8 research outputs found

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201

    Neuromorphic Computing between Reality and Future Needs

    Get PDF
    Neuromorphic computing is a one of computer engineering methods that to model their elements as the human brain and nervous system. Many sciences as biology, mathematics, electronic engineering, computer science and physics have been integrated to construct artificial neural systems. In this chapter, the basics of Neuromorphic computing together with existing systems having the materials, devices, and circuits. The last part includes algorithms and applications in some fields

    Study of MoS2/high-k Interface and Implementation of MoS2 Based Memristor for Neuromorphic Computing Applications

    Get PDF
    The scientific world is witnessing an unprecedented triumph of artificial neural network (ANN)- a computing system inspired by the biological neural network. With the enthralling quest for Internet of Everything (IoE), it is expected to have an unparalleled dominance of ANN in our day-to-day life. In recent times, memristor has come as an emerging candidate to realize ANN through emulating biological synapse and neuron behavior. Molybdenum disulfide (MoS2), one well-known two-dimensional (2D) transition metal dichalcogenides (TMDCs), has drawn interest for high speed, flexible, low power electronic devices since it has a tunable bandgap, reasonable carrier mobility, high Young\u27s modulus, and large surface to volume ratio. Hence, in this work, 2D MoS2 based field effect transistor (FET) and memristor devices have been developed to evaluate the performance for advanced logic and neuromorphic computing applications. We probe the superior quality of 2D/high-? dielectric interfaces by fabricating MoS2 based FET transistors with different gate dielectrics. This low interface trap density of ~7x10^10 states/cm2-eV at the MoS2/Al2O3 interface establishes the case for van der Waals systems where the superior quality of 2D/high-? dielectric interfaces can produce high performance electronic and optoelectronic devices. This work also demonstrates Au/MoS2/Ag threshold switching memristor (TSM) device with low threshold voltage, sharp switching, high ON-OFF ratio and endurance. A leaky integration-and-firing (LIF) neuron is implemented with this TSM. It successfully emulates the key characteristics of a biological neuron. The LIF neuron is monolithically integrated with the MoS2 based synapse device to realize a single layer perceptron operation and Boolean logic gates. The Au/MoS2/Ag TSM device also imitates a nociceptor, the single device exhibits all the key features of nociceptors including threshold, relaxation, no adaptation and sensitization phenomena of allodynia and hyperalgesia. This work indicates applicability of this device in artificial intelligence systems-based neuromorphic hardware applications and artificial sensory alarm system

    Ultra-low Power Circuits and Architectures for Neuromorphic Computing Accelerators with Emerging TFETs and ReRAMs

    Get PDF
    Neuromorphic computing using post-CMOS technologies is gaining increasing popularity due to its promising potential to resolve the power constraints in Von-Neumann machine and its similarity to the operation of the real human brain. To design the ultra-low voltage and ultra-low power analog-to-digital converters (ADCs) for the neuromorphic computing systems, we explore advantages of tunnel field effect transistor (TFET) analog-to-digital converters (ADCs) on energy efficiency and temperature stability. A fully-differential SAR ADC is designed using 20 nm TFET technology with doubled input swing and controlled comparator input common-mode voltage. To further increase the resolution of the ADC, we design an energy efficient 12-bit noise shaping (NS) successive-approximation register (SAR) ADC. The 2nd-order noise shaping architecture with multiple feed-forward paths is adopted and analyzed to optimize system design parameters. By utilizing tunnel field effect transistors (TFETs), the Delta-Sigma SAR is realized under an ultra-low supply voltage VDD with high energy efficiency. The stochastic neuron is a key for event-based probabilistic neural networks. We propose a stochastic neuron using a metal-oxide resistive random-access memory (ReRAM). The ReRAM\u27s conducting filament with built-in stochasticity is used to mimic the neuron\u27s membrane capacitor, which temporally integrates input spikes. A capacitor-less neuron circuit is designed, laid out, and simulated. The output spiking train of the neuron obeys the Poisson distribution. Based on the ReRAM based neuron, we propose a scalable and reconfigurable architecture that exploits the ReRAM-based neurons for deep Spiking Neural Networks (SNNs). In prior publications, neurons were implemented using dedicated analog or digital circuits that are not area and energy efficient. In our work, for the first time, we address the scaling and power bottlenecks of neuromorphic architecture by utilizing a single one-transistor-one-ReRAM (1T1R) cell to emulate the neuron. We show that the ReRAM-based neurons can be integrated within the synaptic crossbar to build extremely dense Process Element (PE)–spiking neural network in memory array–with high throughput. We provide microarchitecture and circuit designs to enable the deep spiking neural network computing in memory with an insignificant area overhead

    Stochastic neuron design using conductive bridge RAM

    No full text
    International audience— We present an original methodology to design hybrid neuron circuits (CMOS + non volatile resistive memory) with stochastic firing behaviour. In order to implement stochastic firing, we exploit unavoidable intrinsic variability occurring in emerging non-volatile resistive memory technologies. In particular, we use the variability on the 'time-to-set' (tset) and 'off-state resistance' (R Off) of Ag/GeS2 based Conductive Bridge (CBRAM) memory devices. We propose a circuit and a novel self-programming technique for using CBRAM devices inside standard Integrate and Fire neurons. Our proposed solution is extremely compact with an additional area overhead of 1R-3T. The additional energy consumption to implement stochasticity in Integrate and Fire neurons is dominated by the CBRAM set-process. These results highlight the benefits of novel non memory technologies, whose impact may go far beyond traditional memory markets

    Nouvelles Architectures Hybrides (Logique / Mémoires Non-Volatiles et technologies associées.)

    Get PDF
    Les nouvelles approches de technologies mémoires permettront une intégration dite back-end, où les cellules élémentaires de stockage seront fabriquées lors des dernières étapes de réalisation à grande échelle du circuit. Ces approches innovantes sont souvent basées sur l'utilisation de matériaux actifs présentant deux états de résistance distincts. Le passage d'un état à l'autre est contrôlé en courant ou en tension donnant lieu à une caractéristique I-V hystérétique. Nos mémoires résistives sont composées d'argent en métal électrochimiquement actif et de sulfure amorphe agissant comme électrolyte. Leur fonctionnement repose sur la formation réversible et la dissolution d'un filament conducteur. Le potentiel d'application de ces nouveaux dispositifs n'est pas limité aux mémoires ultra-haute densité mais aussi aux circuits embarqués. En empilant ces mémoires dans la troisième dimension au niveau des interconnections des circuits logiques CMOS, de nouvelles architectures hybrides et innovantes deviennent possibles. Il serait alors envisageable d'exploiter un fonctionnement à basse énergie, à haute vitesse d'écriture/lecture et de haute performance telles que l'endurance et la rétention. Dans cette thèse, en se concentrant sur les aspects de la technologie de mémoire en vue de développer de nouvelles architectures, l'introduction d'une fonctionnalité non-volatile au niveau logique est démontrée par trois circuits hybrides: commutateurs de routage non volatiles dans un Field Programmable Gate Arrays, un 6T-SRAM non volatile, et les neurones stochastiques pour un réseau neuronal. Pour améliorer les solutions existantes, les limitations de la performances des dispositifs mémoires sont identifiés et résolus avec des nouveaux empilements ou en fournissant des défauts de circuits tolérants.Novel approaches in the field of memory technology should enable backend integration, where individual storage nodes will be fabricated during the last fabrication steps of the VLSI circuit. In this case, memory operation is often based upon the use of active materials with resistive switching properties. A topology of resistive memory consists of silver as electrochemically active metal and amorphous sulfide acting as electrolyte and relies on the reversible formation and dissolution of a conductive filament. The application potential of these new memories is not limited to stand-alone (ultra-high density), but is also suitable for embedded applications. By stacking these memories in the third dimension at the interconnection level of CMOS logic, new ultra-scalable hybrid architectures becomes possible which exploit low energy operation, fast write/read access and high performance with respect to endurance and retention. In this thesis, focusing on memory technology aspects in view of developing new architectures, the introduction of non-volatile functionality at the logic level is demonstrated through three hybrid (CMOS logic ReRAM devices) circuits: nonvolatile routing switches in a Field Programmable Gate Array, nonvolatile 6T-SRAMs, and stochastic neurons of an hardware neural network. To be competitive or even improve existing solutions, limitations on the memory devices performances are identified and solved by stack engineering of CBRAM devices or providing faults tolerant circuits.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore