5,371 research outputs found

    Convex drawings of hierarchical planar graphs and clustered planar graphs

    Get PDF
    AbstractIn this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs

    Convex drawings of hierarchical planar graphs and clustered planar graphs

    Get PDF
    AbstractIn this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Morphing Planar Graph Drawings Optimally

    Full text link
    We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any nn-vertex plane graph in O(n)O(n) morphing steps, thus improving upon the previously best known O(n2)O(n^2) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs\Gamma_s and Γt\Gamma_t of an nn-vertex plane graph GG such that any planar morph between Γs\Gamma_s and Γt\Gamma_t requires Ω(n)\Omega(n) morphing steps

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201
    • …
    corecore