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Abstract
We give an algorithm to compute a morph between any two convex drawings of the same plane
graph. The morph preserves the convexity of the drawing at any time instant and moves each
vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically
optimal in the worst case.
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1 Introduction

Convex drawings of plane graphs are a classical topic of investigation in geometric graph
theory. A characterization [25] of the plane graphs that admit convex drawings and a linear-
time algorithm [10] to test whether a graph admits a convex drawing are known. Convex
drawings in small area [5, 8, 11], orthogonal convex drawings [18, 19, 25], and convex drawings
satisfying further geometric constraints [16, 17] have also been studied. It is intuitive, but far
from trivial to prove, that the space of the convex drawings of any n-vertex plane graph G is
connected; i.e., the points in R2n, each corresponding to the two-dimensional coordinates of
a convex drawing of G, form a connected set. Expressed in yet another way, there exists
a convex morph between any two convex drawings Γs and Γt of the same plane graph G,
that is, a continuous deformation from Γs to Γt so that the intermediate drawing of G is
convex at any instant of the deformation. The main result of this paper is the existence of a
convex morph between any two convex drawings of the same plane graph such that each
vertex moves along a piecewise linear curve with linear complexity during the deformation.

The existence of a convex morph between any two convex drawings of the same plane graph
was first proved by Thomassen [24] more than 30 years ago. His result confirmed a conjecture
of Grünbaum and Shepard [15] and improved upon a result of Cairns [9], stating that
there exists a continuous deformation, called a morph, between any two straight-line planar
drawings of the same plane graph such that any intermediate straight-line drawing is planar.
More recently, motivated by applications in computer graphics, animation, and modeling, a
number of algorithms for morphing graph drawings have been designed [12, 13, 14, 21, 22].
These algorithms aim to construct morphs that preserve the topology of the given drawings
at any time, while guaranteeing that the trajectories of the vertices are “nice” curves.
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Straight-line segments are undoubtedly the most readable and appealing curves for the
vertex trajectories. However, linear morphs – morphs in which the vertices move along
straight lines – do not always exist [12]. A natural way to overcome this problem is to
allow vertices to move along piecewise linear curves. Since trajectories of large complexity
would have a dramatically detrimental impact on the readability of the morph, an important
goal is to minimize the complexity of these curves. This problem is formalized as follows.
Let Γs and Γt be two planar straight-line drawings of a plane graph G. Find a sequence
Γs = Γ1, . . . ,Γk = Γt of planar straight-line drawings of G such that, for 1 ≤ i ≤ k − 1, the
linear morph transforming Γi into Γi+1, called a morphing step, is planar and k is small.

The first polynomial upper bound for this problem was recently obtained by Alamdari et
al. [1]. The authors proved that a morph between any two planar straight-line drawings of the
same n-vertex connected plane graph exists with O(n4) morphing steps. The O(n4) bound
was later improved to O(n2) [4] and then to a worst-case optimal O(n) bound by Angelini et
al. [3]. The algorithm of Angelini et al. [3] can be extended to work for disconnected graphs
at the expense of an increase in the number of steps to O(n1.5) [2].

In this paper we give an algorithm to construct a convex morph between any two convex
drawings of the same n-vertex plane graph with O(n) morphing steps. Our algorithm
preserves the convexity of the drawing at any time instant and in fact preserves strict
convexity, if the given drawings are strictly-convex. The linear bound is tight in the worst
case, as can be shown by adapting the lower bound construction of Angelini et al. [3]. We
remark that Thomassen’s algorithm [24] constructs convex morphs with an exponential
number of steps. To the best of our knowledge, no other algorithm is known to construct a
convex morph between any two convex drawings of the same plane graph.

The outline of our algorithm is simple. Let Γs and Γt be two convex drawings of the
same convex graph G, that is, a plane graph that admits a convex drawing. Determine a
connected subgraph G′ of G such that removing G′ from G results in a smaller convex graph
G′′. Then G′ lies inside one face f of G′′. Morph Γs into a drawing Γ′s of G and morph Γt
into a drawing Γ′t of G such that the cycle of G corresponding to f is delimited by a convex
polygon in Γ′s and in Γ′t. These morphs consist of one morphing step each. Remove G′ from
Γ′s and Γ′t to obtain two convex drawings Γ′′s and Γ′′t of G′′. Finally, recursively compute a
morph between Γ′′s and Γ′′t . Since f remains convex throughout the whole morph from Γ′′s to
Γ′′t , a morph of G from Γ′s to Γ′t can be obtained from the morph of G′′ from Γ′′s to Γ′′t by
suitably drawing G′ inside f at each intermediate step of such a morph. The final morph
from Γs to Γt consists of the morph from Γs to Γ′s followed by the morph from Γ′s to Γ′t, and
then the reverse of the morph from Γt to Γ′t. Our algorithm has two main ingredients.

The first ingredient is a structural decomposition of convex graphs that generalizes a
well-known structural decomposition of triconnected planar graphs due to Barnette and
Grünbaum [6]. The latter states that any subdivision of a triconnected planar graph contains
a path whose removal results in a subdivision of a smaller triconnected planar graph. For
convex graphs we can prove a similar theorem which states, roughly speaking, that any
convex graph contains a path, or three paths incident to the same vertex, whose removal
results in a smaller convex graph. Our approach is thus based on removing a subgraph from
the input graph. This differs from the recent papers on morphing graph drawings [1, 3, 4],
where the basic operation is to contract (i.e. move arbitrarily close) a vertex to a neighbor.
One of the difficulties of the previous approach was to determine a trajectory for a contracted
vertex inside the moving polygon of its neighbors. By removing a subgraph and forcing the
newly formed face to be convex, we avoid this difficulty.

The second ingredient is a relationship between unidirectional morphs and level planar
drawings of hierarchical graphs, which allows us to compute the above mentioned morphs
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128 Optimal Morphs of Convex Drawings

between Γs and Γ′s and between Γt and Γ′t with one morphing step. This relationship was
first observed by Angelini et al. [3]. However, in order to use it in our setting, we need to
prove that every strictly-convex graph admits a strictly-convex level planar drawing; this
strengthens a result of Hong and Nagamochi [16] and might be of independent interest.

We leave open the question whether any two straight-line drawings of the same plane
graph G can be morphed so that every intermediate drawing has polynomial size (e.g., the
ratio between the length of any two edges is polynomial in the size of G during the entire
morph). In order to solve this problem positively, our approach seems to be better than
previous ones; intuitively, subgraph removals are more suitable than vertex contractions for a
morphing algorithm that doesn’t blow up the size of the intermediate drawings. Nevertheless,
we haven’t yet been able to prove that polynomial-size morphs always exist.

2 Definitions and Preliminaries

In this section we give some definitions and preliminaries.

Drawings and Embeddings. A straight-line planar drawing Γ of a graph maps vertices
to points in the plane and edges to internally disjoint straight-line segments. Drawing Γ
partitions the plane into topologically connected regions, called faces. The bounded faces
are internal and the unbounded face is the outer face. A vertex (an edge) is external if it
is incident to the outer face and internal otherwise. A vertex x is convex, flat, or concave
in an incident face f in Γ, if the angle at x in f is smaller than, equal to, or larger than π
radians, respectively. Drawing Γ is convex (strictly-convex) if for each vertex v and each face
f vertex v is incident to, v is either convex or flat (is convex) in f , if f is internal, and v is
either concave or flat (is concave) in f , if f is the outer face. A planar drawing determines a
clockwise ordering of the edges incident to each vertex. Two planar drawings of a connected
planar graph are equivalent if they determine the same clockwise orderings and have the
same outer face. A plane embedding is an equivalence class of planar drawings. A graph with
a plane embedding is a plane graph. A convex (strictly-convex) graph is a plane graph that
admits a convex (resp. strictly-convex) drawing with the given plane embedding.

Subgraphs and Connectivity. A subgraph G′ of a plane graph G is regarded as a plane
graph whose plane embedding is obtained from G by removing all the vertices and edges not
in G′. We denote by G − e (by G − S) the plane graph obtained from G by removing an
edge e of G (resp. a set S of vertices and their incident edges).

We denote by deg(G, v) the degree of a vertex v in a graph G. A graph G is biconnected
(triconnected) if removing any vertex (resp. any two vertices) leaves G connected. A separation
pair in a graph G is a pair of vertices whose removal disconnects G. A biconnected plane
graph G is internally triconnected if introducing a new vertex in the outer face of G and
connecting it to all the vertices incident to the outer face of G results in a triconnected graph.
Thus, internally triconnected plane graphs form a super-class of triconnected plane graphs.
A split component of a graph G with respect to a separation pair {u, v} is either an edge
(u, v) or a maximal subgraph G′ of G that does not contain edge (u, v), that contains vertices
u and v, and such that {u, v} is not a separation pair of G′; we say that {u, v} determines
the split components with respect to {u, v}. For an internally triconnected plane graph G,
every separation pair {u, v} determines two or three split components; further, in the latter
case, one of them is an edge (u, v) not incident to the outer face of G.
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A subdivision G′ of a graph G is a graph obtained from G by replacing each edge (u, v)
with a path between u and v; the internal vertices of this path are called subdivision vertices.
Given a subgraph H of G, the subgraph H ′ of G′ corresponding to H is obtained from H by
replacing each edge (u, v) with a path with the same number of vertices as in G′.

Convex Graphs. Convex graphs have been thoroughly studied, both combinatorially and
algorithmically. Most of the known results about convex graphs are stated in the following
setting. The input consists of a plane graph G and a convex polygon P representing the
cycle C delimiting the outer face of G. The problem asks whether G admits a convex
drawing in which C is represented by P . The known characterizations for this setting imply
characterizations and recognition algorithms for the class of convex graphs (with no constraint
on the representation of the cycle delimiting the outer face). Quite surprisingly, the literature
seems to lack explicit statements of the characterizations in this unconstrained setting. Here
we present two theorems, whose proofs can be easily derived from known results [10, 16, 25].

I Theorem 1. A plane graph is convex if and only if it is a subdivision of an internally
triconnected plane graph.

I Theorem 2. A plane graph is strictly-convex if and only if it is a subdivision of an
internally triconnected plane graph and every degree-2 vertex is external.

Monotonicity. A straight arc xy is a straight line segment directed from a point x to a
point y; xy is monotone with respect to an oriented straight line d if the projection of x on
d precedes the projection of y on d according to the orientation of d. A path (u1, . . . , un) is
d-monotone if uiui+1 is monotone with respect to d, for i = 1, . . . , n− 1; a polygon Q is
d-monotone if it contains two vertices s and t such that the two paths between s and t in
Q are both d-monotone. A path P (a polygon Q) is monotone if there exists an oriented
straight line d such that P (resp. Q) is d-monotone. We have the following.

I Lemma 3 (Angelini et al. [3]). Let Q be a convex polygon and d be an oriented straight
line not orthogonal to any straight line through two vertices of Q. Then Q is d-monotone.

I Lemma 4. Let Q1 and Q2 be strictly-convex polygons sharing an edge e and lying on
opposite sides of the line through e. Let Pi be the path obtained from Qi by removing edge e,
for i = 1, 2. The polygon Q composed of P1 and P2 is monotone.

Proof sketch. Q is monotone with respect to a line l orthogonal to e – unless Q contains
edges parallel to e, in which case a slight perturbation of l suffices. J

Morphing. A linear morph 〈Γ1,Γ2〉 between two straight-line planar drawings Γ1 and Γ2 of
a plane graph G moves each vertex at constant speed along a straight line from its position in
Γ1 to its position in Γ2. A linear morph is planar if no crossing or overlap occurs between any
two edges or vertices during the transformation. A linear morph is convex (strictly-convex) if
it is planar and each face is delimited by a convex (resp. strictly-convex) polygon at any time
instant of the morph. A convex linear morph is called a morphing step. A unidirectional
linear morph [7] is a linear morph in which the straight-line trajectories of the vertices are
parallel. A convex morph (a strictly-convex morph) 〈Γs, . . . ,Γt〉 between two convex drawings
Γs and Γt of a plane graph G is a finite sequence of convex (resp. strictly-convex) linear
morphs that transforms Γs into Γt. A unidirectional (strictly-) convex morph is such that
each of its morphing steps is unidirectional.
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3 Decompositions of Convex Graphs

Our morphing algorithm relies on a lemma stating that, roughly speaking, any convex graph
has a “simple” subgraph whose removal results in a smaller convex graph. A similar result is
known for a restricted graph class, namely the subdivisions of triconnected planar graphs.

On the way to proving that every triconnected planar graph is the skeleton of a convex
polytope in R3, Barnette and Grünbaum [6] proved that every subdivision of a triconnected
planar graph G can be decomposed as follows (see also [20]). Starting from G, repeatedly
remove a path whose internal vertices have degree two in the current graph, until a subdivision
of K4 is obtained. Barnette and Grünbaum proved that there is such a decomposition in
which every intermediate graph is a subdivision of a simple triconnected plane graph.

We now present a lemma that generalizes Barnette and Grünbaum’s decomposition
technique so that it applies to convex (not necessarily triconnected) graphs.

I Lemma 5. Let G be a convex graph. There exists a sequence G1, . . . , G` of graphs such
that: (i) G1 = G; (ii) G` is the simple cycle C delimiting the outer face of G; (iii) for each
1 ≤ i ≤ `, graph Gi is a subgraph of G and is a subdivision of a simple internally triconnected
plane graph Hi; and (iv) for each 1 ≤ i < `, graph Gi+1 is obtained either:

by deleting the edges and the internal vertices of a path (u1, u2, . . . , uk) with k ≥ 2 from
Gi, where u2, . . . , uk−1 are degree-2 internal vertices of Gi; or
by deleting a degree-3 internal vertex u of Gi as well as the edges and the internal vertices
of three paths P1, P2, and P3 connecting u with three vertices of the cycle C delimiting
the outer face of G, where P1, P2, and P3 are vertex-disjoint except at u and the internal
vertices of P1, P2, and P3 are degree-2 internal vertices of Gi.

Proof. Set G1 = G. Suppose that a sequence G1, . . . , Gi has been determined. If Gi = G`
is the cycle delimiting the outer face of G, then we are done. Otherwise, we distinguish two
cases, based on whether Gi is a subdivision of a triconnected plane graph or not.

Suppose first that Gi is a subdivision of a triconnected plane graph Hi. We construct
graphs Gi, . . . , G` one by one, in reverse order. Throughout the construction, we maintain
the following invariant for every ` ≥ j > i. Suppose that Hj contains an internal edge (u, v)
that is also an edge of Hi. Then there exists no path in Hi that connects u and v, that is
different from edge (u, v), and all of whose internal vertices are not in Hj .

Let G` be the cycle C delimiting the outer face of Gi. Next, we determine G`−1 (see
Fig. 1(a)). Let Ci be the cycle delimiting the outer face of Hi. Since Hi is triconnected
and has at least four vertices, there exist three paths that connect an internal vertex v of
Hi with vertices of Ci, that share no vertices other than v, and whose internal vertices are
not in Ci (see Theorem 5.1 in [23]). Among all the triples of paths with these properties,
choose a triple (Px, Py, Pz) involving the largest number of vertices of Hi. Paths Px, Py, and
Pz and cycle Ci form a graph GH`−1 that is a subdivision of K4. The subgraph G`−1 of Gi
corresponding to GH`−1 is hence a subdivision of K4 in which v is the only degree-3 internal
vertex. The invariant is satisfied since Px, Py, and Pz involve the largest number of vertices
of Hi. Further, G` is obtained from G`−1 by deleting a degree-3 internal vertex v of G`−1 as
well as the edges and the internal vertices of Px, Py, and Pz, as required by the lemma.

Next, assume that a sequence G`, . . . , Gj has been determined, for some j ≤ ` − 1. If
Gj = Gi, then we are done. Otherwise, Gj−1 is obtained by adding a path P to Gj . The
choice of P distinguishes two cases (as in the proof of Theorem 2 in [6]).

In Case (A), a vertex z exists such that deg(Gj , z) = 2 and deg(Gi, z) ≥ 3. Then, consider
the unique path Pxy in Gj that contains z as an internal vertex, whose internal vertices have
degree two in Gj , and whose end-points x and y have degree at least three in Gj . Note
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Figure 1 Illustration for the proof of Lemma 5 if Gi is a subdivision of a triconnected plane
graph Hi. White vertices belong to Hj , Gj , Hi, and Gi; grey vertices belong to Gj , Hi, and Gi,
and not to Hj ; black vertices belong to Gj and Gi, and not to Hj and Hi. (a) Graph G`−1. (b)–(d)
Graph Gj and path P , together forming graph Gj−1; (b) and (c) illustrate Case (A) with uk having
degree two and greater than two in Gj , respectively, while (d) depicts Case (B).

that (x, y) is an edge of Hj . Since {x, y} is not a separation pair in Hi, there exists a path
P = (u1, u2, . . . , uk) in Gi such that u1 is an internal vertex of Pxy, vertex uh does not
belong to Gj , for every 2 ≤ h ≤ k − 1, and uk is a vertex of Gj not in Pxy. Choose the path
with these properties involving the largest number of vertices of Hi. Observe that uk might
have degree two (as in Fig. 1(b)) or greater than two (as in Fig. 1(c)) in Gj .

In Case (B), there exists no vertex z such that deg(Gj , z) = 2 and deg(Gi, z) ≥ 3 (see
Fig. 1(d)). Since Gj is different from Gi, there exists a path P = (u1, u2, . . . , uk) in Gi
such that u1 and uk belong to Hj , and u2, . . . , uk−1 do not belong to Gj . Also, a path P
satisfying these properties exists such that u1 is an internal vertex of Hi (otherwise Hi would
contain a separation pair composed of two external vertices). Choose a path P involving the
largest number of vertices of Hi, subject to the constraint that u1 is an internal vertex of Hi.

In both cases, path P has to be embedded inside a face f of Gj , according to the plane
embedding of Gi. Since Gj contains the cycle delimiting the outer face of Gi, we have that
f is an internal face of Gj . Graph Gj−1 is obtained by inserting P in f . Since P and Gj are
subgraphs of Gi, graph Gj−1 is a subgraph of Gi. Also, it satisfies the invariant since P is
chosen as a path involving the largest number of vertices of Hi. It remains to prove that
Gj−1 is a subdivision of a simple triconnected plane graph Hj−1. Let Hj−1 be the graph
obtained from Gj−1 by replacing each maximal path whose internal vertices have degree two
with a single edge. Thus, Gj−1 is a subdivision of Hj−1.

I Claim 1. Graph Hj−1 is plane, simple, and triconnected.

Proof sketch. First, Hj−1 is a plane graph since Gj−1 is a plane graph. Second, in Case
(A) Hj−1 is simple because Hj is simple and u1 does not belong to Hj ; further, it can be
proved that Hj−1 contains no separation pair (hence it is triconnected) because Hj contains
three internally disjoint paths between any pair of vertices and because each of u1 and uk
contains three internally disjoint paths to vertices of Hj . Third, in Case (B) Hj−1 is simple
because of the invariant and it is triconnected because Hj is triconnected. J

We now turn to the case in which Gi is not a subdivision of a triconnected plane graph.
In this case Gi is a subdivision of a simple internally triconnected plane graph Hi with
minimum degree three and containing some separation pairs. Recall that Hi has either two
or three split components with respect to any separation pair {u, v}.

Suppose that a separation pair {u, v} exists in Hi determining three split components.
Since Hi is internally triconnected, one of these split components is an internal edge (u, v) of
Hi corresponding to a path P = (u = u1, . . . , uk = v) in Gi, where u2, . . . , uk−1 are degree-2
internal vertices of Gi. Let Gi+1 = Gi−{u2, . . . , uk−1} and let Hi+1 = Hi−(u, v). Note that
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P1
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(g) (h) (i) (j) (k)

Figure 2 Illustration for the proof of Lemma 5 if Gi is not a subdivision of a triconnected plane
graph Hi. The faces of D1, . . . , Dm not incident to Q are colored gray in Gi, . . . , Gi+m−1. The faces
of M1, . . . , Mm not incident to (u, v) are colored gray in Hi, . . . , Hi+m−1. (a) Graph Gi. (b) Graph
Hi and separation pair {u, v}. (c) Graph L. (d) Graph D = D1. (e) Graph M = M1. (f) Graph
Gi+1. (g) Graph Hi+1. (h) Graph Gi+2. (i) Graph Hi+2. (j) Graph Gi+3. (k) Graph Hi+3.

Gi+1 is a subdivision of Hi+1. Then Hi+1 is an internally triconnected simple plane graph,
given that Hi is an internally triconnected simple plane graph with three split components
with respect to {u, v}.

Suppose next that every separation pair of Hi determines two split components, as in
Fig. 2(a). Let {u, v} be a separation pair of Hi determining two split components A and B
such that A does not contain any separation pair of Hi different from {u, v}, as in Fig. 2(b),
(e.g., let {u, v} be a separation pair such that the number of vertices in A is minimum among
all separation pairs). Let L be the subgraph of Hi composed of A and of the path Q between
u and v that delimits the outer face of Hi and that belongs to B; see Fig. 2(c). Let D be
the subgraph of Gi corresponding to L; see Fig. 2(d). The graph M obtained from L by
replacing Q with an edge (u, v), shown in Fig. 2(e), is triconnected, given that the vertex
set of A does not contain any separation pair of Hi different from {u, v}. Thus, D is a
subdivision of a simple triconnected plane graph M .

By means of the same algorithm described in the case in which Gi is a subdivision of a
triconnected plane graph, we determine a sequence D1, . . . , Dm of subdivisions of triconnected
plane graphs M1, . . . ,Mm, where D1 = D, M1 = M , and Mm = K3. Further, we define
a sequence Hi+1, . . . ,Hi+m−1 of graphs where, for each 2 ≤ j ≤ m − 1, graph Hi+j−1 is
obtained from Hi by replacing M with Mj (see Figs. 2(b), 2(g), and 2(i)), and where Hi+m−1
is obtained from Hi by replacing M with an edge (u, v) (see Fig. 2(k)). Analogously, we
define a sequence Gi+1, . . . , Gi+m−1 of graphs where, for each 2 ≤ j ≤ m, graph Gi+j−1 is
obtained from Gi by replacing D with Dj (see Figs. 2(a), 2(f), 2(h), and 2(j)). Then, for
each 2 ≤ j ≤ m, graph Gi+j−1 is a subdivision of Hi+j−1. Further, for each 1 ≤ j ≤ m− 2,
graph Gi+j is obtained from Gi+j−1 by deleting the edges and the internal vertices of a
path (u1, . . . , uk) with k ≥ 2, where u2, . . . , uk−1 are degree-2 internal vertices of Gi+j−1.
Moreover, graph Gi+m−1 is obtained by deleting from Gi+m−2 a degree-3 internal vertex x
as well as the edges and the internal vertices of three paths P1, P2, and P3, as required by the
lemma. Finally, since M2, . . . ,Mm are simple triconnected plane graphs, Hi+1, . . . ,Hi+m−1
are simple internally triconnected plane graphs.

Note that Hi+m−1 is obtained from Hi by replacing A with edge (u, v), hence {u, v}
is not a separation pair in Hi+m−1. Thus, the repetition of the described transformations
over different separation pairs {u, v} eventually leads to a graph Gx that is the subdivision
of a simple triconnected plane graph Hx; then a sequence Gx, . . . , G` of subdivisions of
triconnected plane graphs such that G` is a subdivision of K3 is determined as above. J
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4 Convex Drawings of Hierarchical Convex Graphs

A hierarchical graph is a tuple (G,d, L, γ) where G is a graph, d is an oriented straight line
in the plane, L is a set of parallel lines orthogonal to d, and γ is a function that maps each
vertex of G to a line in L so that adjacent vertices are mapped to distinct lines. The lines in L
are ordered as they are encountered when traversing d according to its orientation (we write
l1 < l2 if a line l1 precedes a line l2 in L). Furthermore, each line li ∈ L is oriented so that d

cuts li from the right to the left of li; a point a precedes a point b on li if a is encountered
before b when traversing li according to its orientation. For the sake of readability, we will
often write G instead of (G,d, L, γ) to denote a hierarchical graph. A level drawing of a
hierarchical graph G maps each vertex v to a point on the line γ(v) and each edge (u, v) of
G with γ(u) < γ(v) to an arc uv monotone with respect to d. A hierarchical graph G with
a prescribed plane embedding is a hierarchical plane graph if there is a level planar drawing
Γ of G that respects the prescribed plane embedding. A path (u1, . . . , uk) in G is monotone
if γ(ui) < γ(ui+1), for 1 ≤ i ≤ k − 1. An st-face in a hierarchical plane graph G is a face
delimited by two monotone paths connecting two vertices s and t, where s is the source and
t is the sink of the face. Furthermore, G is a hierarchical-st plane graph if every face of G is
an st-face; note that a face f of G is an st-face if and only if the polygon delimiting f in a
straight-line level planar drawing of G is d-monotone.

In this section we give an algorithm to construct strictly-convex level planar drawings of
hierarchical-st strictly-convex graphs, that are hierarchical-st plane graphs (G,d, L, γ) such
that G is a strictly-convex graph. We have the following.

I Theorem 6. Every hierarchical-st strictly-convex graph admits a drawing which is simul-
taneously strictly-convex and level planar.

Proof. Let (G,d, L, γ) be a hierarchical-st strictly-convex graph, in the following simply
denoted by G, and let C be the cycle delimiting the outer face f of G. Construct a strictly-
convex level planar drawing PC of C in which the clockwise order of the vertices along PC is
the same as prescribed in G. Hong and Nagamochi [16] showed an algorithm to construct a
(non-strictly) convex level planar drawing Γ of G in which C is represented by PC . We show
how to modify Γ into a strictly-convex level planar drawing of G.

We give some definitions. Let s and t be the vertices of G such that γ(s) < γ(u) < γ(t),
for every vertex u 6= s, t of G. Given a vertex v of G, the leftmost (rightmost) top neighbor of
v is the neighbor x of v with γ(x) > γ(v) such that for the neighbor y of v counter-clockwise
(clockwise) following x we have that either γ(y) < γ(v), or γ(y) > γ(v) and both x and y
are incident to f (this only happens when v = s). The leftmost and the rightmost bottom
neighbor of v are defined analogously. Also, the leftmost (rightmost) top path of v is the
monotone path P from v to t obtained by initializing P = (v) and by repeatedly adding the
leftmost (resp. rightmost) top neighbor of the last vertex. The leftmost and rightmost bottom
path of v are defined analogously. Let v be a vertex of G that is flat in a face g of Γ; v is
an internal vertex of G, since PC is strictly-convex. Let x and y be the neighbors of v in g;
then either γ(x) < γ(v) < γ(y) or γ(y) < γ(v) < γ(x). Assume the former. If g lies to the
left of path (x, v, y) when traversing it from x to y, then we say that v is a left-flat vertex
in Γ, otherwise v is a right-flat vertex. By Theorem 2 and since v is an internal vertex of
G, we have deg(G, v) ≥ 3, hence v cannot be both a left-flat and a right-flat vertex in Γ. A
left-flat (right-flat) path in Γ is a maximal path whose internal vertices are all left-flat (resp.
right-flat) vertices and are all flat in the same face (see Fig. 3(a)). Let Q = (x, . . . , y) be a
left-flat path in Γ; the elongation EQ of Q is the monotone path between s and t obtained
by concatenating the rightmost bottom path of x, Q, and the rightmost top path of y. Let
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Figure 3 (a) A left-flat path Q (red thick line), its elongation E(Q) (red and black thick lines),
graphs Gr(Q) (gray) and Gl(Q) (yellow). (b) Drawing Γ. (c) Drawing Γ′.

Gl(Q) (Gr(Q)) be the subgraph of G whose outer face is delimited by the cycle composed of
EQ and of the leftmost (resp. rightmost) top path of s. For a right-flat path Q in Γ, the
elongation EQ of Q, and graphs Gl(Q) and Gr(Q) are defined analogously.

In order to modify Γ into a strictly-convex level planar drawing of G, we proceed by
induction on the number a(Γ) of flat angles in Γ. If a(Γ) = 0, then Γ is strictly-convex and
there is nothing to be done. If a(Γ) ≥ 1, then there exists a path Q that is either a left-flat
path or a right-flat path in Γ. Assume the former, the other case is symmetric. Also, assume
w.l.o.g. up to a rotation of the axes, that the lines in L are horizontal.

Ideally, we would like to move the internal vertices of Q to the right, so that the polygon
delimiting the face on which the internal vertices of Q are flat becomes strictly-convex. There
is one obstacle to such a modification, though: An internal vertex of Q might be the first or
the last vertex of a left-flat path Q′; thus, moving that vertex to the right would cause the
polygon delimiting the face on which the internal vertices of Q′ are flat to become concave
(in Fig. 3(a) moving ui to the right causes an angle incident to wi to become concave). We
now argue that there is a left-flat path Q∗ such that Gr(Q∗) contains no internal left-flat
path; then we modify Γ by moving the internal vertices of Q∗ to the right.

Let Q∗ = (x, . . . , y) be a left-flat path such that the number of internal vertices of Gr(Q∗)
is minimum. Suppose, for a contradiction, that Gr(Q∗) contains an internal left-flat path Q′.
Then Gr(Q′) has less internal vertices than Gr(Q∗), since Gr(Q′) is a subgraph of Gr(Q∗)
and the internal vertices of Q′ are internal vertices of Gr(Q∗) and external vertices of Gr(Q′).
This contradiction proves that Gr(Q∗) does not contain any internal left-flat path.

We construct a convex drawing Γ′ of G with a(Γ′) < a(Γ). Initialize Γ′ = Γ and remove
the internal vertices of Q∗. Let ε > 0 be to be determined later. Consider segment xy,
its mid-point z, and a point p in the half-plane to the right of xy such that segment zp is
orthogonal to xy and has length ε. Let a be the arc of circumference between x and y passing
through p. Place each internal vertex v of Q∗ at the intersection point of γ(v) with a, which
exists since Q∗ is monotone. Denote by Γ′ the resulting drawing. We have the following.

I Claim 2. The following statements hold, provided that ε is sufficiently small: (i) Γ′ is
convex; (ii) every vertex that is flat in an incident face in Γ′ is flat in the same face in Γ;
and (iii) every internal vertex of Q∗ is convex in every incident face in Γ′.

Proof sketch. Moving the internal vertices of Q∗ from xy to a results in these vertices being
convex in the unique face g of Gl(Q∗) they are all incident to in Γ′. Further, the difference
between the size of any angle in Γ′ and the size of the corresponding angle in Γ tends to 0 as
ε→ 0; in particular, angles that are flat in Γ either have the same or smaller size in Γ′ (see
w in Figs. 3(b)–(c)), given that Gr(Q∗) does not contain any internal left-flat path. J

Claim 2 implies that Γ′ is convex and that a(Γ′) < a(Γ). The theorem follows. J
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Figure 4 (a) Drawings Γs (black circles and black lines) and Γ′s (white circles and blue lines),
together with points q1, . . . , qn. (b) Morph 〈Γ′s, . . . , Γ〉 after two steps. (c) Drawing Γ. (d) Drawings
Γt (black circles and black lines) and Γ′t (white circles and blue lines), together with points q1, . . . , qn.

5 A Morphing Algorithm

In this section we give algorithms to morph convex drawings of plane graphs. We start with
a lemma about unidirectional linear morphs. Two level planar drawings Γ1 and Γ2 of a
hierarchical plane graph (G,d, L, γ) are left-to-right equivalent if, for any line li ∈ L, for any
vertex or edge x of G, and for any vertex or edge y of G, we have that x precedes (follows) y
on li in Γ1 if and only if x precedes (resp. follows) y on li in Γ2. We have the following.

I Lemma 7. The linear morph 〈Γ1,Γ2〉 between two left-to-right equivalent strictly-convex
level planar drawings Γ1 and Γ2 of a hierarchical-st strictly-convex graph (G,d, L, γ) is
strictly-convex and unidirectional.

Proof sketch. Morph 〈Γ1,Γ2〉 is planar and unidirectional [3]. Also, it is strictly-convex
since an angle v̂uz that is convex in Γ1 and in Γ2 stays convex during 〈Γ1,Γ2〉; this descends
from the planarity of 〈Γ1,Γ2〉 if γ(u) < γ(v), γ(z) or γ(v), γ(z) < γ(u) and from the fact that
u, v, and z are never aligned during 〈Γ1,Γ2〉 if γ(z) < γ(u) < γ(v) (see [7]). J

We now describe an algorithm to construct a strictly-convex morph between any two
strictly-convex drawings Γs and Γt of a plane graph G with n vertices and m internal faces.
The algorithm works by induction on m and consists of at most 2n+ 2m morphing steps.

In the base case we have m = 1, hence G is a cycle. We have the following.

I Claim 3. There exists a strictly-convex unidirectional morph with at most 2n+ 2 steps
between any two strictly-convex drawings Γs and Γt of cycle G.

Proof Sketch. Let v1, . . . , vn be the vertices of G as they appear clockwise around G. Let `
be a straight line not orthogonal to any line through two vertices of G in Γs and in Γt. Draw
a circumference C enclosing both Γs and Γt. Morph Γs (Γt) into a drawing Γ′s (Γ′t) such
that all the vertices of G are on C (see Fig. 4(a) and Fig. 4(d)) with a single strictly-convex
morphing step which is unidirectional in the direction orthogonal to ` (each vertex moves in
the direction that does not make it collide with the initial drawing of G).

Consider n points q1, . . . , qn in this clockwise order on C both in Γ′s and in Γ′t such that
the arc of C between q1 and qn containing q2 does not contain any vertex of G. Morph
Γ′s (Γ′t) into a drawing Γ of G in which vi is placed at qi, for 1 ≤ i ≤ n, as follows (see
Figs. 4(a)–(c)). Let vk be the first vertex of G encountered when clockwise traversing C from
qn. For j = k − 1, . . . , 1, k, . . . , n, move vj to pj . These morphs consist of n unidirectional
strictly-convex morphing steps each. Hence, 〈Γs,Γ′s, . . . ,Γ, . . . ,Γ′t,Γt〉 is a unidirectional
strictly-convex morph between Γs and Γt with 2n+ 2 morphing steps. J

SoCG’15



136 Optimal Morphs of Convex Drawings

In the inductive case we have m > 1. Then we apply Lemma 5 to G in order to obtain a
graph G′ with m′ < m internal faces. We proceed as follows.

Assume first that, according to Lemma 5, a degree-3 internal vertex u of G as well as
the edges and the internal vertices of paths P1, P2, and P3 can be removed from G resulting
in a convex graph G′, where: (i) P1, P2, and P3 respectively connect u with vertices u1, u2,
and u3 of the cycle C delimiting the outer face f of G; (ii) P1, P2, and P3 are vertex-disjoint
except at u; and (iii) the internal vertices of P1, P2, and P3 are degree-2 internal vertices of
G. Graph G has no degree-2 internal vertices, since it is strictly-convex (see Theorem 2),
hence P1, P2, and P3 are edges (u, u1), (u, u2), and (u, u3), respectively.

Vertex u lies in the interior of triangle ∆(u1, u2, u3) both in Γs and in Γt, since deg(G, u) =
3 and the angles incident to u are smaller than π both in Γs and in Γt. Hence, the position of u
is a convex combination of the positions of u1, u2, and u3 both in Γs and in Γt (the coefficients
of such convex combinations might be different in Γs and in Γt). Further, no vertex other
than u and no edge other than those incident to u lie in the interior of triangle ∆(u1, u2, u3)
in Γs and Γt, since these drawings are strictly-convex. With a single unidirectional linear
morph, move u in Γs to the point that is a convex combination of the positions of u1, u2,
and u3 with the same coefficients as in Γt. This morph is strictly-convex since u stays inside
∆(u1, u2, u3) at any time instant. Let Γ′s be the resulting drawing of G.

Let Q1, Q2, and Q3 be the polygons delimiting the faces of G incident to u in Γs. Let Λ′s
be the drawing of G′ obtained from Γ′s by removing u and its incident edges. We claim that
Λ′s is strictly-convex. Indeed, every internal face of G′ different from the face fu that used to
contain u is also a face in Γ′s, hence it is delimited by a strictly-convex polygon. Further,
every internal angle of the polygon delimiting fu is either an internal angle of Q1, Q2, or Q3,
hence it is smaller than π, since Γ′s is strictly-convex, or is incident to u1, u2, or u3; however,
these vertices are concave in f , hence they are convex in fu 6= f . Analogously, the drawing
Λ′t of G′ obtained from Γt by removing u and its incident edges is strictly-convex.

Inductively construct a unidirectional convex morph 〈Λ′s = Λ0, . . . ,Λ` = Λ′t〉 with
` ≤ 2(n− 1) + 2(m− 2) morphing steps. For each 1 ≤ j ≤ `− 1, draw u in Λj at a point that
is the convex combination of the positions of u1, u2, and u3 with the same coefficients as
in Γ′s and in Γt; denote by Γj the resulting drawing of G. Morph 〈Γ′s = Γ0, . . . ,Γ` = Γt〉 is
strictly-convex and unidirectional. Namely, in every morphing step 〈Γj ,Γj+1〉, vertex u moves
between two points that are convex combinations of the positions of u1, u2, and u3 with the
same coefficients, hence it moves parallel to each of u1, u2, and u3 (from which 〈Γ0, . . . ,Γ`〉
is unidirectional) and it stays inside ∆(u1, u2, u3) at any time instant of 〈Γj ,Γj+1〉 (from
which 〈Γ0, . . . ,Γ`〉 is strictly-convex). Thus, 〈Γs,Γ′s = Γ0, . . . ,Γ` = Γt〉 is a unidirectional
strictly-convex morph between Γs and Γt with `+ 1 ≤ 2n+ 2m− 5 morphing steps.

Assume next that, according to Lemma 5, the edges and the internal vertices of a path
P , whose internal vertices are degree-2 internal vertices of G, can be deleted from G so
that the resulting graph G′ is convex. Graph G has no degree-2 internal vertices, since it is
strictly-convex (see Theorem 2), hence P is an edge (u, v). Removing (u, v) from Γs (from
Γt) results in a drawing Λs (resp. Λt) of G′ which is not, in general, convex, since vertices u
and v might be concave in the face fuv of G′ that used to contain (u, v), as in Fig. 5. By
Lemma 4, there exists an oriented straight line ds such that the polygon Quv representing
the cycle Cuv delimiting fuv is ds-monotone. By slightly perturbing the slope of ds, we can
assume that it is not orthogonal to any line through two vertices of G′. Let L′s be the set
of parallel and distinct lines through vertices of G′ and orthogonal to ds. Let γ′s be the
function that maps each vertex of G′ to the line in L′s through it. We have the following.

I Lemma 8. (G′,ds, L
′
s, γ
′
s) is a hierarchical-st convex graph.
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Figure 5 Drawings (a) Γs, (b) Λs, (c) Λ′′s , and (d) Γ′s.

Analogously, there exists an oriented straight line dt that leads to define a hierarchical-st
convex graph (G′,dt, L

′
t, γ
′
t) for which Λt is a straight-line level planar drawing.

We now distinguish three cases, based on whether deg(G′, u),deg(G′, v) > 2 (Case 1),
deg(G′, u) = 2 and deg(G′, v) > 2 (Case 2), or deg(G′, u) = deg(G′, v) = 2 (Case 3). The
case in which deg(G′, u) > 2 and deg(G′, v) = 2 is symmetric to Case 2.

In Case 1 graph G′ is strictly-convex, since it is convex and all its internal vertices have
degree greater than two. By Theorem 6, (G′,ds, L

′
s, γ
′
s) and (G′,dt, L

′
t, γ
′
t) admit strictly-

convex level planar drawings Λ′s and Λ′t, respectively. Let Γ′s (Γ′t) be the strictly-convex level
planar drawing of (G,ds, L

′
s, γ
′
s) (resp. of (G,dt, L

′
t, γ
′
t)) obtained by inserting edge (u, v) as

a straight-line segment in Λ′s (resp. Λ′t). Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right
equivalent. This is argued as follows. First, since G is a plane graph, its outer face is
delimited by the same cycle C in both Γs and Γ′s; further, the clockwise order of the vertices
along C is the same in Γs and in Γ′s (recall that Theorem 6 allows us to arbitrarily prescribe
the strictly-convex polygon representing C). Consider any two vertices or edges x and y
both intersecting a line ` in L′s; assume this line to be oriented in any way. Suppose, for
a contradiction, that x precedes y on ` in Γs and follows y on ` in Γ′s. Since Γs and Γ′s
are strictly-convex, there exists a ds-monotone path Px (Py) containing x (resp. y) and
connecting two vertices of C. Then Px and Py properly cross, contradicting the planarity of
Γs or of Γ′s, or they share a vertex which has a different clockwise order of its incident edges in
the two drawings, contradicting the fact that Γs and Γ′s are drawings of the same plane graph.
By Lemma 7, linear morphs 〈Γs,Γ′s〉 and 〈Γt,Γ′t〉 are strictly-convex and unidirectional.

Inductively construct a unidirectional strictly-convex morph 〈Λ′s = Λ0,Λ1, . . . ,Λ` = Λ′t〉
with ` ≤ 2n + 2(m − 1) morphing steps between Λ′s and Λ′t. For each 0 ≤ j ≤ `, draw
edge (u, v) in Λj as a straight-line segment uv; let Γj be the resulting drawing of G. We
have that morph 〈Γ′s = Γ0,Γ1, . . . ,Γ` = Γ′t〉 is strictly-convex and unidirectional given that
〈Λ0,Λ1, . . . ,Λ`〉 is strictly-convex and unidirectional and given that, at any time instant of
〈Λ0,Λ1, . . . ,Λ`〉, segment uv splits the strictly-convex polygon delimiting fuv into two strictly-
convex polygons. Thus, 〈Γs,Γ′s = Γ0,Γ1, . . . ,Γ` = Γ′t,Γt〉 is a unidirectional strictly-convex
morph between Γs and Γt with `+ 2 ≤ 2n+ 2m morphing steps.

In Case 2 let G′′ be the graph obtained from G′ by replacing path (x, u, y) with edge (x, y),
where x and y are the only neighbors of u in G′. Graph G′′ is strictly-convex, since G′ is
convex and is a subdivision of G′′, and since all the internal vertices of G′′ have degree greater
than two. Moreover, since (G′,ds, L

′
s, γ
′
s) and (G′,dt, L

′
t, γ
′
t) are hierarchical-st convex graphs,

it follows that (G′′,ds, L
′′
s , γ
′′
s ) and (G′′,dt, L

′′
t , γ
′′
t ) are hierarchical-st strictly-convex graphs,

where L′′s = L′s \ {γ′s(u)}, L′′t = L′t \ {γ′t(u)}, γ′′s (z) = γ′s(z) for each vertex z in G′′, and
γ′′t (z) = γ′t(z) for each vertex z in G′′. By Theorem 6, (G′′,ds, L

′′
s , γ
′′
s ) and (G′′,dt, L

′′
t , γ
′′
t )

admit strictly-convex level planar drawings Λ′′s and Λ′′t , respectively.
We modify Λ′′s into a drawing Γ′s of (G,ds, L

′
s, γ
′
s), as in Fig. 5. Assume w.l.o.g. that
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γ′s(x) < γ′s(u) < γ′s(y). Let w be the intersection point of γ′s(u) and xy in Λ′′s (where line
γ′s(u) is the same as in Λs). Let C ′′uv be the facial cycle of G′′ such that the facial cycle Cuv
of G′ is a subdivision of C ′′uv. Insert u in the interior of C ′′uv, on γ′s(u), at distance ε > 0
from w. Remove edge (x, y) from Λ′′s and insert edges (u, v), (u, x), and (u, y) as straight-line
segments. Denote by Γ′s the resulting drawing. We have the following.

I Claim 4. Γ′s is a strictly-convex level planar drawing of (G,ds, L
′
s, γ
′
s), provided that ε > 0

is sufficiently small.

A strictly-convex level planar drawing Γ′t of (G,dt, L
′
t, γ
′
t) can be constructed analogously

from Λ′′t . Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right equivalent, which can be proved as
in Case 1. By Lemma 7, morphs 〈Γs,Γ′s〉 and 〈Γt,Γ′t〉 are strictly-convex and unidirectional.

Inductively construct a unidirectional strictly-convex morph 〈Λ′′s = Λ0,Λ1, . . . ,Λ` = Λ′′t 〉
with ` ≤ 2(n−1)+2(m−1) morphing steps between Λ′′s and Λ′′t . Let 0 < ξ < 1 be sufficiently
small so that the following holds true: For every 0 ≤ j ≤ `, insert u in Λj at a point which is
a convex combination of the positions of x, y, and v with coefficients ( 1−ξ

2 , 1−ξ
2 , ξ), remove

edge (x, y), and insert edges (u, x), (u, y), and (u, v) as straight-line segments; then the
resulting drawing Γj of G is strictly-convex. Such a ξ > 0 exists. Namely, placing v as a
convex combination of the positions of x, y, and v results in angles incident to u and v that
are all convex. Moreover, as ξ → 0, the point at which u is placed approaches segment xy,
hence the size of any angle incident to x or y approaches the size of an angle incident to x or
y in Λj , and the latter is strictly less than π radians.

With a single unidirectional strictly-convex linear morph, move u in Γ′s to the point
that is a convex combination of the positions of x, y, and v with coefficients ( 1−ξ

2 , 1−ξ
2 , ξ);

denote by Γ′′s the drawing of G obtained from this morph. Analogously, let 〈Γ′t,Γ′′t 〉 be a
unidirectional strictly-convex linear morph, where the point at which u is placed in Γ′′t is a
convex combination of the positions of x, y, and v with coefficients ( 1−ξ

2 , 1−ξ
2 , ξ).

For each 0 ≤ j ≤ ` − 1, Γj and Γj+1 are left-to-right equivalent strictly-convex level
planar drawings of the hierarchical-st strictly-convex graph (G,dj , Lj , γj), where dj is an
oriented straight line orthogonal to the direction of morph 〈Λj ,Λj+1〉, Lj is the set of
lines through vertices of G orthogonal to dj , and γj maps each vertex of G to the line
in Lj through it. In particular, Γj and Γj+1 are strictly-convex drawings of G since Λj
and Λj+1 are strictly-convex drawings of G′′ and by the choice of ξ; further, every face
of G is an st-face in Γj and Γj+1 by Lemmata 3 and 4; moreover, u moves parallel to
the other vertices since 〈Λj ,Λj+1〉 is unidirectional and since the points at which u is
placed in Γj and Γj+1 are convex combinations of the positions of x, y, and v with the
same coefficients. By Lemma 7, 〈Γj ,Γj+1〉 is strictly-convex and unidirectional. Hence,
〈Γs,Γ′s,Γ′′s ,= Γ0,Γ1, . . . ,Γ` = Γ′′t ,Γ′t,Γt〉 is a unidirectional strictly-convex morph between
Γs and Γt with `+ 4 ≤ 2n+ 2m morphing steps.

Case 3 is very similar to Case 2, hence we only sketch the algorithm here. Let G′′ be
the graph obtained from G′ by replacing paths (xu, u, yu) and (xv, v, yv) with edges (xu, yu)
and (xv, yv), respectively, where xu and yu (xv and yv) are the only neighbors of u (resp. v)
in G′; (G′′,ds, L

′′
s , γ
′′
s ) and (G′′,dt, L

′′
t , γ
′′
t ) are hierarchical-st strictly-convex graphs, where

L′′s = L′s \ {γ′s(u), γ′s(v)}, L′′t = L′t \ {γ′t(u), γ′t(v)}, γ′′s (z) = γ′s(z) for each vertex z in G′′, and
γ′′t (z) = γ′t(z) for each vertex z in G′′. By Theorem 6, (G′′,ds, L

′′
s , γ
′′
s ) and (G′′,dt, L

′′
t , γ
′′
t )

admit strictly-convex level planar drawings Λ′′s and Λ′′t , respectively. We modify Λ′′s into a
strictly-convex level planar drawing Γ′s of (G,ds, L

′
s, γ
′
s) by inserting u (v) on γ′s(u) (resp.

γ′s(v)) at distance ε > 0 from the intersection point of γ′s(u) with segment xuyu (of γ′s(v)
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with segment xvyv) in the interior of the facial cycle of G′′ such that the facial cycle Cuv of
G′ is a subdivision of C ′′uv. Analogously, we modify Λ′′t into a strictly-convex level planar
drawing Γ′t of (G,dt, L

′
t, γ
′
t). Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right equivalent.

Inductively construct a unidirectional strictly-convex morph 〈Λ′′s = Λ0, . . . ,Λ` = Λ′′t 〉
with ` ≤ 2(n − 2) + 2(m − 1) morphing steps. Let ξ > 0 be sufficiently small so that
for every 0 ≤ j ≤ `, inserting u (v) in Λj at a convex combination of the positions of
xu, yu, xv, and yv with coefficients ( 1−ξ

2 , 1−ξ
2 , ξ2 ,

ξ
2 ) (resp. ( ξ2 ,

ξ
2 ,

1−ξ
2 , 1−ξ

2 )), removing edges
(xu, yu) and (xv, yv), and inserting edges (xu, u), (yu, u), (xv, v), (yv, v), and (u, v) results
in a strictly-convex drawing Γj of G. With a unidirectional strictly-convex linear morph
〈Γ′s,Γ′′s 〉, move u in Γ′s to the point that is a convex combination of the positions of xu, yu,
xv, and yv with coefficients ( 1−ξ

2 , 1−ξ
2 , ξ2 ,

ξ
2 ). With a unidirectional strictly-convex linear

morph 〈Γ′′s ,Γ′′′s 〉, move v in Γ′′s to the point that is a convex combination of the positions of
xu, yu, xv, and yv with coefficients ( ξ2 ,

ξ
2 ,

1−ξ
2 , 1−ξ

2 ). Define morph 〈Γ′t,Γ′′t ,Γ′′′t 〉 analogously.
For each 0 ≤ j ≤ `− 1, Γj and Γj+1 are left-to-right equivalent strictly-convex level planar
drawings of the hierarchical-st strictly-convex graph (G,dj , Lj , γj), where dj is an oriented
line orthogonal to the direction of morph 〈Λj ,Λj+1〉, Lj is the set of lines through vertices
of G and orthogonal to dj , and γj maps each vertex of G to the line in Lj through it. By
Lemma 7, 〈Γs,Γ′s,Γ′′s ,Γ′′′s = Γ0, . . . ,Γ` = Γ′′′t ,Γ′′t ,Γ′t,Γt〉 is a unidirectional strictly-convex
morph between Γs and Γt with `+ 6 ≤ 2n+ 2m morphing steps. We get the following.

I Theorem 9. There exists an algorithm to construct a strictly-convex unidirectional morph
with O(n) morphing steps between any two strictly-convex drawings of the same n-vertex
plane graph.

A simple enhancement of the above described algorithm allows us to extend our results
to (non-strictly) convex drawings of convex graphs. We have the following.

I Theorem 10. There exists an algorithm to construct a convex unidirectional morph with
O(n) morphing steps between any two convex drawings of the same n-vertex plane graph.

Proof sketch. First, with O(n) unidirectional convex morphing steps we morph Γs (Γt)
into a convex drawing Γ′s (resp. Γ′t) such that the polygon delimiting the outer face of G is
strictly-convex. This is done by moving, during each morphing step, all the internal vertices
of a maximal path incident to the outer face whose internal vertices have degree two.

Second, we consider each maximal path P = (u1, . . . , uk) such that u2, . . . , uk−1 are
degree-2 internal vertices of G; with a single linear morph in the direction of u1uk, we move
each of u2, . . . , uk−1 in Γ′s to the point which is a convex combination of the positions of
u1 and uk with the same coefficients as in Γ′t. Over all such paths P this amounts to O(n)
unidirectional convex morphing steps; denote by Γ′′s the resulting drawing of G.

Third, we replace each maximal path P = (u1, . . . , uk) such that u2, . . . , uk−1 are degree-2
internal vertices of G with an edge (u1, uk) in G, Γ′′s , and Γ′t; we obtain a strictly-convex
graph G′, and two strictly-convex drawings Λ′′s and Λ′t of G′. We compute a strictly-convex
unidirectional morph 〈Λ′′s = Λ0, . . . ,Λ` = Λ′t〉 with ` ∈ O(n) morphing steps as in Theorem 9.
For each 0 ≤ j ≤ `, we reinsert the internal vertices of each path P = (u1, . . . , uk) in Λj at
the points that are the convex combinations of the positions of u1 and uk in Λj with the same
coefficients as in Γ′′s and in Γ′t. Each morphing step 〈Γj ,Γj+1〉 is convex and unidirectional,
since ui moves between two points that are convex combinations of the positions of u1 and
uk with the same coefficients. Hence, 〈Γs, . . . ,Γ′s, . . . ,Γ′′s = Γ0,Γ1, . . . ,Γ` = Γ′t, . . . ,Γt〉 is a
unidirectional convex morph between Γs and Γt with O(n) morphing steps. J
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