research

Morphing Planar Graph Drawings Optimally

Abstract

We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any nn-vertex plane graph in O(n)O(n) morphing steps, thus improving upon the previously best known O(n2)O(n^2) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs\Gamma_s and Γt\Gamma_t of an nn-vertex plane graph GG such that any planar morph between Γs\Gamma_s and Γt\Gamma_t requires Ω(n)\Omega(n) morphing steps

    Similar works