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Chapter

Neuromorphic Computing between 
Reality and Future Needs
Khaled S. Ahmed and Fayroz F. Farouk

Abstract

Neuromorphic computing is a one of computer engineering methods that to 
model their elements as the human brain and nervous system. Many sciences as 
biology, mathematics, electronic engineering, computer science and physics have 
been integrated to construct artificial neural systems. In this chapter, the basics 
of Neuromorphic computing together with existing systems having the materials, 
devices, and circuits. The last part includes algorithms and applications in some fields.

Keywords: neuromorphic computing expectation, neuromorphic systems, 
neuromorphic chips, applications

1. Introduction

Neuromorphic computing, technology that mimic neuro-biological architectures 
present in the nervous system using electronic circuits, has attracted attention as 
next-generation computing due to its characteristics as they can process complex 
data with high efficiency, high speed and low power consumption. Neuromorphic 
computing importance increased in the industry because it efficiently executes 
artificial intelligence algorithms by imitating the brain nerve structure of humans. 
The conventional von Neumann computing using separated processors and memory 
systems is not efficient for machine learning due to processor-memory bottlenecks. 
Because the machine learning has a special workload that iterates simple computation 
with alot of data, there should be huge data traffic between processors and memory. 
For neuromorphic computing system, it consists of multiple neurons and synapses 
to compute and store data, and a neural network to communicate them. Therefore, 
this computing system can compute simple iterations efficiently for the training 
of machine learning. This chapter will discuss neuromorphic computing goals and 
challenges, showing how materials, devices, algorithms development researches lead 
to high expectations in neuromorphic computing field. We will discuss neuromorphic 
systems that are already existing today and expectations for what neuromorphic 
computing can achieve in the future.



Neuromorphic Computing

2

2. What is neuromorphic computing?

2.1 Neuromorphic computing history

The development of the perceptron in 1958 served as the forerunner of the 
artificial neurons employed in modern neural networks. With the inadequate under-
standing of the brain’s inner workings at the time, the perceptron was an amateurish 
attempt to imitate some aspects of organic neural networks. The U.S. Navy planned to 
use the perceptron as a piece of mechanical hardware that was specifically designed 
for picture identification. Before it was understood that the technology could not 
perform the required job, it was subject to a great deal of hype.

Carver Mead, a professor at Caltech, first proposed neuromorphic computing in 
the 1980s. Mead’s description of the first analogue silicon retina presaged a brand-new 
class of physical calculations that were motivated by the neural paradigm. Mead is 
also stated as believing that, given a thorough grasp of how the nervous system func-
tions, nothing the human nervous system does cannot be replicated by computers in 
an article about neural computation in analogue VLSI.

However, the ubiquitous and expanding usage of AI, machine learning, and neural 
networks in consumer and enterprise technologies might be partly blamed for the 
recent investment and enthusiasm surrounding neuromorphic research. It can also be 
mainly related to the perception among many IT specialists that Moore’s law is coming 
to an end. According to Moore’s Law, a chip can accommodate twice as many micro 
components each year while maintaining the same price.

Major chip manufacturers like IBM and Intel are paying close attention to neuro-
morphic computing because it has the potential to get around conventional architec-
tures and achieve radically higher levels of efficiency. In fact, Intel launched Moore’s 
Law which was about to come to an end in 2017.

Moore’s Law by condensing Gordon Moore’s ideas has been launched in 2013, was 
also quoted as saying, “Going to multicore chips helped, but now we are up to eight 
cores and it does not look like we can go much further. People have to crash into the 
wall before they pay attention.” This belief supports the idea that there are ups and 
downs in the hype and popular discourse surrounding artificial intelligence, with 
periods of low interest sometimes referred to as AI winters and times of high interest 
frequently brought on by an urgent issue that needs to be resolved, in this case the 
end of Moore’s Law. the integration of neuromorphic chips and smart cockpits and 
explore related fields with BMW has been announced by SynSense The world’s lead-
ing neuromorphic intelligence and solutions provider.

2.2 Neuromorphic computing architecture

Neuromorphic computing is a method of computer engineering in which elements 
of a computer are modelled after systems in the human brain and nervous system. 
The phrase describes the creation of both software and hardware components in 
computers. To construct artificial neural systems that are inspired by biological archi-
tecture, neuromorphic engineers depend on a variety of fields, including computer 
science, biology, mathematics, electronic engineering, and physics.

Researchers have investigated neuromorphic computing throughout the years to 
create various types of machines that think and learn like humans. Studies have been 
done to imitate how the human brain learns and computes by using computer hard-
ware in the form of an artificial neural network to simulate human learning abilities. 
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The anatomy of the human brain, which has over one billion neurons and trillions of 
synapses, is extremely intricate. As shown in   Figure 1  , neurons are made up of a cell 
body, an axon that generates neural signal impulses, and a dendrite that receives sig-
nals from other neurons. A synapse is a physical component that enables one neuron 
to transmit an electrical signal to an additional neuron.  

 As seen in   Figure 2b  , the neuromorphic hardware typically comprises of neurons 
and synapses to imitate the human brain’s neural network. Each neuron functions 
as a data processing centre in the neuromorphic hardware, and neurons are linked 
together in parallel by synapses to convey data [ 2 – 4 ]. The single signal bus present in 
the neuromorphic hardware does not result in a von Neumann bottleneck. Instead of 
using regular CMOS devices, artificial synaptic devices that reflect the properties of 
bio-synapses must be developed in order to execute this in practical design. The block 
diagrams for the traditional von Neumann architecture and the emerging neuromor-
phic design are shown in   Figure 2  .  

 Significant improvements have recently been made in the field of neuromorphic 
computing. Three major steps are used to categorise the most recent improvement 
[ 6 – 8 ]. A GPU-Centric system, which is primarily used for learning and supports 
artificial intelligence by using a graphics processing unit (GPU), is the initial phase. An 
ASIC-Centric system, which is now the next stage, is a hot topic of research. An effec-
tive and low-power application-specific integrated circuit (ASIC) for machine learning 
is anticipated to be created by this trend. As a result, numerous semiconductor firms are 
creating ASIC chips [ 9 – 12 ]. However, it is anticipated that neuromorphic computing 
will be developed 1 day into neuromorphic hardware, enabling ultra-low power and 
ultra-high speed computation to support for general-purpose artificial intelligence. 

  Figure 1.
  Three interconnected neurons. A presynaptic neuron transmits the signal toward a synapse, whereas a postsynaptic 
neuron transmits the signal away from the synapse [ 1 ].          

  Figure 2.
  Block diagram of computing systems: (a) von Neumann architecture; (b) neuromorphic architecture [ 5 ].          
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The neuromorphic-centric hardware must be able to handle massive amounts of 
data in parallel while using incredibly little power. Furthermore, compared to current 
technology that uses ordinary CMOS components, the neuromorphic semiconductor 
chip demands a quicker rate of computing. This suggests that creating an emerging 
synaptic device is essential to the development of neuromorphic-centric hardware.

2.3 Neuromorphic computing goals

Everything appears to be becoming “smarter” these days. Artificial intelligence (AI) 
is being used by an increasing number of goods and services, from industrial machinery 
to residential appliances, to comprehend user requests, analyse data, and spot patterns. 
It’s simple to understand why AI-powered goods are so well-liked. Instead of using 
buttons or touchscreens, smart interfaces enable voice and gesture control of devices. 
It’s a lot more instinctive to use a device in this way. Additionally, AI has the potential to 
make products more autonomous, freeing us from laborious or repetitive tasks. Smart 
items can also enable ongoing optimization and data analysis, which can be used to 
monitor our health and send us alerts, as well as to anticipate when a piece of equipment 
needs to be serviced or replaced. The popularity of smart devices today is increasing 
demand for increasingly complex AI-powered experiences. And we are beginning 
to push the capabilities of the hardware that is now available. Today’s smart devices 
actually use a lot of processing that is done remotely in the cloud or a data center, where 
there is sufficient computer power to conduct the required algorithms. This means that 
a network connection is necessary, and when data is transmitted back and forth, this 
can also cause latency to grow. When sending particular types of data to the cloud, there 
are additional real and perceived data privacy factors to take into account.

These factors suggest benefits of increasing the amount of smart computing 
housed within the device itself. Since the processing is carried out in edge network 
devices rather than a centralised cloud, this is referred to as “edge AI.” However, 
because many edge processors are mobile, they frequently rely on batteries for power. 
How can we run low-power edge devices with power-hungry AI algorithms? To do 
that, we are going to need to reevaluate how AI hardware is created.

This is the goal of neuromorphic computing. The information processing methods 
used by a biological brain are the foundation of neuromorphic computing design. 
Consider the 80–100 billion neurons found in the average human brain, each of which 
functions incredibly effectively and asynchronously to offer huge parallel processing. 
We are able to be so intelligent without constantly ingesting enormous quantities of 
energy because to this power and efficiency combination. Spiking neural networks are 
one of the most effective ways to simulate how a real neuron fires or “spikes” to relay a 
signal before going back to being silent. The end result is a system that uses much less 
power than artificial neural networks, which are currently employed in the majority 
of AI systems. Additionally, such efficiency makes it possible for considerably more AI 
processing to be done on smaller, low-power devices at the network edge.

3. Neuromorphic computing working principles

3.1 Von Neumann vs. neuromorphic

Non-von Neumann computers that are inspired by the structure and operation 
of brains and are made up of neurons and synapses are referred to as neuromorphic 
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computers. Von Neumann computers consist of distinct CPUs and memory units, 
with the latter housing data and instructions. On the other hand, with a neuromor-
phic computer, the neurons and synapses control both processing and memory. In 
contrast to von Neumann computers, which use explicit instructions to define pro-
grammes, neuromorphic computers instead use the characteristics and structure of 
the neural network. In addition, while von Neumann computers encode information 
as numerical values represented by binary values, neuromorphic computers receive 
spikes as input, where the associated time at which they occur, their magnitude and 
their shape can be used to encode numerical information. Binary values can be turned 
into spikes and vice versa, but the precise way to perform this conversion is still an 
area of study in neuromorphic computing.

These are some fundamental operational differences between Neuromorphic 
computers and Von Neumann:

• Highly parallel operation: All of the neurons and synapses in neuromorphic 
computers are potentially capable of operating simultaneously due to their inher-
ent parallelism; nevertheless, compared to parallelized von Neumann systems, 
the computations carried out by neurons and synapses are comparatively 
straightforward.

• Collocated processing and memory: In neuromorphic hardware, the idea of a 
distinction between processing and memory is absent. In many implementa-
tions, neurons and synapses both do processing and store information, despite 
the fact that neurons are sometimes thought of as processing units and synapses 
as memory. The von Neumann bottleneck relating to the processor/memory 
separation, which slows down the maximum throughput that may be attained, 
is lessened by collocating processing and memory. Additionally, this collocation 
aids in avoiding main memory data accesses, which are common in conventional 
computing systems and use a lot more energy than compute energy.

• Inherent scalability: Since adding more neuromorphic chips implies increasing 
the potential number of neurons and synapses, neuromorphic computers are 
designed to be intrinsically scalable. In order to run larger and larger networks, 
it is possible to treat a number of physical neuromorphic chips as a single huge 
neuromorphic implementation. Several large-scale neuromorphic hardware 
devices, like SpiNNaker and Loihi, have been used to successfully achieve this.

• Event-driven computation: neuromorphic computers leverage event-driven com-
putation and temporally sparse activity to allow for extremely efficient computa-
tion. Neurons and synapses only perform work when there are spikes to process, 
and typically, spikes are relatively sparse within the operation of the network.

• Stochasticity: To account for noise, neuromorphic computers can incorporate a 
notion of randomness, such as in the firing of neurons.

The literature makes extensive note of the characteristics of neuromorphic com-
puters and provides reasons for their use and implementation. The extraordinarily 
low power consumption of neuromorphic computers for computation is one of its 
most appealing qualities; they frequently consume orders of magnitude less power 
than conventional computing systems. Because they operate in enormous parallel 
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and are event-driven, only a small percentage of the system is normally active at any 
given moment, with the remainder being idle. Energy efficiency alone is a compelling 
incentive to examine the use of neuromorphic computers, given the rising energy 
cost of computing and the rising number of applications (such as edge computing 
applications) that have energy limits. Furthermore, neuromorphic computers pro-
vide a suitable platform for many of the artificial intelligence and machine learning 
applications of today since they naturally incorporate neural network-style process-
ing. Additionally, neuromorphic computers hold potential for utilising their inherent 
computational capabilities to carry out a wide range of different forms of computing.

It is unclear whether these are the only parts of biological brains that are signifi-
cant for computation, despite the fact that each of these qualities of neuromorphic 
computers is modelled after traits of the brain and has received priority in recent 
years. For instance, glial cells are one of many additional types of neural components 
that may be beneficial for computation, despite the fact that neurons and synapses 
have been chosen as the main computational units of neuromorphic computers. 
Furthermore, neurons and synapses have proved a useful level of abstraction for 
neuromorphic computers, but it is still unclear whether they are the best level of 
abstraction.

Contrary to some of the upcoming computing technologies, the research com-
munity already has access to various physical realisations of neuromorphic hardware 
that are now being developed. Numerous large-scale neuromorphic computers have 
been created with various methodologies and objectives. SpiNNaker and BrainScaleS 
were created with funding from the Human Brain Project of the European Union in 
order to facilitate large-scale neuroscience simulations. It has also been suggested to 
use slightly more complicated neuron models using an improved digital neuromor-
phic processor known as the online-learning digital spiking neuromorphic (ODIN). 
The Tianjic chip, a platform that supports both neuromorphic spiking neural net-
works and conventional artificial neural networks for various issue types, is one of 
the neuromorphic platforms aiming for more broad computations for wider classes 
of applications [13]. Both business and academia are interested in neuromorphic 
systems; examples from business include IBM’s TrueNorth [14] and Intel’s Loihi [15], 
while other academic initiatives exist as well, including DYNAPs [16], Neurogrid 
[17], IFAT [18], and BrainScales-2 [19]. In order to optimise learning-to-learn 
scenarios—situations where an optimization method is used to specify how learning 
occurs—for spiking neural networks, running at considerably faster timescales than 
biological timescales, neuromorphic hardware such as BrainScales-2 has been shown 
to be useful [20].

However, there is a lot of research being done in the neuromorphic community 
to create new types of materials for neuromorphic implementations, such as phase-
change, ferroelectric, non-filamentary, topological insulators, or channel-doped 
biomembranes. All of the large-scale neuromorphic computers mentioned above 
are silicon-based and implemented using conventional complementary metal oxide 
semiconductor technology [21–23]. Memristors are frequently utilised in the litera-
ture as the fundamental device to have resistive memory to collocate processing and 
memory [24, 25], although other types of devices, such as optoelectronic devices, have 
also been employed to create neuromorphic computers [26]. Neuromorphic computers 
can be implemented using a variety of devices and materials, each of which has its own 
operating properties, including speed of operation, energy consumption, and biologi-
cal likeness. Because neuromorphic hardware may now be implemented using a variety 
of tools and materials, it is possible to tailor its properties to a particular application.
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The majority of current research in the field of neuromorphic computing focuses 
on the aforementioned hardware systems, devices, and materials; however, in order 
to best utilise neuromorphic computers in the future, take advantage of all of their 
special computational properties, and influence their hardware design From this 
vantage point, we give an overview of the state-of-the-art in neuromorphic algo-
rithms and applications and offer a look ahead at the possibilities for the development 
of neuromorphic computing in computer science and computational science. It is 
important to note that a variety of various sorts of technology have all been referred 
to as neuromorphic computing.

3.2 Neuromorphic computing and artificial general intelligence (AGI)

Artificial general intelligence (AGI) is the term used to describe AI that demon-
strates intelligence comparable to that of humans. One could say it’s the holy grail of 
all AI. That degree of intelligence has not yet been attained by machines and might 
never be. However, neuromorphic computing presents brand-new opportunities for 
advancing in that direction.

For example, the Human Brain Project which features the neuromorphic super-
computer SpiNNaker aims to produce a functioning simulation of the human brain 
and is one of many active research projects interested in AGI.

The criteria for determining whether a machine has achieved AGI are debated, 
but these points need to be discussed if the machine can reason and make judgements 
under uncertainty. If it can plan, learn, communicate using natural language, rep-
resent knowledge including common-sense knowledge, and if it can integrate these 
skills in the pursuit of a common goal.

The ability to imagine, subjective experience, and self-awareness are occasionally 
included. The well-known Turing Test and the Robot College Student Test, in which 
a machine enrols in classes and earns a degree just like a human would, are two more 
suggested techniques for verifying AGI.

There are disagreements over how it should be handled ethically and legally if a 
machine ever attained human intelligence. Some contend that it ought to be regarded 
under the law as a nonhuman animal. These debates have been going on for years, in 
part because we still do not fully understand consciousness as a whole.

4. Challenges of neuromorphic computing

Conventional CMOS-based neuromorphic systems have shown promise in deliver-
ing brain-like features including pattern recognition, adaptive learning, and sophisti-
cated sensing. However, because of insurmountable problems inherent in the material 
qualities of conventional semiconductors, their future potential is constrained. For 
creating a system that imitates a biological brain, quantum materials and technolo-
gies are anticipated to function as a ground-breaking, next-generation computational 
platform. This field is at a point where further fundamental investigation into every 
facet of the issue would be extremely beneficial. This issue is devoted to evaluating the 
state of the art in the field and exhibiting fresh, possibly ground-breaking concepts.

Ab initio theoretical calculations combined with state-of-the-art synthesis and 
nanoscale structural, electrical, magnetic, and optical characterisation are some 
of the techniques that will be used to better understand the properties of quantum 
materials, the impact of defects, and their ultimate effect on devices and systems. It is 
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crucial to conduct a thorough, quantitative, interdisciplinary analysis of the relevant 
materials under intense (electrical, thermal, magnetic, and physical) stresses. Modern 
technologies for synthesis and characterisation are now at a point where they can 
give precise control and information about a material’s structure and how it affects its 
physical properties.

With a full understanding of the properties of the materials, new design ideas 
that go beyond typical semiconductor devices based on the charge or even the spin of 
the electron are being developed. For instance, Mott physics offers a way to simulate 
technology that is inspired by the brain. Synaptic devices encode a memory state by 
shifting and modifying the concentration of defects, whereas “neuronal” devices 
accumulate “metal phase” and modulate the conduction by metallic filamentary 
development (e.g., oxygen vacancies). In general, the combination of memris-
tive phenomena with light-sensitive oxides is leading to exciting design ideas for 
memory, networks, and neuro-sensors. Polymer-gated transistors with numerous 
functionalities can be used to achieve synaptic behaviour, which calls for plasticity 
in a material’s response function, as well as in photonic and magnetoelectric systems. 
Spin-based devices, on the other hand, benefit from pronounced nonlinearities in 
the magnetic responses of quantum materials. Optomagnetic neural networks can be 
adjusted to construct low-dissipation networks thanks to the low-energy plasticity 
and non-volatility of magnetic properties, while magnetic anisotropies are proposed 
to train networks. Nanoscale magnetic phenomena can also be used to create nanow-
ires. Time-dependent responses that resemble synaptic and dendritic trees as well as 
neural spikes can be produced by superconducting Josephson devices. Many physical 
phenomena, such reservoir computing and in-memory computing, are being studied 
as avenues to duplicate the magnificent processes carried out by the brain. It is crucial 
to comprehend the ultimate physical limits of these phenomena, including the small-
est sizes, shortest times, or closest physical proximity permitted by the physics of the 
materials and devices; all of these are directly related to scaling issues. Only then can 
these phenomena be incorporated into functional devices.

Emergent behaviour is at the core of biological neurons’ and synapses’ complexity 
and remarkable effectiveness. Numerous self-organising principles may be seen in the 
emergent properties of quantum materials and their nonlinearities, which offer a vari-
ety of static and dynamic states helpful for simulating sophisticated brain devices and 
networks. [27] A diversity of different memory states, fine-tuning of critical behaviour, 
and the formation of unique collective phenomena are possible thanks to the metasta-
bility provided by the complex energy landscape of the quantum system [26, 28]. It 
is crucial to take into account the network in which the devices are located in order to 
approach the problem of building a brain-like machine. The network is the system, to 
adapt Herbert Kroemer’s aphorism to bio-inspired neuromorphic computing.

5. Existing neuromorphic systems

5.1 The Tianjic Chip

This chip is the world’s first hybrid-paradigm chip for brain-inspired computing to 
facilitate the development of artificial general intelligence (AGI) (Figure 3).

Two key approaches to the creation of AGI are computer science- and neurosci-
ence-based. Both have benefits and drawbacks of their own. The combination of 
these two methods is currently thought to be one of the most promising approaches to 
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artificial general intelligence (AGI), and a strong hardware foundation that supports 
hybrid-paradigm computing is one of its key pillars.

The CBICR team suggests a novel brain-inspired computing architecture, 
a hybrid-paradigm Tianjic chip, which can simultaneously support computer-
science-oriented and neuroscience-oriented neural networks and capitalise on their 
strengths, such as artificial neural networks and spiking neural networks. This 
architecture is based on the computing principles of brain science. The second-gen-
eration Tianjic chip was introduced in 2017 and was built upon the first-generation 
chip created in 2015. The modern Tianjic achieves versatile functionality, fast speed, 
and low power after continual design refinement. Tianjic has 20% higher density, 10 
times the speed, 100 times the internal bandwidth, better flexibility/scalability, and 
more complete functionality than IBM’s TrueNorth chip. The group has also created 
a first-generation software tool chain that facilitates compilation and model map-
ping automatically.

As a flexible and scalable AGI development platform, an unmanned bicycle was 
built. Using just one chip, it was able to perform a variety of complex tasks, includ-
ing speech recognition, object tracking and detection, balance control, obstacle 
avoidance, and decision making. This device outperformed a comparable GPU 160 
times faster and 120,000 times more effectively thanks to its 40,000 neurons and 10 
million synapses. This book offers a fresh perspective and a new venue for academic 
study of AGI, which will facilitate its advancement and effects on business.

5.2 Intel’s Loihi Chips & Intel’s Pohoiki Beach computers

Intel improved its Pohoiki Beach neuromorphic system, paving the way for quicker 
processing to be employed in AI for the Internet of Things and autonomous vehicles 
and equipment. More than 60 partners will use the system to solve challenging chal-
lenges that need extensive number crunching. It is built to imitate 8 million neurons 
and runs 64 Loihi research chips.

Figure 3. 
Tianjic chip architecture [29].
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Loihi, which was originally launched in 2017, has 10,000 times greater efficiency 
and can process information up to 1000 times faster than CPUs. Researchers will be 
able to scale up sparse coding, simultaneous localization and mapping (SLAM), and 
path planning to learn from new data inputs and adapt.

According to Applied Brain Research, the advantages of Loihi also include 
decreased power consumption, which is around 109 times lower than a GPU and five 
times lower than comparable IoT inference hardware.

Loihi was motivated by how the brain approaches problem-solving, which is the 
fundamental origin of all neuromorphic research. According to Intel, neuromorphic 
computing is computer technology that mimics the brain’s neural structure and can 
use context-sensitive reasoning, common sense, and deal with ambiguity and contra-
diction. AI in its early stages was less robust, literal, and deterministic.

According to Prof. Konstantinos Michmizos of Rutgers University, “Loihi allows us 
to create a spiking neural network that imitates the underlying neuronal representa-
tions and activity of the brain.” His lab was able to operate mobile robots precisely and 
with 100 times less energy while using a Loihi-run network as opposed to a commonly 
utilised CPU.

Neuromorphic computing-based AI has been touted by Intel as having applica-
tions in medical imaging and autonomous vehicles (AV). With AV, solutions could 
emerge to deal with uncertainties, like a ball rolling onto the roadway or an aggressive 
driver in another car on the road. AI can be used to highlight areas of a medical image 
where an ailment is more likely to be present.

Without providing a detailed roadmap, Intel stated that their research will 
eventually result in the commercialization of neuromorphic technology. Moore’s 
Law and process-node computing cannot continue to expand, hence there is a 
critical need to sustain the gains in computing power and performance. According 
to Intel, specialised architectures like the Pohoiki Beach neuromorphic approach 
are required for particular developing applications like AV, smart homes, and 
cybersecurity (Figure 4).

5.3 IBM’s TrueNorth chip

In 2014, IBM released the neuromorphic CMOS integrated circuit known as 
TrueNorth. With 4096 cores and 256 programmable simulated neurons per core for a 

Figure 4. 
Intel uses 64 Loihi research chips in its neuromorphic system called Pohoiki Beach [30].
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total of just over a million neurons, it is a manycore processor network on a chip. The 
256 programmable “synapses” that connect each neuron serve to transmit impulses 
between them. Thus, there are little over 268 million programmable synapses overall. 
It has 5.4 billion fundamental transistors.

TrueNorth avoids the von Neumann-architecture bottleneck and is extremely 
energy efficient, with IBM claiming a power consumption of 70 milliwatts and a 
power density that is 1/10,000th of conventional microprocessors. Memory, compu-
tation, and communication are handled in each of the 4096 neurosynaptic cores [31]. 
The SyNAPSE chip operates at lower temperatures and power consumption because 
it only uses the power required for computing. Skyrmions have been proposed as 
models of the synapse on a chip [32, 33].

The neurons are emulated using a Linear-Leak Integrate-and-Fire (LLIF) model, 
a simplification of the leaky integrate-and-fire model [34]. IBM claims that it lacks 
a clock [35] and only uses unary numbers, counting up to a maximum of 19 bits 
to perform computations [34, 36]. The said cores are event-driven by using both a 
synchronous logic and are interconnected through an asynchronous packet-switched 
mesh network on chip (NOC).

In order to programme and use TrueNorth, IBM has created an entirely new 
environment. It featured libraries, a simulator, a fresh programming language, and 
even an integrated programming environment. Due to the substantial concerns of 
vendor lock-in and other negative effects, this absence of backward compatibility 
with any prior technology (such as C++ compilers) may preclude it from becoming 
commercialization in the future (Figure 5) [35].

5.4 Human brain project

The European Union funded Human Brain Project (HBP), a 10-year endeavour 
that started in 2013, aims to better understand the brain through research in six areas, 
including neuromorphic computing. SpiNNaker and BrainScaleS are two significant 
neuromorphic university initiatives that were inspired by the HBP. The largest neuro-
morphic supercomputer in existence at the time, the million-core SpiNNaker system, 
was released in 2018; The University of Manchester plans to expand it up in the future 
to model one million neurons.

Figure 5. 
Board with 16 TrueNorth chips.
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5.5 BrainScaleS From Heidelberg University

BrainScaleS (Brain-inspired multiscale computation in neuromorphic hybrid 
systems) was an EU FET-Proactive FP7 funded research project. The undertaking 
began on January 1, 2011, and it was completed on March 31, 2015. It involved the 
cooperation of 19 research teams from 10 different European nations. The Human 
Brain Project’s (HBP) Neuromorphic Computing Platform is where the hardware 
for neuromorphic computing systems is currently being developed. The goal of the 
BrainScaleS project is to comprehend and simulate how various spatial and temporal 
scales interact to process information in the brain.

6. Materials and devices

The production and characterisation of materials for neuromorphic systems has 
been one of the major areas of advancement in neuromorphic computing in recent 
years. We want to highlight the variety of innovative nanoscale devices and materials 
that the materials science community is developing and characterising for neuromor-
phic systems.

Two typical nano-scale devices that have been constructed with various materials 
that can result in various behaviours are atomic switches and CBRAM. A survey of 
many atomic switch types for neuromorphic devices is given in [37], but common 
atomic switch materials include Ag₂S [38–40], Cu₂S [41], Ta₂O₅ [42], and WO₃-x 
[43]. Under various conditions, many atomic switch materials can display various 
switching behaviours. As a result, the atomic switch’s behaviour can be controlled 
by the material choice, which is likely to vary on the application. CBRAM has been 
implemented using GeS₂/Ag [44–50], HfO₂/GeS₂ [51], Cu/Ti/Al₂O₃ [52], Ag/Ge₀.₃Se₀.₇ 
[53–55], Ag₂S [56–58] and Cu/SiO₂ [54]. Similar to atomic switches, the material 
chosen affects the stability and dependability of the device as well as the switching 
behaviour of CBRAM devices,

Memristors can be used in a wide number of ways. Transition metal-oxide-based 
memristor systems may be the most widely used (TMOs). Many different types of 
materials are utilised to make metal-oxide memristors, including HfOx [59–67], TiOx 
[68–73], WOx [74–78], SiOx [79], [80], TaOx/TiOx [81, 82], NiOx [83–85], TaOx 
[86–88], FeOx [89], AlOx [90], [91], TaOx/TiOx [81], [82], HfOx/ZnOx [92], and 
PCMO [93–98]. The quantity and sorts of resistance states that can be created by 
various metal oxide memristor types determine the range of weight values that can be 
stored on the memristor. They also differ in terms of their capacities for endurance, 
stability, and dependability.

There have also been other more suggested materials for memristors. For instance, 
spin-based magnetic tunnel junction memristors based on MgO have been sug-
gested for implementations of both synapses and neurons [99], though it has been 
highlighted that they have a restricted range of resistance levels, making them less 
suitable to store synaptic weights [88]. Synapses have also been implemented using 
chalcogenide memristors [100–102]. One of the justifications provided for doing so 
is the chalcogenide-based memristor’s ultra-fast switching speeds, which allow for 
processes like STDP to take place at nanosecond scale [97]. Polymer-based memris-
tors have been used because of their inexpensive cost and adjustable performance  
[68, 103–111]. There have also been suggestions for organic memristors, which include 
organic polymers [69, [112–123].
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Ferroelectric materials have been taken into consideration for the construction of 
analogue memory for synaptic weights [124–129], and synaptic devices [130–133], 
including those based on ferroelectric memristors [134–136]. Their main area of 
investigation has been three-terminal synaptic devices as opposed other implementa-
tions that may be two-terminal. Three-terminal synaptic devices do not need addi-
tional circuitry to implement learning processes like STDP because they can realise 
them in the device itself [130, 135].

Neuromorphic systems have more recently incorporated graphene to produce 
more compact circuits. It has been used in neuromorphic implementations as well as 
full synapse implementations [141, 142] for transistors [137–139] and resistors [140].

The carbon nanotube is another material under consideration for various neuro-
morphic applications. A variety of neuromorphic components, including dendrites 
on neurons [143–147], synapses [148–165], and spiking neurons [166–169], have been 
proposed to use carbon nanotubes. Carbon nanotubes have been used because they 
can provide the scale (number of neurons and synapses) and density (in terms of 
synapses) of neuromorphic systems that may be necessary for replicating or imitat-
ing biological neural systems. They have also been used to interface with living tissue 
proving that carbon-nanotube based devices may be helpful in prosthetic applications 
of neuromorphic systems [155].

Synaptic transistors with different architectures, such as silicon-based ones 
[170, 171], and oxide-based ones [172–184], have also been produced for neuromor-
phic applications. Synapses and other neuromorphic components have been built 
using organic electrochemical transistors [185–190] and organic nanoparticle transis-
tors [191–194]. Organic transistors are being ordered for similar reasons as organic 
memristors: low processing costs and versatility. Additionally, they are ideally suited 
for the development of brain-machine interfaces as well as chemical or biological sen-
sors [185]. It’s interesting to note that various teams are working to create transistors 
within polymer-based membranes that can be applied to neuromorphic applications 
such biosensors [195–199].

Recently, there has been an increased interest in nonvolatile memory (NVM) tech-
nologies for neuromorphic computing, beyond their potential as DRAM replacement 
or as hybrid memory in shared memory systems. For neuromorphic architectures, 
nonvolatile devices offer a wide range of great qualities, including as memory reten-
tion, analogue behaviour, high integration density, faster read and program speeds, 
high energy efficiency, and programming voltages that are compatible with CMOS 
electronics. So we focus here on emerging materials for NVM devices:

6.1 Polymer

Polymers are long-chain molecules with repetitive units. They fall within the 
category of one-dimensional materials with features including biocompatibility, 
chemical sensitivity, and mechanical flexibility. You can use organic or inorganic 
materials to create polymers. A flexible wearable memristor is designed with ammo-
nium polyphosphate (APP) in a stack of Au/APP/ITO [201]. The I-V characteristics 
suggested that the bidirectional voltage sweeps’ memristive behaviour was caused 
by ion movement in the APP. Even under harsh humid, temperature, or radiation 
settings, the proposed structure has demonstrated stable function. However, a lot of 
research has been done on organic semiconductors (OSC) for use in neuromorphic 
devices. The two-terminal OSCs can utilise filament formation, charge trapping, 
and ion migration to facilitate the integration into ReRAM, PCM, or FeRAM. Fuller 
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et al. present a polymer-based redox transistor combined with a CBRAM synaptic 
device [200] whose conductance change is initiated by reversible electrochemical 
reactions. The authors also show an array of 1024 × 1024 organic polymer memris-
tors arranged for performance characteristics simulation. The main difficulties 
with OSCs are speed and density. Due to low mobilities of carriers and defects, OSC 
speed is impacted [201]. Due to OSCs’ incompatibility issues with various solvents, 
the patterning of these devices through photolithography is limited, restricting the 
fabrication of dense networks.

6.2 2D materials

Fundamental 2D material research has received a great deal of attention during 
the past 10 years. The 2D materials maintain a stable mono-layer structure with 
special chemical and physical properties suitable for simulating synapses. They are 
recognised for their inter-layer weak van der Waals forces. Haigh et al. demonstrate 
that the high mobility of 2D synapses allows them to exhibit fast switching speed at 
low operating voltages [202]. The alteration in electrical, photonic, and electrochemi-
cal properties is another distinguishing quality of 2D material synaptic devices [203]. 
Shi et al. use a CBRAM-based h-BN memristor to exhibit STP and LTP properties 
[204]. The creation and deformation of the conductive filament caused by ion migra-
tion between Cu or Ag electrodes controls weight update. The h-BN exhibits boron 
vacancies that stimulate resistance changes.

Wang et al. demonstrate how externally introduced oxygen atoms occupy intrinsic 
defects that can be adjusted as MoS₂ sulphur vacancies, causing resistance changes 
[16]. In [205], authors use bilayer MoS₂ vertical memristors to demonstrate STDP 
features at 0.1–0.2 V voltage. Apart from CBRAM, 2D materials have been integrated 
as PCM 2-terminal synaptic elements, which have the advantage of better reliability. 
MoTe₂ exhibits an electric field-induced amorphous to crystalline phase transition 
in TMD materials [206]. Multilevel programming resistance could be facilitated 
by further device engineering to the device stack. On the other hand, A 3-terminal 
device uses the gate and the channel as presynaptic and postsynaptic inputs, exhibits 
superior stability and effective channel conductance control. Chen et al. demonstrate 
how a graphene and ferroelectric insulator (polyvinylidene fluoride, i.e., PVDF) 
synapse can imitate the synaptic behaviour as a FeFET device [207]. The ferroelectric 
material’s changing polarisation state affects the carrier concentration in graphene. 
The polarisation shift is induced when the gate voltage is raised above the threshold 
voltage. Future research might also look toward Li + ion gated synaptic transistors 
[208] and various hetero synaptic plasticity implementations [201, 209, 210].

6.3 Quantum dot

Quantum dots (QD) are zero-dimensional memristors. Semiconducting 
quantum dots which are small particles with clearly defined energy levels, exhibit 
electrical and optical features based on quantum mechanics. Josephson junctions 
are the foundation for how a QD functions as a memristor. The phase difference 
between quasi-particles is employed ss a state variable [211]. Here, a hybrid con-
struction made of QDs and a memristor is used. In [212], Lv et al. demonstrate 
that RRAM devices with QD-film as their insulator can be switched in response 
to an external signal. The memristive characteristic of QD-RRAMs is catalysed by 
ion migration, charge trapping, or redox reaction. Qi et al. show how to fabricate 
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RRAM with Carbon QD for usage as a LED [213]. In [214], Roychowdhury et al. use 
QD arrays to show quantum neuromorphic computing. There are a lot of potential 
opportunities that are yet to be explored.

6.4 Carbon nanotube

A carbon nanotube (CNT) is a cylindrical rolled up, often single-walled carbon 
in a tube shape of nanometre diameter. They have a metallic or semiconducting 
character because of their achiral connections. These fall within the category of 
one-dimensional materials that resemble axons structurally. Due to their great 
charge mobility, semiconductor CNTs can be employed as conducting channels 
in FETs. CNTFET is a CNT replacing semiconductor channel between the source 
and drain. With voltage applied, a Schottky barrier that has formed at the metal-
CNT contact is alleviated. The ON/OFF state of memory cells is determined by 
the interaction between CNTs. The gate and source of the single-walled CNT 
matrix network are respectively coupled to presynaptic and integrate-and-fire 
(IF) postsynaptic neurons by Feldmann et al. [215]. The channel conduct anceto 
store synaptic weights is controlled by varying voltage pulses at the pre- and post-
neuron. All of the post synaptic neuron spikes are gathered to fire back the CNT if 
the output hits a threshold level. In order to choose the sign and magnitude of the 
weight update for an STDP implementation, the channel conductance change when 
the gate and source voltages are correlated. Kim et al. describe p-type CNTFET-
based models of excitatory and inhibitory neurons [158], where the neurons 
exhibit STP accumulative current. The very lateral geometry of CNTFETs is not 
viable for larger integration, though. CNT TFTs have therefore become a popular 
substitute for the same.

The materials science community is doing a lot of intriguing work to cre-
ate devices for neuromorphic systems out of novel materials in order to create 
smaller, faster, and more effective neuromorphic devices. Diverse materials can 
have radically different properties, even when used in the same device. These 
variations will have an impact on the rest of the community, up through the 
device, high-level hardware, supporting software, models, and algorithms levels 
of neuromorphic systems. Therefore, it is crucial that we as a community compre-
hend the potential effects that various materials may have on functionality. Going 
forward, tight partnerships with the materials science community will undoubt-
edly be necessary.

7. Neuromorphic circuits

The creation of brain-inspired computing systems necessitates the careful design 
of circuit blocks that exhibit specific elements of neuromorphic functions, such as 
plasticity and learning, in addition to device engineering. The individual synapses, 
for instance, must act as electrical connections between two neurons and change 
their weight in accordance with particular learning criteria that are inspired by the 
brain. This is one of the biggest challenges with neuromorphic computing is trying 
to replicate the human “connectome,” or the physical wiring of the nervous system. 
Reverse-engineering the brain on solid-state devices (SSD) is still a long way off, 
despite advances in our understanding of how the wiring of the brain carries out 
higher-level processes (Figure 6).
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 By digitally transferring biological neuronal network models onto electronic 
devices, neuromorphic computing explicitly aims to appropriate the biological con-
nectome of the brain. Neuro-electronic interfaces are brain-computer interfaces that 
transmit data from the brain to outside equipment. Because there are currently no 
suitable neuro-electronic interfaces, digital brain mimicry is difficult. 

 On the other hand, it has been demonstrated that time has a significant impact 
on synaptic plasticity in the brain. For instance, the human brain’s spike-timing 
dependent plasticity (STDP) is a weight update mechanism where the amount of 
time between pre- and postsynaptic spikes determines the weight change’s mag-
nitude and sign, i.e., potentiation for the pre-synaptic spike coming before the 
postsynaptic spike and depression for the postsynaptic spike coming before the 
pre-synaptic spike [ 217 ]. Time calculation between a pair or triplet of spikes is a key 
component of other, more complex synaptic weight updating algorithms [ 218 – 220 ]. 
These plasticity rules typically call for the development of intricate circuits utilising 
CMOS devices [ 221 – 223 ] or nanoscale devices, such as PCM [ 224 – 226 ] or RRAM 
[ 24 ,  64 ,  224 ,  227 – 229 ] technology. Plastic synapses based on PCM and RRAM often 
include one or more transistors in a hybrid design to enable a controllable computa-
tion of time within the circuit block, although examples of time-sensitive synapses 
that have been described [ 230 ,  231 ]. 

  7.1 Hybrid STDP synapses 

Figure 7a   shows a hybrid RRAM-CMOS synapse example with a 2T1R design that 
consists of one RRAM element and two transistors [ 228 ]. The top electrode of the 
RRAM device and the gate of one transistor known as the communication transistor 
are both driven by the pre-synaptic neuron. It displays the voltage VTE applied to 
the top electrode and VCG applied to the communication gate’s gate, both of which 
are applied during a spike event by the pre-synaptic neuron. A synaptic current that 
spikes as a result of the applied voltage spikes in the figure, which is proportional 
to the conductance of the RRAM, acts as a storage component for synaptic weight. 
According to the schematic circuit of   Figure 7c  , synaptic current travels via the 

  Figure 6.
  Key elements of a neural network [ 216 ].          
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synaptic circuit and is fed into the input terminal of the post-synaptic neuron, where 
integration and firing occur. The input node of the post-synaptic neuron is a virtual 
ground, guaranteeing a zero voltage at the bottom electrode of the 2T1R synapse and 
acting as a summing input for a practically infinite number of synaptic channels. 
The post-synaptic neuron fires when the integrated current exceeds a predetermined 
threshold, sending spikes to the subsequent neurons in the network and applying a 
feedback spike to the fire gate.

7.2 Learning with RRAM STDP synapses

A conceptual demonstration of learning cannot be provided by definitively 
demonstrating STDP in individual synapses; instead, simulations and experiments 
at the higher level of synaptic/neural networks are needed. A straightforward 
example of a feed-forward neural network, known as a perceptron [233–235], is 
shown in Figure 8. The network is made up of two layers: a presynaptic layer where 
synaptic channels receive neural spikes, and a second layer with just a single post-
synaptic neuron to integrate and fire current spikes. Each pre-synaptic neuron is 
coupled to a post-synaptic neuron via a hybrid CMOS-RRAM synapse, indicating 
that the network is fully connected. Depending on the time Δt between pre- and 
post-synaptic spikes, the post-synaptic neuron transmits a feedback spike to each 
synapse at each fire event to enable LTP/LTD. As a result, submitted patterns, 
such as images, sounds, or speech, tend to be learned by the network because the 
synapses corresponding to the pattern channels are potentiated while all other syn-
apses, commonly known as the background synapses, tend to become depressed, 
thus enabling on-line learning of submitted patterns [226, 228, 229].

Figure 7. 
Hybrid RRAM-CMOS synapse with 2T1R configuration (a), voltage waveforms for VCG and VTE applied by 
the pre-synaptic neuron in the spike event (b), and overall circuit sketch including the synapse and the pre- and 
post-synaptic neurons [232].
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With the recent advancements in ferroelectric devices, nanowire networks, 
organic materials, and new memory hardware, duplicating the human neural net-
work is now a more realistic possibility. The great ability of memory devices promise 
synaptic device that can handle massive amounts of data effectively while consuming 
extremely little power, which is necessary to develop artificial intelligence tech-
nologies. The detailed analysis of these memory devices, together with the present 
problems and future prospects, is covered in the following subsections.

7.2.1 PRAM: phase-change synaptic devices

Phase-change memory (PRAM), also called PCM, is a type of non-volatile random-
access memory. A thesis on the viability of a phase-change memory device using 
chalcogenide film and a diode was published by Charles Sie in 1969 [236]. The phase-
change memory process in chalcogenide glass involves electric-field-induced crystal-
line filament development, according to the following study from 1970 [237, 238].

PRAM uses the resistance difference between the crystalline phase’s low resistivity 
and the high resistivity of the amorphous phase in phase change materials. A phase 
change material known as T-cell is typically used between two electrodes in PRAM 
structures. The phase of the material is changed after a high voltage/current is applied 
to the electrodes. A current pulse is used to anneal and quench the phase-change 
material to cause it to crystallise in order to set into the crystalline phase. The high 
resistance amorphous component can be steadily crystallised using a series of Set 
pulses to achieve the progressive Set function of PRAM devices. The programming 
region is first melted and then quickly quenched by using a strong current pulse for a 
brief period of time in order to reset into the amorphous phase.

The device has been investigated as a good candidate for artificial synapses in 
implementing the machine learning algorithm because of desirable properties as 
high speed, multi-level capability, and low energy consumption [239–241]. But issues 
with material quality and power consumption prohibited PRAM technology from 
being widely used. Resistance drift, which refers to how the resistance changes over 
time is a particular problem [242–244]. In phase-change materials, resistance drift is 
a common occurrence that severely hinders the development of PRAM and destroys 
stability. A structural relaxation, which is a locally rapid local rearrangement ther-
mally induced at intervals the amorphous region, has been used to explain the drift 

Figure 8. 
Schematic illustration of a perceptron-like neural network with a 4 × 4 first layer, and a single post-synaptic neuron 
in the second layer. Each neuron in the first layer is connected to the post-synaptic neuron by synapses [232].
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phenomenon in amorphous chalcogenide materials [243, 245–247]. This implies that 
the resistance can be modified with time and that a lost memory resembles almost 
human memory. In addition to the significant reliability problem with amorphous 
chalcogenide materials, a low power neuromorphic device must overcome the high 
power need for melting the phase-change material. These reliability and power 
problems must be solved for PRAM technology to function well as a synaptic device.

7.2.2 Reram: filament type synaptic devices

One of the leading candidates to replace current memory technology as the next 
generation is resistive random access memory (ReRAM). The non-volatile nature of 
ReRAM is the main justification, among many others. Researchers and manufactur-
ers are currently paying close attention to every non-volatile memory. This results 
in a race between several technologies that practically all offer the same advantages 
while aiming for the same standard level of performance goals. Each non-volatile 
memory is competing fiercely to prove that it is a worthy rival in the memory field. 
Other non-volatile memories of current interest are PCRAM (Phase Change), FeRAM 
(Ferroelectric), and MRAM (Magnetoresistive). ReRAM is distinguished and enabled 
to compete with these technologies because of its quick read and write speeds. 
Additionally, ReRAM’s manufacturing is not as difficult as other technologies.

Low dependability and performance variations, on the other hand, are the 
obstacles preventing its market penetration. Therefore, it still requires significant 
development in terms of material fabrication, construction, circuit difficulties, and 
handling unwanted disturbances from the outside environment. ReRAM technology 
appears to have more benefits than drawbacks, and this good promise for the future 
of the technology.

ReRAM has a metal-insulator-metal structure, with the insulator positioned 
between two layers of metal. Both metals form a low resistive state when touched, and 
a high resistive state when not touched. A conducting filament serves as the struc-
ture’s central functional part. The rupture of the filament depends on the applied 
voltage across the metal terminals (Figure 9).

ReRAM’s ability to store digital data, or 0 s and 1 s, is a result of its structural 
design. ReRAM typically operates in a High Resistive State [HRS], or logic low 
referred to as 0; a voltage is applied across ReRAM to switch its state from the High 
Resistive State to a Low Resistive State [LRS], or logic high referred to as 1. There is 

Figure 9. 
(a) 2D structure of ReRam (b) 3D structure of ReRam [248].
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no suitable path for the current to pass since the filament is disconnected during the 
HRS. The filament contacts the bottom terminal and produces a low resistance route 
when an appropriate voltage is placed across the top electrode (TE) and bottom elec-
trode (BE). This is known as coming into LRS, which is also known as logic high, or 1. 
HRS is the OFF state, and LRS is the ON state. The “Set” voltage is the voltage used to 
switch the ReRAM state from HRS to LRS. In a similar vein, the voltage used to switch 
a device from LRS to HRS is known as the “Reset” voltage. After a voltage that is 
greater than the Reset or Set voltage is applied, the filament either forms or ruptures. 
This state change is the write operation during putting ReRAM in the desired state 
to hold a logic. A voltage that is less than the Reset or Set voltage is applied to read 
the operation, and the output is monitored to determine the state of the ReRAM. In 
accordance with the polarity of the applied voltage, there are two forms of resistive 
switching. It could be bipolar or unipolar. In unipolar switching, the voltage’s polarity 
has no dependence on the switching process. In contrast, switching in bipolar switch-
ing is dependent on the voltage’s polarity, going from HRS to LRS in one case and 
from LRS to HRS in the other [249].

7.2.3 MRAM: spintronic synaptic devices

Magneto-Resistive Random Access Memory (MRAM) is a kind of non-volatile 
memory (NVM) that can retain saved data even if the power is out or is unintention-
ally turned off. MRAM, commonly known as Magnetic RAM, is not brand-new. 
MRAM has been available on the market for more than 20 years, but recent advance-
ments in the technology have allowed it to be employed successfully in both new and 
old applications.

Magnetic Tunnel Junction (MTJ), a part of MRAM technology, is a combination of 
two ferromagnetic layers and an insulating layer. MRAM stores a logic 1 or a logic 0 by 
altering the resistance of an MTJ. Two ferromagnetic layers’ relative spin orientations 
determine the resistance of the MTJ, which has two resistance options: high resistance 
and low resistance.

According to Figure 10. The free layer of the MTJ can have its magnetic direction 
modified by applying polarised currents or magnetic fields, whereas the reference 
layer of the MTJ maintains a constant magnetic direction. The resistance of the MTJ 
is minimal when the directions of the reference layer and the free layer coincide (a 
logic 0 is stored). However, resistance is strong if they are going in opposite direc-
tions (a logic 1 is stored).

Toggle mode technology, in which a magnetic field modifies the electron spin to 
program/write bits, was utilised by the initial generation of MRAM devices. Although 
it was simpler to build toggle MRAM, scaling it down is challenging. As the write 
lines get smaller and other difficulties arise, the current needed to flip the bit does not 
decrease in value. Following generations of MRAM devices began utilising a different 
technique known as Spin-Transfer Torque (STT) MRAM. SST MRAM uses a spin-
polarised current to change the spin of electrons, making device scaling down simpler 
and less expensive. However, the majority of STT MRAM devices now available use a 
perpendicular strategy in which electrons spin horizontally and change perpendicular 
to the plane (Figure 11). This perpendicular method provides the benefit of offering 
higher density memory products by permitting lower switching currents with fewer 
transistors and less power consumption.
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STT-MRAM products now on the market have the benefit of being faster and 
using less power than NVM flash memory devices. They could also compete with 
volatile memory units like SRAM and DRAM due to their potential speed as well as 
their ability to be scaled down even smaller than 10 nm. They are even more appealing 
to embedded memory applications because of this property. STT-MRAM has inherent 
limitations, much like many other technologies, and only time will tell if this technol-
ogy will take the place of DRAM or SRAM. STT-MRAM technology offers intriguing 
applications in neuromorphic computing, automotive microcontrollers, and system-
on-chips (SoCs).

Figure 10. 
Structure of a MTJ. (a) Anti-parallel (high resistance) and (b) parallel (low resistance) [250].

Figure 11. 
Perpendicular MTJ diagram [251].
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7.2.4 ASN (atomic switch network): network-based synaptic device

Inorganic “atomic-switch” synapses embedded in a sophisticated network of 
silver nanowires make up the more than a billion interconnected synapses used in 
the self-assembling neuromorphic (brain-like) technology created by researchers in 
the U.S. and Japan. It has been demonstrated that the atomic switch, a freshly created 
nanoscale circuit component, displays synapse-like characteristics in an entirely inor-
ganic device. Each square centimetre of the device’s silver nanowire network contains 
a billion junctions that are intricately coupled to one another.

These atomic switch networks (ASN) produce emergent behaviours resembling 
memristors through distributed, collective interactions, just like biological neural net-
works. A key feature of biological brain networks and many other complex systems is 
these emergent behaviours. According to the researchers, experiments are currently 
being conducted that exploit these emergent behaviours for information processing 
with the goal of creating a new category of cognitive technology. The architecture 
of the ASN device is extremely linked and includes synaptic circuit components at 
each point of nanowire contact. According to the researchers, the collective interac-
tions between these atomic switches provide distinctive emergent features that offer 
substantial potential for neuromorphic computing.

Comparing these emerging devices, MRAM features non-volatility, as the 
magnetic properties of ferromagnets do not disappear due to power failure. The 
magnetism of ferromagnets not only does not disappear due to power failure, but can 
be considered almost never to disappear, so MRAM can be rewritten infinitely as well 
as DRAM. The write time of MRAM is as low as 2.3 ns and the power consumption 
is extremely low, enabling instant on/off and extending the battery life of portable 
devices. MRAM cells can be easily embedded into logic circuit chips, requiring only 
one or two additional steps in the back-end metallization process, which requires 
a photolithographic mask version. In addition, MRAM cells can be completely 
fabricated in the metal layer of the chip, and even 2–3 layers of cells can be stacked, 
so it has the potential to construct large-scale memory arrays on logic circuits. 
However, the biggest drawback of MRAM is the interference between memory cells. 
When programming the target bit, the free layer in the non-target bit can be easily 
misprogrammed, especially in the case of high density, the overlap of the magnetic 
field between adjacent cells will be more serious. For PCM, it does not need to erase 
previous code or data before writing updated code, so its speed has an advantage 
over NAND, and the read and write time is more balanced. PCM read and write is 
non-destructive, so its write resistance far exceeds that of flash memory, and PCM is 
used to replace traditional mechanical hard drives with higher reliability. PCM has no 
mechanical rotation device, and no refresh current is required to save code or data, so 
PCM’s power consumption is lower than HDD, NAND, and DRAM. Some PCMs use a 
non-transistor design, which can realise high-density storage. PCM storage technol-
ogy is independent of the charged particle state of the material, so it has a strong 
resistance to space radiation and can meet the needs of national defence and space. 
While RRAM erase speed is determined by the pulse width of the trigger resistor 
transition, generally less than 100 ns. Some RRAM materials also have a variety of 
resistance states, making it possible to store multi-layer data when a memory cell, 
thus increasing the storage density. The memory matrix of RRAM can be divided into 
two types: passive matrix and active matrix. The memory cell of the passive matrix 
is connected by a resistive element and a nonlinear element (usually using a diode), 
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the role of the latter is to make the resistive element get a suitable voltage division, 
so as to avoid the loss of the memory cell reading and writing information when the 
resistive element is in a low resistance state. The advantage of this method is that 
the design is relatively simple and the process is well miniaturised, but the use of a 
passive matrix will make the adjacent cells inevitably interfere with each other. Active 
cells are controlled by transistors to read and write and erase resistive components, 
although good isolation of adjacent cells interference, its design is more complex, and 
the device can be poorly miniaturised. In terms of capacity, these three new types of 
memory, MRAM up to 4 Gb, PRAM up to 8 Gb, and RRAM up to 32 Gb, are still very 
different from flash memory but all three are more than 1000 times faster than flash 
memory in terms of read and write speed.

8. Neuromorphic algorithms and applications

8.1 Neuromorphic algorithms

How to define an SNN for a certain application is frequently covered in algorithms 
for neuromorphic implementations. There are many different algorithmic strategies 
for neuromorphic computing systems, and they can be divided into two main groups: 
(1) algorithms for training or learning an SNN that will be used in a neuromorphic 
computer, and (2) non-machine learning algorithms where SNNs are manually built 
to complete a specific task. It’s important to note that training and learning algorithms 
here refer to the mechanism of optimising.

It is difficult to learn in a spiking neural network. Traditional artificial neural net-
works have had great success with backpropagation-based gradient descent learning; 
however, training SNNs is challenging due to the nondifferentiable nature of spike 
events. Due to the interest in deep learning, a significant amount of research has been 
put into creating appropriate learning algorithms that can be used with multilayer 
SNNs. Unsupervised learning, supervised learning, conversion from learned ANNs, 
and evolutionary algorithms are the four main methods for training SNNs. The fol-
lowing subsections provide a quick overview of them.

8.1.1 Unsupervised learning

Learning without preexisting labels is referred to as unsupervised learning. The 
Hebbian rule, which unsupervised learning of SNNs is based on, entails adapting 
the synaptic connections of the network to the data received by the neurons [252]. 
Hebb’s rule is applied through the spike-timing-dependent plasticity (STDP) 
algorithm. The STDP phenomenon, which has been observed in the brain, explains 
how the relative timing of presynaptic and postsynaptic spikes affects how effec-
tive a synapse is. The spike that reaches the neuron’s synapse is referred to in this 
context as a presynaptic spike. The spike released by the neuron itself is known as 
a postsynaptic spike [253]. The idea behind STDP’s mechanism is that the synapses 
that are most likely to have caused the neuron to fire should be reinforced. Similar 
to this, weakening should be done to synapses that did not participate or contrib-
uted negatively [254].

In unsupervised learning in SNNs, STDP is commonly employed as a learning 
method. A synaptic weight is said to be reinforced by STDP if a presynaptic neuron 
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fires just before a postsynaptic neuron. Similar to that, the synaptic weight is dimin-
ished if the presynaptic spike follows the postsynaptic neuron for a brief period of 
time [255]. The most observed STDP rule is described by Eqs. (1) and (2):
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where w is the synaptic weights, τ is the time constant, and A₊ and A₋ are constant 
parameters indicating the strength of potentiation and depression.

Significant study has been put on training SNNs with STDP in recent years. Two 
new hardware-friendly techniques, lateral inhibition and homeostasis, were created 
by Qu et al. [256]. These techniques lessen the number of inhibitory connections, 
which lowers the hardware overhead. On the MNIST data set, an STDP rule was 
utilised to modify the synapse weight between the input and learning layers to obtain 
92% recognition accuracy. A hybrid learning system called deep CovDense SNN, 
put out by Xu et al. [255], combines the biological plausibility of SNNs and feature 
extraction from CNNs. They updated the parameters of their deep CovDenseSNN 
model, which is appropriate for implementation on neuromorphic hardware, using 
an unsupervised STDP learning method. Other STDP learning techniques include 
supervised learning and reinforcement learning [257].

A semisupervised method was put out by Lee et al. [258] to train a convolu-
tional SNN with several hidden layers. The training approach consisted of two 
steps: initialise the network weights by unsupervised learning (namely, SSTDP), 
and the supervised gradient descent backpropagation (BP) algorithm to fine-tune 
the synaptic weight. Pretraining methods resulted in 99.28% accuracy on the 
MNIST database, quicker training times, and greater generalisation. An innova-
tive technique for training multilayer spiking convolutional neural networks was 
created by Tavanaei et al. [259]. (SCNNs). Unsupervised (a unique STDP learning 
scheme for feature extraction) and supervised (a supervised learning scheme to 
train spiking CNNs (ConvNets)) components are both included in the training 
process.

8.1.2 Supervised learning

The SpikeProp algorithm by Bohte et al. [260] is one of the first to train 
SNNs utilising backpropagation errors. Using a three-layer design, this approach 
is successfully used to solve classification challenges. Spike train SpikeProp 
(ST-SpikeProp), a more recent and sophisticated variation of SpikeProp, trains 
single-layer SNNs using the output layer’s weight update rule [261]. Wu et al. [262] 
proposed the spatiotemporal backpropagation (STBP) technique, which combines 
the timing-dependent temporal domain and the layer-by-layer spatial domain, to 
address the nondifferentiable problem of SNNs. The energy consumption of SNNs 
has been demonstrated to significantly decrease with supervised learning using 
temporal coding. Mostafa [263] created a direct training method using the temporal 
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coding scheme and back propagation error. The preprocessing technique is not 
general, and his network lacks convolutional layers. By adding convolutional layers 
into the SNN, creating a new kernel operation, and suggesting a new method for 
preprocessing the input data, Zhou et al. [264] improved on Mostafa’s work. They 
used fewer trainable parameters to attain good recognition accuracy with their 
SCNN. Using the stochastic gradient descent (SGD) algorithm and then converting 
it to an SNN, Stromatias et al. [265] developed a supervised technique for training 
a classifier. Zheng and Mazumder [266] suggested backpropagation-based learning 
for training SNNs in previous works. Their suggested learning approach can be used 
with neuromorphic hardware.

8.1.3 Conversion from trained ANN

The third method involves converting an offline-trained ANN to an SNN so that 
the modified network can benefit from an established, fully trained ANN model. 
This method is frequently referred to as “spike conversion” or “spike transcoding.” 
There are many advantages of converting an ANN to SNN. First, simulating the 
precise spike dynamics in a big network can be expensive in terms of computing, 
especially if precise spike durations and high firing rates are needed. As a result, 
this method enables the use of SNNs to challenging benchmark tasks that demand 
massive networks, such ImageNet or CIFAR-10, with a minimal accuracy loss when 
compared to its formal ANNs [267, 268]. Second, we can use very effective training 
methods created for ANNs as well as many state-of-the-art deep networks for clas-
sification tasks for conversion to SNNs. The optimization approach can also be used 
to ANNs. This makes it possible to use of state-of-the-art optimization techniques 
and GPUs for training [269]. The conversion method’s primary drawback is that it 
cannot support on-chip learning. Additionally, many SNN particularities that are 
not present in the equivalent ANNs cannot be taken into account during training. 
Because of this, the SNNs’ inference performance is frequently inferior than that of 
the original ANNs [270].

An extensive amount of research has been done to successfully convert an ANN 
to an SNN with performance on the MNIST data set. Diehl et al. [269] proposed a 
method for transforming an ANN into an SNN that has the least amount of perfor-
mance loss, and using the MNIST database, a recognition rate of 98.64% was attained. 
Rueckauer et al. [271] transformed continuous-valued deep CNN to its accurate 
spiking equivalent in another work. This network exhibits a 99.44% recognition rate 
on the MNIST data set and incorporates typical operations like softmax, max-pooling, 
batch normalisation, biases, and inception modules. An approach to conversion that 
is appropriate for mapping on neuromorphic hardware was put out by Xu et al. [272]. 
On the MNIST data set, they demonstrated a threshold rescaling strategy to lessen the 
loss and attained a maximum accuracy of 99.17%. To transform CNNs into spiking 
CNNs, Xu et al. [255] developed an effective and hardware-friendly conversion rule. 
On the MNIST data set, they suggested a “n-scaling” weight mapping method that 
delivers high accuracy and low latency classification. On the MNIST data set, Wang 
et al. [273] suggested a weights-thresholds balancing conversion method that uses 
less memory and delivers excellent recognition accuracy. They concentrated on the 
relationship between weights and thresholds of spiking neurons throughout the 
conversion process, as opposed to the existing conversion strategies, which concen-
trate on the approximation between the artificial neurons’ activation values and the 
spiking neurons’ firing rates.
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8.1.4 Evolutionary spiking neural networks

Population-based metaheuristics are evolutionary algorithms (EAs). 
Historically, observations of natural evolution in biological populations served 
as the inspiration for their design. The network architecture, model hyperparam-
eters, and synaptic weights and delays can all be directly optimised using these 
approaches [274, 275]. The synaptic weights of SNNs are currently learned using 
evolutionary algorithms like differential evolution (DE), grammatical evolution 
(GE), harmony search algorithm (HSA), and particle swarm optimization (PSO). 
The synaptic weights of a spiking neuron, such as integrate and fire, Izhikevich, 
and spike response model (SRM) models, can be trained by employing algorithms 
like DE, GE, and HSA to carry out classification tasks, as demonstrated by Vazquez 
[276], López-Vázquez et al. [277], and Yusuf et al. [278]. In both linear and non-
linear classification problems, Vazquez and Garro [279] used the PSO algorithm 
to train the synaptic weights of a spiking neuron. They found that firing rates are 
matched by input patterns of the same class. For the purpose of training supervised 
feedforward SNNs, Pavlidis et al. [280] presented the parallel differential evolution 
method. Their method is tested only with exclusive OR, which does not accurately 
reflect its advantages. Evolutionary algorithms can be an alternative to exhaustive 
search. They take a lot of time, especially because the fitness function requires 
expensive computation [281].

The deployment of appropriate learning and training algorithms, which have 
a significant impact on application accuracy and execution cost, is a challenge in 
the development of SNNs. The way that information is encoded by spikes presents 
another difficulty. Choosing the right training and learning algorithms to use can 
have a significant impact on the accuracy and cost of an application. Information 
encoding using spikes presents another difficulty. Although neural coding signifi-
cantly improves the performance of SNNs, there are still problems about the ideal 
encoding strategy and how to create a learning algorithm that complements the 
encoding technique. It has become extremely difficult to create a learning algorithm 
that can train hidden neurons in a linked SNN. As neuromorphic computing is still in 
its infancy, significant work needs to be done to develop algorithms and hardware that 
can simulate human intellect.

8.2 Neuromorphic applications

8.2.1 Medicine

The ability of neuromorphic devices to receive and process information from their 
surroundings is particularly effective [282–286]. These devices can work with the 
human body when combined with organic components. Neuromorphic devices may 
enhance drug delivery techniques in the future. Due to their high responsiveness, 
they may release a medicine when they noticed a change in the body’s conditions (i.e. 
varying insulin and glucose levels). The employment of neuromorphic computer 
technology in prostheses is also possible. Another advantage of this technology is its 
capability to efficiently accept and process an external signal. For those with prosthe-
sis, using neuromorphic devices rather than conventional ones could result in a more 
natural, seamless experience [282].



27

Neuromorphic Computing between Reality and Future Needs
DOI: http://dx.doi.org/10.5772/intechopen.110097

8.2.2 Large-scale operations & product customization

Neuromorphic computing may also be useful for large-scale initiatives and 
product customization [282]. It could be used to handle massive amounts of data from 
environmental sensors more quickly. Depending on the requirements of the sector, 
these sensors could monitor water content, temperature, radiation, and other charac-
teristics. By identifying patterns in these data, the neuromorphic computing frame-
work might make it simpler to draw useful conclusions. Due to the characteristics of 
the materials used to construct them, neuromorphic devices may potentially facilitate 
product customisation. These substances can be turned into fluids that are simple 
to control. They can be processed through additive manufacturing in liquid form to 
produce devices that are especially suited to the requirements of the user [282].

8.2.3 Artificial intelligence

By definition, the goal of neuromorphic computing is to replicate how the human 
brain works. Neurons in the brain receive, process, and transmit impulses in a very 
quick and energy-efficient manner. As a result, it makes sense that technology 
experts, particularly those working in the area of artificial intelligence (AI), would 
be fascinated by this kind of computing. As the name implies, experts in the field of 
artificial intelligence (AI) concentrate on a certain aspect of brain intelligence. The 
capacity of the intellect to gather and use knowledge is known as intelligence. It would 
be advantageous for the two fields to work together moving forward because this 
concept is so closely related to neuromorphic computing [287]. The answer to creat-
ing computers with truly human-level intelligence may lie in concentrating on brain 
functionality at the level of an artificial neuron and smaller.

8.2.4 Imaging

Similar to how the human eye creates images, neuromorphic vision sensors do the 
same. They are event-based imaging devices [288]. This demonstrates that they create 
images in response to light intensity which is an external signal rather than an internal 
signal [289]. Furthermore, they move at a faster pace independent of conventional 
frame rates. In a neuromorphic sensor, each pixel functions independently of its neigh-
bours. Additionally, the gadget almost instantly communicates changes to each pixel 
[288]. These mechanisms work together to make data utilisation significantly more 
effective. Like their traditional equivalents, these sensors do not exhibit motion blur 
or a delayed response to the environment. Incorporating neuromorphic vision sensors 
into virtual and augmented reality systems may be advantageous given these qualities.

8.2.5 Other applications

Neuromorphic computing may be suited for use on “the edge” due to its low energy 
consumption [290]. The boundary of a network where a device could connect to a 
cloud platform is referred to as “the edge.” Since driverless cars must operate in this 
environment, neuromorphic computing may enable them to react to their surroundings 
more quickly. A system using neuromorphic computing could take control of these 
vehicles when they are not linked to a reliable internet source. This might increase the 
safety and environmental suitability of driverless cars. Neuromorphic computing’s 
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superior sensory capabilities may also enhance current “smart technologies” [283]. 
This modification might improve the effectiveness of the devices for a wider range of 
circumstances, similar to driverless cars. Expanding communication channels is another 
potential application that could be done using neuromorphic computing.

9. The gap between expectations and reality

Deep learning systems are used nowadays to process the majority of neuromorphic 
computing tasks on CPUs, GPUs, and FPGAs. However, none of these are optimised 
for neuromorphic processing. These functions were the exclusive focus of the creation 
of chips like Intel’s Loihi. Because of this, Loihi was able to obtain the same outcomes 
with a much smaller energy profile, as demonstrated by ABR. The next generation of 
compact gadgets that require AI capabilities will depend heavily on this efficiency.

Many experts predict that during the next three to 5 years, commercial applica-
tions will start to appear seriously, but that will not be the end of it. For this reason, 
Samsung, for instance, declared in 2019 that it would double the size of its neuromor-
phic processing unit (NPU) business by 2030, going from 200 personnel to 2000. At 
the time, Samsung predicted that the market for neuromorphic chips will expand by 
52% a year through 2023.

Developing common workloads and benchmarking approaches will be one of the 
upcoming difficulties in the neuromorphic space. Technology adopters have ben-
efited greatly from the use of benchmarking tools like 3DMark and SPECint to match 
products to their needs. Although author Mike Davies of Intel Labs suggests a spiking 
neuromorphic system dubbed SpikeMark, there are sadly no such benchmarks in the 
neuromorphic space. Dmitri Nikonov and Ian Young, researchers at Intel, outline a 
number of guidelines and techniques for doing neuromorphic benchmarking in a tech-
nical article titled “Benchmarking Physical Performance of Neural Inference Circuits.”

There is currently no practical testing tool on the market, though Intel Labs Day 
2020 in early December made some significant advancements. When processing 
“Sudoku solver” issues, Intel, for instance, compared Loihi to its Core i7-9300K and 
demonstrated how fast Loihi’s searching was.

Researchers solved Latin squares with a remarkable reduction in power consump-
tion and experienced a similar 100× gain. What was perhaps the most significant 
finding was how various processor types performed versus Loihi for specific 
workloads.

Loihi competed against IBM’s TrueNorth neuromorphic microprocessor in addi-
tion to traditional computers. On neuromorphic solutions like Loihi, deep learning 
feedforward neural networks (DNNs) clearly underperform. Data moves linearly 
from input to output with DNNs. Recurrent neural networks (RNNs) use feedback 
loops and behave more dynamically, making them more similar to how the brain 
functions. In RNN workloads, Loihi excels. As Intel stated: “The more bio-inspired 
properties we find in these networks, typically, the better the results are.”

One could consider the aforementioned examples to be early benchmarks. They 
are an important first step in the direction of a tool that is widely used and runs typi-
cal workloads for the industry. New applications and use cases will ultimately appear, 
and testing holes will be filled. The deployment of these benchmarks and apps in 
response to urgent requirements will continue to be a focus of developers.

Research and development for neuromorphic computing is still ongoing. It’s 
becoming more and more obvious which applications work best with neuromorphic 
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computing. For these tasks, neuromorphic computers will be more faster and more 
energy-efficient than any current, conventional options. Neuromorphic computing 
will simply coexist with CPU and GPU computing to perform tasks more effectively 
than anything we have seen before. CPU and GPU computing will not go away.

10. Conclusion and outlook

In this chapter, we have summarised what neuromorphic computing reaches until 
today, discussing its materials, algorithms, circuits and applications. Although neuro-
morphic devices show promising characteristics, they still have some challenges to be 
solved to realise energy-efficient neuromorphic systems. Neuromorphic computing 
technology has created high expectations and its market size expands every day in 
different fields.

One of the markets for neuromorphic chips that is expanding the quickest is 
the auto business. All of the top vehicle producers are working hard to achieve 
Level 5 of vehicle autonomy, which is anticipated to result in enormous demand for 
AI-controlled neuromorphic processors. The self-governing driving industry needs 
constant advancements in AI calculations for maximum throughput and minimal 
force requirements. Neuromorphic chips are excellent for order-related tasks and 
could be applied in a few instances to self-driving cars. Compared to static deep learn-
ing arrangements, they are also proficient in loud climate like self-driving vehicles. 
According to Intel, four terabytes is the estimated amount of information that a 
standalone vehicle might produce of approximately 60 min and portion of driving, or 
the amount of time a person spends in their vehicle on average every day. The abil-
ity of self-ruling vehicles to effectively handle all of the data generated during these 
excursions will be put to the test.

The ADAS (Advanced Driver Assistance System) applications include picture 
learning and recognition work among other uses of neuromorphic chips in vehicles. It 
functions similarly to one of the standard ADAS features found in passenger vehicles, 
such as cruise control or intelligent speed assistance. By sensing the traffic data set 
aside on streets, such as crosswalks, school zones, street knocks, and so forth, it can 
control vehicle speed.

Some of the major market players, like Intel Corporation and IBM Corporation, 
are based in North America. Due to factors including governmental initiatives, 
speculative activities, and others, the market for neuromorphic chips is expanding in 
the area. For instance, the Department of Energy (DOE) reported funding of USD 
2 million for five crucial exploration projects to advance neuromorphic registration 
in September 2020. The DOE’s initiative supports the development of software and 
hardware for mind-enhanced neuromorphic registering.

The industry is also growing as a result of the scaling down of neuromorphic 
chips that help in numerous applications. For instance, MIT engineers expected to 
release a mind-on-chip in June 2020 that was smaller than a piece of confetti and was 
made using a sizable number of memristors. Such chips can be utilised in portable AI 
devices. The Canadian government is also focusing on artificial intelligence technol-
ogy, which will support advancements in neuromorphic figuring throughout the 
coming years. For instance, the legislatures of Canada and Quebec joined together in 
June 2020 to foster the thoughtful development of AI. The focus will be on a variety of 
topics, including solid AI, commercialization, information management, and future 
work and development.
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There is a tremendous amount of interest in organisations’ innovative work 
exercises. For instance, Intel and Sandia National Laboratories collaborated in 
October 2020 to study the value of neuromorphic processing for escalating computa-
tional issues. Sandia National Laboratories is one of three National Nuclear Security 
Administration innovative work research centres in the United States.

The penetration of neural-based chipsets in well-known applications is another 
factor driving market expansion. For instance, one of the most important technology 
companies, Apple, released the M1 Chip in November 2020 with the specific purpose 
of being used with its Mac products. The M1 Chip speeds up AI assignments and 
transports Apple Neural Engine to the Mac. The 16-center architecture can complete 
11 trillion tasks per second, enabling up to 15 times faster ML execution.
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