3 research outputs found

    Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer

    Get PDF
    The continuous development of the internet of things (IoT) infrastructure and applications is paving the way for advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Nodes (WSNs) able to collect and transmit data through wireless communication channels, while often positioned in locations that are difficult to access, is driving research into innovative solutions involving energy harvesting (EH) and wireless power transfer (WPT) to eventually allow battery-free sensor nodes. Due to the pervasiveness of radio frequency (RF) energy, RF EH and WPT are key technologies with the potential to power IoT devices and smart sensing architectures involving nodes that need to be wireless, maintenance free, and sufficiently low in cost to promote their use almost anywhere. This paper presents a state-of-the-art, ultra-low power 2.5 W highly integrated mixed-signal system on chip (SoC), for multi-source energy harvesting and wireless power transfer. It introduces a novel architecture that integrates an ultra-low power intelligent power management, an RF to DC converter with very low power sensitivity and high power conversion efficiency (PCE), an Amplitude-Shift-Keying/Frequency-Shift-Keying (ASK/FSK) receiver and digital circuitry to achieve the advantage to cope, in a versatile way and with minimal use of external components, with the wide variety of energy sources and use cases. Diverse methods for powering wireless Sensor Nodes through energy harvesting and wireless power transfer are implemented providing related system architectures and experimental results

    Architecture of an efficient dual band 1.8/2.5 GHz rectenna for RF energy harvesting

    Get PDF
    This paper presents a highly efficient rectenna of RF energy harvesting systems operating at 1.8 GHz and 2.5 GHz bands for battery-less sensor application. The antenna is designed by CST-MWS. The Schottky diode used for rectifying circuit is HSMS 286B in which designed by Agilent ADS. The key finding of the paper is that the simulated DC output voltage of the rectenna is 1.35 V for low input power of -25 dBm at a high resistance load of 1M Ω. Correspondingly, the RF-DC conversion efficiency of the rectification process is 59.51% and 45.75% at 1.8 GHz and 2.5 GHz, which are high efficiency and much better compared to literature respectively. The rectenna is capable to produce 1.8 V from an input power of -20 dBm. Thus, the proposed RF energy harvesting system offers a promising solution designed for efficient functionality at a low power level of RF energy in the dual band

    Dispositivo IoT de baixo consumo e longo alcance alimentado por energia coletada de campos magnéticos provenientes de condutores carregados

    Get PDF
    Orientador: Prof. Horacio Tertuliano dos Santos Filho, PhD.Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 28/04/2023Inclui referênciasResumo: O presente trabalho tem como objetivo o desenvolvimento de um protótipo de dispositivo IoT autossuficiente, que utiliza energia coletada de campo magnético como fonte de energia principal e tecnologia de comunicação LoRa. A abordagem adotada é inovadora, um a vez que dispensa o uso de sistemas ativos de gerenciamento de energia, fazendo uso apenas de um super capacitor como redundância de energia e conversores CC-CC para adequação dos níveis de tensão. Os resultados da pesquisa demonstraram que o protótipo se apresentou como um a alternativa promissora, comprovando sua capacidade de manter-se em funcionamento por mais de 20 dias, mesmo em condições prolongadas de interrupção da fonte de energia. A utilização de dispositivos mais eficientes e autônomos tem se tornado cada vez mais relevante, sobretudo em locais remotos ou em condições adversas, visando à redução da necessidade de substituição de baterias ou até mesmo o seu uso. Dessa forma, o estudo apresentado neste trabalho contribui significativam ente para o avanço de dispositivos IoT mais eficientes, autônomos e economicamente viáveis, com grande potencial de aplicação em diversos contextos comerciais e industriais. As descobertas obtidas nesse estudo podem ser úteis para futuras pesquisas e estudos na área de IoT e fontes alternativas de energia.Abstract: The present study aims to develop a prototype of a self-sufficient IoT device that uses magnetic field-collected energy as the main energy source and LoRa communication technology. The approach adopted is innovative as it eliminates the need for active energy management systems, using only a supercapacitor as energy redundancy and CC-CC converters for voltage level adjustment. The research results demonstrated that the prototype presented itself as a promising alternative, proving its ability to remain operational for more than 20 days, even under prolonged conditions of energy source interruption. Furthermore, using more efficient and autonomous devices has become increasingly relevant, especially in remote locations or adverse conditions, aiming to reduce the need for battery replacement or even their use. Thus, the study presented in this work contributes significantly to the advancement of more efficient, autonomous, and economically viable IoT devices, with great potential for application in various commercial and industrial contexts. The findings obtained in this study may be helpful in future research and studies in IoT and alternative energy sources
    corecore