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This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear
systems.According to the proposed relative degree set definition, the system can be transformed into the canonical form through the
appropriate coordinate changes followedwith theMarkovian switchings; that is, the system can be full-state linearized in every jump
mode with respect to the relative degree set {𝑛, . . . , 𝑛}. Then, a stabilizing control is designed through applying the backstepping
technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to
illustrate the effectiveness of our results.

1. Introduction

Markovian jump systems have been studied since the pio-
neering work on quadratic control of linear jump systems in
the 1960s. It switches from one mode to another in a random
way, and the switching between the modes is governed by a
Markov processwith discrete and finite state space.Due to the
advantage of the probabilistic description through Markov
process, Markovian jump systems are well suited to model
changes induced by external causes, for example, random
faults, unexpected events, and uncontrolled configuration
changes; see [1–5]. Noticeable achievements have been made
in the past three decades on stability analysis and controller
design of linear Markovian jump systems (see [1, 2, 6–11]
and the references therein). Reference [7] has investigated the
problem of control for discrete time-delay linear systemswith
Markovian jumpparameters. References [10, 11] discussed the
sliding mode control problems for Markovian jump linear
singular systems. Meanwhile, many authors have considered
the results for linearMarkovian jump time-delay systems; see
[7, 12–15] and the references therein.

On the other hand, many authors have turned to
study the stability and stabilization problems of Marko-
vian jump nonlinear systems. Reference [16] especially, has

established the framework of stability analysis for Markovian
jump nonlinear system. Reference [17] has proposed the
Kalman-Yacubovitch-Popov (KYP) Lemma for the passivity
of Markovian jump nonlinear system. [18] discussed the𝐻

∞

control design for Markovian jump nonlinear system. Refer-
ence [19] has discussed the stabilization problems for inter-
connectedMarkovian jump nonlinear system from the view-
point of dissipativity theory. Reference [20] has discussed
the stabilization problem for a class of Markovian jump
nonlinear systems in the special canonical form. All these
works extended results forMarkovian jump nonlinear system
from the traditional nonlinear control theory, such as [21–26].

The purpose of this paper is to fill some gaps on the
geometric control theory for Markovian jump nonlinear
systems. It is well known that the geometric control theory
plays an important role in the stabilization of nonlinear
systems; see [23, 25, 26]. However, as to the Markovian jump
systems, there is still no related research work on this topic.
The difficulty concretes on how to transform the Markovian
jump nonlinear system into the canonical form? Motivated
by this point, this paper investigates the linearization and
stabilizing control design problems for Markovian jump
nonlinear systems. More concretely, the main contribution of
this paper contains the following aspects.
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(i) The definition of relative degree set is proposed for
Markovian jump nonlinear systems. Because there
exist many nonlinear subsystems corresponding to
different jumpmode, it would be more appropriate to
define the relative degrees of the system in terms of
set.

(ii) The full-state linearization method for Markovian
jump nonlinear system is proposed. For every sub-
system, the corresponding diffeomorphism can be
constructed to transform the system into the triangle
form, which implies that all the subsystems can be
transformed to the common triangle form, but in
different coordinates.

(iii) The backstepping technique is applied for the stabiliz-
ing control design of the transformed triangle form of
Markovian jump nonlinear system.

The rest of this paper is organized as follows. Section 2
discusses the feedback linearization of Markovian jump
systems. According to the proposed relative degree set def-
inition, the appropriate coordinate is adopted under which
the system can be transformed into the canonical form
followed with the Markovian switchings. Section 3 discusses
the stabilizing control design through applying the backstep-
ping technique on the canonical form of Markovian jump
nonlinear systems. Section 4 presents a numerical example to
illustrate the effectiveness of our results. Section 5 concludes
this paper.

For convenience, we adopt the following notation: 𝐴 is
the transpose of the corresponding matrix 𝐴. 𝐴 ≥ 0 (𝐴 >

0) is the positive semi-definite (positive-definite) matrix. 𝑅𝑛
is 𝑛-dimensional Euclidean space. ‖𝑥‖ is 2-norm of a vector
𝑥 ∈ 𝑅

𝑛.K is the family of all increasing functions 𝑘, such that
𝑘(0) = 0, 𝑘(𝑡) > 0 for 𝑡 > 0.K

∞
is the family of all functions

𝑘 ∈ K with 𝑘(∞) = ∞.

2. Feedback Linearization

Consider the following controlledMarkovian jumpnonlinear
system

�̇� = 𝑓 (𝑥, 𝑟
𝑡
) + 𝑔 (𝑥, 𝑟

𝑡
) 𝑢,

𝑦 = ℎ (𝑥, 𝑟
𝑡
) ,

(1)

in a fixed complete probability space (Ω,F, 𝑃), where 𝑥(𝑡) ∈
𝑅
𝑛 is the state vector, 𝑦(𝑡) ∈ 𝑅 is the controlled output, and

𝑢(𝑡) ∈ 𝑅 is the control input. {𝑟
𝑡
, 𝑡 ≥ 0} is the continuous-time

Markov process taking values in a finite set 𝜑 = {1, 2, . . . , 𝑁},
which represents the switching between the different modes
and its dynamics are described by the following transitions
probabilities:

𝑃 [𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖] = {

𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , 𝑖 ̸= 𝑗,

1 + 𝜆
𝑖𝑖
ℎ + 𝑜 (ℎ) , 𝑖 = 𝑗,

(2)

where 𝜆
𝑖𝑗
is the transition rate from mode 𝑖 to 𝑗 with 𝜆

𝑖𝑗
≥ 0

when 𝑖 ̸= 𝑗 and 𝜆
𝑖𝑖

= −∑
𝑁

𝑗=1, 𝑗 ̸= 𝑖
𝜆
𝑖𝑗
and 𝑜(ℎ) is such that

lim
ℎ→0

𝑜(ℎ)/ℎ = 0. The Markovian switching parameter
process is assumed to be completely measurable at any time
instant. For simplicity of notations, take 𝑓

𝑖
for 𝑓(𝑥, 𝑖) when

𝑟
𝑡
= 𝑖 ∈ 𝜑 and so forth. 𝑓

𝑖
, 𝑔
𝑖
, and ℎ

𝑖
are Lipschitz satisfying

a linear growth condition, which guarantees that the system
(1) has a unique strong solution [1].

Motivated by the nonlinear control theory for the deter-
ministic systems (see [25, 26] and the references therein), we
present the following definition related to the relative degree
for Markovian jump nonlinear systems.

Definition 1 (relative degree set). The Markovian jump non-
linear system (1) is said to have the relative degree set
{𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑁
}, if for every 𝑟

𝑡
= 𝑖 ∈ 𝜑, the corresponding

system is with the relative degree 𝜌
𝑖
, that is,

𝐿
𝑔𝑖
𝐿
𝑗−1

𝑓𝑖

ℎ
𝑖
(𝑥) = 0,

𝐿
𝑔𝑖
𝐿
𝜌𝑖−1

𝑓𝑖

ℎ
𝑖
(𝑥) ̸= 0,

(3)

where 𝑗 = 1, 2, . . . , 𝜌
𝑖
− 1.

Obviously, the above definition is a generalization of the
relative degree definition in [25, 26]. Here, the relative degree
set contains all the relative degree, of all the subsystem for
every system mode 𝑖 ∈ 𝜑, which is determined by the
characteristic of Markovian jump nonlinear systems.

Note that we start off with the case when all the sub-
systems are SISO, because it gives more insight into compu-
tations and helps understanding the concepts which can be
generalized to multivariable systems. Moreover, we consider
the system (1) with the relative degree set {𝑛, . . . , 𝑛}, which
satisfies the following condition according to Definition 1:

𝐿
𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥) = 0,

𝐿
𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥) ̸= 0.

(4)

Now, let us consider a set of new coordinates

𝜉
(𝑖)

= 𝜙
𝑖
(𝑥) , 𝑖 ∈ 𝜑, (5)

which indeed stands for the following coordinates:

𝜉
(𝑖)

= 𝜙
𝑖
(𝑥) =

[
[
[
[

[

𝜙
𝑖1
(𝑥)

𝜙
𝑖2
(𝑥)
...

𝜙
𝑖𝑛
(𝑥)

]
]
]
]

]

=

[
[
[
[
[

[

ℎ
𝑖
(𝑥)

𝐿
1

𝑓𝑖

ℎ
𝑖
(𝑥)

...
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥)

]
]
]
]
]

]

. (6)

Take the new coordinate variables as follows:

𝑦
(𝑖)

1
= ℎ
𝑖
(𝑥) ,

𝑦
(𝑖)

2
= 𝐿
1

𝑓𝑖

ℎ
𝑖
(𝑥) ,

...

𝑦
(𝑖)

𝑛
= 𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥) .

(7)
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For every 𝑖 ∈ 𝜑, if the above 𝜙
𝑖
and its inverse 𝜙−1

𝑖
are both

smooth functions, 𝜙
𝑖
is called a diffeomorphism; see [25, 26].

Under this assumption, we have

̇𝑦
(𝑖)

1
= 𝑦
(𝑖)

2
,

̇𝑦
(𝑖)

2
= 𝑦
(𝑖)

3
,

...

̇𝑦
(𝑖)

𝑛
= 𝐿
𝑛

𝑓𝑖

ℎ
𝑖
(𝑥) + 𝐿

𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥) 𝑢.

(8)

Due to the fact that 𝐿
𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥) ̸= 0, we can set the control

law as

𝑢 = (𝐿
𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥))
−1

(V − 𝐿
𝑛

𝑓𝑖

ℎ
𝑖
(𝑥)) , (9)

then the system (8) is feedback equivalent to the following
linearized form:

̇𝜉
(𝑖)

= 𝐴𝜉
(𝑖)

+ 𝐵V,

𝑦 = 𝐶𝜉
(𝑖)

,

(10)

where

𝐴 =

[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0
... d

...
... 0 1

0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]

]𝑛×𝑛

, 𝐵 =

[
[
[
[
[
[

[

0

0
...
0

1

]
]
]
]
]
]

]𝑛×1

,

𝐶 = [1 0 ⋅ ⋅ ⋅ 0 0]
1×𝑛

,

(11)

which can be regarded as the canonical form for Markovian
jump nonlinear system.

Through the above discussion, we have transformed the
Markovian jump system into the triangle form corresponding
to different 𝜉

(𝑖)-coordinate, respectively. Hence, we have
established the relationship between the proposed relative
degree set definition and the full-state linearization for
Markovian jump nonlinear systems as follows.

Theorem 2. If the system (1) has a relative set {𝑛, . . . , 𝑛}, then
the system is full-state feedback linearizable.

Remark 3. The above result can be regarded as a generalized
work from deterministic nonlinear control theory to Marko-
vian jump nonlinear system. The key point concentrates on
taking the appropriate coordinate changes followed with the
Markovian switchings. In this way, we can transform the
subsystems into the canonical form (10), which have the same
triangle structure but within different coordinates.

Following with the update of the Markovian jump mode
𝑟
𝑡
= 𝑖, we can transform the 𝑥-system into the corresponding

𝜉
(𝑖)-system, which also works for the stability conditions.
Considering the system (1), for any nonnegative functions

𝑈(𝑥, 𝑖) ∈ 𝐶(𝑅
𝑛

) : 𝑅
𝑛

→ 𝑅
+, with 𝑈(0, 𝑖) = 0, 𝑖 ∈ 𝜑, we

have

L𝑈 (𝑥, 𝑖) =
𝜕𝑈


(𝑥, 𝑖)

𝜕𝑥
𝑓
𝑖
+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
𝑈 (𝑥, 𝑗) , (12)

where L is the infinitesimal generator of the system; see [1,
17]. Through the coordinate transformation, denoting and

�̂� (𝜉
(𝑖)

, 𝑖) = 𝑉 (𝜙
𝑖
(𝑥) , 𝑖) = 𝑈 (𝑥, 𝑖) , (13)

�̂� (𝜉
(𝑖)

, 𝑗) = 𝑉 (𝜉
(𝑗)

, 𝑗) , (14)

we have

L𝑉(𝜉
(𝑖)

, 𝑖)

= L𝑈(𝑥
(𝑖)

, 𝑖) = (
𝜕𝑈


(𝑥, 𝑖)

𝜕𝑥
𝑓
𝑖
+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
𝑈 (𝑥, 𝑗))

= (
𝜕𝑈


(𝑥, 𝑖)

𝜕𝑥
𝑓
𝑖
+ 𝜆
𝑖1
𝑈 (𝑥, 1) + ⋅ ⋅ ⋅ + 𝜆

𝑖𝑁
𝑈 (𝑥,𝑁))

=
𝜕𝑉


(𝜉
(𝑖)

, 𝑖)

𝜕𝜉(𝑖)
𝐴 + 𝜆

𝑖1
𝑉(𝜉
(1)

, 1)

+ ⋅ ⋅ ⋅ + 𝜆
𝑖𝑁
𝑉(𝜉
(𝑁)

, 𝑁)

=
𝜕𝑉


(𝜉
(𝑖)

, 𝑖)

𝜕𝜉(𝑖)
𝐴 + 𝜆

𝑖1
�̂� (𝜉
(𝑖)

, 1)

+ ⋅ ⋅ ⋅ + 𝜆
𝑖𝑁
�̂� (𝜉
(𝑖)

, 𝑁)

=
𝜕𝑉


(𝜉
(𝑖)

, 𝑖)

𝜕𝜉(𝑖)
𝐴 +

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
�̂� (𝜉
(𝑖)

, 𝑗) .

(15)

Due to the fact that the stability of the system (1) is
equivalent to the system (10), the stability condition for the
system (1) in [1] can be transformedwith respect to the system
(10) as follows.

Lemma 4. The unforced system (10) is globally asymptotically
stable in probability (GASP), if there is a set of positive-definite
functions 𝑉(𝜉

(𝑖)

, 𝑖) ∈ 𝐶(𝑅
𝑛

) with 𝑉(𝜉
(𝑖)

, 𝑖) → ∞ as ‖ 𝜉
(𝑖)

‖→

∞, 𝑐 ∈ K, 𝑖 ∈ 𝜑, such that

L𝑉(𝜉
(𝑖)

, 𝑖) =
𝜕𝑉


(𝜉
(𝑖)

, 𝑖)

𝜕𝜉(𝑖)
𝐴 +

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
�̂� (𝜉
(𝑖)

, 𝑗)

≤ − 𝑐 (

𝜉
(𝑖)

) .

(16)

Proof. According toDefinition 5.34 andTheorem 5.36 of [16],
the asymptotical stability of the system can be guaranteed by

𝜕𝑉


(𝜉
(𝑖)

, 𝑖)

𝜕𝜉(𝑖)
𝐴 +

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
𝑉(𝜉
(𝑗)

, 𝑗) ≤ −𝑐 (

𝜉
(𝑖)

) . (17)
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Then, considering the transformation of (14), the above
condition can be represented in the form of (16). The proof
of Lemma 4 is completed.

Obviously, the above results also hold for the closed-
loop system under the control law. Although with the relative
degree set {𝑛, . . . , 𝑛}, the Markovian jump nonlinear system
(1) can be feedback equivalent to the triangle form (10), but
how to construct the control V such that the 𝜉(𝑖)-system can
be stabilized following with theMarkovian switchings, which
is an interesting problem and will be discussed in the next
section.

3. Stabilizing Control Design

In this section, we consider the backstepping control design
of the Markovian jump nonlinear system (1). Through the
discussion in Section 2, the system (1) can be transformed
into the following 𝜉(𝑖)-system:

̇𝑦
(𝑖)

1
= 𝑦
(𝑖)

2
,

̇𝑦
(𝑖)

2
= 𝑦
(𝑖)

3
,

...

̇𝑦
(𝑖)

𝑛
= V.

(18)

Now, we continue to take the following coordinate
change:

𝑧
(𝑖)

1
= 𝑦
(𝑖)

1
,

𝑧
(𝑖)

2
= 𝑦
(𝑖)

2
− 𝑐
(𝑖)

1
,

...

𝑧
(𝑖)

𝑛
= 𝑦
(𝑖)

𝑛
− 𝑐
(𝑖)

𝑛−1
,

(19)

where the known function 𝑐
(𝑖)

𝑘
is smooth and satisfying

𝑐
(𝑖)

𝑘
(0) = 0, 𝑘 ∈ {1, . . . , 𝑛 − 1}, 𝑖 ∈ 𝜑. Equivalently, we have

𝑦
(𝑖)

1
= 𝑧
(𝑖)

1
,

𝑦
(𝑖)

2
= 𝑧
(𝑖)

2
+ 𝑐
(𝑖)

1
,

...

𝑦
(𝑖)

𝑛
= 𝑧
(𝑖)

𝑛
+ 𝑐
(𝑖)

𝑛−1
.

(20)

Furthermore, for every 𝑖 ∈ 𝜑, between any two of the
following coordinates

[
[

[

𝑧
(𝑖)

1

...
𝑧
(𝑖)

𝑛

]
]

]

⇐⇒
[
[

[

𝑦
(𝑖)

1

...
𝑦
(𝑖)

𝑛

]
]

]

⇐⇒
[
[

[

𝑥
1

...
𝑥
𝑛

]
]

]

⇐⇒
[
[
[

[

𝑦
(𝑗)

1

...
𝑦
(𝑗)

𝑛

]
]
]

]

⇐⇒
[
[
[

[

𝑧
(𝑖)

𝑗

...
𝑧
(𝑗)

𝑛

]
]
]

]
(21)

or

𝑍
(𝑖)

𝑛
⇐⇒ 𝜉

(𝑖)

⇐⇒ 𝑥 ⇐⇒ 𝜉
(𝑗)

⇐⇒ 𝑍
(𝑗)

𝑛
, (22)

it can be found that there exists the corresponding inverse
transformation, which is also a diffeomorphism. For simplic-
ity of notations, take 𝑍(𝑖)

𝑛
= 𝑇
𝑖
(𝑥), then we have

𝑍
(𝑗)

𝑛
= 𝑇
𝑗
(𝑇
−1

𝑖
(𝑍
(𝑖)

𝑛
)) . (23)

Denote

𝜉
(𝑖)

𝑘
= [𝑦
(𝑖)

1
, . . . , 𝑦

(𝑖)

𝑘
]


,

𝑍
(𝑖)

𝑘
= [𝑧
(𝑖)

1
, . . . , 𝑧

(𝑖)

𝑘
]


,

𝐹
(𝑖)

𝑘
= [𝑦
(𝑖)

2
, . . . , 𝑦

(𝑖)

𝑘−1
]


.

(24)

As follows, we discuss the control design for the system
(18). Firstly, for every 𝑖 ∈ 𝜑, taking the following set of
Lyapunov functions

𝑉(𝜉
(𝑖)

, 𝑖) =
1

2

𝑛

∑
𝑘=1

(𝑦
(𝑖)

𝑘
− 𝑐
(𝑖)

𝑘−1
)
2

=
1

2

𝑛

∑
𝑘=1

(𝑧
(𝑖)

𝑘
)
2

.

(25)

Motivated by (16), the infinite small operator for the
system (18) is given as follows:

L𝑉(𝜉
(𝑖)

, 𝑖) = 𝑦
(𝑖)

1
𝑦
(𝑖)

2

+

𝑛−1

∑
𝑘=2

(𝑦
(𝑖)

𝑘
− 𝑐
(𝑖)

𝑘−1
)(𝑦
(𝑖)

𝑘+1
−

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

̇𝜉
(𝑖)

𝑘−1
)

+ (𝑦
(𝑖)

𝑛
− 𝑐
(𝑖)

𝑛−1
)(V −

𝜕𝑐
(𝑖)

𝑛−1

𝜕𝜉
(𝑖)

𝑛−1

̇𝜉
(𝑖)

𝑛−1
)

+
1

2

𝑁

∑
𝑗=1

𝑛

∑
𝑘=1

𝜆
𝑖𝑗
(𝑦
(𝑗)

𝑘
− 𝑐
(𝑖)

𝑘−1
)
2

= 𝑧
(𝑖)

1
(𝑧
(𝑖)

2
+ 𝑐
(𝑖)

1
)

+

𝑛−1

∑
𝑘=2

𝑧
(𝑖)

𝑘
(𝑧
(𝑖)

𝑘+1
+ 𝑐
(𝑖)

𝑘
−

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
)

+ 𝑧
(𝑖)

𝑛
(V −

𝜕𝑐
(𝑖)

𝑛−1

𝜕𝜉
(𝑖)

𝑛−1

𝐹
(𝑖)

𝑛−1
)

+
1

2

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
(

𝑛

∑
𝑘=1

(𝑧
(𝑗)

𝑘
)
2

) .

(26)
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Using Young’s inequality, we have

𝑛−1

∑
𝑘=1

𝑧
(𝑖)

𝑘
𝑧
(𝑖)

𝑘+1
≤

𝑛−1

∑
𝑘=1

(
1

2
𝛽
2

𝑘
(𝑧
(𝑖)

𝑘
)
2

+
1

(2𝛽2
𝑘
) (𝑧
(𝑖)

𝑘+1
)
2
)

=

𝑛

∑
𝑘=1

(
1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)(𝑧
(𝑖)

𝑘
)
2

,

(27)

where 𝛽
𝑘
> 0 are designed parameters. Then, (26) reduces to

L𝑉(𝜉
(𝑖)

, 𝑖) ≤ 𝑧
(𝑖)

1
[(

1

2
𝛽
2

1
+

1

2𝛽2
0

)𝑧
(𝑖)

1
+ 𝑐
(𝑖)

1
]

+

𝑛−1

∑
𝑘=2

𝑧
(𝑖)

𝑘
[(

1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)𝑧
(𝑖)

𝑘

+𝑐
(𝑖)

𝑘
𝐿 −

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
]

+ (𝑧
(𝑖)

𝑛
)(V −

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑛−1
)

+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
(
1

2

𝑛

∑
𝑘=1

(𝑧
(𝑗)

𝑘
)
2

) .

(28)

Taking

𝑐
(𝑖)

1
= −𝛼
1
𝑧
(𝑖)

1
− (

1

2
𝛽
2

1
+

1

2𝛽2
0

)𝑧
(𝑖)

1
, (29)

𝑐
(𝑖)

𝑘
= 𝛼
𝑘
𝑧
(𝑖)

𝑘
− (

1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)𝑧
(𝑖)

𝑘
+

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
, (30)

where 𝛼
𝑘

> 0 are also designed parameters. Note that,
the final value of the designed control V can be regulated
through adjusting the parameters 𝛼

𝑘
and 𝛽

𝑘
, which can

benefit many practical control design requirements. With
fixed appropriate 𝛼

𝑘
and 𝛽

𝑘
, the transformation of (19) and

(23) can be constructed directly.
Considering the last term of (29), through the transfor-

mation (22), we have

�̂� (𝜉
(𝑖)

, 𝑗) = �̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗) =

1

2

𝑛

∑
𝑘=1

(𝑧
(𝑗)

𝑘
)
2

 𝑧(𝑖)𝑛 =𝑇𝑗(𝑇−1𝑖 (𝑍
(𝑖)

𝑛 ))

.

(31)

Denote

�̂�
𝑛−1

(𝑍
(𝑖)

𝑛−1
, 𝑗) = �̂�

𝑛
(𝑍
(𝑖)

𝑛−1
, 0, 𝑗) , Δ�̂�

𝑛
(𝑍
(𝑖)

𝑛
, 𝑗)

= ∫
1

0

𝜕�̂�
𝑛
(𝑍
(𝑖)

𝑛−1
, 𝜍
(𝑖)

, 𝑗)

𝜕𝜍(𝑖)

 𝜍(𝑖)=𝜏𝑧(𝑖)𝑛

𝑑𝜏,

(32)

then we have

�̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗) = �̂�

𝑛−1
(𝑍
(𝑖)

𝑛−1
, 𝑗) + 𝑧

(𝑖)

𝑛
Δ�̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗) . (33)

Moreover, repeating this procedure, we have

V̂
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗) =

1

2
(

𝑛

∑
𝑘=1

(𝑧
(𝑗)

𝑘
)
2

)

𝑍(𝑗)𝑛 =𝑇𝑗(𝑇−1𝑖 (𝑍
(𝑖)

𝑛 ))

= �̂�
𝑛−1

(𝑍
(𝑖)

𝑛−1
, 𝑗) + 𝑧

(𝑖)

𝑛
Δ�̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗)

...

= �̂�
1
(𝑍
(𝑖)

1
, 𝑗) +

𝑛

∑
𝑘=2

𝑧
(𝑖)

𝑘
Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗) .

(34)

Note that
�̂�
1
(𝑍
(𝑖)

1
, 𝑗) = �̂� (𝑧

(𝑖)

1
, 0, . . . , 0, 𝑗)

= �̂� (0, . . . , 0, 𝑗) + 𝑧
(𝑖)

1
Δ�̂�
1
= 𝑧
(𝑖)

1
Δ�̂�
1
.

(35)

Finally, we have

�̂� (𝜉
(𝑖)

, 𝑗) =

𝑛

∑
𝑘=1

𝑧
(𝑖)

𝑘
Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗) . (36)

Through the above discussion on the coupled term, we
can have

L𝑉(𝜉
(𝑖)

, 𝑖) ≤ 𝑧
(𝑖)

1
[(

1

2
𝛽
2

1
+

1

2𝛽2
0

)𝑧
(𝑖)

1
+ 𝑐
(𝑖)

1
]

+

𝑛−1

∑
𝑘=2

𝑧
(𝑖)

𝑘
[(

1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)𝑧
(𝑖)

𝑘

+𝑐
(𝑖)

𝑘
−

𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
]

+ (𝑧
(𝑖)

𝑛
)(V −

𝜕𝑐
(𝑖)

𝑛−1

𝜕𝜉
(𝑖)

𝑛−1

𝐹
(𝑖)

𝑛−1
)

+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
(

𝑛

∑
𝑘=1

𝑧
(𝑖)

𝑘
Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗))

= 𝑧
(𝑖)

1

[

[

(
1

2
𝛽
2

1
+

1

2𝛽2
0

)𝑧
(𝑖)

1

+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
1
(𝑍
(𝑖)

1
, 𝑗) + 𝑐

(𝑖)

1

]

]

+

𝑛−1

∑
𝑘=1

𝑧
(𝑖)

𝑘

[

[

(
1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)𝑧
(𝑖)

𝑘
+ 𝑐
(𝑖)

𝑘

−
𝜕𝑐
𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗)]

]

+(𝑧
(𝑖)

𝑛
)(V −

𝜕𝑐
(𝑖)

𝑛−1

𝜕𝜉
(𝑖)

𝑛−1

𝐹
(𝑖)

𝑛−1
+

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗)) .

(37)
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Through updating

𝑐
∗(𝑖)

1
= − 𝛼

1
𝑧
(𝑖)

1
− (

1

2
𝛽
2

1
+

1

2𝛽2
0

)𝑧
(𝑖)

1

−

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
1
(𝑍
(𝑖)

1
, 𝑗) ,

(38)

𝑐
∗(𝑖)

𝑘
= − 𝛼

𝑘
𝑧
(𝑖)

𝑘
− (

1

2
𝛽
2

𝑘
+

1

2𝛽2
𝑘−1

)𝑧
(𝑖)

𝑘

+
𝜕𝑐
(𝑖)

𝑘−1

𝜕𝜉
(𝑖)

𝑘−1

𝐹
(𝑖)

𝑘−1
−

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗) ,

(39)

we can get the control as follows:

V
∗

= −𝛼
𝑛
𝑧
(𝑖)

𝑛
+

𝜕𝑐
∗(𝑖)

𝑛−1

𝜕𝜉
(𝑖)

𝑛−1

𝐹
(𝑖)

𝑛−1
−

𝑁

∑
𝑗=1

𝜆
𝑖𝑗
Δ�̂�
𝑛
(𝑍
(𝑖)

𝑛
, 𝑗) . (40)

Moreover, by (9), we can design the original control 𝑢 as
follows:

𝑢
∗

= (𝐿
𝑔𝑖
𝐿
𝑛−1

𝑓𝑖

ℎ
𝑖
(𝑥))
−1

(V
∗

− 𝐿
𝑛

𝑓𝑖

ℎ
𝑖
(𝑥)) . (41)

Combined with the above discussion, we get to the
following theorem.

Theorem 5. If the system (1) has a relative set {𝑛, . . . , 𝑛}, then
the closed-loop system under the control 𝑢∗ is GASP.

Proof. Based on Lemma 4 and (37), sufficient condition (16)
for the closed-loop system reduces to

L𝑉(𝜉
(𝑖)

, 𝑖) ≤ −

𝑛

∑
𝑘=1

𝛼
𝑘
(𝑧
(𝑖)

𝑘
)
2

≤ −𝑐𝑉 (𝜉
(𝑖)

, 𝑖) , (42)

where 𝑐 = 2min{𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
}. According to Theorem 5.37

in [16], for every 𝑖 ∈ 𝜑, the function 𝑐𝑉(𝜉
(𝑖)

, 𝑖) = (𝑐/2)‖𝜉
(𝑖)

‖
2

belongs to K-function, then (42) indicates the system (1) to
be GASP. The proof of this theorem is completed.

Remark 6. Obviously, the difficulty of applying the back-
stepping technique on Markovian jump nonlinear system
is that the coupled term in the Lyapunov inequality (16)
is determined by the characteristic of the system. However,
this work has provided the above line to settle this problem.
Future work could be concentrated on reducing the com-
puting complexity, which is mainly caused by the following
two aspects. Firstly, we need to check the relative degree
set of the system through Definition 1. Secondly, we need to
calculate the backstepping coefficients 𝑐

𝑖
containing the terms

Δ�̂�
𝑘
(𝑍
(𝑖)

𝑘
, 𝑗) caused by the additional term (16). Both show the

complexity of geometric control theory of Markovian jump
nonlinear systems.

Remark 7. The above results only consider the case of
Markovian jump nonlinear system with the relative degree

set {𝑛, . . . , 𝑛}. Indeed, we have discussed the full-state lin-
earization problem for every subsystem corresponding to the
jump mode 𝑟

𝑡
= 𝑖, respectively. However, if the subsystem

has arbitrary relative degree set, that is, {𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑁
}, the

Markovian jump nonlinear system cannot be full-state lin-
earized, andwe need to study the zero-output dynamics of the
system. Hence, how to solve the input-output linearization
and stabilization problems is very interesting and requires
further studies.

4. Simulation Results

In this section, we present a numerical example for the
nonlinear Markovian jump system (1). Let 𝑟(𝑡) be a right-
continuous Markov chain taking values in 𝜑 = {1, 2} with the
generator

Π = (𝜆
𝑖𝑗
) = [

−1 1

2 −2
] . (43)

Consider the following Markovian jump nonlinear system:

Mode1 :
{

{

{

�̇� = [
−2𝑥
2

1
+ 2𝑥
2

𝑥
2

] + [
0

1
] 𝑢,

𝑦 = 𝑥
1
,

(44)

Mode2 :
{

{

{

�̇� = [
𝑥
2

2

𝑥
1
− 𝑥
2

] + [
1

0
] 𝑢,

𝑦 = 𝑥
2
.

(45)

Firstly, based onDefinition 1, we discuss the relative set of the
above system.

𝐿
𝑔1
ℎ
1
=

𝜕ℎ
1

𝜕𝑥
𝑔
1
= [1 0] [

0

1
] = 0,

𝐿
𝑔1
𝐿
𝑓1
ℎ
1
=

𝜕 ((𝜕ℎ
1
/𝜕𝑥) 𝑓

1
)

𝜕𝑥
𝑔
1
=

𝜕 (−2𝑥
2

1
+ 2𝑥
2
)

𝜕𝑥
𝑔
1

= [−4𝑥
1

2] [
0

1
] = 2 ̸= 0,

𝐿
𝑔2
ℎ
2
=

𝜕ℎ
2

𝜕𝑥
𝑔
2
= [0 1] [

1

0
] = 0,

𝐿
𝑔2
𝐿
𝑓2
ℎ
2
=

𝜕 ((𝜕ℎ
2
/𝜕𝑥) 𝑓

2
)

𝜕𝑥
𝑔
2
=

𝜕 (𝑥
1
− 𝑥
2
)

𝜕𝑥
𝑔
2

= [1 −1] [
1

0
] = 1 ̸= 0.

(46)

Obviously, the above conditions satisfy the assumption in
Definition 1, that is, the relative degree set is {2, 2}, which
implies that system (44) and (45) can be, respectively, trans-
formed into the following canonical form:

̇𝑦
(1)

1
= 𝑦
(1)

2
,

̇𝑦
(1)

2
= V,

̇𝑦
(2)

1
= 𝑦
(2)

2
,

̇𝑦
(2)

2
= V.

(47)
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Figure 1: State of Markov process 𝑟
𝑡
.
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Output of 𝑦(𝑖)1

Figure 2: Trajectories of state 𝑦(𝑖)
1
.

From (29), taking 𝛼
1
= 1, 𝛼

2
= 1, 𝛽

0
= 1, and 𝛽

1
= 1, we have

𝑐
1
= −2𝑧

(1)

1
, 𝑐
2
= −2𝑧

(2)

1
. (48)

Moreover, we can construct the relationship (22) between
the following coordinates:

𝑦
(1)

1
= 𝑥
1
, 𝑦

(1)

2
= −2𝑥

2

1
+ 2𝑥
2
, 𝑧

(1)

1
= 𝑥
1
,

𝑧
(1)

2
= −2𝑥

2

1
+ 2𝑥
2
− 2𝑥
1
,

𝑦
(2)

1
= 𝑥
2
, 𝑦

(2)

2
= 𝑥
1
− 𝑥
2
, 𝑧

(2)

1
= 𝑥
2
,

𝑧
(2)

2
= 𝑥
1
− 3𝑥
2
,

(49)

which implies the following diffeomorphism between 𝑍
(1)

2

and 𝑍
(2)

2
:

𝑧
(1)

1
= 3𝑧
(2)

1
+ 𝑧
(2)

2
,

𝑧
(1)

2
= −18(𝑧

(2)

1
)
2

− 2(𝑧
(2)

2
)
2

− 12𝑧
(2)

1
𝑧
(2)

2
− 4𝑧
(2)

1
− 2𝑧
(2)

2
,

𝑧
(2)

1
= (𝑧
(1)

1
)
2

+ 𝑧
(1)

1
+
1

2
𝑧
(1)

2
,

𝑧
(2)

2
= −3(𝑧

(1)

1
)
2

− 2𝑧
(1)

1
−
3

2
𝑧
(1)

2
.

(50)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

𝑡 (s)

−0.5

0.5

1.5

Output of 𝑦(𝑖)2

Figure 3: Trajectories of state 𝑦(𝑖)
2
.

Now, we discuss the coupled terms

�̂� (𝑍
(1)

𝑛
, 1) =

1

2(𝑧
(1)

1
)
2
+

1

2(𝑧
(1)

2
)
2
,

�̂� (𝑍
(1)

𝑛
, 2) =

1

2
((𝑧
(1)

1
)
2

+ 𝑧
(1)

1
+
1

2
𝑧
(1)

2
)
2

+
1

2
(−3(𝑧

(1)

1
)
2

− 2𝑧
(1)

1
−
3

2
𝑧
(1)

2
)
2

,

�̂� (𝑍
(2)

𝑛
, 1) =

1

2
(3𝑧
(2)

1
+ 𝑧
(2)

2
)
2

+
1

2
(−18(𝑧

(2)

1
)
2

− 2(𝑧
(2)

2
)
2

−12𝑧
(2)

1
𝑧
(2)

2
− 4𝑧
(2)

1
− 2𝑧
(2)

2
)
2

,

�̂� (𝑍
(2)

𝑛
, 2) =

1

2
(𝑧
(2)

1
)
2

+
1

2
(𝑧
(2)

2
)
2

.

(51)

From (34), we have that

Δ�̂�
1
(𝑍
(1)

1
, 1) =

1

2
𝑧
(1)

1
, Δ�̂�

2
(𝑍
(1)

2
, 1) =

1

2
𝑧
(1)

2
,

Δ�̂�
1
(𝑍
(1)

1
, 2) = 5(𝑧

(1)

1
)
3

+ 7(𝑧
(1)

1
)
2

+
5

2
𝑧
(1)

1
,

Δ�̂�
2
(𝑍
(1)

2
, 2) = 5(𝑧

(1)

1
)
2

+ 2𝑧
(1)

1
+
5

4
𝑧
(2)

2
,

Δ�̂�
1
(𝑍
(2)

1
, 1) = 162(𝑧

(2)

1
)
3

+ 72(𝑧
(2)

1
)
2

+
25

2
𝑧
(2)

1
,

Δ�̂�
2
(𝑍
(2)

2
, 1) = 216(𝑧

(2)

1
)
3

+ 2(𝑧
(2)

2
)
3

+ 108(𝑧
(2)

1
)
2

𝑧
(2)

2
+ 24𝑧

(2)

1
(𝑧
(2)

2
)
2

+ 84(𝑧
(2)

1
)
2

+ 4(𝑧
(2)

2
)
2

+ 32𝑧
(2)

1
𝑧
(2)

2
+ 11𝑧

(2)

1
+
5

2
𝑧
(2)

2
,

Δ�̂�
1
(𝑍
(2)

1
, 2) =

1

2
𝑧
(2)

1
, Δ�̂�

2
(𝑍
(2)

2
, 2) =

1

2
𝑧
(2)

2
.

(52)
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Then, from (40), we can construct the control law V∗ as
follows:

V
1
= −𝑧
(1)

1
+

𝜕𝑐
(1)

1

𝜕𝑧
(1)

1

𝐹
(1)

1
− 𝜆
11
Δ�̂�
2
(𝑍
(1)

𝑛
, 1) − 𝜆

12
Δ�̂�
2
(𝑍
(1)

𝑛
, 2)

= −5(𝑧
(1)

1
)
2

+ 𝑧
(1)

1
−
1

4
𝑧
(1)

2
,

V
2
= −𝑧
(2)

1
+

𝜕𝑐
(2)

1

𝜕𝑧
(2)

1

𝐹
(2)

1
− 𝜆
21
Δ�̂�
2
(𝑍
(2)

𝑛
, 1) − 𝜆

22
Δ�̂�
2
(𝑍
(2)

𝑛
, 2)

= −432(𝑧
(2)

1
)
3

− 4(𝑧
(2)

2
)
3

− 216(𝑧
(2)

1
)
2

𝑧
(2)

2
− 48𝑧

(2)

1
(𝑧
(2)

2
)
2

− 168(𝑧
(2)

1
)
2

− 8(𝑧
(2)

2
)
2

− 64𝑧
(2)

1
𝑧
(2)

2
− 19𝑧

(2)

1
− 6𝑧
(2)

2
.

(53)

Moreover, by (9), we can design the original control 𝑢 as
follows:

𝑢
∗

1
= −4𝑥

3

1
−
9

4
𝑥
2

1
+ 4𝑥
1
𝑥
2
+
3

4
𝑥
1
−
5

4
𝑥
2
,

𝑢
∗

2
= −4𝑥

3

1
− 108𝑥

3

2
− 12𝑥

2

1
𝑥
2
− 36𝑥

1
𝑥
2

2

− 8𝑥
2

1
− 49𝑥

2

2
− 16𝑥

1
𝑥
2
− 5𝑥
1
− 2𝑥
2
,

(54)

which guarantee the asymptotically stability of the closed-
loop system.

Given initial values 𝑥
1
(0) = 2 and 𝑥

2
(0) = 0, the

simulation results of the above discussion are presented as
follows. Figure 1 shows the states of Markovian switchings.
Correspondingly, the trajectories of 𝑦(𝑖)

1
and 𝑦

(𝑖)

2
are shown

in Figures 2–3, respectively. Obviously, the control law V∗

asymptotically stabilizes the closed-loop system.

5. Conclusion

This paper has discussed the linearization and stabilization
problems for a class of general Markovian jump nonlin-
ear systems. Following with the Markovian switchings, the
appropriate coordinate is adopted under which the system
can be transformed into the canonical form corresponding
to the relative degree set.Then, the backstepping technique is
applied in the stabilizing control design of Markovian jump
nonlinear systems. Further efforts could be concentrated on
the study of the linearization and stabilization of Markovian
jump nonlinear systems with arbitrary relative degree set
{𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑛
}.
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