1,390 research outputs found

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays

    Get PDF
    In this typescript, we concerned the problem of delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. An advanced Lyapunov–Krasovskii functional are defined, which is in triple integral form. Combining the Lyapunov–Krasovskii functional with convex combination method and free-weighting matrix approach the stability conditions are derived with the help of linear matrix inequalities (LMIs). Some available software collections are used to solve the conditions. Lastly, two numerical examples and their simulations are conferred to indicate the feasibility of the theoretical concepts

    Estimating Uncertain Delayed Genetic Regulatory Networks: An Adaptive Filtering Approach

    Full text link

    Modeling and analyzing biomolecular networks

    Full text link

    Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method

    Get PDF
    The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach

    The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems

    Get PDF
    Metabolic engineering of cellular systems to maximize reaction fluxes or metabolite concentrations still presents a significant challenge by encountering unpredictable instabilities that can be caused by simultaneous or consecutive enhancements of many reaction steps. It can therefore be important to select carefully small subsets of key enzymes for their subsequent stable modification compatible with cell physiology. To address this important problem, we introduce a general mixed integer non-linear problem (MINLP) formulation to compute automatically which enzyme levels should be modulated and which enzyme regulatory structures should be altered to achieve the given optimization goal using non-linear kinetic models of relevant cellular systems. The developed MINLP formulation directly employs a stability analysis constraint and also includes non-linear biophysical constraints to describe homeostasis conditions for metabolite concentrations and protein machinery without any preliminary model simplification (e.g. linlog kinetics approximation). The framework is demonstrated on a well-established large-scale kinetic model of the Escherichia coli central metabolism used for the optimization of the glucose uptake through the phosphotransferase transport system (PTS) and serine biosynthesis. Computational results show that substantial stable improvements can be predicted by manipulating only small subsets of enzyme levels and regulatory structures. This means that while more efforts can be required to elucidate larger stable optimal enzyme level/regulation choices, no further significant increase in the optimized fluxes can be obtained and, therefore, such choices may not be worth the effort due to the potential loss of stability properties. The source for instability through saddle-node and Hopf bifurcations is identified, and all results are contrasted with predictions from metabolic control analysis

    Quantification of signaling networks

    Get PDF
    Studies in living system in the past several decades have generated qualitative understanding of the molecular interactions resulting in large networks. These networks were essentially deciphered by breaking the components of a cell through a reductionist approach. Biological networks comprising of interactions between genes, proteins and metabolites co-ordinate in the regulation of cellular processes. However, understanding the cellular function also requires quantitative information including network dynamics, which results due to an inherent design principle embedded in the network. Interactions within the network are well organized to form a definite regulatory structure, which in turn exhibits different emergent properties. The property of the network helps the cell to achieve the desired phenotypic state in a controlled manner. The dynamics of the network or the relationship between network structure and cellular behavior cannot be understood intuitively from the interaction map of the network. Computational methods can now be employed to study these networks at system level. The field of systems biology looks at integrating the interaction maps obtained through molecular biological approach. Various studies at the system level have been reported for pathways namely chemotactic response in bacteria, cell cycle and osmotic signaling in yeast, growth factor stimulated signaling pathways in mammals. This review focuses on understanding signaling networks with the help of mathematical models

    Extension of Generalized Modeling and Application to Problems from Cell Biology

    Get PDF
    Mathematical modeling is an important tool in improving the understanding of complex biological processes. However, mathematical models are often faced with challenges that arise due to the limited knowledge of the underlying biological processes and the high number of parameters for which exact values are unknown. The method of generalized modeling is an alternative modeling approach that aims to address these challenges by extracting information about stability and bifurcations of classes of models while making only minimal assumptions on the specific functional forms of the model. This is achieved by a direct parameterization of the Jacobian in the steady state, introducing a set of generalized parameters which have a biological interpretation. In this thesis, the method of generalized modeling is extended and applied to different problems from cell biology. In the first part, we extend the method to include also the higher derivatives at the steady state. This allows an analysis of the normal form of bifurcations and thereby a more specific description of the nearby dynamics. In models of gene-regulatory networks, it is shown that the extended method can be applied to better characterize oscillatory systems and to detect bistable dynamics. In the second part, we investigate mathematical models of bone remodeling, a process that renews the human skeleton constantly. We investigate the connection between structural properties of mathematical models and the stability of steady states in different models. We find that the dynamical system operates from a stable steady state that is situated in the vicinity of bifurcations where stability can be lost, potentially leading to diseases of bone. In the third part of this thesis, models of the MAPK signal transduction pathway are analyzed. Since mathematical models for this system include a high number of parameters, statistical methods are employed to analyze stability and bifurcations. Thereby, the parameters with a strong influence on the stability of steady states are identified. By an analysis of the bifurcation structure of the MAPK cascade, it is found that a combination of multiple layers in a cascade-like way allows for additional types of dynamic behavior such as oscillations and chaos. In summary, this thesis shows that generalized modeling is a fruitful alternative modeling approach for various types of systems in cell biology.Mathematische Modelle stellen ein wichtiges Hilfmittel zur Verbesserung des Verständnisses komplexer biologischer Prozesse dar. Sie stehen jedoch vor Schwierigkeiten, wenn wenig über die zugrundeliegende biologischen Vorgänge bekannt ist und es eine große Anzahl von Parametern gibt, deren exakten Werte unbekannt sind. Die Methode des Verallgemeinerten Modellierens ist ein alternativer Modellierungsansatz mit dem Ziel, diese Schwierigkeiten dadurch anzugehen, dass dynamische Informationen über Stabilität und Bifurkationen aus Klassen von Modellen extrahiert werden, wobei nur minimale Annahmen über die spezifischen funktionalen Formen getätigt werden. Dies wird erreicht durch eine direkte Parametrisierung der Jacobimatrix im Gleichgewichtszustand, bei der neue, verallgemeinerte Parameter eingeführt werden, die eine biologische Interpretation besitzen. In dieser Arbeit wird die Methode des Verallgemeinerten Modellierens erweitert und auf verschiedene zellbiologische Probleme angewandt. Im ersten Teil wird eine Erweiterung der Methode vorgestellt, bei der die Analyse höherer Ableitungen im Gleichgewichtszustand integriert wird. Dies erlaubt die Bestimmung der Normalform von Bifurkationen und hierdurch eine spezifischere Beschreibung der Dynamik in deren Umgebung. In Modellen für genregulatorische Netzwerke wird gezeigt, dass die so erweiterte Methode zu einer besseren Charakterisierung oszillierender Systeme sowie zur Erkennung von Bistabilität verwendet werden kann. Im zweiten Teil werden mathematische Modelle zur Knochenremodellierung untersucht, einem Prozess der das menschliche Skelett kontinuierlich erneuert. Wir untersuchen den Zusammenhang zwischen strukturellen Eigenschaften verschiedener Modelle und der Stabilität von Gleichgewichtszuständen. Wir finden, dass das dynamische System von einem stabilen Zustand operiert, in dessen Nähe Bifurkationen existieren, welche das System destabilisieren und so potentiell Knochenkranheiten verursachen können. Im dritten Teil werden Modelle für den MAPK Signaltransduktionsweg analysiert. Da mathematische Modelle für dieses System eine hohe Anzahl von Parametern beinhalten, werden statistische Methoden angewandt zur Analyse von Stabilität und Bifurkationen. Zunächst werden Parameter mit einem starken Einfluss auf die Stabilität von Gleichgewichtszuständen identifizert. Durch eine Analyse der Bifurkationsstruktur wird gezeigt, dass eine kaskadenartige Kombination mehrerer Ebenen zu zusätzliche Typen von Dynamik wie Oszillationen und Chaos führt. Zusammengefasst zeigt diese Arbeit, dass Verallgemeinertes Modellieren ein fruchtbarer alternativer Modellierungsansatz für verschiedene zellbiologische Probleme ist
    corecore