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Abstract

Mathematical modeling is an important tool in improving the understanding of complex

biological processes. However, mathematical models are often faced with challenges that

arise due to the limited knowledge of the underlying biological processes and the high

number of parameters for which exact values are unknown. The method of generalized

modeling is an alternative modeling approach that aims to address these challenges

by extracting information about stability and bifurcations of classes of models while

making only minimal assumptions on the specific functional forms of the model. This is

achieved by a direct parameterization of the Jacobian in the steady state, introducing

a set of generalized parameters which have a biological interpretation.

In this thesis, the method of generalized modeling is extended and applied to dif-

ferent problems from cell biology. In the first part, we extend the method to include

also the higher derivatives at the steady state. This allows an analysis of the normal

form of bifurcations and thereby a more specific description of the nearby dynamics.

In models of gene-regulatory networks, it is shown that the extended method can be

applied to better characterize oscillatory systems and to detect bistable dynamics.

In the second part, we investigate mathematical models of bone remodeling, a pro-

cess that renews the human skeleton constantly. We investigate the connection between

structural properties of mathematical models and the stability of steady states in dif-

ferent models. We find that the dynamical system operates from a stable steady state

that is situated in the vicinity of bifurcations where stability can be lost, potentially

leading to diseases of bone.

In the third part of this thesis, models of the MAPK signal transduction pathway

are analyzed. Since mathematical models for this system include a high number of

parameters, statistical methods are employed to analyze stability and bifurcations.

Thereby, the parameters with a strong influence on the stability of steady states are

identified. By an analysis of the bifurcation structure of the MAPK cascade, it is found

that a combination of multiple layers in a cascade-like way allows for additional types

of dynamic behavior such as oscillations and chaos.

In summary, this thesis shows that generalized modeling is a fruitful alternative

modeling approach for various types of systems in cell biology.



Zusammenfassung

Mathematische Modelle stellen ein wichtiges Hilfmittel zur Verbesserung des

Verständnisses komplexer biologischer Prozesse dar. Sie stehen jedoch vor

Schwierigkeiten, wenn wenig über die zugrundeliegende biologischen Vorgänge bekannt

ist und es eine große Anzahl von Parametern gibt, deren exakten Werte unbekannt

sind. Die Methode des Verallgemeinerten Modellierens ist ein alternativer Model-

lierungsansatz mit dem Ziel, diese Schwierigkeiten dadurch anzugehen, dass dynamische

Informationen über Stabilität und Bifurkationen aus Klassen von Modellen extrahiert

werden, wobei nur minimale Annahmen über die spezifischen funktionalen Formen

getätigt werden. Dies wird erreicht durch eine direkte Parametrisierung der Jacobi-

matrix im Gleichgewichtszustand, bei der neue, verallgemeinerte Parameter eingeführt

werden, die eine biologische Interpretation besitzen.

In dieser Arbeit wird die Methode des Verallgemeinerten Modellierens erweitert

und auf verschiedene zellbiologische Probleme angewandt. Im ersten Teil wird eine

Erweiterung der Methode vorgestellt, bei der die Analyse höherer Ableitungen im Gle-

ichgewichtszustand integriert wird. Dies erlaubt die Bestimmung der Normalform von

Bifurkationen und hierdurch eine spezifischere Beschreibung der Dynamik in deren

Umgebung. In Modellen für genregulatorische Netzwerke wird gezeigt, dass die so er-

weiterte Methode zu einer besseren Charakterisierung oszillierender Systeme sowie zur

Erkennung von Bistabilität verwendet werden kann.

Im zweiten Teil werden mathematische Modelle zur Knochenremodellierung unter-

sucht, einem Prozess der das menschliche Skelett kontinuierlich erneuert. Wir unter-

suchen den Zusammenhang zwischen strukturellen Eigenschaften verschiedener Mod-

elle und der Stabilität von Gleichgewichtszuständen. Wir finden, dass das dynamische

System von einem stabilen Zustand operiert, in dessen Nähe Bifurkationen existieren,

welche das System destabilisieren und so potentiell Knochenkranheiten verursachen

können.

Im dritten Teil werden Modelle für den MAPK Signaltransduktionsweg analysiert.

Da mathematische Modelle für dieses System eine hohe Anzahl von Parametern bein-

halten, werden statistische Methoden angewandt zur Analyse von Stabilität und Bi-

furkationen. Zunächst werden Parameter mit einem starken Einfluss auf die Stabilität

von Gleichgewichtszuständen identifizert. Durch eine Analyse der Bifurkationsstruktur

wird gezeigt, dass eine kaskadenartige Kombination mehrerer Ebenen zu zusätzliche

Typen von Dynamik wie Oszillationen und Chaos führt.

Zusammengefasst zeigt diese Arbeit, dass Verallgemeinertes Modellieren ein frucht-

barer alternativer Modellierungsansatz für verschiedene zellbiologische Probleme ist.
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Chapter 1

Introduction

In the post-genomic era of biology, vast amounts of data are being generated by high-

throughput methods at rapidly increasing speed and decreasing costs. However, while

the amount of molecular information has grown tremendously, the understanding of

most complex processes in living cells has not grown at a comparable pace. The under-

lying reason for these difficulties is that the cell constitutes a large complex network

of interacting entities with processes acting over a wide range of timescales. Essential

functions of the cell, such as proliferation, cell division or apoptosis, are not caused

by single genes but appear as emergent properties of a complex network of interacting

genes and proteins [1–4].

Due to these fundamental difficulties, it is necessary that current cell biology does

not follow exclusively the bottom-up strategy of understanding complex functions of

the cell by understanding the interactions of their elementary subsystems first. Instead,

these approaches should be combined with top-down approaches. Methods of the latter

class aim to describe systems starting from a higher level of abstraction and at the same

time ignore or approximate the underlying processes on lower levels of abstraction. For

example, the dynamics of a network of interacting genes can be studied without taking

the structural properties of the involved proteins into account.

On a more abstract level, it is sometimes argued that for fundamental reasons,

complex systems in general cannot be understood solely by the reductionistic approach

of explaining them by the interaction of their basic building blocks [5, 6], while others

emphasize the importance of finding the right level of description [7]. Regardless of

whether one can agree to these philosophical positions, it is apparent that in the near

future most complex phenomena in the living cell are not likely to be understood

based solely on the interaction of their elementary subsystems (i.e., genes and proteins).

Therefore, there is an ongoing need to develop models for complex systems that consist

of subsystems that are not completely understood.
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Considering that many different disciplines have encountered similar problems, it

is not surprising that the theory of complex systems has a strongly interdisciplinary

character. It borrows its methods from different fields, but particularly from statistical

physics, network/graph theory and the theory of dynamical systems.

This thesis contributes to the formulation and analysis of mathematical models for

complex processes in cell biology, using mostly methods from the theory of dynam-

ical systems. More precisely, we investigate models of ordinary differential equations

(ODEs) that are aimed to improve the understanding of dynamic processes of living

cells. The copy number of the modelled entities, whether they are mRNA molecules,

proteins or cells, must be sufficiently large to make a description by continuous ODEs

adequate, leading to models that describe the dynamics of ensembles instead of single

copies of the entities. The specific internal properties of these entities, which may be

poorly understood in some cases, enter the model in the form of external parameters

and functional forms, describing how the modelled variables change in time.

A very common approach to mathematical modeling, which will in the following be

called conventional modeling, can be summarized as a three-step process:

• First, a system of ordinary differential equations is constructed that aims to

describe the biological process.

• Second, the parameters of the model are estimated, making use of experimental

data if available. Depending on the degree of certainty, some model parameters

may be varied while others may be fixed to constant values.

• Third, the dynamics of the model are explored. Sometimes this is done using

analytical methods from the theory of dynamical systems, particularly in smaller

models. Larger models are often only accessible by numerical simulation, i.e.,

numerical integration of the system of ODEs.

Constructing a model of ODEs in this way entails a number of difficult decisions:

Which biological processes should be included in the model, and which processes are of

secondary importance to the actual problem?Which functional forms should be used for

an interaction that is considered to be essential for the model? Do the actual functional

forms used in the model affect the results strongly or does one have relative liberty to

choose between different reasonable alternatives without changing the results? Finally,

what size of the parameter space should be explored, gaining more generality in the

results at the cost of higher computational efforts and perhaps reduced interpretability?

The above-mentioned problems are serious challenges in conventional modeling. Ex-

periments cannot always provide straightforward answers to them because, in many

cases, they can establish only qualitative relations, such as assigning a repressing or
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activating nature to an interaction without quantifying it. Moreover, since both tem-

poral and financial resources for experimental studies are limited, it is one of the tasks

of mathematical models to create predictions in a situation of incomplete information,

which can then be validated in specific experiments.

In this thesis, an alternative approach to modeling is employed that addresses the

problems of conventional modeling by taking a different point of view. The method of

generalized modeling (GM) [8–10] aims to classify a large number of specific models

based on the stability properties of their steady states. It achieves this by performing

a local linear stability analysis that uses the information encoded in the spectrum of

the Jacobian at the steady state. GM does not assume specific functional forms for

unknown interactions but covers their influence on stability of the steady states by

introducing a set of general parameters. Because GM avoids numerical integration of

the ODEs, it requires considerably less computational resources than other methods,

which allows for the investigation of a large portion of the parameter space.

General models are an useful alternative approach to conventional models in par-

ticular in two different situations:

• In problems for which several competing modeling approaches coexist without a

consensus as to which one is best suited, GM can distinguish the dynamical key

features of different model structures. We demonstrate this for the problem of

bone remodeling, which is analyzed in chapter 4.

• In problems for which an accepted model structure exists, but for which the pa-

rameter space is high-dimensional, GM can efficiently detect the different qual-

itative forms of dynamics that are possible (e.g., bistability, oscillations, chaos)

and relate them to the general parameters. We demonstrate this for the MAPK

signaling cascade in chapter 5.

Only in problems for which both the structure of the mathematical model is known

with a high degree of certainty and in which, additionally, reliable estimates for most of

the parameters exist, it is not reasonable to apply GM. However, most of the important

problems in cell biology do not fall into that class.

By restricting the analysis to local steady states, information on nonlocal proper-

ties is not directly available. Among the nonlocal phenomena that cannot be extracted

directly from the general model are transient dynamics and global bifurcations. In this

thesis, these constraints are mitigated by an extension of the method that allows the

inclusion of normal-form analysis in the framework of general modeling, since normal

forms of bifurcations can indirectly point to nonlocal types of dynamics in the neigh-

borhood.
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This thesis is structured as follows: In chapter 2, we first provide a brief intro-

duction to the most important concepts of the theory of dynamical systems and, in

particular, of bifurcation theory that will be used throughout the thesis. The emphasis

of this discussion is not on mathematical rigidity but on interpretability and proxim-

ity to practical applications. We then proceed to introduce the method of generalized

modeling in detail. A toy model for gene-regulatory autoinhibition, comprising a gene

coding for a protein that inhibits the transcription of its own mRNA, serves as an

example.

In chapter 3, we describe an extension of the method that includes the second and

third derivatives at the steady state for an analysis of the normal forms of bifurcations.

All previous studies with GM had performed an analysis of the linearization at the

steady state that is given by the Jacobian matrix. With the extension, we are able to

extract more detailed information about the bifurcation structure and the dynamical

properties of models. The extension of the method is applied to two model architectures

of oscillating gene-regulatory networks: We first use analytical tools to investigate the

Hopf bifurcations of the Goodwin model, which is one of the most basic models for

gene regulation with autoinhibition. We then investigate the bifurcation landscape in

a larger model for a circadian oscillator, in which two different genes interact.

In chapter 4, we apply GM to mathematical models of bone remodeling. Bone

remodeling is a process that is accomplished by the interplay of two cell types, the

bone-building osteoblasts and the bone-resorbing osteoclasts. The populations of these

cell types are regulated by various hormones and cytokines and also interact with

each other by means of signaling molecules. Mathematical modeling is still in its early

stages for bone remodeling and there is no consensus yet on the question of which model

architecture is best suited to describe the process. Experimental data is scarce since the

collective phenomenon of bone remodeling can only be observed in vivo, while in vitro

studies on cell cultures of osteoblasts and osteoclasts have led to conflicting results.

We use GM to compare a large class of models and point out their advantages and

disadvantages. We suggest that the system of bone remodeling has evolved to operate

at a steady state close to a bifurcation. While this facilitates strong adaptive responses

to varying external conditions, it also leads to the risk of losing stability. This loss of

stability can possibly be related to diseases of bone.

In chapter 5, we investigate the MAPK cascade, an important signaling pathway

in eukaryotic cells that is involved in the regulation of multiple cellular functions. The

basic biochemistry of this pathway is well established, and there have been numerous

studies in which mathematical modeling was applied to the system. However, the dy-

namics of this pathway in connection with its function are not understood well. For the

MAPK cascade, we use GM to explore the different types of dynamic behavior that
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are possible in a fixed model structure with many unknown parameters. Specifically,

we describe regions of oscillations and weak forms of chaos.

Finally, the results of the different subprojects are summarized and discussed in

chapter 6.

In summary, this thesis shows that various different problems from cell biology can

be studied fruitfully in the framework of generalized modeling. By an extension of the

method that allows the analysis of normal form parameters of bifurcations, it is demon-

strated that important properties of gene-regulatory networks such as oscillations and

bistability can be investigated in general models. Further, it is shown for models of

bone remodeling that the generality of the method, which allows to study stability

and bifurcations in large classes of feasible models, can be used to compare existing

modeling approaches, point out connections between the structure of models and the

resulting dynamics and reveal connections between bifurcations and diseases. Finally,

this thesis shows that due to its computational efficiency, the application of the method

of GM can also lead to new insights in large models for which the functional forms are

largely known such as the MAPK cascade. Using a combination of statistical sampling

and bifurcation analysis, previously unidentified types of dynamics can be detected in

the model and analyzed in a high-dimensional parameter space.





Chapter 2

Introduction to dynamical systems

and generalized modeling

In this chapter, we first review the basic mathematical foundations of dynamical sys-

tems theory and introduce the concepts that are needed in the following chapters, in

which they are applied to specific mathematical models. In doing so, we follow mostly

the textbooks by Kuznetsov [11] and by Guckenheimer and Holmes [12]. In the second

part of this chapter, the method of generalized modeling is introduced.

2.1 Dynamical systems and steady states

Dynamical systems are widely used throughout different scientific disciplines to describe

and predict the behavior of systems that change in time. A dynamical system consists

of a set of state variables and a set of rules that describes the evolution of the state

variables in time [11]. There exist various different formalisms that are commonly used

to formulate the rules of evolution, such as ordinary, partial or stochastic differential

equations or discrete time maps.

This thesis focuses on studying dynamical systems that are described by ordinary

differential equations (ODEs). An n-dimensional system of ODEs can be written as

d

dt
X = F(X) (2.1)

where X = (X1, . . .Xn) is an n-dimensional vector of variables that changes in time

and F = (F1, . . . Fn) is a vector-valued, possibly nonlinear function that describes the

way in which the variables change. Additionally, the function F can depend on external

parameters.

A steady state X∗ of a dynamical system is defined as a special set of variables for

which F(X∗) = 0. This implies that the variables of a system which is located exactly
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at the steady state do not change in time. Steady states are also called equilibria in the

literature of dynamical systems theory [11, 12], a term which has a different meaning

in physics and chemistry. In this thesis, the term “equilibrium” is used synonymously

with “steady state” unless explicitly stated otherwise.

In nature, dynamical systems are always subject to fluctuations and external in-

fluences that affect the values of the variables. Even if these effects are not explicitly

included in the model, they necessitate considering the behavior of trajectories close

to steady states. The local stability of a steady state describes the response of the dy-

namical system to infinitesimally small perturbations. It should be noted that different

notions of stability are discussed in the different fields that the theory of dynamical

systems is applied to, such as astronomy [13] or ecology [14]. In this thesis, we use

the term “stability” synonymously with “local asymptotic stability”, which is a special

form of Lyapunov stability [11].

The response to a perturbation of a dynamical system residing in a steady state is

characterized by the linearization of the system, which is given by the Jacobian matrix.

The Jacobian of an n-dimensional system of ODEs is a matrix of size n× n defined by

Jij =
∂Fi

∂Xj

∣

∣

∣

∣

X=X∗

i, j = 1 . . . n. (2.2)

If all eigenvalues of the Jacobian have nonzero real parts, the steady state is hyperbolic

and the dynamics close to the steady state are governed by the linearization of the

system. For hyperbolic steady states, the eigenvalue of J with the largest real part

determines the stability of the steady state. If its real part is positive, infinitesimally

small perturbations lead to trajectories that depart from the steady state exponentially.

In this case, the steady state is asymptotically unstable. If the real part is negative and

all eigenvalues have a negative real part, local trajectories return to the steady state

as a response to a perturbation, and the steady state is asymptotically stable. If the

Jacobian at the steady state has an eigenvalue with a real part that is exactly zero,

the steady state is nonhyperbolic. In this case, the dynamics in the neighborhood of

the equilibrium cannot be fully described by the Jacobian and higher terms become

important. The properties of nonhyperbolic steady states are further investigated in

the following section on bifurcations.

2.1.1 Bifurcations and their normal forms

Dynamical systems that describe a part of reality usually depend on a number of

parameters. We can make the dependence on a vector of parameters p explicit by

writing Eq. (2.1) as
d

dt
X = F(X,p). (2.3)
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A bifurcation can be defined as “the appearance of a topologically nonequivalent phase

portrait under variation of parameters” [11]. In other words, bifurcations mark the

transitions between regions of qualitatively different dynamic behavior resulting from

a change of external parameters.

Bifurcations can be local or global. Local bifurcations can be detected by the prop-

erties of an infinitesimally small region around a bifurcation point, whereas global

bifurcations can only be detected by investigating an extended region of the phase

space.

Bifurcations can be broadly characterized by their codimension, which is deter-

mined by the difference between the dimension of the varied parameter space and the

dimension of the corresponding bifurcation boundary [11]. More intuitively, it can be

understood as “the smallest dimension of a parameter space which contains the bifur-

cation in a persistent way” [12]. For example, a codimension-2 bifurcation appears as

a zero-dimensional point in a two-parameter bifurcation diagram, whereas it appears

as a one-dimensional line in a three-parameter bifurcation diagram.

Dynamical systems theory has shown that for many types of bifurcations, normal

forms can be defined. Normal forms are simplified descriptions of the system that are

locally topologically equivalent to the bifurcation in arbitrary systems. With the help

of normal forms, a catalog of codimension-1 and codimension-2 bifurcations has been

established. Thereby, local bifurcations that occur in larger systems can be classified

and information on the dynamics of their neighborhood can be retrieved based on the

analysis of the respective normal forms.

The possibility of deriving normal forms relies on the center manifold theorem for

flows [12], which states that it is possible to divide the flow close to a steady state into a

stable manifold, an unstable manifold and a center manifold. The stable manifold cor-

responds to the directions in eigenspace that belong to the eigenvalues with a negative

real part, whereas the unstable manifold corresponds to those with a positive real part.

The center manifold, which is given by the eigenspace belonging to the eigenvalues

with zero real part, contains the essential dynamical properties of the bifurcation.

Since trajectories in the unstable or stable directions either leave or approach the

steady state exponentially, the more detailed dynamic behavior of the corresponding

manifolds is not of primary interest. It is therefore useful to apply a transformation

that reduces the system to a lower-dimensional system given by its center manifold,

which describes the nontrivial dynamics. The simplified system can then be further

transformed to the normal form of the bifurcation. It is a generic qualitative description

of the dynamical behavior of a large class of systems that can all be reduced to the

same normal form. The behavior of the system close to the bifurcation point can be

related to the coefficients that appear in the normal form.
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p

X

pc

Figure 2.1: Bifurcation diagram of a saddle-node bifurcation. The steady-state value

of a variable X is plotted against a parameter p. For p < pc, an unstable steady state

coexists with a stable one. For p > pc, no steady state exists.

The mathematical theory of normal form analysis has thus provided powerful tools

that can be applied to large classes of dynamical systems. In the following, we classify

the most important local bifurcations of steady states with codimension 1 and 2.

2.1.2 Codimension-1 bifurcations

There are two generic types of local codimension-1 bifurcations that can be distin-

guished by the signature of the eigenvalues of the Jacobian.

A saddle-node bifurcation (SN bifurcation, fold bifurcation) is characterized by a

zero eigenvalue. The generic type of a saddle-node bifurcation leads to the bifurcation

diagram shown in Fig. 2.1. When a SN bifurcation is approached from one side by

changing an external parameter, an unstable steady state collides with a stable one

when the parameter approaches its critical value. For parameter values on the other

side of the bifurcation, no steady state exists.

In biological systems, it is often undesirable to traverse an SN bifurcation because

the change of the external parameter causes the system to depart from its previous

operation point, potentially removing the functionality of the system. A situation in

which SN bifurcations can be beneficial are bistable systems in which the loss of stability

in a SN bifurcation is an important dynamical feature because it allows the system

to switch to a second stable steady state which corresponds to a different functional

operating point [15, 16].

Other codimension-1 bifurcations, such as pitchfork bifurcations or transcritical
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bifurcations, are related to SN bifurcations. They are caused by an additional symmetry

and lead to a different phase portrait. However, there always exists a perturbation to

the model which destroys the symmetry and recovers the generic SN bifurcation [11].

In larger models without any apparent symmetries, one usually encounters generic SN

bifurcations.

The second class of codimension-1 bifurcations are Hopf bifurcations (sometimes

also called Andronov-Hopf bifurcations) [17]. This class of bifurcations is characterized

by a Jacobian with a pair of conjugate complex eigenvalues with a zero real part. Hopf

bifurcations are associated with the birth and decay of limit cycles. Therefore, many

models with oscillatory dynamics feature Hopf bifurcations.

Depending on which side of the bifurcation a limit cycle exists, one can further

distinguish between supercritical and subcritical Hopf bifurcations. A Hopf bifurcation

is supercritical (Fig. 2.2A) when the transition from a stable steady state to an unstable

one involves the appearance of a stable limit cycle. Supercritical Hopf bifurcations are

associated with sustained oscillations and with a soft loss of stability because a system

that approaches the limit cycle can remain close to the original steady state in phase

space.

A Hopf bifurcation is subcritical (Fig. 2.2B) when an unstable limit cycle coex-

ists with a stable equilibrium on one side of a bifurcation. The limit cycles vanishes

when the equilibrium becomes unstable. Subcritical Hopf bifurcations can lead to a

catastrophic loss of stability because trajectories are no longer confined to a region

in phase space close to the equilibrium after stability is lost. The long-term behavior

of trajectories that leave the region of the stable state cannot be analyzed by a local

bifurcation analysis. However, subcritical Hopf bifurcations are often associated with

large-amplitude oscillations. A typical scenario for this case is shown in Fig. 2.2C, in

which the unstable limit cycle bends and gains stability in a global bifurcation.

Normal-form analysis allows to distinguish whether a Hopf bifurcation is supercrit-

ical or subcritical. The normal form parameter l1, called first Lyapunov coefficient, is a

quantity that is positive at subcritical Hopf bifurcations and negative at supercritical

Hopf bifurcations. In chapter 3, the calculation of l1 is introduced in the context of

generalized models.

There are also nonlocal bifurcations of codimension 1. An important example are

homoclinic bifurcations of codimension 1 that occur when a saddle collides with a

periodic orbit. The bifurcation point is characterized by a homoclinic orbit, i.e., a

trajectory that approaches the saddle in both directions of time.
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Figure 2.2: Supercritical and subcritical Hopf bifurcations. In panel A, a supercritical

Hopf bifurcation is shown. A stable limit cycle emerges at the bifurcation point. In

panel B, a subcritical Hopf bifurcation is shown. At one side of the bifurcation, a

stable steady state coexists with an unstable limit cycle. In panel C, a possible but

non-generic scenario is shown that motivates why subcritical Hopf bifurcations are

often associated with large-amplitude oscillations.
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2.1.3 Codimension-2 bifurcations

In bifurcations of codimension 2, two parameters must be tuned to critical values.

This means that codimension-2 bifurcations appear as points in two-dimensional bifur-

cation diagrams, possibly forming the intersection of two codimension-1 bifurcations.

Therefore, the variation of a single parameter usually does not lead to a bifurcation

of codimension 2 and typically only codimension-1 bifurcations are directly crossed in

nature. However, the detection of codimension-2 bifurcations in a model is not only of

theoretical interest because these bifurcations can provide information on the dynamics

of the surrounding parameter space, functioning for example as proxies for global prop-

erties such as bistability or chaos. Here, we give a short overview of the most common

bifurcations of codimension 2.

• A Takens-Bogdanov (TB) bifurcation [18, 19] is characterized by two real zero

eigenvalues in the Jacobian. In a TB bifurcation, a saddle-node bifurcation col-

lides with a Hopf bifurcation. A limit cycle exists in the nearby parameter regime,

which disappears in a homoclinic bifurcation. The detection of a local TB bifur-

cation therefore also provides information on nonlocal dynamical behavior.

• A Gavrilov-Guckenheimer (GG) bifurcation or fold-Hopf bifurcation [20, 21] is

characterized by a zero eigenvalue and a complex conjugate pair of eigenvalues,

leading to a three-dimensional center manifold. The bifurcation is found at the

intersection of two codimension-1 bifurcations, a saddle-node bifurcation and a

Hopf bifurcation.

• A double Hopf (DH) bifurcation or Hopf-Hopf bifurcation [22] is characterized by

two conjugate pairs of purely imaginary eigenvalues, implying that for a system

with a DH bifurcation, n ≥ 4. Two Hopf bifurcations intersect in a DH bifurca-

tion. Often, other bifurcations appear close to DH bifurcations, which can imply

the birth of chaos, even though the chaotic manifold can be unstable in some

systems. The search for DH bifurcations can thus be used by local methods as a

means of detecting possible chaotic parameter regions.

• A Bautin bifurcation (BB) or generalized Hopf bifurcation [23, 24] is the transi-

tion between a supercritical and a subcritical Hopf bifurcation. It is characterized

by a vanishing first Lyapunov coefficient. In contrast to the previously discussed

codimension-2 bifurcations, a Bautin bifurcation cannot be detected by an anal-

ysis of the Jacobian but requires the knowledge of the local second and third

derivatives.

• A cusp bifurcation point (CP) [25] is a special form of a SN bifurcation that
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is characterized by a vanishing normal form parameter and thus, similar to the

Bautin bifurcation, not detectable by the spectrum of the Jacobian alone. Close to

cusp bifurcations, there is a regime with three coexisting steady states. Depending

on the cubic normal form parameter, two of the steady states are stable and one

is unstable, or vice versa [11]. Because of this property, cusp bifurcations can

serve as cues in a search for bistable regions in parameter space.

2.2 Introduction to generalized modeling

In this section, the method of generalized modeling is introduced. In earlier studies, this

method has been applied to models from various different disciplines such as ecological

systems [26–29, 10, 30, 31], metabolic systems [9, 32, 33], gene-regulatory networks [34]

and socio-economic systems [8].

The idea of GM is to describe a large class of models by their steady-state properties

without having to determine explicit functional forms. Instead, the Jacobian is directly

parametrized by a procedure that, in spite of its generality, maintains the biologi-

cal interpretability of the parameters. Subsequently, the stability of the steady states

and the bifurcations occurring in the model are determined. Since different classes of

functional forms in conventional models lead to the same set of general parameters,

a general model can describe the steady-state behavior of a large set of conventional

models.

We introduce GM at the example of a simple toy model for gene-regulation with

negative feedback. Subsequently, we discuss the method in a more abstract way and

discuss its advantages and disadvantages. Finally, some important differences in the

bifurcation analysis of conventional and generalized models are discussed. For a math-

ematically more rigorous introduction to generalized models we refer to Ref. [35].

2.2.1 General model of a transcription factor with autoinhi-

bition

The method of GM is best introduced by applying it to a simple example. For that

purpose, we choose a class of models describing a gene with autoinhibiting feedback.

For an in-depth discussions of the biological processes and ways to model them, we

refer to textbooks such as Refs. [36, 37]. The basic processes described by this model

are transcription and translation. In the process of transcription, genes are read by the

enzyme RNA-Polymerase and mRNA is generated as a result. This step is regulated by

several enzymes that can enhance or inhibit the production rate of mRNA. In eukaryotic

cells, transcription take place in the nucleus of the cell. The mRNA molecules then leave
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the nucleus and are used as templates in the cytoplasm for the synthesis of proteins.

This process takes place at the ribosomes and is called translation. We consider here

the special case of a protein that acts as an inhibiting transcription factor, such that it

represses the transcription of its own gene. This introduces a negative feedback loop,

which can lead to oscillations in the concentrations of mRNA and protein.

As an intuitive first approach to a mathematical model, it is natural to capture the

processes of transcription and translation by the two equations

Ẋ1 = F (X2)−G(X1)

Ẋ2 = H(X1)−K(X2)
(2.4)

where X1 denotes the concentration of the mRNA and X2 the concentration of the

protein. For both variables, there is a positive production term (F (X2) and H(X1))

and a positive decay term (G(X1) and K(X2)) which consist of undetermined, possi-

bly nonlinear functions. While the decay terms of both variables depend only on the

respective concentrations of the same variable, the production terms depend on the

concentration of the respective other variable. In the case of H(X1) this reflects that

X1 serves as a template for translation, whereas in the case of F (X2) it reflects the

negative feedback exerted by the transcription factor X2. At this point, no further

assumptions are made on the functional forms F (X2), G(X1), H(X1) and K(X2) be-

cause general models aim to describe general aspects of the dynamics that are valid for

different classes of possible functional forms.

We now assume that there exists a steady state in the model, which is characterized

by concentrations X∗

1 , X
∗

2 > 0. The steady-state values of the functions are denoted

F ∗,G∗,H∗, K∗. In Sec. 2.2.3 we discuss cases in which this assumption is not justified

and to what extent it restricts the class of models that can be considered by the method

of GM.

In the next step, the system of ODEs from Eq. (2.4) is normalized by defining

x1 =
X1

X∗

1

x2 =
X2

X∗

2

.

(2.5)

We also define normalized functions

f(x2) =
F (x2X

∗

2 )

F ∗

g(x1) =
G(x1X

∗

1 )

G∗

h(x1) =
H(x1X

∗

1 )

H∗

k(x2) =
K(x2X

∗

2 )

K∗

.

(2.6)

In the new variables, the steady state is located at x∗

1 = x∗

2 = 1 and the system of
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equations can be written as

ẋ1 = α1 (f(x2)− g(x1))

ẋ2 = α2 (h(x1)− k(x2)) .
(2.7)

The terms

α1 =
F ∗

X∗

1

=
G∗

X∗

1

(2.8)

and

α2 =
H∗

X∗

2

=
K∗

X∗

2

(2.9)

are constant scaling parameters. They are defined as the ratio of the steady-state values

of a function and a variable or, in physical terms, a flux and a concentration. Therefore,

the αi are positive and have the dimension of an inverse time. They can be interpreted

as timescales of the corresponding processes.

In the next step, we formally derive an expression for the Jacobian J in the nor-

malized coordinates. In J, local derivatives of the normalized function with respect to

the normalized variables appear that are defined as

f2 =
∂ f

∂x2

∣

∣

∣

∣

x2=1

g1 =
∂ g

∂x1

∣

∣

∣

∣

x1=1

h1 =
∂h

∂x1

∣

∣

∣

∣

x1=1

k2 =
∂ k

∂x2

∣

∣

∣

∣

x2=1

. (2.10)

The local derivatives are logarithmic derivatives when expressed in the original vari-

ables, as can be seen at the example of f2:

f2 =
∂ f

∂x2

∣

∣

∣

∣

x2=1

=
X∗

2

F ∗

∂F

∂X2

∣

∣

∣

∣

X2=X∗

2

=
∂ (lnF )

∂ (lnX2)

∣

∣

∣

∣

X2=X∗

2

(2.11)

In GM, the local derivatives are treated as model parameters. They are denoted as

elasticities (a term from metabolic control analysis [38]) or exponent parameters.

In the case of a linear functional dependency, the corresponding elasticity is equal

to 1. This relation is a special case of the more general power-law function f(x) = axp,

where the elasticity is given by the power-law exponent p. In Table 2.1, we list the

elasticities and their possible values for various functional forms that are frequently

used in biological modeling.

With the introduced scale parameters and elasticities, the Jacobian of the general-

ized model defined by Eq. (2.7) is given by

J =

(

α1

α2

)(

−g1 f2

h1 −k2

)

. (2.12)

We next narrow down the values for the elasticities. Assuming that the decay of

both mRNA and protein are not regulated by additional feedback mechanisms, it is

sensible to assume that both decay terms are linear, leading to g1 = k2 = 1. Moreover,
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Name Function Elasticity Range

Linear AX 1 -

Power law AXn n -

Michaelis-Menten AX
K+X

1
1+(X∗/K)

[0, 1]

Hill function AXn

Kn+Xn n 1
1+(X∗/K)n

[0, n]

Sigmoidal inhibition A
Kn+Xn −n 1

1+(K/X∗)n
[−n, 0]

Table 2.1: Elasticities corresponding to various functional forms that are frequently

used in biological models. The rightmost column displays the range of values that the

elasticity can assume. All functions depend on a variable X with a steady-state value

X∗. The parameters A,K, n > 0 are positive constants.

we assume that the rate of protein production scales linearly with the concentration

of mRNA, h1 = 1. Because the transcriptional feedback is assumed to be inhibitory,

f2 < 0 is negative. In principle, we could now restrict f2 to a range of biologically

reasonable values. For example, the assumption of sigmoidal inhibition with n = 1

leads to f2 ∈ [−1, 0]. In this case, however, it is not necessary to make any assumptions

except f2 < 0.

Under these assumptions, the Jacobian of steady states in all models with the

mentioned structure can be written as

J =

(

α1

α2

)(

−1 f2

1 −1

)

. (2.13)

A necessary condition for a saddle-node bifurcation is det J = 0, leading to a zero

eigenvalue. However, since det J = α1α2(1− f2) > 0 because of f2 < 0, no saddle-node

bifurcations occur in the model.

Since Hopf bifurcations are characterized by two purely imaginary conjugate eigen-

values, the trace of the Jacobian vanishes in a Hopf bifurcation of a two-dimensional

system of ODEs. However, since tr(J) = −α1−α2 < 0, no Hopf bifurcations can occur

in the model, regardless of the functional form that is assumed for f2. Indeed, apply-

ing Bendixson’s criterion [12] shows that no closed orbits are possible in this model.

Therefore, the model structure at hand is not suitable for modeling genetic oscillations.

For the present toy model, the impossibility of oscillations has been known for many

years [39], so that more sophisticated models are needed to describe genetic oscillations.

In chapter 3, some of these models are analyzed with the method of GM with the focus

on the type of their Hopf bifurcations. We note that in larger and more complicated

models, statements about the existence of certain bifurcations types as a function of

the topology and the functional forms can lead to new insights both about appropriate
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mathematical models and about the processes in nature that are modeled.

2.2.2 Abstract description of the method

The GM approach to a problem can be summarized by the following steps: In the first

step, a system of ODEs is constructed in a general way. This includes the choice of n

positive variables Xi, i = 1 . . . n that could, for example, correspond to concentrations

of proteins, mRNA molecules or cells. It also includes the choice of processes that

increase or decrease these variables, which are grouped into gain terms and loss terms.

However, no explicit functional forms are chosen for these processes. Instead, we only

stipulate for each process on which variables its function can depend and assume that

the functional forms are continuously differentiable. Furthermore, it is assumed that

the system has at least one steady state X∗ in which all variables have positive, nonzero

values. Below, we will argue that this assumption, which is fundamental to the method

of GM, does not strongly limit the range of systems that can be analyzed.

The second step of GM consists of an entirely formal normalization of the system

of ODEs with respect to the steady state. The normalization solves the problem that

even though the existence of a steady state is assumed, it is unknown for which values

of the variables the steady state exists. The normalization which consists of a division

of both sides of each equation by the respective steady state concentration X∗

i leads to

a system for which the steady state is is known, because

x∗

i = Xi/X
∗

i |X=X∗ = 1 ∀i. (2.14)

This gain of knowledge about the steady state in the normalized system is achieved

at the cost of introducing unknown steady-state concentrations X∗ on the right hand

side of the system of equations. We can, however, combine these constants to a new set

of parameters. These scale parameters have the dimension of an inverse time and can

be interpreted as the timescales of the respective processes. In many cases, the scale

parameters can be estimated by experimental data.

For the normalized system, the Jacobian matrix at the steady state x∗ = 1 is

formally derived. For this purpose, the derivatives of the (normalized) functions with

respect to the (normalized) variables are formed. These quantities can also be inter-

preted as the logarithmic derivatives of the functions in the original system of ODEs.

These quantities are called elasticities, and together with the time scale parameters

they form the set of general parameters. It might seem that in order to know the exact

values of the derivatives, knowledge of both the functional form and the steady-state

values of the variables would be required. However, the elasticities also have an inde-

pendent interpretation as the local degree of saturation of the function with respect to
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the normalized variables, which can be used to determine them or restrict them to a

range of feasible values [9, 32].

In the last step, values are assigned to the general parameters in the Jacobian.

Depending on the degree of certainty given by the specific properties of the problem,

some of the parameters are fixed while other parameters are restricted to ranges of

feasible values. Instead of parameterizing the specific rate functions in a conventional

model, we thereby directly parametrize the Jacobian matrix, governing the dynamics

close to all possible steady states in all models that are consistent with the observed

interaction network. Only subsequently, the class of models under consideration is

narrowed down by fixing some of the parameters of the generalized model.

2.2.3 Limitations of generalized modeling

In this section, we discuss different arguments that can be brought up against the

method of GM and its generality. A possible objection is that the requirement that the

model has a steady state restricts the class of models that can be analyzed with GM.

While it is accurate that models without a steady state cannot be approached with

GM, the method aims at biologically relevant systems describing processes that occur in

nature. When the dynamics of a typical biological system is observed over an extended

duration, there are not many realistic possibilities of dynamical behavior which do

not involve either stationary dynamics from a stable steady state, or nonstationary

dynamics such as limit cycles, that involve the existence of nearby unstable steady

states when they arise via Hopf bifurcations. In particular, unbounded growth or decay

is not a realistic type of dynamics for the problems that we investigate.

Another possible objection is that the steady-state concentrations are assumed to

be positive. The assumption of excluding steady states with zero concentrations, for

which the normalization process fails, restricts the set of steady states that we can

analyze, since many models have steady states in which at least one of the variables

is zero. We note that the existence of such a trivial steady state does not prevent us

from analyzing other nontrivial steady states that possibly exist in the same model.

Moreover, these singular steady states are usually not biologically relevant, because the

fact that a certain concentration is represented in the form of a dynamic variable to

our model usually implies that it is expected to be larger than zero in all meaningful

circumstances.

A third possible objection is that active systems of living matter do not operate from

a steady state but are subject to continuous change. However, this objection is based

on a misunderstanding of the level of abstraction of the models we want to investigate.

While active processes in the cell do operate far from equilibrium in the sense of a
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physical system property, the mathematical concept of a steady state or equilibrium

from dynamical systems theory is different: The steady states that that are investigated

by GM are properties of specific mathematical models and thus depend on the choice

of the variables. For example, the transcription of a gene is a process operating far from

equilibrium from a biophysical point of view. But for many purposes, only the effects of

this process, i.e., the changes in the concentration of mRNA molecules, are important,

whereas the mechanistic details of the process of transcription are neglected. This

leads to a set of variables that is well-described by a steady state. Biological models

that are formulated in the framework of ODEs exhibit particularly often stationary

dynamics since the continuous nature of the dynamical variables often requires them

to be quantities that are averaged over an extended region. The sum of the contributions

of the constantly changing subsystems that is formed in the average often leads to a

stationary dynamics of the model variable.

We next discuss the inability of investigating nonlocal aspects of dynamical systems

in general models. The impossibility of detecting global bifurcations is a limitation

of the method, which is local by design. However, as shown in section 2.1.3, there

are connections between global and local bifurcations, so that local properties can in

some cases imply the existence of certain nonlocal dynamics. Examples for this include

codimension-2 bifurcations that are associated with chaotic (double Hopf bifurcation)

or bistable (cusp bifurcation) dynamics or that involve homoclinic bifurcations (Takens-

Bogdanov bifurcation). Therefore, the local analysis can point towards the existence of

global properties, especially when codimension-2 bifurcations are involved.

In a strict sense, the general results for local bifurcations describe the dynamics

only in an infinitesimally small region at the bifurcation manifold. This also applies to

bifurcation diagrams that characterize different types of bifurcations. In most practical

examples, however, properties of the infinitesimal environment of a bifurcation extend

to a significantly larger region of parameter space. For example, a supercritical Hopf

bifurcation involves an extended parameter regime of sustained oscillations in most

practical applications. The main focus of this thesis is thus not on mathematically

rigorous results of ideal systems but on the characterization the dynamic properties of

models for practical biological problems. To that end, we will often make use of heuristic

arguments and use local information in order to spot possible dynamic behavior of a

larger region in parameter space. When there is a need for strict statements with respect

to nonlocal properties of models, GM must be supplemented by nonlocal methods in

specific conventional models.
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Figure 2.3: Bifurcation diagram of a generic saddle-node bifurcation in a conventional

model (left) and a general model (right). In contrast to conventional models, a steady

state exists for each parameter value in the general model. Its stability changes at

(p1c, p2c)

2.2.4 Bifurcations in general models

Bifurcation analysis of generalized models differs in various aspects from the bifur-

cation analysis of conventional models. This is mostly due to the difference between

conventional and general parameters. While these sometimes subtle differences have

been discussed in more detail in earlier studies [40, 35], we summarize in this section

the most important aspects in which bifurcation diagrams of general parameters differ

from those in conventional models.

The normalization which is performed in general models constructs the general

parameters such that it is automatically ensured that for all admissible parameter

values, the normalized system describes a steady state. In this steady state, all variables

are equal to 1 by definition. Regions in parameter space without a steady state are thus

not described by GM because they do not correspond to any set of general parameters.

For these reasons, saddle-node bifurcations have a different shape in bifurcation di-

agrams of general parameters. Since the normalized variables are fixed to 1, bifurcation

diagrams that are equivalent to Fig. 2.3A cannot be shown, so that only bifurcation

diagrams depending on two generalized parameters are meaningful. Moreover, the part

of the bifurcation diagram in Fig. 2.3A in which no steady state exists does not corre-

spond to any set of general parameters. The shape of a SN bifurcation in a bifurcation

diagram of generalized parameters is shown in Fig. 2.3B. Note that while stability

changes, an equilibrium exists for all values of the general parameter. The transforma-

tion to general variables means effectively that the parabola appearing in Fig. 2.1 a)

is directly parametrized by the general parameter. A similar situation is encountered

for cusp bifurcation of codimension 2, which are SN bifurcations in which the normal
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coefficient of second order vanishes. The typical cusp-like structure which has given the

bifurcation its name is not preserved by the transition to the general model.

In Hopf bifurcations, the shape of bifurcation diagrams does not differ qualitatively.

However, it is necessary to keep in mind that also for Hopf bifurcations, there is a differ-

ence between bifurcation diagrams depending on conventional and general parameters.

The former describe the behavior of a single model realization in which only the varied

parameters change, while the latter describe classes of models, so that different sets of

general parameters can correspond to different steady states in different conventional

models.



Chapter 3

Normal-form analysis of

bifurcations in gene-regulatory

networks

In this chapter, we describe an extension of the method of generalized modeling that

consists of the integration of higher derivatives into the bifurcation analysis. Previous

studies in which generalized modeling is applied are exclusively based on an analysis

of the information encoded in the Jacobian at steady states. While this information

is sufficient to determine the stability of the steady states and many properties of the

bifurcation landscape, there are cases in which the additional information encoded in

the higher derivatives at the steady state reveals biologically relevant properties of

the dynamics that cannot be detected by analyzing only the Jacobian. We center our

investigation on Hopf bifurcations in gene-regulatory networks with negative feedback,

where it has direct consequences of practical importance on the dynamics whether

the Hopf bifurcation is supercritical or subcritical. This property is determined by

the first Lyapunov coefficient, a parameter of the Hopf normal form that depends on

the second and third derivatives computed in the steady state. Higher-order terms also

specify important properties of codimension-2 bifurcations. As an example of this class,

the detection of cusp bifurcations is demonstrated as a tool to determine the existence

and the onset of a parameter regime with bistable dynamics.

We introduce the extension of the method of generalized modeling in Sec. 3.1.

After giving a brief overview over oscillatory gene-regulatory networks in Sec. 3.2, we

investigate in Sec. 3.3 the type of Hopf bifurcations in the Goodwin model, a simple

model which describes a protein that inhibits the transcription of its own gene into

mRNA. Subsequently, a larger model of a circadian oscillator that contains instances of

both positive and negative feedback is analyzed in Sec. 3.4. We then modify this model
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to demonstrate the possibility of detecting bistable dynamics via cusp bifurcations in

Sec. 3.5, and conclude with a discussion of the results of this chapter in Sec. 3.6.

3.1 Normal-form parameters of codimension-1 bi-

furcations

In this section, we review the normal forms of generic Hopf and saddle-node bifurcations

and show how to implement the normal form analysis into the framework of GM.

3.1.1 Normal form of Hopf bifurcations

The normal form of a Hopf bifurcation [11] can be written as the two-dimensional

system of ODEs

f(x, α) =

(

ẋ1

ẋ2

)

=

(

α −1

1 α

)(

x1

x2

)

±
(

x2
1 + x2

2

)

(

x1

x2

)

+O(|x|4). (3.1)

This system has a steady state at x1 = x2 = 0 which changes stability in a Hopf

bifurcation at a parameter value α = 0. The Hopf bifurcation is subcritical for a

positive sign of the nonlinear term and supercritical for a negative sign.

The center manifold theorem states that bifurcations in higher-dimensional systems

can be reduced to their normal form [12]. For many purposes, the existence of this

reduction is sufficient. However, in order to determine the type of a Hopf bifurcation

in an particular higher-dimensional model, it is necessary to actually determine the

center manifold and to calculate its relevant normal form parameters.

For a Hopf bifurcation, the first Lyapunov coefficient l1 determines whether the bi-

furcation is supercritical or subcritical. This coefficient is calculated most conveniently

by a procedure proposed in Ref. [11]. Here we provide a brief outline of this procedure,

which requires the Jacobian, and the second and third derivatives of the functions at

the steady state as input.

We denote the Jacobian matrix of an n-dimensional system of ODEs f(x) with J.

At a Hopf bifurcation, the spectrum of J contains two complex conjugate eigenvalues

with zero real part. We denote the absolute value of the complex conjugate pair of

eigenvalues with ω. In the first step, two vectors q and p are determined that fulfill

the relations

Jq = iωq

JTp = −iωp.
(3.2)
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The vectors q and p are subsequently normalized so that they fulfill

〈p,q〉 = 1 (3.3)

with the standard scalar product 〈. . .〉.
In the next step, multilinear functions B(x,y) and C(x,y, z) are introduced that

include the second and third partial derivatives of f evaluated at the steady state x∗:

Bi(x,y) =

n
∑

j,k=1

∂2fi(ξ)

∂ξj∂ξk

∣

∣

∣

∣

ξ=x∗

xjyk i = 1, 2, . . . , n

Ci(x,y, z) =
n
∑

j,k,l=1

∂3fi(ξ)

∂ξj∂ξk∂ξl

∣

∣

∣

∣

ξ=x∗

xjykzl, i = 1, 2, . . . , n

(3.4)

When the functional forms of the model are known, the derivatives appearing in

B(x,y) and C(x,y, z) can be computed either from analytic expressions or numeri-

cally, using finite differences. In generalized models where the functional forms are not

explicated, they can be represented by parameters, as will be explained below.

Using these definitions, the formula for the first Lyapunov coefficient is

l1 =
1

ω
ℜ
(

〈p,C(q,q, q̄)〉 − 2〈p,B(q,J−1
B(q, q̄))〉

+〈p,B
(

q̄, (2iωIn − J)−1B(q,q)
)

〉
)

(3.5)

where In is the unit matrix of size n. The derivation of this expression, shown in [11],

is based on a Taylor expansion of f(x) at a Hopf bifurcation up to terms of third order.

For a more convenient computational implementation, an algorithm outlined in [11] can

be applied which reduces the number of higher derivatives that need to be calculated.

In addition, this algorithm allows to calculate l1 using only real-valued arithmetics.

3.1.2 Normal form of saddle-node bifurcations

The normal form of a generic saddle-node bifurcation is given by the one-dimensional

system

ẋ = α + σx2 +O(x3). (3.6)

with a parameter α and σ = ±1. For α = 0 the system exhibits a nonhyperbolic steady

state at x = 0. The quadratic normal form parameter which specifies the type of the

saddle-node bifurcations is

a =
1

2

∂ 2f

∂x2
. (3.7)

It is related to σ via

σ = sgn (a) (3.8)
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Unlike the sign of the Lyapunov coefficient of a Hopf bifurcation, the sign of a does

not contain information of direct importance for practical applications. However, cusp

bifurcations are characterized by a = 0. Since the existence of a cusp bifurcation points

to a regime of bistability in parameter space, it can be useful to calculate a along a

manifold of saddle-node bifurcations with the aim of finding the origin of a bistable

parameter regime in a cusp bifurcation.

Similar to the procedure for a Hopf bifurcation outlined above, the normal form

parameter a can be determined for n-dimensional systems using the center manifold

theorem. From the Jacobian, normalized eigenvectors p and q are determined that

fulfill the relations

Jq = 0, JTp = 0 (3.9)

Following Ref. [11], a is given by

a =
1

2
〈p,B(q,q)〉 (3.10)

where the term B(q,q), as defined in Eq. (3.4), contains only the second derivatives,

so that in contrast to Eq. (3.5), third derivatives are not required.

3.1.3 Incorporating normal forms into generalized models

With the procedures outlined above, it is possible to calculate the numerical values of

normal form parameters in a given conventional model. In fact, the automatic calcu-

lation of the first Lyapunov coefficient has been integrated into the newest generation

of bifurcation software such as MATCONT [41]. However, it is less straightforward to

integrate the calculation of Lyapunov coefficients into the framework of generalized

modeling. The reason for this is that l1 depends on the second and third derivatives

at the steady state, which can be determined directly only in conventional models

where the functional forms are specified. In generalized models, where the Jacobian is

directly parametrized without the assumption of specific functional forms, the higher

derivatives are unknown quantities. We apply two alternative strategies to solve this

problem:

In the first strategy, the higher derivatives of the functions are incorporated into

the model as additional parameters. The advantage of this approach is its high degree

of generality. For example, it allows to reveal signatures in the higher derivatives of the

functions under which a Hopf bifurcation is always supercritical. The most important

disadvantage of this strategy is that the number of parameters can increase strongly,

especially when the model under investigation includes multiple unknown nonlinear

functions.
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The alternative strategy is to restrict the functional forms to classes of functions.

For example, certain processes may be well-described by a Hill function F (X) = a Xn

K+Xn

with positive parameters a, K and n. The assumption that the functional form under

consideration obeys a Hill function leads to relations between the first derivative and

higher derivatives of the normalized function and thus to a reduction in the number of

parameters. Even though the second strategy has a lower degree of generality than the

first strategy and thus more similarity to approaches in conventional models, it still

retains several of the benefits of GM. Most importantly, due to the normalization, all

steady states that exist in the model can be analyzed directly, without having to locate

the steady states by numerical methods first. Therefore, this strategy still represents an

efficient and general way to investigate the types of bifurcations that exist in a possibly

large parameter space. Note that the two strategies can be combined by determining

certain functional forms and leaving others undetermined by introducing additional

parameters.

3.2 Negative-feedback oscillations in gene regula-

tion

Before applying the extension of generalized modeling to Hopf bifurcations in specific

models of oscillating gene-regulatory networks, we give a brief overview of the biological

systems in which oscillations occur.

Various gene-regulatory networks are known in which oscillations play a functional

role. The most famous example are circadian rhythms [42, 43] that are widespread

among species, existing in animals, plants and even bacteria. Other notable examples of

genetic oscillators include the cell cycle [44], the segmentation clock of vertebrates [45]

and the p53 tumor suppressor protein [46]. The core mechanism that causes the oscil-

lations in all of these examples is negative feedback, which is exerted by a transcription

factor inhibiting the production of its own mRNA either directly by binding to its own

promotor or indirectly, involving intermediate proteins.

The genetic oscillators that have evolved in nature need to fulfill additional require-

ments such as synchronization to oscillators in adjacent cells or robustness to noise.

For that reason, they are not simple oscillators that rely on a single gene with au-

toinhibition. Instead, the inhibitory feedback loop is embedded in a larger network of

interacting genes. Simple examples of genetic oscillators have been realized syntheti-

cally. The most prominent example is the repressilator [47] which is based on cyclic

inhibition of three genes.

The basic mechanism of negative-feedback oscillations can be described qualita-
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tively as follows: When the abundance of the protein is small, the inhibitional feedback

on transcription is weak and the concentration of mRNA can increase. With a tem-

poral delay, the concentration of the protein will also increase and at some point the

inhibition will be so strong that mRNA levels decays again. Again, protein numbers

follow the change in mRNA with a delay and the cycle repeats.

In Sec. 2.2, we have introduced the method of GM with the help of a toy model

for this process. However, it was found that sustained oscillations were not possible

in this model. The reason for the absence of oscillations is that the negative feedback

from protein to mRNA acts too abruptly. There is not enough time for the system to

generate a sufficient amount of mRNA before the negative feedback from the protein

inhibits its own gene. In the cell, a protein cannot repress transcription immediately

after its synthesis in the cytoplasm because it has to reach the nucleus first.

This inadequacy of the model can be overcome by different modifications. The

most straightforward modification consists of implementing an explicit time delay in

the model which can be discrete or follow a continuous distribution. In this case, the

model becomes a system of delay differential equations (DDEs). It has been shown that

in a realization of the toy model of Sec. 2.2 with explicit time delays, oscillations are

indeed possible [48]. However, a disadvantage of this strategy is that DDEs are harder

to analyze both numerically and analytically, since they are equivalent to an infinite-

dimensional system of ODEs. Even though the analysis becomes more complicated, it

is possible to approach systems of DDEs with the method of GM as well [49].

In this study, we choose a different modification of the toy model from Sec. 2.2,

leading to the Goodwin model, which is analyzed in the subsequent section. Instead of

introducing artificial time delays, an additional intermediate variable is added to the

model in order to distinguish the protein concentrations in different parts of the cell

such as the cytoplasm or nucleus by different dynamic variables. Thereby, a delay is

introduced indirectly into the model without leaving the framework of ODEs.

3.3 Normal-form analysis of Hopf bifurcations in

the Goodwin model

The Goodwin model, which has been proposed in 1965 by Brian C. Goodwin [39], is

one of the earliest models for gene regulation with negative transcriptional feedback.

In its original form, the model consists of three ODEs

Ẋ1 = a1F (X3)− a2X1

Ẋ2 = a3X1 − a4X2

Ẋ3 = a5X2 − a6X3

(3.11)
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where X1 denotes the concentration of mRNA that is translated into a protein, X2 is

the protein concentration in the cytoplasm, and X3 is the concentration of the protein

in the nucleus, where it acts repressively on the transcription of its own mRNA. The

parameters ai are rate constants. The function F (X3) describes the nonlinear negative

feedback exerted by the protein on the process of transcription. Goodwin assumed the

functional form

Forig(X3) =
1

1 + kX3
(3.12)

for the negative feedback term and erroneously detected a region in parameter space

with sustained oscillations in his original computational analysis [39]. In 1968, Grif-

fith [50] pointed out an error in the numerical simulations of Goodwin and showed

analytically that for a general form of an inhibiting Hill function

F (X3) =
1

1 + (kX3)n
(3.13)

with a Hill coefficient n, Hopf bifurcations and sustained oscillations are only possible

if n ≥ 8. In the following decades, the existence of oscillations was studied for various

generalizations of the Goodwin model, see e.g. [51, 52].

We study the Hopf bifurcations in the Goodwin model in the framework of general-

ized modeling. The first step in the transition to the general model is the normalization

with respect to the steady state concentrations X∗

i . The normalized system is given by

ẋ1 = α1 (f(x3)− x1)

ẋ2 = α2 (x1 − x2)

ẋ3 = α3 (x2 − x3) ,

(3.14)

where normalized variables xi =
Xi

X∗

i

and functions f(x3) =
F (X3)
F (X∗

3
)
are introduced. The

parameters α1 = a2, α2 = a4, α3 = a6 are positive and describe the time scales of

the turnover of mRNA and protein in the cytoplasm and nucleus.

In the general model, there is only one nonlinear function, f(x3), so that the elas-

ticities corresponding to the remaining functions are trivially equal to zero or, in case

of linear functions, one. For this reason, the Goodwin model is conceptually simple.

The conditions under which a Hopf bifurcation can occur in the Goodwin model and

similar models are known, and we show that they can be directly transferred to the

general model. However, the normal form of Hopf bifurcations in the Goodwin model

has not been studied before, so that the emphasis of our investigation is placed on the

effect of the functional forms used for f(x3) on the type of the Hopf bifurcation in the

system.
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In the steady state, the Jacobian of Eq. (3.14) is

J =







α1 0 0

0 α2 0

0 0 α3













−1 0 f (1)

1 −1 0

0 1 −1






(3.15)

where

f (1) =
df(x3)

dx3

∣

∣

∣

∣

x3=1

. (3.16)

Below, we will use the analogous notation for

f (2) =
d2f(x3)

dx2
3

∣

∣

∣

∣

x3=1

, f (3) =
d3f(x3)

dx3
3

∣

∣

∣

∣

x3=1

. (3.17)

In the following, we determine the Hopf bifurcation and its normal form in the model

without restricting f(x3) to a specific functional form. The characteristic polynomial

for J with an eigenvalue λ is

λ3 + c2λ
2 + c1λ+ c0 (3.18)

with

c2 = α1 + α2 + α3

c1 = α1α2 + α1α3 + α2α3

c0 = α1α2α3(1− f (1))

(3.19)

According to the method of resultants [53], the condition for a Hopf bifurcation in the

three-dimensional case is

c2c1 − c0 = 0. (3.20)

In the following, we use the notation

β = α1 + α2 + α3

ω2 = α1α2 + α1α3 + α2α3

γ = α1α2α3

(3.21)

where β, ω2, γ > 0 because all αi are positive. In terms of these parameters, the condi-

tion Eq. (3.20) for a Hopf bifurcation is

f (1) = 1− βω2

γ
(3.22)

Following Griffith’s argument [50], β, ω and γ from Eq. (3.21) satisfy the algebraic

inequality

1

3
β ≥

(

1

3
ω2

)1/2

≥ γ1/3 (3.23)
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which is valid for all positive α1, α2, α3. Multiplication with 3ω2 and use of the inequality

yields

βω2 ≥
√
3ω3 ≥

(

1

3
ω2

)

9γ1/3 ≥ 9γ. (3.24)

Therefore, the condition Eq. (3.22) can only be satisfied for

f (1) ≤ −8 (3.25)

Griffith’s results, that were derived for the special functional form Eq. (3.13), can

thus be directly transferred into the framework of GM. Because f (1) ∈ [−n, 0] for a

repressing Hill function according to Tab. 2.1, it follows that condition (3.22) is only

fulfilled for n > 8 in this particular functional form.

If the Hopf condition of Eq. (3.22) is fulfilled, the eigenvalues of the Jacobian at

the bifurcation are

λ1 = −β, λ2 = iω λ3 = −iω. (3.26)

In the next step, we derive an expression for the first Lyapunov coefficient at the Hopf

bifurcation. From J and its transpose JT, eigenvectors p and q according to Eq. (3.2)

are calculated. Prior to normalization, their expressions are

q =

(

α1f
(1)

α1 + iω
,
α3 + iω

α3
, 1

)

, p̃ =

(

α3 − iω

α1f (1)
,

α3

α2 − iω
, 1

)

. (3.27)

The normalization condition, 〈p,q〉 = 1, leads to

p = 〈p̃,q〉−1
p̃ =

(

1 +
α3 − iω

α2 − iω
+

α3 − iω

α1 − iω

)

−1

p̃. (3.28)

Since f(x3) is the only nonlinear function in the model

B(x,y) =
(

α1f
(2)x3y3, 0, 0

)

C(x,y, z) =
(

a1f
(3)x3y3z3, 0, 0

)

. (3.29)

Evaluating Eq. (3.5),

l1 =
1

ω
ℜ
[

〈p,C(q,q, q̄)〉 − 2〈p,B(q,J−1
B(q, q̄))〉+ 〈p,B

(

q̄, (2iωIn − J)−1B(q,q)
)

〉
]

for the Goodwin model therefore leads to

l1 = ℜ
(

p̄1q1q̄1
(

f (3) + α1f
(2)f (2) (2χ1 + χ2)

))

(3.30)

with

χ1 = J−1
1,3 =

1

α1(f (1) − 1)

χ2 = (2iωIn − J)−1
1,3 = − α2α3

3ω2 (β + 2iω)
.

(3.31)
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Next, the real part of Eq. (3.30) is evaluated and after several simplifications, the

expression for l1 is reduced to

l1 = −f (3) − 1

1− f (1)

β2 + 8ω2

β2 + 4ω2
f (2)f (2). (3.32)

Positive prefactors were dropped in Eq. (3.32) because only the sign of l1 determines

the type of the Hopf bifurcation. The above calculation therefore leads to a general

expression for l1 which depends on the time scale parameters and the local derivatives

of the nonlinear feedback functions.

We proceed by investigating l1 for the case of Griffith’s function, F (X3) =
1

1+(kX3)n
.

Normalization of F (X3) yields

f(x) =
F (X3)

F (X∗

3 )
=

1 + X̃n

1 + (x3X̃)n
, X̃ = kX∗

3 . (3.33)

Evaluating the derivatives at the steady state and expressing the higher derivatives as

functions of the Hill coefficient n and the first derivative leads to

f (1) =
df(x3)

dx3

∣

∣

∣

∣

x3=1

= −n
X̃n

1 + X̃n
=: −nθ

f (2) =
d2f(x3)

dx2
3

∣

∣

∣

∣

x3=1

= −nθ (n− 1− 2nθ) = f (1)
(

n− 1 + 2f (1)
)

f (3) =
d3f(x3)

dx3
3

∣

∣

∣

∣

x3=1

= f (1)
[

(

n− 1 + 2f (1)
)2

+ 2f (1)f (1) + (2f (1) − 1)(n− 1)
]

.

(3.34)

In combination with Eq. (3.32), the first Lyapunov coefficient can therefore be expressed

as a function of α1, α2, α3 (determining f (1) via the Hopf condition Eq. (3.22)) and

n. We fix α3 = 1, which implies no loss of generality because time can be measured

in units of α3 without affecting the bifurcations in the model. In Fig. 3.1, it is shown

that l1 < 0, for all values of the remaining parameters. Therefore, Hopf bifurcations

are always supercritical in the Goodwin model with Griffith’s feedback function F (X3),

regardless of the specific parameters.

Next, we investigate the effect of small changes in the nonlinear feedback functions.

For this we also fix the remaining time scales α2 = 1, α1 = 0.8, leading to f (1) = −8.1

because of Eq. (3.22). We chose this set of parameters because it leads to a Hopf

bifurcation close to the threshold f (1) = −8 and avoids possible artifacts of parameter

sets exactly at the threshold. Bifurcations described by this parameter set can be

realized by Hill functions with integer exponents n ≥ 9 or with fractional exponents

n ≥ 8.1. In Fig. 3.2, the curve of l1 = 0 is drawn in the plane of f (2) and f (3). This

curve marks a Bautin bifurcation, dividing the plane into a domain in which the Hopf

bifurcation is supercritical and another domain in which it is subcritical. In Fig. 3.2, the
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Figure 3.1: Possible values of l1 for Hopf bifurcations in the Goodwin model with Grif-

fith’s function F (X3) = 1
1+(kX3)n

. The shaded area visualizes the domain of possible

values for l1(α1, α2, n), plotted as a function of α1. It continues to more negative val-

ues of l1 outside the plotted region. The parameters α1,α2 were varied in the range

[0.01 : 10], n was varied in [nmin, 100] where nmin = −f (1). For all parameter combi-

nations, l1 is negative and the Hopf bifurcation is supercritical. The maximum of l1

corresponds to α1 = α2 = α3 = 1 and n = 8.

higher derivatives for the choice of Griffith’s function F (X3) =
1

1+(kX3)n
are also shown.

The exponent n > 8.1 is varied continuously while k is determined by the condition

f (1) = −8.1. In agreement with the more general results above, this curve does not

leave the region of supercritical Hopf bifurcations, resulting in no intersection with the

Bautin bifurcation curve.

We then vary F (X3) slightly and use a different function

G(X3) =
1

1 + (kX3)n + (k2X3)m
,

thus adding a second term with another Hill coefficient to the denominator. Note that

the shape of F (X3) and G(X3) does not differ strongly qualitatively (Fig. 3.2 bottom).

However, in contrast to F (X3), the function G(X3) can lead to a subcritical Hopf

bifurcation in the Goodwin model. Figure 3.2 (top) shows an intersection of the higher

derivatives corresponding to G(X3) with the Bautin curve of l1 = 0. However, this

intersection occurs at a high Hill coefficient n = 30.6.

In conclusion, it is shown the Goodwin model belongs to a class of models in

which the supercriticality of the Hopf bifurcation is robust with respect to changes in

the parameters. If a sigmoidal inhibition function is used to model the feedback, the

Hopf bifurcation is supercritical for arbitrary values of the Hill coefficient. While it
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Figure 3.2: Top: Types of Hopf bifurcations in the Goodwin model: In the plane spanned

by the second an third derivative of the feedback function, the dashed Bautin curve

(gray) separates two domains of supercritical and subcritical Hopf bifurcations. The

solid red curve depicts the higher derivatives of a sigmoidal inhibition function F (X3)

with a varied Hill coefficient n, while the dotted blue curve depicts the higher derivatives

of the slightly changed function G(x3) (with m = 6, k2 = 5k and n varied). Bottom:

The functions F (X3), G(X3) with the same parameters and n = 10.
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is easy to construct artificial feedback functions with higher derivatives that lead to a

subcritical Hopf bifurcation, the biological meaningfulness for most of these functions is

questionable. For the example function G(X3), which is qualitatively similar to F (X3),

subcriticality is possible but occurs only at very large Hill coefficients.

We note that the extension of the method can be used to predict the bifurcation

behavior for arbitrary functions. If the specific properties of a particular gene-regulatory

network justify a differential functional form, the combination of general modeling with

normal form analysis determines the type of Hopf bifurcation and thus whether the

loss of stability is soft or catastrophic.

3.4 Normal-form analysis in a model of a circadian

oscillator

In this section we proceed to investigate the normal form of Hopf bifurcations in a

gene-regulatory network that is more complicated than the Goodwin model. For this

purpose, we chose a model of the mammalian circadian oscillator that was developed

in Ref. [54]. The model includes both negative and positive transcriptional feedbacks,

a feature that is specific to mammalian circadian oscillators. Since there exist various

larger and more detailed mechanistic models of circadian oscillators, such as those for-

mulated in Refs. [44,55], the model under consideration model is of medium complexity.

At the basis of the mammalian circadian clock are the genes per2 (Period) and

cry (Chryptochrome) that are activated by the heterodimer BMAL1/CLOCK. By sup-

pressing this activation of the BMAL1/CLOCK dimer, the proteins PER2 and CRY

exert a negative feedback on the transcription of their own mRNA. Moreover, PER2

and CRY indirectly activate the transcription of the Bmal1 gene by a double negative

feedback, inhibiting the transcription of the gene Rev-erbα (not explicitly included in

the model), which in turn encodes for a protein that inhibits Bmal1 transcription.

These interactions have been captured by a model [54], which is schematically

depicted in Fig. 3.3. It includes seven variables that represent mRNA and protein con-

centrations of two genes, per2/cry and bmal1. Even though per2 and cry are separate

genes, they are assumed to have identical functional properties at the level of mRNA

and are thus reduced to a single variable. Because the proteins PER2 and CRY form

a complex, a single variable is used to describe the concentrations of the proteins as

well. Three dynamic variables are associated with the per2/cry gene: the concentration

of per2/cry mRNA (X1), the concentration of the PER2/CRY complex in the cyto-

plasm (X2) and in the nucleus (X3). The bmal1 gene is described by four variables,

representing the concentrations of bmal1 mRNA (X4), BMAL1 protein in cytoplasm
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Figure 3.3: Schematic overview over the model of the mammalian circadian oscilla-

tor. The two genes that form the basis of the circadian oscillator, PER2/CRY and

BMAL1/CLOCK, are represented by the concentration of mRNA and the concentra-

tions of protein in cytoplasm and nucleus. For BMAL1/CLOCK, an additional variable

describes the transcriptionally active form of the gene. Solid lines denote the (reversible)

flow of biomass while dashed lines denote activating or inhibiting feedback without a

flow of biomass.
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(X5), in the nucleus (X6) and in its phosphorylated transcriptionally active form in

the nucleus (X7). There are three instances of nonlinear feedback in the model. The

negative feedback by autoinhibition which forms the basis of the genetic oscillator is

exerted by the PER2/CRY complex X3 on its own mRNA X1. It is supplemented by

two positive feedbacks: The PER2/CRY complex X3 exerts a second type of feedback

by promoting the transcription of the bmal1 gene X4. Moreover, BMAL1 promotes the

transcription of the per2/cry gene, so that there is another positive feedback link from

X7 to X1. For a more detailed discussion of the structure of the model we refer to the

original publication [54].

From a structural point of view, the model under consideration can be seen as an

extension of the simple Goodwin model that has been analyzed in the previous section.

Here, the gene with negative autoinhibition is interconnected with another gene via

positive-feedback transcriptional regulation.

The system of ODEs for the model in [54] is

dX1

dt
= f(X3, X7)− k1X1

dX2

dt
= q(X1)− k2X2 + k3X3 − k4X2

dX3

dt
= k2X2 − k3X3 − k5X3

dX4

dt
= g(X3)− k6X4

dX5

dt
= k7X4 − k8X5 + k9X6 − k10X5

dX6

dt
= k8X5 − k9X6 − k11X6 + k12X7 − k13X6

dX7

dt
= k11X6 − k12X7 − k14X7

(3.35)

where all ki are rate constants.

The nonlinear functions that were used in the original model are

f(X3, X7) =
v1b(X7 + c)

k1b(1 + (X3/k1i)
p) + (X7 + c))

g(X3) =
v4bX

r
3

kr
4b +Xr

3

q(X1) = kqX
q
1

(3.36)

where n, p, q, r, v1b, k1b, k1i, v1b, c, kq are further parameters, leading to a total number

of 24 parameters.

When we implement the system of ODEs given by Eq. (3.35) into the framework

of generalized modeling, we adopt the linearity of the functions that are not affected

by any feedback mechanism from the original conventional model. The corresponding
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Figure 3.4: Bifurcation diagram of the conventional from Ref. [54]. If p is lowered from

p = 8 to p = 4.916, the unstable steady state becomes stable in a supercritical Hopf

bifurcation.

elasticities in the general model are accordingly fixed to 1. Because the PER2/CRY

complex described by the variable X2 is a dimer, the function q(X1) is assumed to

be quadratic and the corresponding elasticity is fixed to the value 2. However, the

nonlinear feedback functions f(X3, X7) and g(X3) are not restricted to the functional

forms of Eq. (3.36). Instead, the derivatives of these nonlinear functions are represented

by parameters of the general model.

As a starting point for the analysis of Hopf bifurcations, the conventional model

with the parameters of Table 1 in Ref. [54] is chosen. For this parameter set, sustained

oscillations with a period of T = 23.8h were observed [54]. Using the standard bifurca-

tion software MATCONT [41], we detect an unstable steady state in the conventional

model for this parameter set. Staying in the conventional model, we then proceed to

search for a Hopf bifurcation by variation of the Hill coefficient p. Figure 3.4 shows that

the unstable steady state becomes stable in a Hopf bifurcation when the Hill coefficient

p of the function f(X3, X7) is lowered from its original value p = 8 to p = 4.916. This

Hopf bifurcation is supercritical.

We want to investigate to what extent the supercriticality of Hopf bifurcations is

a robust property of the model structure and to what extent it is a mere property of

this particular set of parameters. For this purpose, it is explored in the corresponding

general model whether it is possible to continue the Hopf bifurcation in parameter

space so that it becomes subcritical. We first construct the set of general parameters

corresponding to the Hopf bifurcation of the conventional model. Subsequently, the
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Figure 3.5: Plot of the first Lyapunov coefficient l1 as a function of the higher derivatives

g(2) and g(3) of G(X3) (red surface) at a Hopf bifurcation point. The intersection with

l1 = 0 (gray surface) marks the Bautin bifurcation. The red curve, embedded in the

red surface, shows the subset of higher derivatives that results from the restriction of

G(X3) to a Hill function with an arbitrary exponent.

time scale parameters and exponent parameters of the general model are fixed, however

without restricting the functional form of g(X3). This has the consequence that the

second and third derivatives of this function can be represented by parameters. Note

that the first derivative g(1), which is one of the exponent parameters, is still fixed.

In Fig. 3.5, the first Lyapunov coefficient l1 is plotted as a function of the higher

derivatives of g(X3). For large values of g(2) and g(3), the Hopf bifurcation undergoes

a Bautin bifurcation and its type changes from supercritical to subcritical. The figure

also displays the cut through the bifurcation manifold that describes those pairs of

second and third derivatives that are realized by the assumption of a Hill-type function

with a varied Hill coefficient. The resulting set of points is one-dimensional because

one of the two parameters of the function is determined by the constraint of a fixed

first derivative. The region in which the curve is supercritical corresponds to small

Hill coefficients r, whereas for large r, the Hopf bifurcation can become subcritical.

Therefore, larger higher derivatives (associated with high Hill coefficients) of g can cause

the Hopf bifurcation to become subcritical. In the current example, a Hill coefficient

of r = 19 is necessary to cross the Bautin bifurcation, whereas r = 3 was assumed

in Ref. [54]. An unusually high degree of cooperativity in the activation of Bmal1

transcription would be required to justify the assumption of such large parameter

values.
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In order to determine whether the model also exhibits subcritical Hopf bifurcations

that do not require Hill functions with large exponents r, we extend our search to a

larger portion of the parameter space. To this end, we use a random sampling algorithm

that can be described as follows: In the first step, random values from ranges of feasible

values are repeatedly assigned to the general parameters, leading to different steady

states for which the spectrum of the Jacobian is calculated. From the steady states

that this procedure yields we select those unstable samples that are close to a Hopf

bifurcation because they are characterized by a conjugate pair of leading eigenvalues

with a small but positive real part. We subsequently apply a Newton method [56] to

optimize the general parameters until a point on the Hopf bifurcation is reached. The

test function of the eigenvalues λi of the Jacobian that the Newton method minimizes

was chosen as the absolute value of the real part of the complex pair of eigenvalues

that is closest to the imaginary axis. After having detected a random Hopf bifurcation

point, l1 is calculated.

In order to reduce the number of free parameters, we restrict the functional forms

to Hill-type functions. As a simplification of the model by Becker-Weimann et al. [54],

F (X3, X7) = F3(X3)F7(X7) = v
1

1 + (X3/kp)
p

1

1 + (ks/X7)
s (3.37)

is assumed to be a product of a repressing and an activating sigmoidal function. This

assumption leads to one additional parameter per function in the general model, which

determines the second and third derivatives, provided that the elasticity (first deriva-

tive) is fixed. The additional parameters are chosen to be the Hill coefficients p for

F3(X3), r for G(X7) and s for F7(X7). All three Hill coefficients are restricted to the

range [1 : 10].

The random sampling analysis yields that in the majority of samples, Hopf bifur-

cations are supercritical in the model. Only a small fraction of 1.5% of the sampled

bifurcations are subcritical, showing that both types of Hopf bifurcations are possible

in the model also for smaller Hill coefficients.

By a continuation of subcritical Hopf bifurcations, we construct bifurcation dia-

grams for various samples in which a subcritical Hopf bifurcation with low Hill coeffi-

cient is found. The bifurcation diagram for one of these samples is shown in Fig. 3.6.

For other samples these bifurcation diagrams have a qualitatively similar shape.

Fig. 3.6 confirms again the above results showing that for large values of r, the Hopf

bifurcation enters a subcritical regime. However, there is also an additional subcritical

regime at much lower Hill coefficients. This shows that subcritical bifurcations are also

possible at more realistic Hill coefficients in this model structure.
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Figure 3.6: First Lyapunov coefficient depending on the Hill coefficients p and r of the

functions f(X3) and g(X7). The Hopf bifurcation (red) is subcritical in the areas above

the gray plane of l1 = 0 and supercritical below.

3.5 Cusp bifurcations and bistability

Because of their connection to bistability, cusp bifurcations are a second bifurcation

type in which normal form analysis reveals information of direct practical importance.

In this section, we show that a search for cusp bifurcations in general models can be

used to detect the existence of bistable parameter regimes. We apply the new approach

to different abstract types of gene-regulatory networks that are based on the model of

the circadian oscillator in Sec. 3.4 but do not correspond to real-world gene-regulatory

networks. Future studies are needed for an application to models describing bistable

systems in nature.

The models that we investigate in this section are based on the model of the cir-

cadian oscillator corresponding to Fig 3.3. There are three instances of feedback in

the model that are represented by the functions F (X3, X7) and G(X3). We assume

that F (X3, X7) = F (X3)F (X7) can be written as a product. In contrast to the pre-

vious section, we consider both positive and negative feedback for all three feedback

functions. Instances of positive feedback are described by Hill functions of the form

F+(X) = v(X/K)n

1+(X/K)n)
, whereas instances of negative feedback are described by sigmoidal

inhibition functions F−(X) = v
1+(X/K)n)

with positive parameters v, n,K.

For each of the 23 combinations of positive and negative feedback, we search whether

there exist cusp bifurcations in parameter space. Because of the large parameter space,

we follow a similar approach as in Sec. 3.4, which is based on the calculation of normal

form parameters in multiple random samples. In each sample, all parameters are as-
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signed random values from uniform ranges. The Hill coefficients of the three feedback

functions were restricted to values between 1 and 10.

In contrast to the previous section on Hopf bifurcations, random steady states are

sampled in the vicinity of saddle-node bifurcations. With a Newton method, the general

parameters are then optimized to the nearby bifurcation surface and the normal-form

parameter b is calculated. If it is found that for a given combination of feedback,

there exist both samples with b > 0 and samples with b < 0, bifurcation diagrams

are constructed in order to find transitions corresponding to b = 0 and thus to cusp

bifurcations.

Table 3.1: Existence of cusp bifurcations for different combinations of positive and

negative feedback in gene-regulatory networks based on the model of the circadian

oscillator [54].

F (X3) G(X3) F (X7) Cusp bifurcations

+ + + No

+ + − No

+ − + No

+ − − Yes

− + + No

− + − No

− − + No

− − − Yes

Table 3.1 shows for all eight possible combinations of positive and negative feedback

whether bistability was found close to cusp bifurcation. Note that no cusp bifurcations

are found for the combination −/ + /+ that corresponds to the circadian oscillator

analyzed in the previous section. Even though in this model, saddle-node bifurcations

are detected in addition to the Hopf bifurcations discussed above, all of these bifurca-

tions are characterized by a normal form parameter b < 0. Since the model has been

developed to describe oscillatory instead of bistable dynamics, the absence of cusp

bifurcations is not unexpected.

However, for two combinations of feedbacks (−/− /− and +/− /−), the resulting

model includes saddle-node bifurcations with both positive and negative normal form

coefficients b and cusp bifurcations. In Fig. 3.7A, a bifurcation diagram depending on

two generalized parameters and the normal form parameter b is shown for the model in

which all three types of feedback are inhibiting (−/−/−). The point at which b changes

its sign corresponds to the cusp bifurcation. Note that the characteristic cusp shape is

not detected in bifurcation diagrams of generalized parameters. However, if the system
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is mapped back to a conventional model, a bifurcation analysis with MATCONT [41]

shows that the typical cusp shape is recovered (Fig. 3.7B). Finally, it is verified by

numerical integration in the conventional model that in the region inside the cusp, two

stable steady states coexist.

The presented method based on a local analysis can thus be used to detect the

nonlocal property of bistability by an analysis the normal form of saddle-node bifur-

cations. However, we note that bistability does not necessarily involve the existence of

cusp bifurcations. In order to evaluate the practical benefit of normal-form analysis of

saddle-node bifurcations to detect bistability in a general class of models, future studies

are necessary in models for systems in which bistable dynamics plays a functional role.

3.6 Discussion

In this chapter, we have proposed an extension of the method of generalized modeling

that includes the analysis of higher derivatives, thus allowing to analyze the normal

forms of bifurcations. This extension has been applied to two models of gene-regulatory

networks, the Goodwin model and a model of a circadian oscillator.

For Hopf bifurcations, the dynamics of the surrounding parameter space depends

on whether the bifurcation is subcritical or supercritical, leading typically either to

a sharp transition to large-amplitude oscillations or to a soft, reversible transition to

low-amplitude oscillations. We have analyzed Hopf bifurcations in one of the earliest

and simplest models for a gene with a negative-feedback auto-regulation, the Goodwin

model. For this model, an analytic expression for the first Lyapunov coefficient of the

Hopf bifurcation was obtained, depending on the higher derivatives of the nonlinear

feedback function of the model. It was found that for the choice of a Hill function,

the bifurcation in the model is supercritical for arbitrary Hill coefficients. We further

showed that subcritical Hopf bifurcations can appear when functional forms are used

that deviate only slightly from the Hill function.

In the larger model of a mammalian circadian oscillator, in which the self-inhibiting

gene is part of a gene-regulatory network of two interacting genes, it was detected that

the Hopf bifurcation in the vicinity of parameter sets used in the literature is super-

critical. Only for strong changes to the model parameters, it can become subcritical in

a Bautin bifurcation. Using a statistical sampling method, we then proceeded to show

that the model exhibits a different region in parameter space where transitions between

supercritical and subcritical regimes occur for parameter values that correspond to low

Hill coefficients.

A second bifurcation type for which the knowledge of normal-form parameters re-

veals biologically relevant information are cusp bifurcations. They mark the onset of
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Figure 3.7: Cusp bifurcations in the general and the conventional model with three neg-

ative feedback loops. Top: The normal-form parameter b of a saddle-node bifurcation

is plotted against β, the elasticity corresponding to f(X3) and γ, the elasticity corre-

sponding to g(X7). Bottom: The bifurcation diagram in the vicinity of the cusp point

in a corresponding conventional model is shown, depending on the Hill coefficients r

and s.
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a parameter regime in which two stable steady states coexist, so that the existence of

a bistability in a given model structure can be confirmed by detecting a cusp point in

parameter space. This is potentially useful for many applications in systems biology.

We showed that cusp bifurcations indeed exist in a modified version of the circadian

oscillator model, in which the instances of positive feedback were exchanged by neg-

ative feedback. In this hypothetical example of a gene-regulatory network, we then

performed a mapping of the general parameter set corresponding to the cusp bifurca-

tion to a conventional model and verified that the bifurcations indeed mark the onset

of a bistable region.

While the existence of bistability in a model can be shown in the way outlined

above, the absence of cusp bifurcations does not strictly imply that no bistability exist

in the model. However, we expect that if a model exhibits a regime of bistability, it is

very likely that a cusp bifurcation exists at its edge in a general model with multiple

parameters. Since cusp bifurcations are of codimension two and thus typically only

encountered in bifurcation diagrams of dimension two or larger, the absence of cusp

bifurcations in some investigations of bistable models can be explained by the way in

which the bifurcation analysis is performed. Although various prominent examples of

bistable systems, among them the lac operon [57] and the cell cycle [58], exhibit cusp

bifurcations, further studies are needed to investigate this point.

The combination of generalized modeling and normal form analysis introduced in

this chapter constitutes an efficient way to extract not only the bifurcation landscape

of models but also to draw conclusions about nonlocal dynamics. One of the potential

applications of the method is to use it as a pre-screening tool in the initial stage of

model development, where choices have to be made between different alternative model

formulations. Here, generalized models can provide a list of dynamical features of steady

states in different model candidates without necessitating time-consuming numerical

integration. The extension of the method presented in this section is particularly useful

in applications where the model is expected to incorporate non-stationary behavior such

as oscillations or bistability as a functional property.





Chapter 4

Stability and bifurcations in bone

remodeling

In this chapter, we analyze mathematical models for the process of bone remodeling

with the method of generalized modeling. After giving an introduction to the biology

of bone remodeling in Sec. 4.1, we investigate in Sec. 4.2 and Sec. 4.3 the dynamics

of two different model structures on which most of the earlier modeling attempts are

based. For both model structures, we estimate the parameter regime that is most

likely realized in nature and then calculate the stability properties and the bifurcation

landscape in this regime. In Sec. 4.4, we suggest a possible link between bifurcations

in the mathematical model and Paget’s diseases of bone. The results presented in this

chapter have been published in Ref. [59].

4.1 Introduction

Bone is an active tissue that forms the skeleton of vertebrates [60–62]. The functions of

bone are not limited to providing mechanical support to the skeleton, but also include

the storage of minerals and the generation of blood cells in the bone marrow that

resides in the hollow inside of bones.

During development and growth, the skeleton of vertebrates is formed in the process

of bone modeling [63]. However, also the fully developed skeleton is actively reshaped

and rebuilt throughout the life of an adult. This process, which is achieved by a separate

mechanism than bone modeling, is known as bone remodeling or bone turnover [64]. It

leads to the renewal of the complete human skeleton in a time span of approximately 10

years. Although the purpose of bone remodeling has not been elucidated ultimately, it is

believed that bone remodeling helps to repair the skeleton from fatigue damage induced

by stress or mechanical loading. Another important function of bone remodeling is to
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prevent the accumulation of old bone tissue by constant replacement.

In contrast to bone modeling, in which tissue is either formed or removed at a

particular site in bone, bone remodeling consists of two interconnected subprocesses:

the resorption of old bone and the subsequent formation of new bone at the same site.

In the past decades, it has become clear that, at the cellular level, bone remodeling

depends on the interplay between two different cell types, osteoclasts and osteoblasts.

The former are cells that resorb bone by acidification, while the latter have the ability

to fill the gaps left by osteoclasts with newly formed bone tissue [62]. Although both

osteoclasts and osteoblasts originate in the bone marrow, they derive from different

types of stem cells. Osteoclasts are multinuclear cells of hematopoietic origin that arise

by fusion of multiple progenitor cells, whereas osteoblasts are mononuclear and derive

from mesenchymal stem cells [64].

Figure 4.1: Micrographs of osteoclasts and osteoblasts. Left: A single osteoclast with

multiple nuclei. Right: Active osteoblasts in the process of osteoid formation.

by Robert M. Hunt. License: pd (left), cc-by-sa-3.0 (right)

At a particular site in bone, osteoblasts and osteoclasts move collectively in dis-

crete groups, remodeling tissue on their way. Such a collection of cells is called basic

multicellular unit (BMU) since the work of Frost [65]. A single BMU has a cone-like

structure and consists of 10 − 20 osteoclasts at the front, followed by 1000 − 2000

osteoblasts. At each moment, there are approximately 1 million BMUs present in the

human skeleton [64].

In humans, bone remodeling is regulated by various factors that can be autocrine

(acting on cells of the same type that releases them) or paracrine (acting on different

cell types). In particular, a signaling pathway involving the Receptor Activator of NF-

κB (RANK), its ligand RANKL, and the cytokine receptor osteoprotegerin (OPG)

plays an important role in the regulation of bone remodeling [66,63]. For osteoclasts to

mature, it is necessary that RANKL, expressed by cells of osteoblastic lineage, attaches

to RANK, which is expressed on cells of osteoclastic lineage. This process is antagonized
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by the decoy receptor OPG, which is, like RANKL, expressed by cells of osteoblastic

lineage. OPG inhibits the differentiation of osteoclasts by binding to RANKL and thus

sequestering it. By adjusting the ratio of RANKL and OPG expression, osteoblasts can

therefore control their feedback on osteoclastogenesis.

The cytokine TGFβ is another important regulator that is known to influence both

osteoclasts and osteoblasts [67]. Over- or underexpression of TGFβ and the members

of the RANKL pathway is related to several diseases of bone, such as osteoporosis

and Paget’s disease of bone [68–71]. There exist many other cytokines, hormones and

vitamins for which an influence on bone remodeling has been shown, making them

possible candidates for an inclusion in mathematical models. However, for the dynamics

of bone remodeling it is most important to include those regulators that affect both

osteoclasts and osteoblasts. For this reason, most earlier studies concentrate on the

effects of the RANKL and TGFβ pathways.

4.1.1 Previous mathematical models

Mathematical models describing the process of bone remodeling have been proposed

in a number of earlier studies. An overview of the literature is given in Ref. [72]. Some

of the previous models aim to describe the dynamics of single BMUs. In this case,

spatial aspects of the dynamics play an important role. Additionally, the small number

of osteoclasts in a single BMU makes a description with continuous variables difficult.

Nevertheless, a detailed spatio-temporal model has been proposed recently [73] which

is based on the two-variable model structure analyzed later in this work.

The majority of the previous mathematical models are based on systems of ODEs.

This approximation can be justified by the argument that spatial effects can be ne-

glected when an average over an extended region with a high number of BMUs is taken.

Averaging over many BMUs has the additional advantage that it allows to take into

account systemic properties of bone remodeling, such as the response to global over-

or under expression of different enzymes or hormones. Understanding these properties

is of a higher practical significance than the dynamics of single BMUs because of the

direct implications to various wide-spread diseases of bone.

The first mathematical model for bone remodeling was published in 2003 by Ko-

marova et al. [74]. In this model, the dynamics of two variables, the number of os-

teoblasts and osteoclasts was studied, while the regulatory interactions were described

by power laws. Thereby, the effects of different paracrine and autocrine factors were

condensed into power law exponents. The model by Komarova et al. was subsequently

extended in various later publications [75, 73, 76].

A different model structure, based on three dynamic variables, was proposed by
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Lemaire et al. in 2004 [77] and also extended in subsequent studies [78, 79]. In these

models, emphasis was placed on a biochemically motivated derivation of the functional

forms, using nonlinear functions from enzyme kinetics instead of the power law formal-

ism.

In most of the earlier studies, it was found that the system approaches a stable

steady state in which the numbers of osteoclasts and osteoblasts remain constant in

time. Starting from a particular stable steady state, it was then studied how the con-

centrations of osteoblasts and osteoclasts are influenced by changes in various external

parameters such as production or decay rates of osteoclasts and osteoblasts. The re-

sponse of the system was then linked to various diseases of bone. However, most of

the earlier studies did not attempt to systematically explore the parameter space to

prove that a stable steady state exists under all reasonable parameter choices. More-

over, many decisions for parameter values were not explicitly justified by biological

reasoning.

4.1.2 Stability in models of bone remodeling

From a biological point of view, it is evident that under normal physiological condi-

tions, the number of both osteoclasts and osteoblasts should remain constant in time.

Otherwise, either the resorption of old bone or the formation of new bone would pre-

dominate, leading to an undesirable decrease or increase of bone volume. Mathematical

models of bone remodeling that describe the dynamics of osteoclasts and osteoblasts

should therefore operate from a stable steady state.

In order to maintain the balance between osteoblasts and osteoclasts, the system

should be driven back to the steady state in response to random external fluctuations.

At the same time, it is desirable that the stationary densities of osteoblasts and osteo-

clasts react sensitively to external changes that are communicated through signaling

molecules. Thereby, the rate of bone remodeling can be adjusted temporarily to make

the system adaptive to situations in which an increased rate of bone remodeling is

needed. The demands that a system should be able to maintain a constant rate of bone

remodeling in a noisy environment but still be sensitive to changes in the parameters

requiring an adaptation are conflicting. We therefore expect that there is a trade-off

between dynamical stability and responsiveness. In dynamical systems, the strongest

response of steady states is often found close to bifurcations – critical thresholds at

which the stability to perturbations is lost. It is thus possible that the physiological

state of the bone remodeling system is characterized by parameter values close to a

bifurcation point.

These arguments motivate us to investigate the aspect of dynamical stability in
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mathematical models of bone remodeling in more detail. To this end, we implement

the structural properties of various existing mathematical models into the framework

of generalized modeling. The questions that we seek to answer are:

• Is the existence of a stable steady state a prevalent property of mathematical

models for bone remodeling or does it depend on strict restrictions on the pa-

rameters?

• Can the loss of stability in a bifurcation of the dynamical system explain cases

of malfunctions in bone remodeling?

Answers to the first question can lead to a better understanding of the conditions

under which mathematical models of bone remodeling can operate from a steady state.

Those biological assumptions that are critical to ensure stability can be separated from

others and specifically targeted by experiments. Since there exist no earlier comparative

studies for mathematical models of bone remodeling, these structural properties are

not well understood.

Answers to the second question can also provide cues for experimental studies. If a

relation between a disease and a bifurcation is found to be accurate, this allows for new

countermeasures aiming to strengthen the stability of the system. For example, the tools

of bifurcation theory can be utilized for understanding the causes and consequences of

the disease. In particular, existing methods to detect early warning signals for critical

transitions in dynamical systems [80] could prove useful in this case.

4.2 A two-variable model of osteoblasts and osteo-

clasts

Mathematical models capable of describing the dynamics of bone remodeling should

include the concentrations of active osteoblasts, B, and of active osteoclasts, C. In

this section, we introduce a minimal model having only these two dynamical variables.

Because this minimal model potentially oversimplifies the problem by ignoring the

different properties of osteoblast precursors, a more detailed model that accounts for

osteoblast behavior at different stages of maturation is later introduced in Sec. 4.3.

In the two-variable model, we assign to both state variables gain terms (F (B,C),

H(B,C), respectively) describing the recruitment of new cells from a pool of precursor

cells, and loss terms (G(B,C), K(B,C)), describing the removal of cells due to apop-

tosis or further differentiation into other cell types such as osteocytes or lining cells

that are no longer directly involved in bone remodeling. These assumptions lead to the
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basic system of equations

d

dt
B = F (B,C)−G(B,C)

d

dt
C = H(B,C)−K(B,C).

(4.1)

In the following, it is assumed that the functions F (B,C), G(B,C), H(B,C) and

K(B,C) are positive and continuously differentiable but not restricted to specific func-

tional forms. The state variables B and C are also assumed to be positive.

Assuming the existence of a steady state, we denote the steady-state concentrations

of osteoblasts and osteoclasts with B∗ and C∗, respectively. We then define normalized

variables

b =
B

B∗

, c =
C

C∗

. (4.2)

Similarly, we define a set of normalized functions

f(b, c) =
F (B,C)

F (B∗, C∗)
, g(b, c) =

G(B,C)

G(B∗, C∗)
,

h(b, c) =
H(B,C)

H(B∗, C∗)
, k(b, c) =

K(B,C)

K(B∗, C∗)
.

(4.3)

Using these definitions, the system can be written as

d

dt
b = α1 (f(b, c)− g(b, c))

d

dt
c = α2 (h(b, c)− k(b, c)) .

(4.4)

where

α1 =
F (B∗, C∗)

B∗

=
G(B∗, C∗)

B∗

(4.5)

and

α2 =
H(B∗, C∗)

C∗

=
K(B∗, C∗)

C∗

. (4.6)

The second identities in Eq. (4.5) and Eq. (4.6) hold because the gain and loss terms

for each variable cancel each other in a steady state by definition.

The normalization guarantees that in the new coordinates, the formerly unknown

steady state is located at (b, c) = (1, 1). The Jacobian of the normalized model can be

written as

J =

(

α1 0

0 α2

)(

fb − gb fc − gc

hb − kb hc − kc

)

. (4.7)

Here we use Roman subscripts to indicate the partial derivatives of the functions, i.e.,

the elasticities that were introduced in Sec. 2.2.1. For instance, fb is defined as

fb =
∂ f

∂ b

∣

∣

∣

∣

b=1,c=1

=
B∗

F (B∗, C∗)

∂F

∂B

∣

∣

∣

∣

B=B∗,C=C∗

=
∂ (lnF )

∂ (lnB)

∣

∣

∣

∣

B=B∗,C=C∗

. (4.8)
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So far, the Jacobian matrices corresponding to all positive steady states in a large

class of models have been constructed. We emphasize that it is not necessary to assume

that for a given set of conventional parameters there exists only a single steady state.

In the general case, where multiple steady states exist, the formal derivation of the

Jacobian applies to all steady states in all models within the class considered here.

However, the general parameters appearing in the Jacobian matrix generally differ

between steady states belonging to the same conventional model because they depend

on the steady-state values of the variables.

Although the quantities appearing in the Jacobian, such as fb, are in general un-

known, they do not depend on the dynamical variables and can therefore be treated as

parameters with the same right as the parameters that are introduced in conventional

models. Like conventional parameters, the generalized parameters have a well-defined

interpretation in the context of the model. In the following, we discuss the interpreta-

tion for each parameter and confine it to a range of feasible values. The final structure

of the two-variable model is summarized in Fig. 4.2.

OB OC

apoptosis

lining cells

osteocytes

OB progenitors OC progenitors

apoptosis

TGFβ

TGFβ

TGFβ

RANK/RANKL/OPG

IGF

Figure 4.2: Schematic sketch of the two-variable model. Osteoblasts (OB) influence

osteoclasts (OC) via the RANKL/RANK/OPG pathway, while the TGF-β pathway

exerts a positive feedback from osteoclasts to both osteoclasts and osteoblasts.

The parameters α1 and α2 are defined as ratios between a flux and a concentration

and thus have the dimension of an inverse time. They represent the respective time

scales of the two coupled differential equations and can be interpreted as the inverse

lifetime of the respective cell types. Since the average life span of osteoblasts (≈3
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months) exceeds the life span of osteoclasts (≈2 weeks) by a factor close to 6 [64], it is

reasonable to assume that α1/α2 ≈ 1/6. Because the scale by which time is measured

is arbitrary and does not affect the stability analysis, we are free to fix α1 = 1, leading

to α2 = 6.

The remaining parameters in the Jacobian of Eq. (4.7) are elasticities which describe

the local derivatives of the gain and loss terms. We note that in the model proposed in

Ref. [74], all functional forms were chosen to be power-laws. In this case, the elasticities

correspond to the power-law exponents, so that the Jacobian of of Eq. (4.7) is similar

to the Jacobian derived in Ref. [74]. Nevertheless, Eq. (4.7) describes the local behavior

of steady states in a larger class of models, in which the processes can be modeled by

arbitrary positive functions.

We assume that the typical life span of the osteoblasts is not affected by regulatory

mechanisms. Therefore, the decay term of osteoblasts is linear in the concentration

of osteoblasts b and independent of osteoclasts c. It follows that gc = 0 and gb = 1.

Likewise, the decay term of osteoclasts is assumed to be independent of osteoblasts,

corresponding to kb = 0. The parameter fb describes the autocrine regulation in the

differentiation of osteoblast progenitors into active osteoblasts. Osteoblasts express

Insulin-like growth factors (IGF), that are known to promote osteoblastogenesis [81,82].

Therefore, it is assumed that fb > 0.

The parameters fc, hc and kc describe the influence of the feedback exerted by the

growth factor TGFβ [67]. When osteoclasts resorb bone tissue, TGFβ is released into

the bone matrix, where it can subsequently facilitate the differentiation of osteoblast

progenitors to active osteoblasts. This paracrine interaction between osteoblasts and

osteoclasts leads to fc > 0. In the bifurcation analysis below, it is shown that more

specific assumptions about this elasticity are not required.

The autocrine roles of TGFβ, described by the parameters hc and kc, are less clear:

In vitro experiments [83–85] have led to contradictory results on the influence of TGFβ

on the differentiation of precursors to active osteoclasts, finding both activation and

repression [67]. The observed type of feedback depends strongly on the experimental

setup of these studies, such as TGFβ concentration or whether isolated cultures of

osteoclasts or co-cultures with osteoblasts were used. The current belief [67] is that in

co-cultures with osteoblasts, TGFβ acts indirectly in a repressing way by interacting

with the OPG/RANKL/RANK pathway. In contrast, TGFβ activates and sustains

osteoclasts in isolated cultures. In order to cover both possibilities, we investigate the

possible dynamics for both positive and negative values of the corresponding elasticity

hc.

In the absence of additional feedback mechanisms, one would assume the decay

term of osteoclasts to be linear, kc = 1. However, the apoptosis of osteoclasts has been
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reported to be both promoted [86–88] and suppressed [89,90] by TGFβ, corresponding

to kc > 1 and kc < 1, respectively. Based on these conflicting experimental results, we

assume that kc is positive but again do not assume a specific value. In the Jacobian,

Eq. (4.7), the parameters hc and kc appear in the form of the difference hc−kc. There-

fore, the effects of autocrine regulation in the production and decay terms of osteoclasts

can be covered by a single parameter mc ≡ hc−kc that takes the autocrine feedback of

the production and the decay term simultaneously into account. The “default value”

of mc, describing a situation without autocrine feedback, is mc = −1.

Finally, the effects of the RANKL/RANK/OPG pathway are described by the

parameter hb. This parameter can assume negative or positive values, depending on

whether the repressing effects of OPG or the activating effects of RANKL dominate.

The assumptions made above lead to the simplified Jacobian

J =

(

1 0

0 6

)(

fb − 1 fc

hb mc

)

. (4.9)

with four remaining parameters.

4.2.1 Bifurcation analysis of the two-variable model

Having derived the Jacobian and conditions on the parameters, we can now establish

the conditions for saddle-node bifurcations and Hopf bifurcations in the two-variable

model. In any system of ODEs, a necessary condition for a saddle-node bifurcation is

detJ = 0, which is equivalent to the existence of a zero eigenvalue. For the Jacobian

of Eq. (4.9), it follows that

mc(fb − 1)− fchb = 0 (4.10)

is satisfied at saddle-node bifurcations.

In a Hopf bifurcation, the spectrum of the Jacobian is characterized by two complex

conjugate eigenvalues with zero real part. For a two-dimensional system, this means

that the sum of the two eigenvalues, i.e., the trace of the Jacobian, vanishes (TrJ = 0).

It follows that
α1

α2
(fb − 1) +mc = 0. (4.11)

is a necessary condition for a Hopf bifurcation. Additionally, the inequality detJ > 0

must be fulfilled in order to exclude the case of two real eigenvalues λ1 = −λ2 (pseudo-

Hopf bifurcation).

Because the ratio of timescales α1/α2 has been fixed, the bifurcation conditions that

are determined by Eq. (4.10) and Eq. (4.11) depend on the parameters, fb, mc and

fchb. The parameters fc and hb appear only as a product in the bifurcation conditions.
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Figure 4.3: Bifurcation diagram for the 2-variable model, depending on fb, mc and

fchb. A Hopf bifurcation (red) and a SN bifurcation (blue) separate regimes of stable

steady states (SS) from regimes of unstable steady states (US).

The stability of all steady states in the whole class of models can thus be visualized in

a three-parameter bifurcation diagram, which is displayed in Fig. 4.3.

Each combination of the parameters in the three-dimensional volume corresponds to

the steady state in a particular model. A Hopf bifurcation and a saddle-node bifurcation

divide regions in which the steady state is stable from regions in which it is unstable.

We note that the bifurcation diagram in Fig. 4.3 differs from Fig. 4a in Ref. [74], in

which the saddle-node bifurcation surface seems to be independent from fb (called g22

there), which is incompatible with the form of Eq. (4.10).

Figure 4.3 shows that for fb > 1, stable steady states exist only for negative values

of fchb (upper region), whereas smaller values of fb allow stability also for small positive

values of fchb. Since the parameter fb describes the positive feedback of IGF on the

growth term of osteoblasts, it is reasonable to assume fb > 0. In Ref. [74], conventional

models were analyzed in which fb was zero, or, in some cases, positive but small. For

fb = 0 and mc = −1 (no autocrine feedback), it is required for stability that fchb < 1.

Larger values of fb impose stronger restrictions on the remaining parameters for the

stability of steady states.

Because fc is assumed to be positive, the crucial parameter in the term fchb that

determines its sign is hb. A positive value of hb, corresponding to the case where

activation by RANKL dominates over repression by OPG, leads to a positive value of

fchb. Therefore, resulting steady states are located close to the unstable region that is

separated by a saddle-node bifurcation from the stable regime (lower region of Fig. 4.3).
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In contrast, a negative value of hb places the system in the stable region. In the model,

stability is therefore promoted when the inhibitory effect of OPG dominates over the

promoting effect RANKL and the effective action of the RANKL signaling pathway is

inhibitory. This condition is not necessarily fulfilled in vivo and the choice to assume

a negative value of hb has not been justified by biological reasoning in earlier studies

such as Ref. [74]. We conclude that under the reasonable assumptions that the effective

feedback of the RANKL pathway is activating and the autocrine feedback of osteoblasts

is stronger than linear, there are no stable steady states in the two-variable model.

The loss of stability in a Hopf bifurcation appears mostly as an effect of changing

the parameter mc, which describes the autocrine feedback of osteoclasts. Instability

requires that mc ≈ 0 or larger. In the case of no autocrine feedback of osteoclasts, it

would be expected that mc = −1 because in that case, the decay term of osteoblasts is

linear in C. Therefore, Hopf bifurcations occur when the effective autocrine feedback on

osteoclasts is activating. These relations between the autocrine feedback of osteoclasts

and Hopf bifurcations have already been observed in Ref. [74].

In the numerical simulations of Ref. [74], only escalating or damped oscillations

were observed in the vicinity of the Hopf bifurcation. Since the complete absence of

sustained oscillations close to a Hopf bifurcation is slightly unusual, we analyze the type

of Hopf bifurcations in more detail. Without making further assumptions on the higher

derivatives as in Chapter 3, we cannot determine in the general model whether the Hopf

bifurcation is subcritical or supercritical. We therefore consider the conventional model

proposed in [74] as an example of the more general class of models considered here. In

our notation, this model can be written as

d

dt
B = AbB

fbCfc −DbB

d

dt
C = AcB

hbChc −DcC,

(4.12)

where Ab,Db,Ac and Dc are rate constants. This model is a subclass of the general

model considered above in which two specifications were made: First, the functions

were modeled by power laws, so that the elasticities of the general model describe

power-law exponents in this context. Second, the autocrine feedback of osteoblasts and

osteoclasts was assumed to affect only the respective gain terms, leading to linear decay

terms.

The condition for a Hopf bifurcation in this model is

Dc

Db
(hc − 1) + (fb − 1) = 0. (4.13)

Using the bifurcation software MATCONT [41], we find that the first Lyapunov coef-

ficient is equal to zero for Hopf bifurcations in this model, irrespective of the param-

eter values. This leads us to the hypothesis that a special symmetry in the particular
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conventional model causes the system of Eq. (4.12) to be Hamiltonian at the Hopf

bifurcation.

We confirm this hypothesis by showing analytically that under the condition

Eq. (4.13), the flow is Hamiltonian. In Hamiltonian systems, a function of the dynamic

variables exists which is conserved on all trajectories. Using the elementary technique

of an integrating factor (which is R = B−fbC−hc), we determined this function to be

H(B,C) =− Dc

fb − 1
B1−fbC1−hc − Ac

hb − fb + 1
Bhb−fb+1 +

Ab

fc − hc + 1
Cfc−hc+1

(4.14)

It can easily be verified that for this function, d
dt
H(B,C) = 0 is satisfied under the

condition Eq. (4.13). The actual Hamilton equations are fulfilled after the coordinate

transformation to canonical variables p(B) = 1
1−fb

B1−fb and q(C) = 1
1−hc

C1−hc .

It follows that irrespective of parameter values, no limit cycles are created in Hopf

bifurcations of this specific model. The steady state exactly at the bifurcation manifold

is a center. The Hopf bifurcation is thus neither subcritical nor supercritical, but is just

at the brink between the two alternatives. Sustained oscillations can occur only if the

parameters are tuned exactly to the bifurcation point, but with an amplitude that

depends on the initial conditions. Fig. 4.4 shows the oscillations directly at a Hopf

bifurcation for different initial conditions.
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Figure 4.4: Dynamics of the conventional model of Eq. 4.12 at the Hopf bifurcation

point for different initial conditions. The amplitude of the oscillations depends on the

initial conditions.

The structural instability which effects this degenerate behavior of the model is

caused by a symmetry in the special system of ODEs. A biologically feasible mecha-

nism that breaks this symmetry is to assume the existence of feedback in the autocrine
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regulation in the loss term of osteoclasts (kc 6= 1). Above, we have mentioned experi-

mental evidence for this feedback. Moreover, feedback in the decay term of osteoclasts

has been implemented in other models of bone remodeling such as Ref. [77]. Even for

very weak feedback, the system is no longer Hamiltonian at the bifurcation point, so

that a subcritical or supercritical Hopf bifurcation can occur. We checked numerically

that for kc 6= 1, there exist supercritical Hopf bifurcations, and stable limit cycles with a

well-defined amplitude exist in the surrounding parameter regime. Therefore, the result

of Ref. [74] that oscillations are either escalating or damped is not robust with respect

to small changes in the model structure and is thus only valid in the rather unrealistic

situation in which there is no autocrine feedback in the decay terms of osteoclasts.

In summary, our bifurcation analysis reveals problems of the two-dimensional

model. For stable steady states to occur, models of this class need to make rather strong

assumptions on the parameters. If the autocrine feedback of osteoblasts is positive, the

feedback of osteoblasts on osteoclasts must be effectively inhibiting, implying that the

repressing effects of OPG should dominate over the activating effects of RANKL. Oth-

erwise, all steady states in the model would be unstable, so that the model could not

describe physiologically meaningful situations. Furthermore, we showed that the Hopf

bifurcation in the model implies damped or escalating oscillations only for the spe-

cific assumption that the decay terms of both osteoclasts and osteoblasts are linear. If

the autocrine feedback of osteoblasts or osteoclasts also effects apoptosis and further

differentiation, sustained oscillations can occur because the degeneracy of the Hopf

bifurcation is removed. In this case, a shift in the parameters that drives the system

over the Hopf bifurcation can lead to stable sustained oscillations of osteoclast and

osteoblast concentrations.

4.3 A three-variable model with responding os-

teoblasts

The two-variable model proposed above may be oversimplified because it does not

take the dynamics of precursor populations into account. If the involved cell types are

regulated differently at different stages of maturation, the structure of the model can

change in a way that cannot be covered by the two-variable models considered above.

A model with a different structure has been proposed in Ref. [77] and was subsequently

extended in Refs. [78, 79]. In this model, cells of osteoblastic lineage are represented

by two dynamic variables, responding osteoblasts (ROBs, variable R) and active os-

teoblasts (AOBs, variable B). ROBs are cells that are committed to the osteoblastic

lineage and interact with osteoclasts but are not yet functional osteoblasts.
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There are two reasons for distinguishing AOBs and ROBs: First, there is experimen-

tal evidence that cells of osteoblastic lineage express RANKL and OPG in a different

proportion at different stages of maturation. It has been found that at later stages,

the ratio of RANKL to OPG decreases [91, 92], so that the inhibiting effects of OPG

become increasingly stronger during the lifetime of the cell.

Second, TGFβ promotes osteoblasts particularly at an early stage of maturation.

TGFβ activates osteoblast differentiation from ROB progenitors, but it inhibits their

further differentiation into active osteoblasts [67]. We note that the clear-cut distinction

between AOBs and ROBs is an approximation since the term “responding osteoblast”

is not describing a well-defined cell type but a collection of cells at different stages of

maturation. In reality, changes such as the decline of the OPG to RANKL ratio are

expected to be gradual.

ROB AOB OC
becomes

±(RANKL/OPG)

±(RANKL/OPG)

+(TGFβ)

−(TGFβ)

+(TGFβ)

Figure 4.5: Schematic overview of the three-variable model, in which the dynamics

of responding osteoblasts (ROB), active osteoblasts (AOB) and osteoclasts (OC) is

described. The feedback mechanisms, mediated by the RANK/RANKL/OPG-pathway

and by TGFβ, are inscribed in the diagram in the form of arcs with arrows. The straight

arrow from ROB to AOB indicates a flow of biomass due to differentiation of ROBs.

The structure of the three-dimensional model, summarized in Fig. 4.5, translates

to the system of ODEs

d

dt
R = S(C)− T (R,C)

d

dt
B = T (R,C)− U(B)

d

dt
C = V (B,R)−W (C),

(4.15)

where the two terms in each equation correspond again to the gains and losses of

the population of the respective cell type. We have already inscribed the functional

dependencies in these equations. They are motivated by the biological processes that
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are included in the model. We explain these processes in more detail after formally

constructing the Jacobian.

Performing the normalization procedure leads to the set of normalized equations

d

dt
r = α1 (s(c)− t(r, c))

d

dt
b = α2 (t(r, c)− u(b))

d

dt
c = α3 (v(b, r)− w(c))

(4.16)

where, in analogy to our treatment of the two-variable model, the lower-case variables

and functions denote the normalized quantities and α1, α2, α3 are the characteristic

timescales of ROB, AOB, and OC turnover.

In analogy to Eq. (4.7), the Jacobian for the three-variable model can be written

as

J =







α1 0 0

0 α2 0

0 0 α3













−tr 0 sc − tc

tr −ub tc

vr vb −wc






. (4.17)

A summary of the elasticities occurring in the Jacobian and the ranges that are assigned

to them is given in Table 4.1.

Parameter Interpretation Range

sc activation of ROB production [0, 1]

tr ROB decay, linear in r 1

tc repression of ROB decay [−1, 0]

ub AOB decay, linear in b 1

vr action of ROBs on OC [−1, 1]

vb action of AOBs on OC [−1, 1]

wc activation of OC decay [0.5, 1.5]

Table 4.1: Parameters in the three-variable model

The elasticities sc, tc and wc describe the nonlinearities that are caused by the

feedback exerted by the TGFβ pathway. This pathway stabilizes the reservoir of ROBs

both by promoting the differentiation of osteoblast progenitors to ROBs, leading to

sc > 0 and by inhibiting the further differentiation of ROBs to AOBs, leading to

tc < 0. In the following, sc will be restricted to the interval [0, 1] and tc to [−1, 0].

These ranges includes for example the choice of Hill functions with exponents equal

to 1 (Michaelis-Menten kinetics) that were used in earlier models [79]. The nature

of autocrine regulation of osteoclasts has not been ultimately clarified. Therefore we

restrict wc to the interval [0.5, 1.5]. This range is centered around wc = 1, because



62 4.3 A three-variable model with responding osteoblasts

without any additional feedback, a linear decay term would be expected. The parameter

wc is smaller (larger) than one if the additional feedback is negative (positive). We note

that the functional forms that were assumed in Refs. [77,78] lead to superlinear decay

(wc > 1).

The regulation of osteoclasts by cells of osteoblastic lineage is mediated by the

RANKL/RANK/OPG pathway. Depending on the ratio between RANKL and its de-

coy receptor OPG, the corresponding elasticities vr and vb can be either positive or

negative. We note the difference to the two-variable model, in which the actions of the

RANKL system were described by a single parameter. Different combinations of vr and

vb describe all possible combinations of RANKL and OPG expression at responding

osteoblasts and active osteoblasts. In particular, two important scenarios, which are

discussed as models M1 and M2 in Ref. [78], are characterized in the general model by

1. vr < 0, vb > 0. OPG is expressed by responding osteoblasts, RANKL is ex-

pressed by active osteoblasts.

2. vr > 0, vb < 0. RANKL is expressed by responding osteoblasts, OPG is ex-

pressed by active osteoblasts.

Intermediate situations, in which there is a differential expression of OPG and RANKL

that does not lead to different algebraic signs for the elasticities are also covered by

our description (e.g. vr > vb > 0).

4.3.1 Bifurcation analysis of the three-variable model

In the three-variable model, the number of free parameters is larger than in the two-

variable model. It is no longer possible to group all parameters having an impact on

stability such that they can be visualized in a single bifurcation diagram. In order to

gain an overview of the effects that the various parameters have on stability, we instead

use a statistical method based on the sampling of random steady states [9]. The idea of

this method is to analyze the influence of selected parameters on stability while averag-

ing over the effect of the remaining parameters. This analysis is subsequently combined

with a bifurcation analysis of three-dimensional subsets of the larger parameter space,

where the remaining parameters are fixed.

In the random sampling analysis, N = 107 random parameter sets are created.

In each set, we assign to all parameters random values that are drawn from uniform

distributions in the intervals defined in Tab. 4.1. We then determine the stability of

the steady states defined by the individual parameter sets by numerical computation

of the eigenvalues of the respective Jacobians. Using the whole ensemble of random

parameter sets, we then calculate the percentage of unstable steady states depending on
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Figure 4.6: Effect of parameters on local dynamics. The histograms show the fraction

of randomly drawn steady states that are unstable (red crosses) and the fraction of

unstable states with leading complex eigenvalues, indicating oscillatory instabilities

(green circles). Each panel shows the effect of one elasticity, while averaging over the

other parameters.

the values of single parameters, at the same averaging over the remaining parameters.

For the elasticities occurring in the model, the results of the random sampling analysis

are shown in the histograms of Fig. 4.6.

Panel A and B of Fig. 4.6 show that strongly nonlinear paracrine feedback exerted by

TGFβ (sc ≫ 0 and tc ≪ 0) has a destabilizing effect on the steady state. The parameter

wc, describing the autocrine feedback by TGFβ, has an opposite effect (Fig. 4.6C):

Strong positive feedback of osteoclasts on osteoclast removal stabilizes the steady state.
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It follows that the paracrine effects of TGFβ on osteoblasts that are described by sc

and tc destabilize the steady state, whereas the apoptosis-inducing autocrine effects of

TGFβ, described by wc, stabilize it.

For vr < 0, few unstable states are detected (Fig. 4.6D), showing that models in

which OPG is preferentially expressed on ROBs (as opposed to AOBs) usually operate

from a stable steady state that cannot be destabilized easily. The second parameter

that is related to RANKL signaling, vb, also acts destabilizingly at large positive val-

ues (Fig. 4.6E). As noted above, there is experimental evidence that OPG is expressed

stronger by active osteoblasts, while RANKL is expressed stronger on ROBs [91, 92].

This implies that the parameter regime that is most likely realized in nature is charac-

terized by vr > vb, which is also the regime in which instabilities occur most frequently

in models.

In order to investigate the nature of the bifurcations leading to the instabilities

in more detail, we repeat the sampling analysis, but this time distinguishing between

unstable steady states in which the leading eigenvalue, i.e., the eigenvalue with the

largest real part, is a real number and those in which it is part of a complex conjugate

pair. The significance of the leading eigenvalue lies in its effect on the departure of

the system from the unstable state. Specifically, when departing from a state in which

the eigenvalue with the largest real part is has a non-zero imaginary part, the system

launches into oscillations.

Figure 4.6 shows that for most parameters, the curve for unstable states with a

leading pair of complex conjugate eigenvalues has a similar shape as the curve for of

all unstable states. However, an exception is the parameter vb (Fig. 4.6E) for which a

very different behavior is observed: Whereas the fraction of unstable states with a real

positive eigenvalue increases with increasing vb, the fraction of unstable states with

a leading pair of complex conjugate eigenvalues decreases with an increasing vb. This

behavior suggests that the main route to instability for vb is to cross a saddle-node

bifurcation for large parameter values, whereas the probability of encountering a Hopf

bifurcation increases for small values of vb. We also note that while all other curves

are monotonous, a maximum in the fraction of oscillatory unstable steady states is

observed for the parameter vb.

After having identified the overall impact of the parameters on stability on the

basis of a statistical ensemble of steady states, we proceed by investigating selected

parameters in bifurcation diagrams. Here, we chose to concentrate on the parameters

vb and vr for which the random-sampling analysis showed the most interesting results,

as well as the parameter wc, which captures the different possibilities of feedback in

the decay term of osteoclast. Here, the bifurcation manifolds are shown for a wider

range of parameter values than biologically reasonable. The three-dimensional cut of
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the parameter space that was investigated in the random sampling analysis is shown

in the form of a gray box.

Figure 4.7: Bifurcation diagram of the three-variable model, depending on the effects of

RANKL/OPG (vb, vr) and the autocrine effects of osteoblast decay (wc). The parameter

regime of stable steady states (SS), which is located in the upper front part of the

diagram, can be left via a Hopf bifurcation (red) or a saddle-node bifurcation (blue).

The gray cube marks the part of parameter space most likely corresponding to reality,

in which the sampling analysis of Fig. 4.6 was performed. Other parameters: α1 = 1,

α2 = 1, α3 = 6, sc = 0.8, tc = −0.8.

The bifurcation diagram in Fig. 4.7 shows that parameter sets corresponding to

stable steady states are characterized by large values of wc and small values of vr

(upper front of the figure). The section in parameter space that is most likely realized

in nature based on experimental results is characterized by wc ≈ 1, which can be close

to a Hopf bifurcation depending on the values of vr and vb that describe whether OPG

and RANK are expressed preferentially on osteoblast precursors or active osteoblasts.

Moreover, Fig. 4.7 confirms the findings from the random-sampling analysis that both

large values of vr and small values of wc are associated with unstable steady states.

For the parameter vb, the situation is more complicated: For large values of vb,

the steady state loses its stability in a saddle-node bifurcation, whereas stability can

be lost in a Hopf bifurcation for small values. This explains the qualitative different

stability curves for the parameter vb in Fig. 4.6D, depending on whether all unstable

states or only those with an oscillatory instability were taken into account. Unstable

steady states with a leading pair of complex conjugate eigenvalues are found in the

space between the Hopf bifurcation and the saddle-node bifurcation, which explains
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the maximum observed for instability vr in Fig. 4.6D.

The bifurcation diagram in Fig. 4.7 also contains bifurcations of higher codimension.

The Hopf-bifurcation surface ends in a Takens-Bogdanov bifurcation of codimension

two as it connects to the saddle-node bifurcation surface. For low values of wc, the Hopf-

bifurcation intersects with the saddle-node bifurcation in a Gavrilov-Guckenheimer

bifurcation. In the center of the Figure, the Takens-Bogdanov bifurcation and the

Gavrilov-Guckenheimer bifurcation intersect in a triple-point bifurcation of codimen-

sion 3. The presence of codimension-2 bifurcations can be of relevance for applications

because they can imply the existence of non-local properties such as homoclinic bifur-

cations or chaos [11]. However, since it is unlikely that these kinds of dynamics play a

role in the system of bone remodeling, a detailed discussion of the dynamics close to

the codimension-2 bifurcations is beyond the scope of this present investigation.

Figure 4.8: Bifurcation diagram in which all processes controlled by TGFβ exhibit

the same degree of nonlinearity. The strength of this nonlinearity is described by the

parameter c = sc = −tc = wc−1. The other bifurcation parameters, vr and vb, describe

the effect of the RANKL pathway. In the diagram, the red surface describes a Hopf

bifurcation, whereas the blue surface describes a saddle-node bifurcation. In the front

region of the diagram, steady states are stable.

A different section of the parameter space was considered in Ref. [77], where a single

Hill function with one Km value was chosen for all processes controlled by TGFβ. In

the case of inhibiting interaction, a sigmoidal inhibition function with the same Km

was used. Translated into the framework of generalized modeling, this means that

sc = −tc = wc − 1 =: c, leading to a reduction of free parameters. The new parameter

c changes simultaneously the local nonlinearity of all functions describing the TGFβ
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pathway. Figure 4.8 shows that an increase in the nonlinearity of the feedback by TGFβ

can act destabilizingly, which was not observed in Fig. 4.7 where only the parameter

wc was varied. The bifurcation properties with respect to the other parameters, vr and

vb, are consistent between Fig. 4.8 and Fig. 4.7.

4.4 Bifurcations and diseases of bone

The bifurcation analysis of the three-parameter model suggests that both saddle-node

bifurcations and Hopf bifurcations exist close to the operation point of the dynamical

system of bone remodeling. This proximity can have beneficial consequences, but it

also creates risks to the organism that may lead to diseases.

The main benefit of operating close to a region of instability is that in general, a

stronger adaptive response to external changes of the model parameters is possible. In

the vicinity of a SN bifurcation where the leading eigenvalue of the Jacobian is only

slightly negative, the response to changes in the parameters is stronger, as it is implied

by the quadratic normal form of the bifurcation [11]. Generalized models are not de-

signed to study these responses directly. However, in Ref. [78], numerical simulations

of the response of the system to parameter changes were performed in a conventional

model that belongs to the class of three-variable models analyzed above. These sim-

ulations showed that a model structure in which RANKL is exclusively expressed by

ROBs, whereas OPG is exclusively expressed by RANKL, leads to a stronger response

to changes in the osteoclast differentiation rate than other combinations. The authors

conclude that this model structure is “optimal“ because it offers the most effective func-

tional control of bone remodeling [78]. In the general model, we have shown that this

structure, described by vr > 0 and vb < 0, leads to steady states close to bifurcations.

Despite these benefits, operating close to a boundary of a bifurcation also poses

risks to the system. A larger change in the parameters, invoked by an external process,

can shift the system over the bifurcation, so that the stable steady state becomes

unstable or ceases to exist. In this case, the balance of bone remodeling can no longer

be maintained. Moreover, stability is lost in an abrupt and discontinuous way in many

bifurcations. If this is the case, the system can jump to a distant region in phase

space, and even a later reversal of the parameter change does not restore the former

equilibrium of functional bone remodeling. It is thus a crucial question for the type of

analysis we have performed whether certain diseases of bone can be connected to the

loss of stability in bifurcations.

Several diseases of bone are related to dysfunctions in the regulation of bone re-

modeling. Prominent examples include postmenopausal osteoporosis, osteopetrosis, os-

teopenia or Paget’s disease. Here, we focus on Paget’s disease, a bone disorder of elderly
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patients that affects 2%− 3% of the population over the age of 60 [68]. The disease is

strongly localized and leads to the enlargement and deformation of single or multiple

bones. In patients with Paget’s disease, there are repeated phases of increased bone

resorption, which are followed by phases of abundant formation of new bone. This

pattern, which can occur in an escalating way, could be caused by oscillations in the

numbers of osteoclasts and osteoblasts. Periodic activity of osteoclasts is a phenomenon

that has also been observed in cell cultures of osteoclasts and monocytes [93] and is

also known to occur in tooth eruption in the development of rats [94].

The transition from the healthy state in which cell numbers remain constant to a

disease state with periodic changes in cell numbers could thus be associated with the

loss of stability of a steady state in a Hopf bifurcation. To investigate this possibility,

we compare whether the model parameter changes leading to loss of stability in a Hopf

bifurcation can be identified with known causes of Paget’s disease.

In the two-dimensional model, Hopf bifurcations are caused by an increase of the

autocrine feedback of osteoclasts mediated by TGFβ, (parameter mc in Fig. 4.2). How-

ever, TGFβ was found to be not related to Paget’s disease of bone [95], so that the

two-dimensional model does not support a link between Hopf bifurcations and Paget’s

disease. In the three-dimensional model, stability can also be lost in Hopf bifurca-

tions by changing RANKL/OPG ratio, i.e. by enlarging vb and reducing vr. This is in

agreement with findings that the RANKL pathway is involved in Paget’s disease. In

particular, OPG deficiency was reported to be related to juvenile Paget’s disease [69],

which is consistent with the bifurcation properties of the three-parameter model.

While much work remains to establish a link between diseases of bone and bi-

furcations, our analysis takes the first step in showing that Hopf- and saddle-node

bifurcations exist close to the physiological steady state in current models of bone re-

modeling. Since a bifurcation occurring in vivo should lead to a pathological condition,

the proximity to bifurcations in the mathematical model needs an explanation. One

possibility is that current mathematical models do not describe the dynamics of bone

remodeling adequately, either because crucial parts of the biology are missing or be-

cause the parameter estimates are incorrect. In that case, the mathematical models

need to be improved, for example by including additional regulatory pathways. How-

ever, it is also possible that connections between bifurcations and pathological states

such as Paget’s disease exist in reality. If this is indeed confirmed, it would imply that

the powerful tools of bifurcation theory can be applied to explore the dynamics of the

disease.
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4.5 Discussion

In this chapter, we have used the approach of generalized modeling to investigate the

stability of steady states in a large class of models for bone remodeling.

In an analysis of the bifurcation behavior of models based on two dynamic variables,

describing osteoclasts and osteoblasts, it was shown that both saddle-node bifurcations

and Hopf bifurcations can occur. In the two-dimensional model, the stability of steady

states requires that either the autocrine feedback of osteoblasts is sufficiently small or

that the inhibitory effect of OPG dominates over the activating effect of RANKL. If

these conditions are not fulfilled, the two-dimensional model cannot give an adequate

description of the process of bone remodeling. We further showed that the possibility

of autocrine feedback in the decay term of osteoclasts should be taken into account

in the two-variable model because the assumption of a linear removal rate can lead to

structurally unstable models. In such models, an arbitrarily small deviation from the

model assumptions results in qualitatively different dynamical behavior. Because the

generalized model proposed here does not need to assume any specific functional form,

it avoids such degeneracies that often are caused by an unfortunate choice of functional

forms in conventional models.

In the analysis of an alternative model with three variables, we have combined

a random sampling approach with a bifurcation analysis for specific parameters. The

bifurcation analysis shows that stability of steady states is possible under less restrictive

conditions than in the two-variable model. In the parameter range most likely realized

in nature, these conditions place the system into an area of the bifurcation diagram

that is close to both saddle-node and Hopf bifurcations. It can be suspected that

the proximity to bifurcations helps the system to respond more strongly to external

changes. At the same time, the system is exposed to the danger of crossing a bifurcation,

which can possibly be connected to diseases of bone. In particular, the bifurcation

analysis of the three-variable model supports a link between Hopf bifurcations and

Paget’s disease of bone, whereas the two-variable model dose not. This suggests that

responding osteoblasts should be included as a separate variable in future models.





Chapter 5

Bifurcations and chaos in the

MAPK signaling cascade

In the last part of this thesis, we study the mitogen-activated protein kinase (MAPK)

cascade. The MAPK cascade is an important signaling pathway regulating many funda-

mental processes of eukaryotic cells. The basic biochemistry of the pathway that defines

the structure of mathematical models is well-established today. Moreover, the system

has been studied in many computational models since 1996 [96–102]. The MAPK cas-

cade is not only investigated in models with the aim of improving the understanding

of the actual biology but is also used as an example to test new computational meth-

ods [103, 104].

Despite these advancements, there are still many open questions for computational

studies of the MAPK pathway. Detailed mechanistic models include many unknown

parameters for which experimental data is scarce, whereas less detailed models that

reduce the number of parameters by approximations can potentially miss important

dynamical effects.

As a method that can efficiently analyze the steady-state behavior of models in a

large parameter space, generalized modeling is a promising tool for models with these

characteristics. By a systematic analysis of the stability and bifurcations of a detailed

and mechanistic model of the MAPK cascade we confirm, extend and generalize pre-

vious results obtained in conventional models. We further show how the analysis of

bifurcation can reveal regions in parameter space with unusual dynamics such as irreg-

ular oscillations and weak forms of chaos, that were previously not known to exist in

models of the MAPK cascade.

After giving an introduction to the biology of the MAPK pathway in Sec. 5.1, we

describe our implementation of the method of generalized modeling for the pathway in

Sec. 5.2. We then show results for the MAPK pathway and for subsystems forming a
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cascade-like composition of phosphorylation-dephosphorylation cycles in Sec. 5.3 and

Sec. 5.4. The results presented in this chapter have been published in Ref. [105].

5.1 Biology of the MAPK pathway

The MAPK cascade is a highly conserved signaling pathway in eukaryotic cells. It is

involved in the regulation of numerous functions of the cell, among them proliferation,

apoptosis, differentiation and cell motility [106–108]. Aberrant activation of the MAPK

pathway is related to several diseases, from which cancer is the most prominent example

[109]. The oncogene Ras, which is part of the MAPK cascade, is found in a structurally

altered form in approximately 25% of human tumors, leading to an activation of the

MAPK pathway that is independent from external growth signals [110]. Even though

it is not completely understood to what extent changes in MAPK signaling cause the

disease and to what extent they are merely consequences of upstream events, some

of the proteins involved in the MAPK cascade are targeted by cancer drugs already

today [111]. Therefore, a heightened understanding of the dynamics of the pathway can

potentially lead to the discovery of better drug targets for cancer treatment [112–114].

There are many homologous MAPK cascades across different cell types and species.

However, the basic topological motif shown in Fig. 5.1 is conserved in MAPK pathways

throughout all eukaryotic cells [106]. In the figure, we show a prominent example of

a MAPK cascade, the growth-factor induced Ras-Raf-MEK-ERK cascade that is in-

volved in many types of human cancer. When a cell is exposed to extracellular stimuli

such as growth factors, receptors on the cell membrane are activated that trigger a se-

ries of intermediate reactions. These reactions ultimately lead to the activation of the

enzyme Ras, which phosphorylates Raf, a protein also called MAPKKK (MAP-Kinase-

Kinase-Kinase). In its activated state, Raf activates the protein MEK (MAPKK) by

phosphorylating it at two different sites. The double-phosphorylated MEK can then

facilitate the double phosphorylation of ERK (MAPK), which, in its phosphorylated

state, activates several transcription factors and downstream kinases. Each phospho-

rylation step in the MAPK cascade can be reversed by a phosphatase.

An earlier study in which Metabolic Control Analysis (MCA) was applied to the

cascade suggests that the reactions downstream from Ras are of central importance

for the dynamics [115]. We therefore concentrate our investigation on the parts of the

pathway that are responsible for the term cascade and do not include the processes

upstream from Ras in the model.
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Figure 5.1: Diagrammatic representation of the MAPK signaling cascade. The pathway

consists of three layers, a single phosphorylation loop in the top layer and two double-

phosphorylation loops in the other two layers. Phosphorylated forms are indicated by

P’s in the figure. The fully phosphorylated product in each level acts as a kinase for

the phosphorylation step of the level below.

5.1.1 History of modeling in the MAPK pathway

The history of mathematical modeling the MAPK pathway begins in 1996 with a

model proposed by Huang and Ferrell [96]. In this study, it was shown that the three-

level cascade allows the system an ultrasensitive response to a stimulus. This term,

coined by Goldbeter and Koshland [116], describes a stimulus-response curve that is

steeper than that of a Michaelis-Menten enzyme, leading to the existence of a regime

in which there is approximately an all-or-none response to changes in the stimulus.

While the concept of ultrasensitivity is based on stable steady-state dynamics, it was

later found that there are also cases in which nonstationary types of dynamics play a

role in the MAPK cascade. Kholodenko showed in 2000 that with the introduction of a

negative feedback loop, sustained oscillations are possible [97]. Later, it was shown that

even without explicit feedback, the combination of double phosphorylation and enzyme

sequestration can result in an implicit feedback that leads to bistability [99, 117] and

oscillations [100].

It has been argued before that the complicated structure of a three-layered double-

phosphorylation cascade could have evolved as a result of an optimization of the re-

sponse strength [96] or the response time to signals [101]. However, there may also

be adaptive advantages of the evolved topological structure that are based on other

dynamical properties of the underlying models.

The experimental data (enzyme concentrations and rate constants) on which the
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majority of the previous studies oriented their choice of parameter values, have their

origin in experiments on Xenopus oocyte extracts conducted in Ref. [96]. However, little

is known about the possible parameter ranges in which eukaryotic cells can operate in

different species and at different developmental stages.

5.2 Mathematical model of the MAPK cascade

In this section we describe our approach to modeling the MAPK cascade. We first

explain the slightly different formulation of generalized modeling that we use in this

project, before discussing in detail how we model phosphorylation-dephosphorylation

cycles, the basic motifs of the pathway.

5.2.1 Generalized modeling for metabolic networks and sig-

naling networks

For the MAPK cascade, it is useful to formulate the approach of GM in a slightly

different way than in the earlier chapters. Here, we follow an approach that was applied

to metabolic networks in Ref. [9]. The main advantage of the new formulation is that

it allows an automated way of performing the normalization, which was performed

“by hand” in the earlier models. Thereby, the alternative formulation provides a more

succinct description in models with many dynamic variables.

We consider a network of biochemical interactions regulating a vector of protein

concentrations. If the concentrations are sufficiently high to neglect stochastic effects,

the dynamics of the system can be captured by the mass balance equation, a system

of differential equations of the form

d

dt
S(t) = Nf (S), (5.1)

where S is a vector of protein concentrations and N is the stoichiometric matrix and f

is a vector of fluxes depending on the concentrations Si. N is a linear map that relates

the fluxes to the concentrations and thus describes the topology of the system, which

is well-established in the case of the MAPK cascade.

Like in the earlier models discussed in this thesis, we assume that a positive but

not necessarily stable steady state S∗ exists and normalize Eq. (5.1) with respect to

the steady state concentrations, leading to

d

dt
x = Λµ(x) (5.2)
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with xi = Si/S
∗

i , Λij = Nijfj(S
∗)/S∗

i
and µi(x) = fi(S)/fi(S

∗). The Jacobian at

the steady state is defined as

Jij =
∂Si(t)

∂Sj

∣

∣

∣

∣

S∗

. (5.3)

Since Λ does not depend on x, the Jacobian of the system can be written as

J = Λθµ
x

(5.4)

with

θµj
xi

=
∂µj(x)

∂xi

∣

∣

∣

∣

S∗

. (5.5)

The entries of the matrices Λ and θµ
x constitute a complete parametrization for

the entire range of possible Jacobians that are consistent with the underlying topology

of biochemical interactions. The matrix θµ
x includes the elasticities, as introduced in

Sec. 2.2.1.

The entries of Λ have the dimension of an inverse time and represent characteristic

time scales of the model. In the steady state under consideration all fluxes in the

model have to balance (Nf(S∗) = 0), which constitutes additional constraints for

the permissible values of scale parameters, thus reducing the number of independent

parameters. These constraints can be found by computing the flux modes [118], which

is facilitated by the regular structure of the MAPK cascade.

5.2.2 Implementation of three subsystems

Figure 5.2 gives a detailed overview on the structure of the MAPK cascade and in-

troduces the naming conventions for this chapter. The symbols Si
j denote the concen-

trations of proteins and protein complexes which appear as substrates in the model.

The superscript index i indicates the layer of the cascade in which the specific protein

is involved, while the subscript index j enumerates the different forms in which the

substrate appears in the respective layer. Note that although we avoid the use of aster-

isks for notational convenience, in the following all symbols Si
j denote concentrations

in the steady state. The free concentrations of the kinases and phosphatases that are

not bound to a substrate in a complex are labeled Ki
R and P i

R, respectively. The total

concentrations of the substrate, kinase and phosphatase in each layer are denoted Si
T,

Ki
T and P i

T. These concentrations are assumed to be conserved quantities in the model

and thus constitute constant external parameters. The reason for this assumption is

that even though the total concentration can be subject to change in a cell due to

changes in the rate of protein synthesis and degradation, these processes are assumed

to occur on a slower timescale than the signaling that we want to model.
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Figure 5.2: Schematic overview and naming conventions of the MAPK cascade. The

three different subsystems that are analyzed separately are indicated by boxes. The

solid arrows correspond to biochemical reactions while the dashed arrows denote the

binding of an enzyme in the formation of an substrate-enzyme complex. In the two-

layer and three-layer model, the dotted kinase K1
R (1-layer model) is replaced by the

activated substrate S0
1 . The gray dotted lines represent two types of feedback, which

represent an extension to the model that is introduced and analyzed in Sec. 5.5.

In the following, we investigate the dynamics in three distinct models with increas-

ing size. The first model contains a single reversible double phosphorylation step with

one substrate in isolation, as it occurs in the middle and bottom layer of the cascade.

The second model combines the first and second layer of the cascade but does not

include the third layer. Finally, the third model contains all three layers. The three

models are highlighted by boxes in Fig. 5.2. A technical detail is that the kinase that

catalyzes the phosphorylation steps in the second layer is called K1
R in the first model

in order to indicate that, in the scope of this model, it is constant and does not act as

a substrate. In the two larger models, K1
R is replaced by S0

1 , the activated substrate of

the top layer.



5 Bifurcations and chaos in the MAPK signaling cascade 77

Having outlined the large-scale structure of the models under consideration, we now

explain the detailed structure of the single phosphorylation steps from which all these

models are composed. This is shown explicitly for the phosphorylation in the top layer

of the cascade,

S0
0 +K0

R ⇋S0
2 →S0

1 +K0
R. (5.6)

The first step represents the reversible binding of the kinase K to the unphosphorylated

substrate S0
0 , leading to the formation of the complex S0

2 . The second step describes

the actual phosphorylation step catalyzed by the kinase, resulting in the release of the

phosphorylated substrate S0
1 .

There are different possibilities to model the elementary step of a covalent phos-

phorylation catalyzed by a kinase. The most widespread approach is to use Michaelis-

Menten kinetics. Michelis-Menten theory relies on the quasi-steady-state approxima-

tion that the concentrations of the substrate-enzyme complexes do not change in time.

This approximation, which is justified by a separation of timescales, has been found

to be not appropriate in many signal transduction networks [119]. Michaelis-Menten

kinetics is not a good approximation if sequestration effects of the enzyme play an

important role, as it is suspected for the MAPK cascade [120, 117, 100]. Sequestration

can affect the dynamics because an enzyme that is bound to a substrate cannot at the

same time participate in other reactions, including its own dephosphorylation. In the

absence of external feedback, sequestration effects can thereby cause an indirect type

of feedback, as will be shown below. Approximation schemes that do not explicitly

adopt the complexes as variables, such as Michaelis-Menten kinetics, miss sequestra-

tion effects. Although a sequestration-based approximation scheme has been proposed

recently [121], we do not make use of this approximation since the efficiency of GM does

not strongly rely on the number of reactions or variables being small. For this reason,

we represent the complexes explicitly by dynamic variables, following Ref. [100], and

break each phosphorylation step into two separate processes.

Assuming that the copy numbers of proteins are sufficiently high for a description

with a continuous variable, we capture the dynamics of the cascade by a system of

coupled ODEs. For the phosphorylation step in the first layer of the cascade this leads

to

d

dt
S0
0 = −f1(S

0
0 , K

0
R) + f2(S

0
2)

d

dt
S0
2 = f1(S

0
0 , K

0
R)− f2(S

0
2)

d

dt
S0
1 = f3(S

0
2)

(5.7)

where f1, f2, and f3 are general functions, which are not yet restricted to specific

functional forms.
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In an analogous way, the system of ODEs for the complete one-layer model can be

constructed. The corresponding system of ODEs is

d

dt
S1
1 = f9(S

1
3)− f10(S

1
1 , P

1
R) + f11(S

1
4)

− f13(S
1
1 , K

1
R) + f14(S

1
5) + f18(S

1
6)

d

dt
S1
2 = f15(S

1
5)− f16(S

1
2 , P

1
R) + f17(S

1
6)

d

dt
S1
3 = f7(S

1
0 , K

1
R)− f8(S

1
3)− f9(S

1
3)

d

dt
S1
4 = f10(S

1
1 , P

1
R)− f11(S

1
4)− f12(S

1
4)

d

dt
S1
5 = f13(S

1
1 , K

1
R)− f14(S

1
5)− f15(S

1
5)

d

dt
S1
6 = f16(S

1
2 , P

1
R)− f17(S

1
6)− f18(S

1
6)

(5.8)

From these equations, the stoichiometric matrix N is derived according to the rule that

Ni,j = 1 if fj+6 appears in the equation for S1
i with a positive sign, Nij = −1 if fj+6

appears in the equation with a negative sign and Nij = 0 otherwise. Since the top layer

of the MAPK cascade is not included in the one-layer model, the enumeration of the

fluxes starts with f7 here.

In the next step, Λij = Nijfj+6/S
1
i is constructed from the stoichiometric matrix.

Since the model explicitly describes the complexes formed by enzymes with their sub-

strates, it is reasonable to assume that the remaining processes are governed by mass

action kinetics, thus assuming that all functions depend in a linear way on all of their

arguments. In this study, we thus use the ability of GM to deal with general nonlin-

ear functions only at a later stage when we consider the effect of external feedback

loops, while the ability to explore a large part of the parameter space efficiently is used

throughout the whole study. With this choice, our model corresponds to the conven-

tional models considered in [96, 100].

Note that even after it is assumed that all functional dependencies are linear, the

system of equations is still nonlinear as it includes bilinear terms. Because of mass

conservation, one of the variables including the substrate can be expressed as a function

of the remaining variables and the total substrate concentration, changing some of the

bilinear terms into quadratic terms as shown below. Assuming mass action, the matrix
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of derivatives is given by
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





















































−S1

1

S1

0

−S1

2

S1

0

−S1

3

S1

0

− S1

3

K1

R

−S1

4

S1

0

−S1

5

S1

0

− S1

5

K1

R

−S1

6

S1

0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 0 − S1

4

P 1

R

0 − S1

6

P 1

R

0 0 0 1 0 0

0 0 0 1 0 0

1 0 − S1

3

K1

R

0 − S1

5

K1

R

0

0 0 0 0 1 0

0 0 0 0 1 0

0 1 0 − S1

4

P 1

R

0 − S1

6

P 1

R

0 0 0 0 0 1

0 0 0 0 0 1























































The entries of θ that are equal to 1 indicate linear dependencies. The remaining nonzero

entries arise due to indirect effects of mass conservation. Since their expressions are

derived in a very similar way, we only show the calculation for

θµ1

x1
=

∂µ1

∂x1

∣

∣

∣

∣

S=S∗

(5.9)

in which we explicitly use asterisks to denote steady-state concentrations.

Assuming mass action kinetics, f7(S
1
0 , K

1
R) = α7S

1
0K

1
R with a rate constant α7. It

follows that

µ1 =
f7
f ∗

7

=
S1
0K

1
R

S1,∗
0 K1,∗

R

(5.10)

Because of mass conservation of the substrate and the kinase,

S1
0 = S1

T − S1
1 − S1

2 − S1
3 − S1

4 − S1
5 − S1

6 and K1
R = K1

T − S1
3 − S1

5 . Therefore,

taking the derivative with respect to x1 = S1
1/S

1,∗
1 yields

θµ1

x1
=

∂µ1

∂x1

∣

∣

∣

∣

S=S∗

=
S1,∗
1
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0 K1,∗

R

∂

∂S1
1

K1
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1
0

∣

∣

∣

∣

S=S∗

= −S1,∗
1

S1,∗
0

. (5.11)
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The Jacobian J = Λθµ
x

is obtained by matrix multiplication. The result can be

written as a product of the two matrices:

J =




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
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For the two-layer model and the three-layer model, the derivation of the Jacobian

works in an analogous way. Since the two-layer model consists of 9 and the three-layer

model of 15 dynamic variables, we do not show the large terms here. The system of

ODEs for the three-layered cascade can be found in Appendix A.

5.2.3 Parameter ranges

In the two-layer and three-layer models, biologically reasonable estimates of the ranges

of the general parameters are used that are based on experiments on Xenopus oocyte

extracts [96]. The parameters representing total concentrations are summarized in

Tab. 5.1. They are varied by a factor of 5 in the random sampling analysis in Sec. 5.4.

Parameter Value

S0
T 2nM

S1
T 1.2µM

S2
T 1.2µM

K0
T 0.3nM

P 0
T 0.3nM

P 1
T 0.3nM

P 2
T 120nM

Table 5.1: Total concentrations in the model of the MAPK cascade

Since we are not aware of direct experimental data for typical steady-state fluxes

f , we inferred ranges for these quantities using existing data on rate constants. For
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each steady-state flux fi, there is a rate constant αi of the conventional model. From

Ref. [100] we adopt ranges of 30 − 750min−1 for α3n+2 and α3n with n = 1 . . . 10.

Combining this with the steady-state concentrations, most of the steady-state fluxes

are estimated. The remaining fluxes are determined by the flux modes. For this reason,

and also because continuation of the generalized parameters in the bifurcation analysis

alters also the parameters of the conventional models, we cannot guarantee that all αi

of conventional models remain restricted to these ranges. The αi of the conventional

models for which numerical simulations are shown are listed in Appendix B.

5.3 Dynamics of the one-layer model

We begin our investigation of the MAPK cascade with a model of a single layer of the

cascade in isolation. This comparably simple system is still analytically tractable and

has been investigated in earlier studies [99,122]. In contrast, our approach to the one-

layer system is numerical, based on a statistical analysis of a large ensemble of randomly

generated samples, each corresponding to the steady state of a model realization.

5.3.1 Generation of random samples

In comparison with other general models discussed in this thesis, the construction of

random parameter sets is more complicated for the MAPK cascade because multiple

conservation laws impose additional constraints that must be satisfied. The algorithm

that was applied to generate random samples of steady states can be described as

follows for the one-layer system.

We first draw random values for the steady-state concentrations which contain the

kinase, S1
3 , S

1
5 and K1

R, from a uniform distribution. These concentrations are then

normalized such that the total concentration of the kinase is KT = 1. Subsequently,

we also assign random values to the variables containing phosphatase, S1
4 , S

1
6 and P 1

R,

and normalize them such that they add up to PT = 1. To ensure that sequestration

effects can play a role in a significant fraction of the samples, the total concentration

S1
T of the substrate is set to 10, resulting in a significantly higher concentration of the

substrate than that of the kinase and the phosphatase. At this point, a fraction of

the substrate is already bound in the complexes S1
3 , S

1
5 , S

1
4 , and S1

6 . The remaining

substrate r = S1
T−S1

3 −S1
5 −S1

4 −S1
6 is distributed by drawing random concentrations

for S1
0 , S

1
1 , and S1

2 and normalizing so that S1
0 + S1

1 + S1
2 = r. Finally, the strength of

all flux modes in the model is drawn randomly from a uniform distribution.
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Figure 5.3: Correlations of parameters with stability in the one-layer model, based on

a sample of N = 106 samples. On the vertical axis, the Pearson correlation coefficient

of the binary stability values and the parameter values is shown for each parameter.

All error bars are below the size of the line width.

5.3.2 Stability analysis of the single-layer model

In order to assess the impact of the individual parameters on stability we determine

the stability of steady states in a large ensemble of N = 106 randomly drawn samples.

Stable steady states are assigned the stability value si = 1, whereas unstable states

are assigned the stability value si = 0. For each parameter k, we then compute the

Pearson correlation coefficient

c =
N
∑

i=1

(si − s)(ki − k)

Nσsσk
(5.12)

of the focal parameter with the stability value across the whole ensemble of N samples

(σs, σk are standard deviations and s, k the sample means).

The correlation coefficients for the single-layer model are shown in Fig. 5.3. The

concentrations of the unbound kinase K1
R and phosphatase P 1

R show a correlation co-

efficient of 0.21 with stability. Consequently, steady states are likely to be stable if

these concentrations are high and likely to be unstable if they are low. This shows

that instability occurs most likely if a large fraction of the kinase and phosphatase is

sequestered in complexes. The complexes S1
3 and S1

6 , which are involved in the produc-

tion of the single-phosphorylated S1
1 , are negatively correlated with stability, showing

that a high concentration of these complexes has a strong destabilizing effect. By con-

trast, the complexes S1
4 and S1

5 , which appear in reactions decreasing S1
1 , are positively

correlated with stability.

More detailed insights in the effect of the parameters on stability can be gained

from showing two-parameter plots of the fraction p of randomly drawn steady states
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Figure 5.4: Connection between steady-state concentrations and stability. Contour lines

computed from 107 random parameter sets show the fraction of stable steady states

depending on two concentrations, thus showing correlations between parameters that

cannot be seen in Fig. 5.3. The top left panel shows that instability is promoted by

low concentrations of free kinase and phosphatase, highlighting the importance of se-

questration effects. The model parameters with the strongest impact on stability are

the concentrations of substrates S1
3 and S1

6 (top right).
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that are stable. For this purpose, we generate another ensemble of 107 parameter sets

with the algorithm described above. Figure 5.4 shows p as a function of selected com-

binations of two parameters. In Fig. 5.4A, p is shown as a function of the free enzyme

concentrations K1
R and P 1

R. The figure reveals that low concentrations of the free kinase

and phosphatase K1
R and P 1

R promote instability. This confirms that sequestration of

the kinase and phosphatase plays a role in the destabilization of steady states. The

dependence of p on the parameters S1
3 and S1

6 , which were found to have a strongly

destabilizing impact in the correlation analysis, is plotted in Fig. 5.4B. The figure shows

that the fraction of stable states changes sharply from 0 to 1 as the threshold is crossed.

In contrast, even if the stabilizing parameters S1
4 and S1

5 are very low p only drops to

0.5 (Fig. 5.4C). This comparison confirms the lesser impact of the two stabilizing pa-

rameters, already seen in the correlation analysis. This conclusion is further supported

by the direct comparison of the destabilizing parameter S1
3 with the stabilizing param-

eter S1
4 (Fig. 5.4D). In summary we conclude that the main source of instability in the

single-layer system lies in high concentrations of the complexes S1
3 and S1

6 .

5.3.3 Mechanisms of instability

To understand the mechanism leading to instability in more detail we extend our anal-

ysis to the eigenvectors of the Jacobian. In an unstable steady state, the eigenvector

corresponding to the eigenvalue with the largest real part represents the direction in

which the system departs most rapidly from the steady state. We compute the typical

direction of escape from unstable steady states by averaging over the eigenvectors cor-

responding to the largest eigenvalue in 106 unstable, but otherwise random parameter

sets. Each eigenvector has been normalized such that S1
5 = 1 before averaging.

The components of this averaged direction of escape are shown symbolically in

Fig. 5.5. The figure illustrates qualitatively that perturbations from the unstable steady

state cause the substrate to shift its mass into either one of the phosphorylation cycles,

while depleting the other. This leads to the hypothesis that the system approaches one

of two stable steady states in which the bulk of the substrate is concentrated in either

of the two phosphorylation cycles, respectively.

The instability of steady states in the case of sequestration can be understood

further by the following argument: In a situation with a large concentration of S1
3 and

with a correspondingly low value of free kinase KR
1 , the kinase is not available for the

formation of the complex S1
5 . This implies that the primary reaction involving S1

1 as a

substrate is the formation of the complex S1
4 . This leads to a further accumulation in

the left phosphorylation loop and consequently increases S1
3 further. Therefore, there

exists an indirect positive feedback caused by sequestration effects.
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Figure 5.5: Instability in a single layer of the cascade. The components of the eigen-

vector corresponding to the leading eigenvalue of the Jacobian are analyzed. For each

dynamic variable, the color indicates the averaged value of the corresponding entry

of the eigenvector. All eigenvectors are normalized so that S1
5 = 1 before averaging

over 106 samples. The diagram shows that the system leaves the region of a typical

unstable state by accumulating mass in either one of the two phosphorylation cycles,

while depleting the other.

5.3.4 Relation to bistability

Unstable steady states are often located on a separatrix that divides the basins of at-

traction of different attractors. Moreover, previous works in the MAPK cascade have

shown that a single layer of the cascade can support bistable dynamics [99,117,100], in

which the system can reside in either one of two stable steady states. To confirm that

the unstable steady states observed in the generalized model mark the separatrix be-

tween two stable steady states, we perform simulations in corresponding conventional

models [100], using a stiff numerical integrator based on the modified extended back-

ward differentiation formula (MEBDF) [123]. We randomly select 100 starting points

corresponding to unstable states computed in the generalized model and slightly per-

turb the vector of steady-state concentration in different directions. For all of these

samples it is found that trajectories starting close to the unstable steady state eventu-

ally converge to one of two different steady states, depending on the direction of the

perturbation. An example for a time series with bistability is shown in Fig. 5.6. This

result suggests that, in a class of reasonable conventional models of a single layer of

the MAPK cascade, the long-term dynamics is bistable whenever we find an unstable

steady state in the generalized model.

The origin of bistable parameter regimes can also be identified via cusp bifurcations,

as it was explained in Chapter 3. We apply this procedure to the MAPK cascade in

order to identify whether the origin of the bistable parameter is indeed in a cusp

bifurcation. Because of the assumption of mass action kinetics, the higher derivatives

needed for the calculation of the normal form parameters can be calculated and do not

have to represented by parameters as in Chapter 3.
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Figure 5.6: Example for bistability in the one-layer model. An unstable steady state that

was found in the generalized model is mapped to a corresponding conventional model.

We then perturb the system slightly by adding (red curve) and subtracting (green

curve) a small amount of concentration from S1
2 and integrate the system of ODEs

numerically. As a result, the system approaches two different stable steady states.
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Figure 5.7: Cusp bifurcation in the general and conventional one-layer model. Panel

A: Continuation of a saddle-node bifurcation in the general model. At the cusp point

(CP), the normal form parameter b vanishes. Panel B: Bifurcation diagram depending

on two rate constants after the transformation to a conventional model. Inside the cusp,

bistability (BS) is detected.

The technical problem of detecting cusp bifurcations in a high-dimensional param-

eter space is solved by the following procedure: As an initial point of the search, a

parameter set of the general model is chosen, which is characterized by a proximity to

a bifurcation but otherwise random. Subsequently, the system is optimized towards a

nearby saddle-node bifurcation using a Newton method and the bifurcation manifold
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is continued by changing the general parameters in the direction that lets the normal

form parameter b approach zero. In Fig. 5.7A, a bifurcation diagram depending on two

parameters of the general model is shown. In order to verify that the cusp point indeed

signifies the onset of a bistable region in parameter space, the general model is trans-

formed back to a special model exactly at the cusp bifurcation point. The bifurcation

diagram for the conventional model is shown in in Fig. 5.7B, displaying the typical cusp

shape. We verify that the system is indeed bistable inside the “pocket” of the cusp by

computing time series with initial conditions close to the steady state under consider-

ation. Different perturbations of the initial concentrations at t = 0 lead to trajectories

approaching different steady states, so that it is confirmed that the bistability in the

one-layer model has its origin in cusp bifurcations.

5.4 Dynamics of the two-layer and three-layer mod-

els

As a next step, we extend the investigation of stability and bifurcations to the two larger

subsystems of the MAPK cascade. We proceed analogously to the investigation of the

single-layer model by first generating a large ensemble of randomly drawn parameter

sets and then correlating the stability of the corresponding steady states with the

parameter values. Subsequently, we explore the bifurcation landscape of the larger

models.

5.4.1 Correlations of parameters with stability

In the two-layer system and the three-layer system, the random sampling of steady

states is performed in an analogous way to the one-layer system. In particular, the

algorithm to construct random samples is based on the same pattern as in the one-

layer system. Beginning with the top layer and proceeding to the bottom layer, the

randomly sampled steady states are constructed in a stepwise manner, at each step

taking into account the remaining fraction of substrate and enzyme which has not

been used in earlier steps. In the investigation of the larger models, describing two

and three layers of the cascade, we chose parameter values based on experimental data

from Ref. [96]. As explained in Sec. 5.2.3, this affects the total concentrations and the

steady-state fluxes.

The results of the correlation analysis for all three models are shown in Fig. 5.8. For

comparison, Figure 5.8A displays again the stability correlations of the one-layer model

that were discussed in the previous section. Figure 5.8B shows the stability correlations

in the second model, which consists of the first and second layer of the cascade. The
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Figure 5.8: Correlations of parameters with stability. We consider three different sub-

systems of the cascade, a single layer (A), two connected layers (B) and three layers

(C). The bars show the correlation of a given parameter with the stability of the steady

states in an ensemble of N = 106 randomly generated parameter sets. The statistical

errors, which are determined by bootstrap resampling, are on the order of the line

width. The plots show a conserved pattern of correlations and indicate the parameters

that are important for stability.
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additional parameters, describing the top layer of the cascade, have a weaker impact

on the stability of steady states, as evidenced by the low values of the corresponding

correlation coefficients. Note furthermore that the pattern of correlation coefficients in

the second model is very similar to that found in the first model. In particular, there

is a repeated motif of strong positive correlations in P 1
R, S

1
4 , and S1

5 .

In the third model, consisting of all three layers of the cascade, the pattern of

correlations observed above reappears twice. As shown in Fig. 5.8C, the correlation

coefficients corresponding to both the first and second layer of the cascade are now

smaller, indicating a reduced impact on the dynamics. Nevertheless, the pattern of

correlations is still visible in the second layer. More importantly, the pattern reappears

in a stronger form in the third layer.

These results suggest that the respective bottom layer has the strongest impact on

the stability of steady states. Moreover, the basic mechanism of instability, i.e., the

implicit positive feedback induced by sequestration of substrates into the complexes Si
3

and Si
6, remains the same in all three models.

5.4.2 Bifurcation structure of the larger models

Next, we focus on the dynamics that can be observed after the stability of a steady state

is lost. For this purpose, we search for bifurcations, marking a change in the stability of

steady states. We start by generating an ensemble of 107 randomly sampled unstable

steady states, discarding all samples in which the steady state is stable. In Table 5.2,

we show the statistics of the number of real positive eigenvalues and complex conjugate

pairs of eigenvalues with a positive real part in this ensemble. The eigenvalue patterns

indicate the possible types of bifurcations close to which unstable steady states with

the respective pattern of eigenvalues can be found.

Real Complex 1 layer 2 layers 3 layers

1 0 100% 96.5% 36.7%

2 0 - 2.5% 29.4%

3 0 - - 0.1%

0 2 - 1.0% 33.5%

1 2 - - 0.3%

0 4 - - 0.001%

Table 5.2: Statistics of positive eigenvalues among a sample of 107 randomly drawn

unstable steady states for the subsystems of the MAPK cascade. The fraction of steady

states with different number of real positive eigenvalues and complex eigenvalues with

a positive real part are listed.
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Since the probability that a random sample is located exactly at a bifurcation is of

measure zero, bifurcations cannot be detected directly by random sampling. However,

the signature of the eigenvalues can point towards bifurcations in the vicinity. We

verify the existence of the bifurcations by a continuation of the steady state towards a

nearby bifurcation with the help of a Newton method [56]. In all cases with at least one

real positive eigenvalue, saddle-node bifurcations were found in the nearby parameter

regime, while a complex pair with a positive real part in all cases implied the existence

of a Hopf bifurcation in the vicinity. The results from the random sampling method in

combination with the optimization method can be summarized as follows:

In the one-layer model, no unstable steady states with complex leading eigenval-

ues were found, showing the absence of oscillatory dynamics in the vicinity of Hopf

bifurcations. Only bifurcation points of saddle-node type were found, which mark the

transition from a parameter regime with a stable steady state to a a regime of bista-

bility.

By contrast, leading complex eigenvalues exist in unstable steady states of the two-

layer system and, with a larger frequency, in the three-layer system. This suggests that

in addition to bistability, oscillatory dynamics are also possible in these models and

appear in a comparatively larger part of the parameter space in the three-layer cascade.

Finally, there are also regions in parameter space with multiple positive eigenvalues

that point to the existence of bifurcations with a higher codimension. For example, a

parameter set with 4 positive eigenvalues with non-vanishing imaginary part suggests

that the general parameters can be varied in a way that a double Hopf bifurcation

is crossed. The dynamics in the vicinity of bifurcations of higher codimension are

investigated in the subsequent section.

5.4.3 Codimension-2 bifurcations and complex nonlocal dy-

namics

In the previous section we showed that Hopf bifurcations do not exist in the one-layer

system, but appear when a second layer is added and, in a larger part of the parameter

space, in the complete three-layer model. Next, we investigate whether the three-layer

system can exhibit additional types of dynamic behavior that cannot occur in the two-

layer model. Possible candidates for this would be quasiperiodic or chaotic dynamics.

Generalized modeling, being essentially based on a local analysis, cannot detect such

nonlocal properties of the system directly. However, generalized models can be used to

search for local bifurcations of higher codimension that can then point to parameter

regions in which conventional models show the respective type of dynamics.

In order to detect a bifurcation of codimension two, two parameters of the sys-
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tem must be adjusted simultaneously to their exact bifurcation values. We locate

codimension-2 bifurcations starting from potential candidates among the ensemble of

random samples with a characteristic signature in the eigenvalues (for example, two

pairs of complex conjugate eigenvalues for a double Hopf bifurcation). Subsequently, the

surrounding area is scanned for bifurcations by a variation of selected general param-

eters. Explicit numerical simulation in the conventional model is then used to explore

the dynamics close to codimension-2 bifurcation points. Thereby, the higher efficiency

of generalized models is combined with the higher predictive power of conventional

models.

Figure 5.9: Three-parameter bifurcation diagram of a codimension-2 Gavrilov-

Guckenheimer bifurcation. The codimension-2 bifurcation is formed at the intersection

line of a Hopf bifurcation (red) with a saddle-node bifurcation (blue). Bifurcations

of higher codimension such as Gavrilov-Guckenheimer and double Hopf bifurcations

can serve as proxies that indicate parameter regions in which complex dynamics can

potentially be observed. See Appendix B for additional parameters.

An example of a codimension-2 bifurcation in the three-layer model is shown in

Fig. 5.9 in a three-parameter bifurcation diagram, which is created by a triangulation

algorithm described in Ref. [124]. The fixed parameters are listed in Appendix B.

In the three-dimensional parameter space, a surface of Hopf bifurcation points (red

surface) and a surface of saddle-node bifurcation points (blue surface) intersect. On

the intersection line of the bifurcations, the Jacobian has both a single zero eigenvalue

and a purely imaginary eigenvalue pair, marking the points on the intersection line

as codimension-2 Gavrilov-Guckenheimer bifurcation points. It is well known from

normal form analysis that close to this type of bifurcation quasiperiodic dynamics
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should generally occur [11](p. 345).

Another example of a codimension-2 bifurcation is the double-Hopf bifurcation,

which is characterized by the presence of two purely imaginary eigenvalue pairs.

This bifurcation generically involves the creation of chaotic and quasiperiodic re-

gions [11](p. 369).

Although the existence of Gavrilov-Guckenheimer or double Hopf bifurcations can-

not strictly guarantee non-transient complex dynamics, the bifurcations serve as prox-

ies indicating parameter regions in which such complex dynamics is detected in many

cases. We therefore perform at selected steady states in the vicinity of codimension-2

bifurcations a transformation to a conventional model that is identical to the models

analyzed in Ref. [96, 100]. We then perturb the variables of the conventional model

slightly and retrieve a time series by numerical integration.

In the three-layer model of the MAPK cascade, this procedure does not reveal

unusual types of dynamics close to Gavrilov-Guckenheimer bifurcations such as in

Fig. 5.9. Depending on the choice of parameters, the system shows either stationary

behavior, bistability (thus approaching different stable steady states for different kinds

of perturbations) or sustained oscillations with a regular, sinusoidal form.

More interesting dynamics can be found close to double-Hopf bifurcations, which

appear exclusively in the three-layer system. A two-parameter bifurcation diagram of a

double-Hopf bifurcation and two example time series from different regions are shown

in Fig. 5.10. The corresponding parameters are listed in Table B.3 and Table B.3 in

Appendix B. Both time series show evidence for complex mixed-mode oscillations.

Moreover, the spike-like time-series shown in Fig. 5.10C exhibits an irregularity that

is indicative of Šilnikov chaos. Similar dynamics were also observed at multiple points

in the neighborhood (not shown). We are therefore confident that the system shows

chaotic long-term behavior in a finite parameter region. However, to confirm the chaotic

nature of the dynamics and to determine the parameter ranges in which they occur

will require more extensive numerical investigations, including the computation of Lya-

punov exponents, which exceeds the scope of this investigation.

5.5 Explicit Feedback

In addition to the implicit negative feedback that is caused by sequestration effects

in the double-phosphorylation cycles of the cascade, we also consider the implications

of additional explicit forms of feedback on the stability of steady states. While the

structure of the MAPK cascade is widely conserved throughout eukaryotic cells, this

is not necessarily the case for the types of feedback that may depend on species and

tissue [125]. Here, we implement two types of negative feedback mechanisms that have
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Figure 5.10: Complex dynamics close to a double-Hopf bifurcation.A: Two-dimensional

bifurcation diagram with a double Hopf bifurcation. Parameters are S0
T and S2

T. Hopf

bifurcations are drawn in red, saddle-node bifurcations in blue. At the green line (AP),

a Hopf pair loses its imaginary part, leading to two distinct real eigenvalues. The

numbers denote the number of complex and real eigenvalues with a positive real part,

in this order. The stable region corresponds therefore to the label 00. The points B and

C at which we show numerical integration results are drawn in. B and C: Complex

oscillations and chaos close to the double-Hopf bifurcation.
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been identified in the literature:

a) In fibroblasts, SOS, a protein upstream from Ras (K0
R in our notation), can undergo

inhibitory phosphorylation by ERK (S2
2). Even though SOS is not included in our

model, the feedback effectively propagates downstream to Ras, inhibiting the formation

of the Ras-Raf complex (S0
2) [126, 97]. The resulting feedback loop extends from the

output of the cascade in the third layer back to the first layer.

b) In COS1-cells, activated ERK (S2
2) feeds back to MEK (S1

0) during cell adhesion

by phosphorylating it at the site T292, which inhibits phosphorylation by PAK at the

adjacent site S298. The suppressed phosphorylation facilitates the formation of ERK-

Raf complexes (S1
3 ,S

1
5) [127], resulting in a negative feedback exerted by S2

2 on S1
0 .

Therefore, the second type of feedback extends from the third layer back to the second

layer.

Because it is widely believed that the MAPK cascade is utilized mainly as an

ultrasensitive switch, it is conceivable that the function of the feedback loops is to

suppress non-stationary dynamics such as oscillations. We therefore investigate whether

the oscillatory parameter regime is reduced by introducing feedback in the system. To

study this question in conventional models is not trivial for two reasons: First, in a

conventional model the effect of the feedback has to be restricted to a specific functional

form, which can be difficult to derive. Second, and perhaps more importantly, it is

hard to study the effect of feedback in isolation in conventional models. If feedback

parameters in conventional models are changed, one generally observes the combined

effect of the altered feedback strength and the corresponding shift in the steady state, so

that it cannot be directly investigated how the stability of a given steady state observed

in nature depends on the nonlinearity of the feedback. Both of these difficulties are

avoided in generalized models, that are designed to deal with unknown functions and

parametrize the position of the steady state independently from the nonlinearities in

the system.

We study the effect of the feedback of type a) and b) by adding an inhibitory link

from the final product of the cascade, S2
2 , back to the phosphorylation steps in the first

(a) and second (b) layer, respectively. The feedback loops are also inscribed in Fig. 5.2.

Because the feedback is inhibitory in both cases, the corresponding elasticities are

negative. The effect of the feedback can therefore be modeled by introducing elasticities

θf = θµ1

S2

2

< 0 (feedback a) and θf = θµ7

S2

2

= θµ13

S2

2

< 0 (feedback b). In the case of no

feedback, both parameters are zero. In order to determine the effect of the feedback

we generate an ensemble consisting of 107 parameter sets for each of the two feedback

mechanisms. The parameter sets are drawn randomly with the algorithm explained in

the previous sections, except for the additional feedback parameter θf , which is drawn

randomly from a uniform distribution in the interval [−2, 0]. This range is consistent
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Figure 5.11: The effect of external feedback. Color-coded is the change in relative

abundance of unstable stationary states as feedback is switched on. This change is

shown separately for unstable states with leading complex eigenvalues (left) and leading

real eigenvalues (right). The top row corresponds to feedback to the first layer (type

a) while the bottom row corresponds to feedback to the second layer (type b). In both

cases stronger feedback (large values of θ) means that more unstable steady states with

a complex and less states with a real leading eigenvalue occur. This suggests that the

feedbacks promote rather than inhibit oscillatory dynamics.

with inhibition modeled by a Hill function with exponent two, allowing for some degree

of cooperativity. For each parameter set, we then compute the spectrum of the Jacobian

with and without feedback.

As a first result, we find that the stability of a significant number of steady states

changes when the feedback is switched on. However, the net effect on the percentage

of stable steady states over the whole ensemble is very small because stable samples

becoming unstable as a result of the feedback cancel with unstable samples becoming

stable. Therefore, overall stability does not capture the relative abundance of Hopf

bifurcations as a source of instability.

The effect of the feedback is better understood if the signature of the eigenvalue is

investigated more closely, analyzing whether instability is characterized by a positive,

real eigenvalue or by a complex conjugate pair with positive real part. Figure 5.11

shows how the number of unstable states changes as a result of feedback, separately for

unstable states in which leading eigenvalue of the Jacobian is complex or real, respec-

tively. For both types feedback, it is observed that as the feedback strength increases,
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the number of unstable steady states with complex leading eigenvalues increases, while

the number of unstable steady states with real leading eigenvalues decreases. Although

the observation of an unstable steady state with complex leading eigenvalues does not

strictly imply that the long-term dynamics of the system is oscillatory, the increase of

such states over a wide parameter range strongly suggests that also oscillatory long-

term dynamics is promoted by the two feedback loops under consideration, whereas

bistability is suppressed.

5.6 Discussion

In this chapter, we have used generalized modeling to analyze the dynamics of a class

of enzymatic models describing the MAPK cascade. Starting out with a correlation

analysis, building on tens of millions of parameter sets, we first determined the impact

of the individual model parameters on the stability of the steady states. This analysis

confirmed that sequestration of enzymes has a strong impact on the dynamics of the

cascade. In particular, we showed that instability is likely if large portions of the kinase

and phosphatase acting on the lowest level of the cascade are sequestered into complexes

(S2
3 and S2

6 in our notation). In this case a positive feedback loop is formed that

destabilizes stationary states.

In a second step we used bifurcation analysis, spectral analysis of unstable states,

and explicit simulation to investigate the dynamics subsequent to the loss of stability.

In a subsystem consisting of only one layer of the cascade, bifurcation analysis of the

generalized model revealed that steady states lose their stability only in saddle-node

bifurcations. By contrast, in the two- and three-layer subsystems Hopf bifurcations

as well as saddle-node bifurcations occur. In the present model it was confirmed by

numerical simulations that the saddle-node bifurcations mark the onset of bistability,

while the Hopf bifurcations mark the onset of oscillations. Our results are therefore

in agreement with earlier work [100] showing that, without external feedback, at least

two layers of the cascade are required to observe oscillatory dynamics, while bistability

already occurs in a single layer of the cascade.

Using a combination of generalized and conventional modeling we then identified

a parameter region in which complex and potentially chaotic mixed-mode oscillations

occur. To determine the exact nature of these oscillations and the parameter ranges in

which they can be observed is a promising question for future studies, but will prob-

ably require more extensive numerical simulations and the computation of Lyapunov

exponents.

Finally, we have investigated the impact of two known feedback loops acting on

the MAPK cascade. Our analysis indicates that, under general conditions, the effect of
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these loops is to reduce bistability and promote oscillatory dynamics in the cascade.

Sustained oscillations in cells can be generated by several different mechanisms

[128]. The most prominent cause of oscillations is negative feedback, sometimes in

connection with a time delay. Explicit negative feedback led to sustained oscillations

in various models of the MAPK cascade [97, 129] and indeed enlarged the oscillatory

parameter regime in our model, too. However, negative feedback cannot be the mecha-

nism behind the oscillations in the two-layer and three-layer systems without an explicit

feedback loop, which must therefore rely on a different mechanism. It is known that

in a system with positive feedback that exhibits bistability, a slow process can cause

the system to jump between the two stable states. As a result, relaxation oscillations

occur that usually have a pulse-like shape [4]. Indeed, it was found that in the MAPK

cascade, the second layer is in the regime of bistability when the whole system oscil-

lates [100]. The bistable double phosphorylation loop is controlled by a slow process

in the top level, thus alternating between the two stable states. It is conceivable that

a third process in the full cascade could interact with an already oscillating two-layer

system and thereby cause chaotic behavior.

An important question is whether oscillatory dynamics in the MAPK cascade play

a role in vivo. Based on the early modeling results, it is often assumed that the cascade

is utilized as an ultrasensitive switch, and other dynamics appear only as nonfunctional

byproducts. Our results illustrate that the oscillatory parameter space is quite large

and therefore likely to be encountered in vivo. This view is supported by the recent

experimental observation of MAPK oscillations [130, 129].

Further support for the functional role of oscillations comes from an evolutionary

argument. If oscillations were indeed non-functional one could suspect that specific

mechanisms suppressing oscillations should have evolved. Yet, the basic topology of

the MAPK cascade that can sustain oscillations is conserved through evolution. By

contrast, external feedback loops, that could potentially suppress oscillations, differ

among organisms and cell types. Moreover, the two examples of feedback loops studied

here were found to promote oscillations instead of suppressing them. If the MAPK

cascade is indeed used both as a switch and as an oscillator under different physiological

conditions, it is intuitive that the system should be very well conserved, as any further

mutations are unlikely to maintain both of the cascade’s function.

To ascribe a biological function also to the irregular oscillations reported here is

highly speculative. Nevertheless, it is conceivable that the observed spike-like dynamics

could play a useful role. One could alternatively suspect that the complex oscillations

are a byproduct of a mechanism that enhances differences between individual cells.

Such a mechanism may be useful because if in a population of cells, a substantial

fraction of the populations changed their behavior at a similar level of an external
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stimulus, then the response would become switch-like also on the population level. This

could have detrimental consequences because it could seriously decrease the dynamical

stability on the population level and produce unnecessarily strong responses. It may

therefore be advantageous to sustain a high sensitivity not only to the stimulus but also

to enzyme concentrations that may differ between individual cells. Thereby, signals in

different cells could be triggered at different levels of the stimulus, so that the response

of the population is smooth, while the response of the individual cell stays sharp.

Weakly chaotic dynamics could possibly arise as a byproduct of this internal sensitivity.

The question whether the detected forms of dynamics can appear in vivo is closely

connected to the question how realistic the space of parameters assessed in our study is.

The ranges that we assigned to the general parameters were motivated by experimental

data. While the total concentrations of the involved enzymes have been measured in

one cell type [96], less is known about the remaining parameters. Note, however, that

large differences in the fluxes fi (see Appendix B) are to be expected since also the

total concentration listed in Table 5.1 vary strongly between different layers. Therefore

the parameter ranges in which oscillations and complex dynamics were observed in this

study are not unreasonable. Nevertheless, future experimental work covering further

variables and different cell types and developmental stages would be highly desirable

to clarify the dynamics and function of the MAPK cascade in vivo.



Chapter 6

Discussion and outlook

In this thesis, different dynamical systems from cell biology were analyzed with the

method of generalized modeling. In this chapter, we first summarize the results of the

different projects. We then proceed to discuss the implications of the results under the

broader perspective of how generalized models can contribute to problems from cell

biology. We conclude with an outlook for future investigations.

Summary of results

In the first subproject, chapter 3, an extension of the method of generalized modeling

was introduced that allows to incorporate the analysis of normal forms of bifurcations.

In addition to the information of the Jacobian, also the second and third derivatives of

the functions were utilized. The extended method was applied to two different models of

gene-regulatory networks, the Goodwin model and a model of a mammalian circadian

oscillator. For the Goodwin model, we derived an analytical expression for the first

Lyapunov coefficient that describes the conditions under which Hopf bifurcations in

the model are supercritical or subcritical. Since only minimal assumptions were made

on the nonlinear negative feedback function, the type of the Hopf bifurcation could

be determined for a large class of feasible functions. For the widespread choice of a

sigmoidal inhibition function, it was shown that the Hopf bifurcation is supercritical,

regardless of the value of the Hill coefficient. However, it was also demonstrated that

slight deviations from this form can render the bifurcation subcritical.

By an analysis of a model of a circadian oscillator, it was then shown that the

normal form analysis can also be applied to larger general models with multiple non-

linear functions. While the higher number of parameters complicates a systematical

investigation of the bifurcation properties, statistical methods were used to show con-

ditions under which supercritical and subcritical Hopf bifurcations can occur. As a

second application of the extension, we proposed a novel method to locate bistability
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in classes of models by detecting cusp bifurcations in the general model. Using abstract

gene-regulatory networks based on the model of the circadian oscillator, it was shown

that the method can indeed locate regions of bistability.

In the second subproject, chapter 4, the dynamics of bone remodeling was studied.

Two basic model structures were investigated, on which the majority of previously

proposed models are based. For the two-variable model, which describes the dynamics

of osteoblasts and osteoclasts, an analytical bifurcation analysis was performed. It was

shown that a symmetry in earlier models renders the system Hamiltonian, thus pre-

venting sustained oscillations. It is biologically reasonable to abandon this symmetry,

thereby introducing the possibility of sustained oscillations close to Hopf bifurcations.

Further, we argued that restrictive conditions on the parameters are necessary to allow

for stable steady states. Although the parameters in earlier studies were chosen to meet

these conditions, some of these decisions are supported by little biological evidence. For

a three-variable model that divides the population of osteoblasts into two groups based

on their stage of maturation, it was shown that weaker assumptions are required for

stability. However, also the three-variable model entails the danger of losing stability

in bifurcations. We related the loss of stability in a Hopf bifurcation to Paget’s dis-

ease, in which periodic surges of bone remodeling are observed. While further studies

are needed to verify possible connections between bifurcations and diseases, our study

demonstrates that the stability of steady states in current models for bone remodeling

is a serious problem that has been neglected in the past.

The third subproject, chapter 5, focused on the MAPK cascade, an impor-

tant signaling pathway that consists of a cascading arrangement of phosphorylation-

dephosphorylation cycles. By investigating different subsystems of the MAPK pathway

in general models, it was studied how the combination of different cascade layers affects

the possible types of dynamics in the system. The stability of steady states was studied

by a statistical analysis of correlations between the parameters and stability. It allows

to identify parameters that affect the stability of steady states strongly, thus revealing

possible targets for experimental studies. Moreover, it was shown that an implicit form

of feedback caused by sequestration effects can cause bistability in a single layer of

the cascade. The combination of two layers led to additional Hopf bifurcations and

oscillatory dynamics. In the three-layer model, codimension-2 bifurcations revealed a

parameter region in which irregular oscillations and bursting-type behavior could be

observed. Finally, it was shown that an additional negative feedback loop leads to the

growth of the oscillatory regime, which is compensated by a decrease of the bistable

regime.
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Implications for the method of generalized modeling

All of the systems analyzed in this thesis share the common property that they can be

described by mathematical models consisting of ordinary differential equations. Beyond

that, the systems differ in various important aspects. Among these aspects are the

length and time scales on which the processes described by the model occur, the amount

of existing knowledge about the biological processes that are modeled, and the size and

degree of complexity of the mathematical model itself.

In the majority of earlier studies, generalized modeling has been applied to systems

with many unknown properties. For systems of this type, the construction of con-

ventional models involves necessarily a considerable amount of ad-hoc decisions and

speculation. Bone remodeling is an example of such a system for which mathematical

modeling is still at an early stage. Fewer earlier studies exist than for the other systems

analyzed in this thesis, and currently, several alternative models coexist. These models

have not been investigated in comparative studies and a paradigmatic model has yet

to emerge.

In the chapter on bone remodeling, it was shown that the method of generalized

modeling is a useful tool under these circumstances, because it reveals connections

between structural properties and the dynamics in large class of potential model can-

didates. For example, certain classes of models can be identified that do not exhibit

stable steady states and are therefore not suitable to describe the dynamics of bone

remodeling. Inside the framework of conventional modeling, such connections cannot

be easily found, especially when conventional models include several complicated func-

tional forms with multiple parameters. In a specific conventional model of this kind,

it is unclear to which extent the observed dynamics are caused by choices of the func-

tional forms and to which extent they are caused by the general topology of the model

structure. Generalized modeling is thus a natural way to capture the essential proper-

ties of the functional forms. In the study on bone remodeling, practical suggestions are

given for future models by showing the assumptions that are necessary for stability and

by advocating the inclusion of osteoblast precursors as an explicit dynamical variable.

The most important advantage of conventional modeling is the ability of comparing

numerical time series generated from the model with experimental data. However, in

situations where the existing knowledge about the system is so limited that this direct

comparison is not possible, whether it is due to the lack of quantitative experimental

data or due to the lack of quantitative mathematical models, this advantage can not

be exploited, so that the alternative framework of GM can be a more efficient approach

to a problem.

Based on the reasoning above, generalized modeling was previously only applied to
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systems in which the functional forms of at least some processes where unknown. The

investigation of the MAPK cascade stands in contrast to these properties and shows

that general models can also shed new light on problems with less unknowns. Many

earlier studies and the long history of enzyme kinetics have led to a broad agreement

regarding the structure and the functional forms of models for the MAPK cascade and

the phosphorylation steps it consists of. The most advantageous property of general-

ized modeling for problems with these characteristics is its ability to investigate the

stability properties of steady states in a large parameter space with a high computa-

tional efficiency, at the same time avoiding numerical integration of the ODEs. This

thesis showed that the tools of bifurcation analysis can be used to detect regions in

parameter space in which corresponding conventional models exhibit interesting and

previously unknown dynamics such as bursting behavior and chaos.

Another aspect in which the models analyzed in this thesis vary is the size and the

complexity of the mathematical model itself. While the earliest mathematical models

that are developed to describe a problem are usually simple and provide qualitative

results, subsequent models aiming for quantitative agreement with experiments typi-

cally become larger and include more dynamic variables and parameters. Therefore, it

is important how the method of generalized modeling scales with the system size. From

a purely computational point of view, generalized modeling has clear advantages com-

pared to conventional modeling approaches because they rely on the computation of

eigenvalues of the Jacobian. Fast algorithms with a complexity that scales polynomially

with the system size exist for this problem.

However, the more important problem that arises with larger models is to main-

tain the interpretability of the generalized model. When there are many unknown

parameters, the bifurcation landscape can no longer be visualized easily. Restricting

the majority of general parameters to fixed values and then analyzing the bifurcations

depending on the remaining parameters is an undesirable solution because it sacrifices

one of the main strengths of the method, its generality. In this thesis, different statisti-

cal methods to deal with this problem were developed. By an analysis of a large sample

of steady states that are randomly drawn from the ensemble of all steady states de-

scribed by the model, it is possible to gain different types of insights into the properties

of a high-dimensional parameter space.

First, the question which types of local bifurcations are possible in a given model

structure, can be answered with a high degree of certainty. After the existence of a

certain bifurcation type has been confirmed, the conditions on the parameters under

which the bifurcation occurs can be investigated. Second, by a calculation of correla-

tion coefficients between parameters and stability, it can be identified whether certain

parameters have a stabilizing or destabilizing effect on typical steady states. While the
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correlation coefficients can only give qualitative cues regarding the impact of parame-

ters on stability, the analysis of selected parameters can be extended by investigating

correlations between different parameters. These points show that the method of GM

is not only suited to analyze small models but can also applied to larger and more

complicated models.

The work presented in this thesis also contributes to the mitigation of existing

constraints for generalized modeling. Since the method is local, it cannot directly in-

vestigate nonlocal properties, among them oscillations and bistability. The extension

of the method to normal-form analysis of bifurcations softens these restrictions. By

determining that a Hopf bifurcation is supercritical, the existence of stable limit cy-

cles and sustained oscillations can be shown. Moreover, bistable regimes that arise via

codimension-2 cusp bifurcations can be identified. Since oscillations and bistability are

important properties of gene-regulatory networks, signaling pathways and other prob-

lems from cell biology, the extension expands the scope of generalized modeling for

future investigations.

Outlook

In this thesis, it was shown that the method of generalized modeling can contribute

to a better understanding of many problems in cell biology. There are various possible

directions for future applications of general models to cell-biological problems, either

by building upon the results of the specific systems investigated in this thesis, or by

new studies of other systems from cell biology.

The extension of generalized modeling to normal-form analysis needs to be applied

to more systems to evaluate its practical benefits. In particular, the proposed method

of detecting bistability via cusp bifurcations should be applied to models of well-known

bistable systems in order to find out how strong the link between bistability and cusp

bifurcations is.

A promising direction for further research on the dynamics of bone remodeling is to

go beyond stability and analyze also the sensitivity of stable steady-states to changes in

the parameters in a general model. An extension of the method of GM in this direction

would allow to study connections to various diseases of bone that are not related to

bifurcations and to compare results of earlier publications in this direction.

Another point of future research is to improve the method of generalized modeling

by developing more sophisticated statistical approaches to large models. While the cur-

rent procedures, such as the calculation of correlation coefficients between stability and

general parameters, provide results of qualitative nature, more quantitative methods

are desirable to estimate the size of regions in general parameter space with certain
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signatures in the eigenvalues of the Jacobian.

While the focus of this thesis has been placed upon the investigation of general

models by mostly avoiding conventional models, a possible field of future investiga-

tions is to combine general and conventional models to a higher degree. In particular, a

formalized application-oriented implementation of generalized modeling for researchers

working on conventional models is desirable. One can envision that in the future, gen-

eralized modeling will be integrated in existing software tools, e.g. for the analysis of

metabolic pathways. In this context, a generalized version of a newly developed model

can serve as a pre-screening tool, giving a first impression on the bifurcation struc-

ture and the types of dynamical behavior that can be expected. For a more in-depth

analysis, automated methods to switch interactively between the general model and

corresponding special models could be developed.



Appendix A

Three-layer model of the MAPK

cascade

The dynamics of the three-layer model is governed by the following set of equations.
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In the case of mass action, the fi are products of the arguments and a rate constant,

e.g. f3(S
0
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0
1P

0
R. The rate constants αi can be determined

from the set of generalized parameters. They are used for numerical integration in the

conventional model at selected points in parameter space.
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Parameters for bifurcation

diagrams of the three-layered

MAPK cascade

In this appendix, we list the general parameters of the bifurcation diagrams in Fig. 5.9

and Fig. 5.10A and the parameters of the corresponding conventional models in which

numerical integrations were performed. For the conventional model, the rate constants

αi are linear prefactors of the functions fi, as it is explained in Appendix A.

Parameter Value (B1) Value (B2)

f1 2.050463E− 01 3.941433E− 01

f2 1.665547E− 01 6.896530E− 02

f3 3.849159E− 02 3.251780E− 01

f4 3.406789E− 01 4.111991E+ 00

f5 3.021873E− 01 3.786813E+ 00

f6 3.849159E− 02 3.251780E− 01

f7 1.953008E+ 00 5.815648E− 02

f8 9.370957E− 01 8.308026E− 03

f9 1.015912E+ 00 4.984845E− 02

f10 1.057423E+ 00 5.920622E− 02

f11 4.151087E− 02 9.357769E− 03

f12 1.015912E+ 00 4.984845E− 02

f13 3.506192E+ 00 4.903314E+ 00

f14 7.318762E− 01 2.373572E+ 00

f15 2.774316E+ 00 2.529741E+ 00

Parameter Value (B1) Value (B2)

f16 2.847627E+ 00 2.534890E+ 00

f17 7.331041E− 02 5.148198E− 03

f18 2.774316E+ 00 2.529741E+ 00

f19 1.297541E+ 02 7.924804E+ 01

f20 8.498013E+ 01 3.908750E+ 01

f21 4.477395E+ 01 4.016053E+ 01

f22 4.742998E+ 01 4.707532E+ 01

f23 2.656029E+ 00 6.914784E+ 00

f24 4.477395E+ 01 4.016053E+ 01

f25 4.015206E+ 01 1.060230E+ 01

f26 1.020828E+ 01 6.362480E+ 00

f27 2.994378E+ 01 4.239818E+ 00

f28 1.073260E+ 02 4.301534E+ 01

f29 7.738227E+ 01 3.877552E+ 01

f30 2.994378E+ 01 4.239818E+ 00

Table B.1: Parameter values for the bifurcation diagrams shown in Fig. 5.9 (B1) and

Fig. 5.10A (B2).



108

Parameter Value (B1) Value (B2)

S0
T varied varied

S1
T 1.000000E + 00 1.000000E + 00

S2
T varied varied

K0
T 2.041991E− 02 1.434858E− 01

P 0
T 9.254583E− 02 1.025566E− 01

P 1
T varied 4.452295E− 04

P 2
T 2.061241E− 01 1.807347E− 01

S0
1 1.287000E− 02 3.301018E− 02

S0
2 3.603446E− 02 2.167873E− 01

S0
3 1.305162E− 01 1.964587E− 01

S1
1 8.199895E− 02 5.778893E− 01

S1
2 7.987105E− 02 5.301747E− 02

S1
3 3.498895E− 04 2.071199E− 03

S1
4 9.180356E− 04 7.786264E− 03

S1
5 1.994971E− 03 9.842025E− 05

S1
6 2.956850E− 04 2.887999E− 05

S2
1 4.618296E− 03 4.011806E− 03

S2
2 1.415927E− 04 7.515946E− 06

S2
3 4.093548E− 01 6.710682E− 02

S2
4 4.151353E− 03 2.205266E− 02

S2
5 2.424960E− 01 2.924887E− 02

S2
6 1.075892E− 01 1.370494E− 01

Table B.2: Continuation of Table B.1
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Parameter Value (P1) Value (P2)

α1 7.858130E+ 02 8.634851E+ 02

α2 3.329728E+ 01 3.329728E+ 01

α3 1.569999E+ 02 1.569999E+ 02

α4 1.643016E+ 05 1.714452E+ 05

α5 4.863453E+ 02 4.863453E+ 02

α6 4.176303E+ 01 4.176303E+ 01

α7 1.064798E+ 03 8.378507E+ 02

α8 8.441379E+ 01 8.441379E+ 01

α9 5.064857E+ 02 5.064857E+ 02

α10 6.680161E+ 02 6.680161E+ 02

α11 3.240226E+ 02 3.240226E+ 02

α12 1.726055E+ 03 1.726055E+ 03

α13 8.564815E+ 04 8.937198E+ 04

α14 5.916468E+ 02 5.916468E+ 02

α15 6.305741E+ 02 6.305741E+ 02

α16 3.156031E+ 04 3.156031E+ 04

α17 6.849701E+ 02 6.849701E+ 02

α18 3.365832E+ 05 3.365832E+ 05

α19 3.549795E+ 03 3.549795E+ 03

α20 5.824669E+ 02 5.824669E+ 02

α21 5.984568E+ 02 5.984568E+ 02

α22 9.655494E+ 02 1.176763E+ 03

α23 3.135578E+ 02 3.135578E+ 02

α24 1.821120E+ 03 1.821120E+ 03

α25 9.338652E+ 01 9.338652E+ 01

α26 2.175291E+ 02 2.175291E+ 02

α27 1.449566E+ 02 1.449566E+ 02

α28 9.616792E+ 03 1.172047E+ 04

α29 2.829310E+ 02 2.829310E+ 02

α30 3.093642E+ 01 3.093642E+ 01

Parameter Value (P1) Value (P2)

S0

T
8.000000E− 03 7.666667E− 03

S1

T
1.000000E+ 00 1.000000E+ 00

S2

T
3.900000E+ 00 3.200000E+ 00

K0

T
1.147886E− 03 1.100058E− 03

P 0

T
8.204528E− 04 7.862673E− 04

P 1

T
4.452295E− 04 4.452295E− 04

P 2

T
7.048653E− 01 5.783510E− 01

S0

1
2.640814E− 04 2.530780E− 04

S0

2
2.167873E− 01 2.167873E− 01

S0

3
1.964587E− 01 1.964587E− 01

S1

1
2.253768E+ 00 1.849246E+ 00

S1

2 2.067681E− 01 1.696559E− 01

S1

3
1.656959E− 05 1.587919E− 05

S1

4 6.229011E− 05 5.969469E− 05

S1

5
9.842025E− 05 9.842025E− 05

S1
6 2.887999E− 05 2.887999E− 05

S2

1
4.011806E− 03 4.011806E− 03

S2
2 7.515946E− 06 7.515946E− 06

S2

3
2.617166E− 01 2.147418E− 01

S2
4 8.600537E− 02 7.056851E− 02

S2

5
1.140706E− 01 9.359638E− 02

S2
6 5.344927E− 01 4.385581E− 01

Table B.3: Parameter values for the conventional models corresponding to the unstable

steady states of Fig. 7B and C, close to which irregular dynamics (P1) and complex

oscillations (P2) were found.
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Appendix C

List of abbreviations

The following abbreviations are repeatedly used in the text or in the figures. Although

they are explained at the point of their first occurence, they are listed here again to

give an overview.

AOB Active Osteoblast

BMU Basic Multicellular Unit

BS Bistability

CP Cusp (bifurcation) Point

DH Double Hopf (bifurcation)

GG Gavrilov-Guckenheimer (bifurcation)

GM Generalized Modeling

HB Hopf Bifurcation

MAPK Mitogen-Activated Protein Kinase

OB Osteoblast

OC Osteoclast

ROB Responding Osteoblast

SN Saddle-Node (bifurcation)

TB Takens-Bogdanov (bifurcation)
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Delaissé, and N.T. Foged. Transforming growth factor-β controls human osteo-

clastogenesis through the p38 mapk and regulation of rank expression. Journal

of Biological Chemistry, 278(45):44975, 2003.

[85] M. Karst, G. Gorny, R.J.S. Galvin, and M.J. Oursler. Roles of stromal cell

RANKL, OPG, and M-CSF expression in biphasic TGF-β regulation of osteoclast

differentiation. Journal of cellular physiology, 200(1):99–106, 2004.

[86] D.E. Hughes, A. Dai, J.C. Tiffee, H.H. Li, G.R. Mundy, and B.F. Boyce. Estro-

gen promotes apoptosis of murine osteoclasts mediated by TGF-β. Nat. Med.,

2(10):1132–1136, 1996.

[87] Transforming growth factor-β1 increases mRNA levels of osteoclastogenesis in-

hibitory factor.

[88] N. Houde, E. Chamoux, M. Bisson, and S. Roux. Transforming growth factor-β1

(TGF-β1) induces human osteoclast apoptosis by up-regulating Bim. J. Biol.

Chem., 284(35):23397–23404, 2009.

[89] K. Fuller, JM Lean, KE Bayley, MR Wani, and TJ Chambers. A role for TGFβ1

in osteoclast differentiation and survival. J. Cell Sci., 113(13):2445, 2000.



120 BIBLIOGRAPHY

[90] M. Ruan, L. Pederson, E.W. Bradley, A.M. Bamberger, and M.J. Oursler. Trans-

forming growth factor-β coordinately induces suppressor of cytokine signaling 3

and leukemia inhibitory factor to suppress osteoclast apoptosis. Endocrinology,

151(4):1713–1722, 2010.

[91] F. Gori, L.C. Hofbauer, C.R. Dunstan, T.C. Spelsberg, S. Khosla, and B.L. Riggs.

The expression of osteoprotegerin and RANK ligand and the support of osteo-

clast formation by stromal-osteoblast lineage cells is developmentally regulated.

Endocrinology, 141(12):4768–4776, 2000.

[92] G.P. Thomas, S.U.K. Baker, J.A. Eisman, and E.M. Gardiner. Changing

RANKL/OPG mRNA expression in differentiating murine primary osteoblasts.

J. Endocrinology, 170(2):451, 2001.

[93] T. Akchurin, T. Aissiou, E. Prosk, N. Nigam, and S.V. Komarova. Complex

dynamics of osteoclast formation and death in long-term cultures. PLoS One,

3:e2104, 2008.

[94] S. Yao, F. Pan, and G.E. Wise. Chronological gene expression of parathy-

roid hormone-related protein (PTHrP) in the stellate reticulum of the rat–

Implications for tooth eruption. Archives of Oral Biology, 52(3):228–232, 2007.

[95] S.H. Ralston, S.A. Hoey, S.J. Gallacher, B.B. Adamson, and I.T. Boyle. Cy-

tokine and growth factor expression in Paget’s disease: analysis by reverse-

transcription/polymerase chain reaction. Br. J. Rheumatol., 33(7):620, 1994.

[96] C.Y. Huang and J.E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated protein

kinase cascade. Proc. Natl. Acad. Sci., 93:10078–10083, 1996.

[97] B.N. Kholodenko. Negative feedback and ultrasensitivity can bring about os-

cillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem.,

267:1583–1588, 2000.

[98] S.Y. Shvartsman, M.P. Hagan, A. Yacoub, P. Dent, H.S. Wiley, and D.A. Lauf-

fenburger. Autocrine loops with positive feedback enable context-dependent cell

signaling. Am. J. Physiol. Cell, 282(3):C545, 2002.

[99] N.I. Markevich, J.B. Hoek, and B.N. Kholodenko. Signaling switches and bista-

bility arising from multisite phosphorylation in protein kinase cascades. J. Cell

Biol., 164:353–359, 2004.



BIBLIOGRAPHY 121

[100] L. Qiao, R.B. Nachbar, I.G. Kevrekidis, and S.Y. Shvartsman. Bistability and

oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol,

3:1819–1826, 2007.

[101] S. Frey, T. Millat, S. Hohmann, and O. Wolkenhauer. How quantitative measures

unravel design principles in multi-stage phosphorylation cascades. J. Theor. Biol.,

254(1):27–36, 2008.

[102] S. Lapidus, B. Han, and J. Wang. Intrinsic noise, dissipation cost, and robustness

of cellular networks: The underlying energy landscape of MAPK signal transduc-

tion. Proc. Natl. Acad. Sci., 105(16):6039, 2008.

[103] B.N. Kholodenko, A. Kiyatkin, F.J. Bruggeman, E. Sontag, and H.V. Westerhoff.

Untangling the wires: A strategy to trace functional interactions in signaling and

gene networks. Proc. Natl. Acad. Sci., 99:12841–12846, 2002.

[104] D. Angeli, J.E. Ferrell, and E.D. Sontag. Detection of multistability, bifurcations,

and hysteresis in a large class of biological positive-feedback systems. Proc. Natl.

Acad. Sci., 101(7):1822, 2004.

[105] M. Zumsande and T. Gross. Bifurcations and chaos in the MAPK signaling

cascade. J. Theor. Biol., 265:481–491, 2010.

[106] R. Seger and E.G. Krebs. The MAPK signaling cascade. FASEB J., 9(9):726,

1995.

[107] L. Chang and M. Karin. Mammalian MAP kinase signalling cascades. Nature,

410:37–40, 2001.

[108] G.L. Johnson and R. Lapadat. Mitogen-Activated Protein Kinase Pathways

Mediated by ERK, JNK, and p38 Protein Kinases. Science, 298:1911–1912, 2002.

[109] M.C. Lawrence, A. Jivan, C. Shao, L. Duan, D. Goad, E. Zaganjor, J. Osborne,

K. McGlynn, S. Stippec, S. Earnest, et al. The roles of MAPKs in disease. Cell

Research, 18(4):436–442, 2008.

[110] D. Hanahan and R.A. Weinberg. The hallmarks of cancer. Cell, 100(1):57–70,

2000.

[111] B. Escudier, T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels, S. Ne-

grier, C. Chevreau, E. Solska, A.A. Desai, et al. Sorafenib in advanced clear-cell

renal-cell carcinoma. New England Journal of Medicine, 356(2):125, 2007.



122 BIBLIOGRAPHY

[112] J. Downward. Targeting RAS signalling pathways in cancer therapy. Nat. Rev.

Cancer, 3(1):11–22, 2003.

[113] P.J. Roberts and C.J. Der. Targeting the Raf-MEK-ERK mitogen-activated

protein kinase cascade for the treatment of cancer. Oncogene, 26(22):3291–3310,

2007.

[114] J.S. Sebolt-Leopold. Advances in the development of cancer therapeutics directed

against the RAS-mitogen-activated protein kinase pathway. Clinical cancer re-

search, 14(12):3651, 2008.

[115] J.J. Hornberg, B. Binder, F.J. Bruggeman, B. Schoeberl, R. Heinrich, and H.V.

Westerhoff. Control of MAPK signalling: from complexity to what really matters.

Oncogene, 24:5533–5542, 2005.

[116] A. Goldbeter and D.E. Koshland, Jr. An amplified sensitivity arising from cova-

lent modification in biological systems. Proc. Natl. Acad. Sci., 78:6840.
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