724 research outputs found

    Caching UAV-enabled small-cell networks

    Get PDF
    Unmanned aerial vehicles (UAVs) can be utilized to provide flexible wireless access in future wireless networks, with larger coverage and higher transmission rate. However, the wireless backhaul for UAVs is usually capacity-limited and congested, and UAVs cannot operate for a long time due to the limited battery life. In this paper, a framework of caching UAV-enabled small-cell networks is proposed, to offload data traffic for the small-cell base stations via caching. In the proposed scheme, the most popular contents are stored at the local caches of UAVs in advance, which can be delivered to mobile users directly from the caches when required. Thus, the congestion of wireless backhaul can be alleviated, the energy consumption can be reduced, and the quality of experience can be improved

    Cache-aware user association in backhaul-constrained small cell networks

    No full text
    International audienceAnticipating multimedia file requests via caching at the small cell base stations (SBSs) of a cellular network has emerged as a promising technique for optimizing the quality of service (QoS) of wireless user equipments (UEs). However, developing efficient caching strategies must properly account for specific small cell constraints, such as backhaul congestion and limited storage capacity. In this paper, we address the problem of devising a user-cell association, in which the SBSs exploit caching capabilities to overcome the backhaul capacity limitations and enhance the users' QoS. In the proposed approach, the SBSs individually decide on which UEs to service based on both content availability and on the data rates they can deliver, given the interference and backhaul capacity limitations. We formulate the problem as a one-to-many matching game between SBSs and UEs. To solve this game, we propose a distributed algorithm, based on the deferred acceptance scheme, that enables the players (i.e., UEs and SBSs) to self-organize into a stable matching, in a reasonable number of algorithm iterations. Simulation results show that the proposed cell association scheme yields significant gains, reaching up to 21% improvement compared to a traditional cell association techniques with no caching considerations

    Architecture of a cognitive non-line-of-sight backhaul for 5G outdoor urban small cells

    Get PDF
    Densely deployed small cell networks will address the growing demand for broadband mobile connectivity, by increasing access network capacity and coverage. However, most potential small cell base station (SCBS) locations do not have existing telecommunication infrastructure. Providing backhaul connectivity to core networks is therefore a challenge. Millimeter wave (mmW) technologies operated at 30-90GHz are currently being considered to provide low-cost, flexible, high-capacity and reliable backhaul solutions using existing roof-mounted backhaul aggregation sites. Using intelligent mmW radio devices and massive multiple-input multiple-output (MIMO), for enabling point-to-multipoint (PtMP) operation, is considered in this research. The core aim of this research is to develop an architecture of an intelligent non-line-sight (NLOS) small cell backhaul (SCB) system based on mmW and massive MIMO technologies, and supporting intelligent algorithms to facilitate reliable NLOS street-to-rooftop NLOS SCB connectivity. In the proposed architecture, diffraction points are used as signal anchor points between backhaul radio devices. In the new architecture the integration of these technologies is considered. This involves the design of efficient artificial intelligence algorithms to enable backhaul radio devices to autonomously select suitable NLOS propagation paths, find an optimal number of links that meet the backhaul performance requirements and determine an optimal number of diffractions points capable of covering predetermined SCB locations. Throughout the thesis, a number of algorithms are developed and simulated using the MATLAB application. This thesis mainly investigates three key issues: First, a novel intelligent NLOS SCB architecture, termed the cognitive NLOS SCB (CNSCB) system is proposed to enable street-to-rooftop NLOS connectivity using predetermined diffraction points located on roof edges. Second, an algorithm to enable the autonomous creation of multiple-paths, evaluate the performance of each link and determine an optimal number of possible paths per backhaul link is developed. Third, an algorithm to determine the optimal number of diffraction points that can cover an identified SCBS location is also developed. Also, another investigated issue related to the operation of the proposed architecture is its energy efficiency, and its performance is compared to that of a point-to-point (PtP) architecture. The proposed solutions were examined using analytical models, simulations and experimental work to determine the strength of the street-to-rooftop backhaul links and their ability to meet current and future SCB requirements. The results obtained showed that reliable multiple NLOS links can be achieved using device intelligence to guide radio signals along the propagation path. Furthermore, the PtMP architecture is found to be more energy efficient than the PtP architecture. The proposed architecture and algorithms offer a novel backhaul solution for outdoor urban small cells. Finally, this research shows that traditional techniques of addressing the demand for connectivity, which consisted of improving or evolving existing solutions, may nolonger be applicable in emerging communication technologies. There is therefore need to consider new ways of solving the emerging challenges

    Adaptive Network Densification with Small Cell Mobile Base Stations Carried by Vehicles

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen676. INGEGNERIA ELETTRICAnopartially_openembargoed_20211014Mohammadnia, Foroog

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios
    corecore