42 research outputs found

    Necessary and sufficient conditions for analysis and synthesis of markov jump linear systems with incomplete transition descriptions

    Get PDF
    This technical note is concerned with exploring a new approach for the analysis and synthesis for Markov jump linear systems with incomplete transition descriptions. In the study, not all the elements of the transition rate matrices (TRMs) in continuous-time domain, or transition probability matrices (TPMs) in discrete-time domain are assumed to be known. By fully considering the properties of the TRMs and TPMs, and the convexity of the uncertain domains, necessary and sufficient criteria of stability and stabilization are obtained in both continuous and discrete time. Numerical examples are used to illustrate the results. © 2006 IEEE.published_or_final_versio

    Full-State Linearization and Stabilization of SISO Markovian Jump Nonlinear Systems

    Get PDF
    This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear systems. According to the proposed relative degree set definition, the system can be transformed into the canonical form through the appropriate coordinate changes followed with the Markovian switchings; that is, the system can be full-state linearized in every jump mode with respect to the relative degree set n,…,n. Then, a stabilizing control is designed through applying the backstepping technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to illustrate the effectiveness of our results

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Output-Feedback Stabilization Control of Systems with Random Switchings and State Jumps

    Get PDF
    The work is concerned with output-feedback stabilization control problem for a class of systems with random switchings and state jumps. The switching signal is supposed to obey Poisson distribution. Firstly, based on the asymptotical property of the distribution of switching points, we derive some sufficient conditions to guarantee the closed-loop system to be almost surely exponentially stable. Then, we pose a parametrization approach to convert the construction conditions of the output-feedback control into a family of matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of our method

    Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays

    Get PDF
    published_or_final_versio

    Stabilization of Continuous-Time Random Switching Systems via a Fault-Tolerant Controller

    Get PDF
    This paper focuses on the stabilization problem of continuous-time random switching systems via exploiting a fault-tolerant controller, where the dwell time of each subsystem consists of a fixed part and random part. It is known from the traditional design methods that the computational complexity of LMIs related to the quantity of fault combination is very large; particularly system dimension or amount of subsystems is large. In order to reduce the number of the used fault combinations, new sufficient LMI conditions for designing such a controller are established by a robust approach, which are fault-free and could be solved directly. Moreover, the fault-tolerant stabilization realized by a mode-independent controller is considered and suitably applied to a practical case without mode information. Finally, a numerical example is used to demonstrate the effectiveness and superiority of the proposed methods

    Stability Analysis of A Class of Hybrid Stochastic Retarded Systems Under Asynchronous Switching

    Get PDF

    Stabilization of nonlinear hybrid stochastic delay systems by feedback control based on discrete-time state and mode observations

    Get PDF
    This paper is concerned with the stabilization problem for nonlinear stochastic delay systems with Markovian switching by feedback control based on discrete-time state and mode observations. By constructing an efficient Lyapunov functionals, we establish the sufficient stabilization criteria not only in the sense of exponential stability (both the mean-square stability and the almost sure stability) but also in other sense – that of H∞ stability and asymptotic stability. Meanwhile, the upper bound on the duration τ between two consecutive state and mode observations is obtained. Numerical examples are provided to demonstrate the effectiveness of our theoretical results
    corecore