vertices or

has diameter two, while γtr(K) + γtr(K) = 2× 5 = 10 > n(K) + 4. Thus, Theorem 4.2

is incorrect.

We will show, in Section 4.2, that if G is a graph of order n ≥ 2 such that neither G

nor G contains isolated vertices or is isomorphic to K, then 4 ≤ γtr(G) + γtr(G) ≤ n + 4.

Moreover, we will characterize the graphs G of order n for which γtr(G)+ γtr(G) = n+4

and also characterize those graphs G for which γtr(G) + γtr(G) = 4. In Section 4.3, we

characterize the graphs G of order n for which γr(G) + γr(G) = n + 2 as well as those

graphs G for which γr(G) + γr(G) = 4.
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4.2 Total Restrained Domination

In this section, we provide bounds on the sum of the total restrained domination numbers

of a graph and its complement, and provide characterizations of the extremal graphs

achieving these bounds.

Let n ≥ 5 be an integer and suppose {x, y, u, v} and X are disjoint sets of vertices such

that |X| = n−4. Let L be the family of graphs G of order n where V (G) = {x, y, u, v}∪X

and with the following properties:

P1: x and y are non-adjacent, while u and v are adjacent,

P2: each vertex in {x, y} ∪X is adjacent to some vertex of {u, v},

P3: each vertex in {u, v} ∪X is non-adjacent to some vertex of {x, y},

P4: each vertex in {x, y} ∪X is adjacent to some vertex of {x, y} ∪X,

P5: each vertex in {u, v} ∪X is non-adjacent to some vertex of {u, v} ∪X.

Theorem 4.3 If G be a graph of order n ≥ 2 such that neither G nor G contains isolated

vertices, then γtr(G) + γtr(G) = 4 if and only if G ∈ L.

Proof. Suppose G is a graph such that neither G nor G contains isolated vertices, and

suppose γtr(G) + γtr(G) = 4. Then γtr(G) = γtr(G) = 2. Let S = {u, v} (S ′ = {x, y},

respectively) be a TRDS of G (G, respectively). Then x is non-adjacent to y, while u is

adjacent to v, and Property P1 holds. Clearly, S 6= S ′. Suppose u = x with v 6= y. Since

{u, v} is a DS of G and y is non-adjacent to x = u, the vertex y must be adjacent to v.

But then v is not dominated by S ′ in G, which is a contradiction. Thus, S ∩ S ′ = ∅. Let

X = V (G)−{x, y, u, v}. Then |X| = n− 4, and since S (S ′, respectively) is a TRDS of

G (G, respectively), Properties P2 – P5 hold for G. Thus, G ∈ L. The converse clearly

holds as {u, v} ({x, y}, respectively) is a TRDS of G (G, respectively). 2
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Let diam(G) denote the diameter of G, and let u, v be two vertices of G such that

d(u, v) = diam(G). The set of vertices at distance i from u, 0 ≤ i ≤ diam(G), will be

denoted by Vi, and the sets V0, . . . , Vdiam(G) will then be called the level decomposition of

G with respect to u. To facilitate argumentation we use the following definition given by

Cockayne, Dawes and Hedetniemi [5]. A total dominating set (abbreviated TDS) of G

is a set S ⊆ V such that every vertex of G is adjacent to a vertex of S.

Let U = {G |G is a graph of order n which can be obtained from a P4 with consecutive

vertices labeled u, v1, v2, v by joining vertices v1 and v2 to each vertex of Kn−4 where

n ≥ 6}.

Theorem 4.4 Let G be a graph of order n ≥ 2 such that neither G nor G contains

isolated vertices or is isomorphic to K. Then γtr(G) + γtr(G) ≤ n + 4. Moreover,

γtr(G) + γtr(G) = n + 4 if and only if G ∈ U or G ∈ U or G ∼= P4.

Proof. If G is disconnected, then γtr(G) = 2. Hence γtr(G) + γtr(G) ≤ n + 2. Thus,

without loss of generality, assume both G and G are connected. Let u and v be vertices

such that d(u, v) = diam(G) and let V0, . . . , Vdiam(G) be the level decomposition of G with

respect to u. We consider the following cases:

Case 1. diam(G) ≥ 5.

We claim that {u, v} is a TRDS of G. The vertex u is non-adjacent to all vertices in

Vi where 2 ≤ i ≤ diam(G), while the vertex v is non-adjacent to all vertices in Vi where

0 ≤ i ≤ diam(G)− 2. Moreover, every vertex in V (G)− {u, v} is non-adjacent to some

vertex of V (G)− {u, v}. Thus, γtr(G) = 2, and so γtr(G) + γtr(G) ≤ n + 2.

Case 2. diam(G) = 4.

Suppose u, v1, v2, v3, v is a diametrical path. If |V4| ≥ 2, then {u, v} is a TRDS of

G, and the result follows. Thus, V4 = {v}. Let V21 = {x ∈ V2 | there exists a vertex in
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V1 ∪ V2 ∪ V3 that is not adjacent to x} and let V22 = V2 − V21. The set {u, v} ∪ V22 is a

TRDS of G. So we have that γtr(G) ≤ 2+|V22|. If |V22| ≤ 1, then γtr(G)+γtr(G) ≤ n+3.

Hence |V22| ≥ 2.

Let t ∈ V22 such that t 6= v2. Suppose |V1 ∪ V21 ∪ V3| ≥ 4. Let s ∈ V1 ∪ V21 ∪ V3 −

{v1, v2, v3}. Then V1∪V21∪V3 ∪{u, v, t}−{s} is a TRDS of G and so γtr(G)+γtr(G) ≤

n− (|V22| − 1)− 1 + |V22|+ 2 ≤ n + 2. Hence |V1| = 1, |V21| ≤ 1 and |V3| = 1. Therefore,

V (G)− V22 is a TRDS of G and so γtr(G) + γtr(G) ≤ n− |V22|+ 2 + |V22| ≤ n + 2.

Case 3. diam(G) = 3.

Let u, v1, v2, v be a diametrical path. Suppose t ∈ V3 − {v}. We define V21 =

{x ∈ V2 | there exists a vertex in V1 ∪ V2 ∪ V3 − {t} that is not adjacent to x} and let

V22 = V2−V21. The set {u, t}∪V22 is a TRDS of G and so γtr(G) ≤ 2+ |V22|. If |V22| = 1,

then surely γtr(G) + γtr(G) ≤ n + 3. Hence |V22| ≥ 2. The vertex t is adjacent to some

vertex s ∈ V2. If s ∈ V22, then the set {u, s} ∪ V1 ∪ V21 ∪ V3 − {v} is a TRDS of G. If

s 6∈ V22, then the set {u, w} ∪ V1 ∪ V21 ∪ V3 − {v} is a TRDS of G, where w ∈ V22. In

both cases, γtr(G) ≤ n − |V22|, and so γtr(G) + γtr(G) ≤ n − |V22| + 2 + |V22| = n + 2.

Thus, V3 = {v}.

Define V11 = {x ∈ V1 | there exists a vertex in V1 ∪ V2 that is not adjacent to x} and

let V12 = V1 − V11. Moreover, let V21 = {x ∈ V2 | there exists a vertex in V1 ∪ V2 that

is not adjacent to x} and let V22 = V2 − V21. Then {u, v} ∪ V12 ∪ V22 is a TRDS of G,

whence γtr(G) ≤ 2 + |V12|+ |V22|.

Case 3.1 |V12|+ |V22| ≤ 2.

Clearly γtr(G) + γtr(G) ≤ n + 4. We now investigate when, in this case, γtr(G) +

γtr(G) = n + 4. As γtr(G) + γtr(G) = n + 4, we must have that |V12|+ |V22| = 2. We first

show that deg(u) = deg(v) = 1.
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Suppose, to the contrary, {v1, w} ⊆ N(u), and let t ∈ V12 ∪ V22 − {w}. Then t is

adjacent to every vertex of V1∪V2, and so V (G)−{u, w} is a TRDS of G. It now follows

that γtr(G)+γtr(G) ≤ n−2+4 = n+2, which is a contradiction. Thus, deg(u) = 1, and

deg(v) = 1 follows similarly. Hence V1 = V12 = {v1}, and the set V22 consists of exactly

one vertex, say w.

Suppose w 6= v2. If |V2| = 2, then G ∼= K, which is not allowable. So, let w′ ∈

V2 − {v2, w}. Then w and w′ are adjacent, and V (G) − {w, w′} is a TRDS of G. As

before, we obtain a contradiction. We conclude w = v2. If V21 = ∅, then G ∼= P4. If

V21 6= ∅, then surely |V21| ≥ 2. If two vertices, say t and t′, of V21 are adjacent in G, then

V (G) − {t, t′} is a TRDS of G, and we obtain a contradiction as before. Thus, V21 is

independent, and so G ∈ U .

Case 3.2 |V12|+ |V22| ≥ 3.

If we can show that G has a TRDS of size at most s := n − |V12| − |V22| + 1, then

γtr(G) + γtr(G) ≤ n − |V12| − |V22| + 1 + 2 + |V12| + |V22| = n + 3. First consider the

case when v1 ∈ V11. Choose w = v2 if v2 ∈ V22, otherwise choose w ∈ V12 ∪ V22. In both

situations, {u, v, w} ∪ V11 ∪ V21 is a TRDS of G of size s. Thus, v1 6∈ V11. If v2 ∈ V21,

then {u, v1, v} ∪ V11 ∪ V21 is a TRDS of G of size s. Thus, v2 6∈ V21. We conclude that

v1 ∈ V12, while v2 ∈ V22.

Suppose u is adjacent to a vertex w which is distinct from v1. If w ∈ V12, then

{v1, v2, v}∪V11 ∪V21 is a TRDS of size s. If w ∈ V11, then {v1, v2, v}∪ (V11−{w})∪V21

is a TRDS of size s− 1. Thus, deg(u) = 1, and deg(v) = 1 follows similarly.

Suppose V22 = {v2}. If V21 = ∅, then G ∼= P4 and γtr(G) + γtr(G) = n + 4. If

V21 6= ∅, then surely |V21| ≥ 2. If two vertices, say t and t′, of V21 are adjacent in G, then

{u, v1, v2, v} ∪ (V21 − {t, t′}) is a TRDS of G of size s − 1. Thus, V21 is independent,

G ∈ U and γtr(G) + γtr(G) = n + 4.
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Therefore, |V22| ≥ 2. If V21 = ∅, then V22 induces a clique. If |V22| = 2, then G ∼= K,

which is not allowable. If |V22| ≥ 3, then G ∈ U and γtr(G) + γtr(G) = n + 4. Thus,

V21 6= ∅, and so |V21| ≥ 2. Let {t, t′} ⊆ V21. Then {u, v1, v2, v}∪ (V21−{t, t′}) is a TRDS

of G of size s− 1.

Case 4. diam(G) = diam(G) = 2.

Note that δ(G) ≥ 2 and δ(G) ≥ 2, since otherwise G or G will have isolated vertices.

Case 4.1 δ(G) = 2 or δ(G) = 2.

Without loss of generality, assume δ(G) = 2 and suppose u is a vertex of minimum

degree in G. Let N(u) = {v, w}. Let Nv,w = {x ∈ V (G) − {u, v, w} |x is adjacent to

both v and w}, let Nv,w = {x ∈ V (G) − {u, v, w} |x is adjacent to v but not to w},

and let Nw,v = {x ∈ V (G) − {u, v, w} |x is adjacent to w but not to v}. Moreover, let

N1 = {x ∈ Nu,v |N(x) = {v, w}} and let N2 = Nv,w −N1.

Now, if N1 = ∅, then {u, v, w} is a TRDS of G and so γtr(G) + γtr(G) ≤ n + 3.

Thus, N1 6= ∅. If Nv,w = ∅ (Nw,v = ∅, respectively), then {u, w} ({u, v}, respectively) is

a TRDS of G, whence γtr(G) + γtr(G) ≤ n + 2. Thus, Nv,w 6= ∅ and Nw,v 6= ∅.

Notice that the set {u, v, w}∪N1 is a TRDS of G. Let Y = V (G)−{u}−N1. Since

all vertices in Nv,w dominate all vertices in N1 ∪ {u} in G, and since N1 ∪ {u} is a clique

in G, we have that Y is a RDS of G. If Y is total, we have that γtr(G) + γtr(G) ≤

3 + |N1|+ n− 1− |N1| = n + 2 and we are done.

Assume, therefore, that Y is not total. As w (v, respectively) is non-adjacent to every

vertex of N(v, w) (N(w, v), respectively), the set N2 6= ∅, since otherwise Y is a TRDS

of G. Moreover, Y will also be a TRDS of G if every vertex of N2 is non-adjacent to

some vertex of Y . Hence, there exists a vertex y ∈ N2 which is adjacent to every vertex

of Y − {y}.
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Notice that the set {v, y} is a TDS of G. If {v, y} is also a RDS, we have that

γtr(G)+γtr(G) ≤ n+2. Moreover, the set {w, y} is also a TDS of G, and if it is a RDS,

we are done. Thus, there exist vertices v′ ∈ Nv,w and w′ ∈ Nw,v such that N(v′) = {v, y}

and N(w′) = {w, y}.

We now show that Z = {u, v′, w′} is a TRDS of G. Notice that Z is a TDS of G.

Indeed, the vertex v′ dominates w in G, the vertex w′ dominates v in G, while the vertex

u dominates V (G) − {u, v, w, v′, w′} in G. Moreover, the vertex u dominates {v′, w′} in

G. Now, suppose to the contrary that Z is not a RDS of G. Hence, there exists a vertex

z /∈ Z such that z is adjacent to every vertex of V (G)− Z − {z} in G. As deg(G) ≥ 2,

the vertex z is adjacent in G to at least two vertices of Z. We consider the following

cases:

Case 4.1.1 The vertex z is adjacent in G to u and at least one of the vertices v′ and w′.

Without loss of generality assume that z is adjacent in G to the vertex v′. As z is

non-adjacent to u in G, it follows that z /∈ {v, w}. As z is adjacent to both of the vertices

v and w in G, we have z ∈ N1 ∪N2. If z ∈ N1, then it is not adjacent to y in G, which

contradicts the fact that z is adjacent to every vertex of V (G)−Z−{z}. If z ∈ N2, then

since N1 6= ∅, there exists a vertex z′ ∈ N1 such that z is not adjacent to z′ in G, which

is again a contradiction.

Case 4.1.2 The vertex z is adjacent in G to v′ and w′, but not to u.

In this case, z ∈ {v, w}. Without loss of generality, assume z = v. Then v is adjacent

in G to both v′ and w′, which is a contradiction. Therefore, the set Z = {u, v′, w′} is a

TRDS of G and so γtr(G) + γtr(G) ≤ n + 3.

Case 4.2 δ(G) ≥ 3 and δ(G) ≥ 3.

Let u be a vertex of minimum degree in G. Suppose N(u) = {u1, . . . , uδ} where

δ = δ(G). Suppose the sets N [u] and N [u] − {ui} for i ∈ {1, . . . , δ} are not total
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restrained dominating sets of G. Let N1 = {x ∈ V (G) − N [u] |N(x) = N(u)} and let

N2 = V (G)−N [u]−N1. As N [u] is a TDS of G, but not a RDS of G, the set N1 6= ∅.

If N2 = ∅, then {u, u1} is a TRDS of G, whence γtr(G) + γtr(G) ≤ 2 + n. Thus, N2 6= ∅.

Suppose N [u]−{ui} is a DS for some i ∈ {1, . . . , δ}. If a vertex x ∈ N2 is adjacent to

vertices in N(u)−{ui} only, then deg(x) ≤ δ−1, which is impossible. Thus, N [x]−{ui}

is a TRDS of G, which is contrary to our assumption. Hence, for each i ∈ {1, . . . , δ},

there exists u′i ∈ N2 such that N(u′i) ∩N(u) = {ui}.

We claim that X = {u, u′1, u
′
2} is a TRDS of G. The vertex u′1 dominates all vertices

in N(u)−{u1} in G. Similarly, u′2 dominates all vertices in N(u)−{u2} in G. The vertex

u dominates all vertices in V (G) − N [u] in G, and so X is a TDS. Suppose X is not a

RDS of G. Thus, there exists a vertex x 6∈ X such that x is adjacent in G to each of

the vertices in V (G) − X − {x}. As δ(G) ≥ 3, the vertex x is not adjacent to each of

the vertices in X. Hence, x ∈ N1 ∪N2. If x ∈ N1, then since |N2| ≥ δ ≥ 3, there exists

a vertex x′ ∈ N2 − {u′1, u′2} ⊂ V (G) − X − {x} such that x is not adjacent to x′ in G,

which is a contradiction. Similarly, if x ∈ N2 − {u′1, u′2}, then, since N1 6= ∅, there exists

a vertex x′ ∈ N1 ⊂ V (G) − X − {x} such that x is not adjacent to x′ in G, which is a

contradiction. Hence X is a TRDS of G and so γtr(G) + γtr(G) ≤ n + 3.

We may therefore assume that NG[u] or NG[u]− {ui} is a TRDS of G for some i ∈

{1, . . . , δ}. Similarly, if v is a minimum degree vertex in G and NG(v) = {v1, . . . , vδ(G)},

we assume that NG[v] or NG[v]−{vj} is a TRDS of G for some j ∈ {1, . . . , δ(G}. Hence

γtr(G)+γtr(G) ≤ δ(G)+1+δ(G)+1 = δ(G)+1+n−∆(G)−1+1 = n+δ(G)−∆(G)+1 ≤

n + 1.

Clearly, if G ∈ U or G ∈ U or G ∼= P4, then γtr(G) + γtr(G) = n + 4. 2
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4.3 Restrained Domination

In this section, we provide bounds on the sum of the restrained domination numbers

of a graph and its complement, and provide characterizations of the extremal graphs

achieving these bounds. Let H be the family of graphs G of order n where G or G is one

of the following four types:

Type 1. V (G) = {x, y, z} ∪X. Moreover:

P1.1: x is adjacent to each vertex of {y, z} ∪X,

P1.2: each vertex of {y, z} ∪X is adjacent to some vertex of {y, z} ∪X,

P1.3: each vertex of X is non-adjacent to some vertex of {y, z} and non-

adjacent to some vertex in X.

Type 2. V (G) = {x, y} ∪X. Moreover:

P2.1: each vertex of X is adjacent to exactly one vertex of {x, y} and also

non-adjacent to exactly one vertex of {x, y},

P2.2: each vertex of X is non-adjacent to some vertex of X,

P2.3: each vertex of X is adjacent to some vertex of X.

Type 3. V (G) = {u, v, y} ∪X. Moreover:

P3.1: each vertex of X ∪ {y} is adjacent to some vertex of {u, v},

P3.2: each vertex of X ∪ {u} is non-adjacent to some vertex of {v, y},

P3.3: each vertex of X ∪ {y} is adjacent to some vertex of X ∪ {y},

P3.4: each vertex of X ∪ {u} is non-adjacent to some vertex of X ∪ {u}.
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Type 4. V (G) = {x, y, u, v} ∪X. Moreover:

P4.1: each vertex in {x, y} ∪X is adjacent to some vertex of {u, v},

P4.2: each vertex in {u, v} ∪X is non-adjacent to some vertex of {x, y},

P4.3: each vertex in {x, y} ∪X is adjacent to some vertex of {x, y} ∪X,

P4.4: each vertex in {u, v} ∪X is non-adjacent to some vertex of {u, v} ∪X.

Theorem 4.5 If G be a graph of order n ≥ 2, then γr(G) + γr(G) = 4 if and only if G

or G ∈ H.

Proof. Suppose G is a graph such that γr(G) + γr(G) = 4. Then γr(G) = 1 and

γr(G) = 3 or γr(G) = 1 and γr(G) = 3 or γr(G) = γr(G) = 2.

Case 1. γr(G) = 1 and γr(G) = 3 or γr(G) = 1 and γr(G) = 3.

Suppose γr(G) = 1 and γr(G) = 3. Let {x} be a RDS of G. Then x is adjacent to

every other vertex of G, and so x is isolated in G and is therefore in every RDS of G -

let {x, y, z} be a RDS of G. Let X = V (G) − {x, y, z}. It now follows that Properties

P1.1 - P1.3 hold for G. Thus, G is a graph of Type 1. If γr(G) = 1 and γr(G) = 3,

then G is also of Type 1.

Case 2. γr(G) = 2 and γr(G) = 2.

Let {u, v} ({x, y}, respectively) be a RDS of G (G, respectively). Let X = V (G)−

{u, v, x, y}.

Case 2.1 Suppose u = x and v = y.

If some vertex w ∈ X is adjacent to both u and v, then w is not dominated by {u, v}

in G, which is a contradiction. As {u, v} is a DS of G, each vertex w ∈ X is adjacent

to at least one vertex in {u, v}. Thus, G satisfies Property P2.1. Moreover, Properties

P2.2 and P2.3 hold for G. Thus, G is a graph of Type 2.
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Case 2.2 Suppose u 6= y and x = v.

Clearly, in this case G is a graph of Type 3.

Case 2.3 {u, v} ∩ {x, y} = ∅.

It is easy to see, that P4.1 - P4.4 hold, so G is a graph of Type 4.

For the converse, suppose G ∈ H. For a graph of Type 1 we have γr(G) = 1 and

γr(G) ≤ 3. For Types 2, 3 or 4 we obtain γr(G) ≤ 2 and γr(G) ≤ 2. Hence, in all

cases γr(G) + γr(G) ≤ 4. It is known (see [3]) that γr(G) + γr(G) ≥ 4. Therefore,

γr(G) + γr(G) = 4. 2

We will now characterize graphs G of order n for which γr(G) + γr(Ḡ) = n + 2.

Let B = {P3, P 3}, and let G = {G |G or G is a galaxy of non-trivial stars}.

Let S = {G |G or G ∼= K1 ∪ S where S is a star and |S| ≥ 3}.

Lastly, let E = G ∪ S.

Lemma 4.6 If G ∈ E − B, then γr(G) + γr(G) = n + 2.

Proof. Suppose G ∈ G has order n and, without loss of generality, suppose G is a

galaxy of non-trivial stars S1, S2, . . . , Sk, for k ≥ 2. Then γr(G) = n. Let s ∈ V (S1) and

t ∈ V (S2). Since Si is non-trivial for i ∈ {1, . . . , k}, it follows that R = {s, t} is a RDS

of G. Suppose {v} is a RDS of G. Then degG(v) = 0, which is a contradiction. Hence

γr(G) + γr(G) = n + 2. Now, suppose k = 1. That is, G is a non-trivial star S such that

S 6= P3. The result follows immediately if |S| = 2. Thus we may assume |S| ≥ 4. Then

γr(G) = n. Let s be the center of S and let t ∈ NG(s). Notice that 〈V (G)−{s}〉 ∼= Kn−1

in G. Thus R = {s, t} is a RDS of G. Suppose {v} is a RDS of G. Then degG(v) = 0,

which is a contradiction.

Suppose G ∈ S and, without loss of generality, let G = K1 ∪ S where S is a star

and |S| ≥ 3. Then γr(G) = n. Let s be the center of S and let 〈u〉 be the second
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component of G. Then R = {s, u} is a RDS of G. Suppose {v} is a RDS of G. Then

degG(v) = 0, and v = u, which is a contradiction as {u} is not a RDS of G. Hence

γr(G) + γr(G) = n + 2. 2

Theorem 4.7 Let G = (V, E) be a graph of order n ≥ 2 such that G /∈ B. Then

γr(G) + γr(G) ≤ n + 2. Moreover, γr(G) + γr(G) = n + 2 if and only if G ∈ E.

Proof. Let G = (V, E) be a graph of order n such that G /∈ B. Notice that either G

or G must be connected. Without loss of generality, suppose G is connected. Note that

G may also be connected. Let G be composed of the components G1, G2, . . . , G` with

` possibly equal to one. Without loss of generality, let G1 be a component of G with

longest diameter.

Claim 4.8 If G1 contains a path uv1v2v and ` ≥ 3, then γr(G) + γr(G) ≤ n.

Proof. Let uv1v2v be a path in G1. Notice that V (G)− {v1, v2} is a RDS of G. Hence

γr(G) ≤ n − 2. Let x ∈ V (G1) and w ∈ V (G2). Since ` ≥ 3 it follows that {x, w} is a

RDS of G and γr(G) + γr(G) ≤ n− 2 + 2 = n. 3

Claim 4.9 If ` ≥ 3 and there exists i ∈ {1, . . . , `} such that Gi
∼= K1, then γr(G) +

γr(G) ≤ n + 1.

Proof. Trivial. 3

By Claim 4.8, for cases in which diam(G1) ≥ 3, we may immediately assume that

` ≤ 2. Note that for the following two cases V (G2) may or may not be empty. Let u

and v be vertices such that d(u, v) = diam(G). As before, the sets V0, . . . , Vdiam(G) will

denote the level decomposition of G with respect to u

Suppose diam(G1) ≥ 5. Let uv1v2 . . . vdiam(G1) be a diametrical path in G1. Notice

that V (G) − {v1, v2} is a RDS of G. Hence γr(G) ≤ n − 2. Moreover, notice that
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R′ = {u, v5} is a RDS of G, as R′ is clearly a dominating set of G, v1 ∈ V (G) − R′ is

adjacent to V3 ∪ V4 ∪ . . . ∪ Vdiam(G), and v4 ∈ V (G)− R′ is adjacent to V1 ∪ V2 ∪ V (G2).

Hence γr(G) ≤ 2 and we have that γr(G) + γr(G) ≤ n− 2 + 2 = n.

Now, suppose diam(G1) = 4. Let uv1v2v3v4 be a diametrical path in G1. Notice that

V (G) − {v1, v2} is a RDS of G. Hence γr(G) ≤ n − 2. Suppose |V4| ≥ 2. Then there

exists a vertex t ∈ V4 − {v4}. Notice that R′ = {u, v4} is a RDS of G, as R′ is clearly a

dominating set of G, v1 ∈ V (G)−R′ is adjacent to V3∪V4, and t ∈ V (G)−R′ is adjacent

to V1 ∪ V2 ∪ V (G2). Hence γr(G) ≤ 2 and we have that γr(G) + γr(G) ≤ n− 2 + 2 = n.

Thus we may assume that |V4| = 1. Let V21 = {x ∈ V2 | there exists y ∈ V1 ∪ V2 ∪ V3

such that {x, y} /∈ E(G1)} and let V22 = V2 − V21. Consider R′ = {u, v4} ∪ V22. Notice

that R′ is a dominating set of G, v1 ∈ V (G)− R′ is adjacent to V3, and v3 ∈ V (G)− R′

is adjacent to V1 ∪ V (G2). If V21 = ∅, then V2 = V22 ⊆ R′ and R′ is a RDS of G. If

V21 6= ∅, then by definition, for each x ∈ V21 there exists a y ∈ V1 ∪ V21 ∪ V3 such that

xy /∈ E(G1). Hence R′ is a RDS of G. In either case we have that γr(G) ≤ 2 + |V22|.

If |V22| ≤ 1, then γr(G) + γr(G) ≤ n − 2 + 2 + |V22| ≤ n + 1. Thus we may assume

that |V22| ≥ 2. Hence there exists a vertex t ∈ V22 − {v2}. Then R = {u, v4, t} ∪ V (G2)

is a RDS of G, as R clearly dominates G, and a vertex w ∈ V22 − {t} is adjacent

to every vertex of V (G) − R. Thus, γr(G) ≤ 3 + |V (G2)| and so γr(G) + γr(G) ≤

3+ |V (G2)|+2+ |V22| = 1+(4+ |V22|+ |V (G2)|) = 1+(|{u, v1, v3, v4}|+ |V22|+ |V (G2)|) =

1 + |{u, v1, v3, v4} ∪ V22 ∪ V (G2)| ≤ 1 + |V (G)| = 1 + n.

Now, suppose diam(G1) = 3. Let uv1v2v3 be a diametrical path in G1. Notice

that V (G) − {v1, v2} is a RDS of G. Suppose that V (G2) 6= ∅. If V (G2) = {v},

then {v} is a RDS of G, whence γr(G) + γr(G) ≤ n − 2 + 1 = n − 1. Thus we

may assume that |V (G2)| ≥ 2. Let v ∈ V (G2). Then {u, v} is a RDS of G and so

γr(G) + γr(G) ≤ n− 2 + 2 = n.
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Thus V (G2) = ∅ and both G1 = G and G are connected. Suppose |V3| ≥ 2 and

let t ∈ V3 − {v3}. Let V21 = {x ∈ V2| there exists y ∈ (V1 ∪ V2 ∪ V3) − {t} such that

xy /∈ E(G)} and let V22 = V2 − V21. Consider R′ = {u, t} ∪ V22. By reasoning similar to

that in the case for diam(G1) = 4, R′ is a RDS of G and γr(G) ≤ 2 + |V22|. If |V22| ≤ 1,

then γr(G) + γr(G) ≤ n− 2 + 2 + |V22| ≤ n + 1.

Thus we may assume that |V22| ≥ 2. Hence there exists a vertex z ∈ V22 − {v2}.

Consider R = {u, t, z}. By reasoning similar to that in the case for diam(G1) = 4, R is a

RDS of G and so γr(G) + γr(G) ≤ 3 + 2 + |V22| = 1 + (4 + |V22|) = 1 + (|{u, v1, v3, t}|+

|V22|) = 1 + |{u, v1, v3, t} ∪ V22| ≤ 1 + |V (G)| = 1 + n.

So we may assume that |V3| = 1. Let V11 = {x ∈ V1 | there exists y ∈ V1 ∪ V2 such

that xy /∈ E(G)} and let V12 = V1−V11. Also, let V21 = {x ∈ V2 | there exists y ∈ V1∪V2

such that xy /∈ E(G)} and let V22 = V2 − V21. Then {u, v3} ∪ V12 ∪ V22 is a RDS of G

and γr(G) ≤ 2 + |V12|+ |V22|.

If |V12|+ |V22| ≤ 1, then γr(G)+ γr(G) ≤ n− 2+2+ |V12|+ |V22| ≤ n+1. So we may

assume that |V12|+ |V22| ≥ 2. Since v1v3uv2 is a path in G, it follows that V (G)−{v3, u}

is a RDS of G, whence γr(G) ≤ n− 2.

Now, suppose |V12| ≥ 2 and let z ∈ V12 − {v1}. Then {z, v3} is a RDS of G, and so

γr(G) + γr(G) ≤ 2 + n − 2 = n. Thus |V12| ≤ 1. Suppose V12 = {z}. Then {u, v3, z}

is a RDS of G except when G = P4, in which case {u, v3} is a RDS of G. In both

cases γr(G) ≤ 3. Hence, γr(G) + γr(G) ≤ 3 + n − 2 = n + 1. Thus V12 = ∅ and so

|V22| ≥ 2. Let z ∈ V22 − {v2}. Then {u, v3, z} is a RDS of G. Therefore, γr(G) ≤ 3.

Hence, γr(G) + γr(G) ≤ 3 + n− 2 = n + 1.

Thus we may assume diam(G1) ≤ 2, and by a similar argument, diam(G) ≤ 2. As

n ≥ 2, diam(G) ≥ 1. Suppose diam(G) = 1. Then G ∼= Ki for some i ≥ 2. If i ≥ 3,

then γr(G) + γr(G) ≤ n + 1. Thus, G ∼= K2, and so G ∈ G and γr(G) + γr(G) = n + 2.
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Thus, diam(G) = 2. Suppose diam(G1) = 0. Then G ∼= nK1 and G ∼= Kn, which is a

contradiction as diam(G) = 2.

Suppose diam(G1) = 1. Then G1
∼= Ki where 2 ≤ i ≤ n. Since we assumed that

G is connected, ` 6= 1. Suppose ` = 2. If G2
∼= K1, then i 6= 2, as G /∈ B. Thus

i ≥ 3, so G ∈ G and γr(G) + γr(G) = n + 2. Thus G2
∼= Kj where 2 ≤ j ≤ n − i. If

i = j = 2, then G ∈ G and we are done. Without loss of generality, suppose i ≥ 3. Let

V (G1) = {v1, v2, . . . , vi} and let z ∈ V (G2). Since i ≥ 3, V (G) − {v2, v3} is a RDS of

G and {v1, z} is a RDS of G. Hence γr(G) + γr(G) ≤ n − 2 + 2 = n. Thus ` ≥ 3. By

Claim 4.9, Gk 6∼= K1 for all k ∈ {1, . . . , `}. Suppose Gk
∼= K2 for all k. Then G ∈ G and

we are done. Thus, by relabeling if necessary, we may assume that G1
∼= Ki for i ≥ 3.

Let V (G1) = {v1, v2, . . . , vi} and let z ∈ V (G2). Since i ≥ 3, V (G) − {v2, v3} is a RDS

of G and {v1, z} is a RDS of G. Hence γr(G) + γr(G) ≤ n− 2 + 2 = n.

Thus we may assume diam(G1) = 2. Suppose ` ≥ 3. By Claim 4.9, Gk 6∼= K1 for

all k ∈ {1, . . . , `}. If G is a galaxy of non-trivial stars, then G ∈ G, and we are done.

Thus at least one component, say G1, contains a cycle containing an edge v1v2, say. Let

z ∈ V (G2). Then V (G)− {v1, v2} is a RDS of G, while {v1, z} is a RDS of G, whence

γr(G) + γr(G) ≤ n− 2 + 2 = n.

Suppose ` = 2 and first suppose G2 6∼= K1. If G1 and G2 are stars, then G ∈ G and

we are done. Thus at least one component contains a cycle containing the edge v1v2. Let

z be an arbitrary vertex in the other component of G. Then V (G)− {v1, v2} is a RDS

of G, while {v1, z} is a RDS of G, whence γr(G) + γr(G) ≤ n− 2 + 2 = n.

So we may assume that G2
∼= K1. Let V (G2) = {z}. If ∆(G1) ≤ n − 3, then

{z} is a RDS of G and so γr(G) + γr(G) ≤ n + 1. Thus ∆(G1) = n − 2, and there

exists a vertex u ∈ V (G1) such that deg(u) = n − 2. Let L be the set of leaves in G1

and let X = N(u) − L. If L = ∅, then {u, z} is a RDS of G. Since diam(G1) = 2,

there exist nonadjacent vertices x, y ∈ V (G1). Then V (G) − {x, y} is a RDS of G and
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γr(G) + γr(G) ≤ n − 2 + 2 = n. Thus L 6= ∅. Let v ∈ L and consider {u, v}. Since

diam(G1) = 2, it follows that deg(u) ≥ 2. Thus {u, v} is a RDS of G. Suppose X 6= ∅ and

let s ∈ X. Since s /∈ L, s is adjacent to a vertex t ∈ N(v). Hence t /∈ L, so t ∈ X and thus

|X| ≥ 2. Moreover, V (G)−X is a is a RDS of G, and so γr(G)+γr(G) ≤ n−2+2 = n.

Thus X = ∅ and so G1 is a non-trivial star of order n− 1 ≥ 3. Therefore G ∈ S and we

are done.

Thus G ∼= G1, and diam(G) = diam(G) = 2. Let uv1v2 be a diametrical path in G. If

v2 is a leaf of G, then every vertex v ∈ V1−{v1} is adjacent to v1, whence deg(v1) = n−1,

which is a contradiction as G is connected. Moreover, if some vertex v ∈ V1 is a leaf,

then diam(G) ≥ d(v, v2) = 3, which is a contradiction. Lastly, if u is a leaf, then v1 is

adjacent to every vertex of V2, whence deg(v1) = n − 1, which is a contradiction. Thus

we may assume that δ(G) ≥ 2. A similar argument shows that δ(G) ≥ 2. Let F be the

collection of graphs described in [7]. It is known (see [7]) that if G /∈ F is a connected

graph with order n ≥ 3 and δ(G) ≥ 2, then γr(G) ≤ n−1
2

. It follows immediately that

γr(G) + γr(G) ≤ n − 1, provided that G, G /∈ F . Without loss of generality, suppose

G ∈ F . It is easily verified that γr(G) + γr(G) ≤ n + 1 and we are done.

Finally, recounting the argument, we have that γr(G) + γr(G) ≤ n + 1 in all cases,

save when G ∈ E . Hence, if γr(G)+γr(G) = n+2 it follows that G ∈ E . This observation

together with Lemma 4.6 implies that γr(G) + γr(G) = n + 2 if and only if G ∈ E . 2
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