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ABSTRACT

Neuromorphic computing using post-CMOS technologies is gaining increasing popularity due to

its promising potential to resolve the power constraints in Von-Neumann machine and its similarity

to the operation of the real human brain.

To design the ultra-low voltage and ultra-low power analog-to-digital converters (ADCs) for the

neuromorphic computing systems, we explore advantages of tunnel field effect transistor (TFET)

analog-to-digital converters (ADCs) on energy efficiency and temperature stability. A fully-differential

SAR ADC is designed using 20 nm TFET technology with doubled input swing and controlled

comparator input common-mode voltage.

To further increase the resolution of the ADC, we design an energy efficient 12-bit noise shaping

(NS) successive-approximation register (SAR) ADC. The 2nd-order noise shaping architecture

with multiple feed-forward paths is adopted and analyzed to optimize system design parameters.

By utilizing tunnel field effect transistors (TFETs), the ∆Σ SAR is realized under an ultra-low

supply voltage VDD with high energy efficiency.

The stochastic neuron is a key for event-based probabilistic neural networks. We propose a stochas-

tic neuron using a metal-oxide resistive random-access memory (ReRAM). The ReRAM’s con-

ducting filament with built-in stochasticity is used to mimic the neuron’s membrane capacitor,

which temporally integrates input spikes. A capacitor-less neuron circuit is designed, laid out, and

simulated. The output spiking train of the neuron obeys the Poisson distribution.

Based on the ReRAM based neuron, we propose a scalable and reconfigurable architecture that ex-

ploits the ReRAM-based neurons for deep Spiking Neural Networks (SNNs). In prior publications,

neurons were implemented using dedicated analog or digital circuits that are not area and energy
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efficient. In our work, for the first time, we address the scaling and power bottlenecks of neuro-

morphic architecture by utilizing a single one-transistor-one-ReRAM (1T1R) cell to emulate the

neuron. We show that the ReRAM-based neurons can be integrated within the synaptic crossbar to

build extremely dense Process Element (PE)–spiking neural network in memory array–with high

throughput. We provide microarchitecture and circuit designs to enable the deep spiking neural

network computing in memory with an insignificant area overhead.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

1.1.1 Neuromorphic Computing Systems

Neuromorphic computing systems consist of electronic circuits and devices that mimic the biolog-

ical nervous systems [2, 3]. The circuits are typically designed using mixed-mode analog/digital

circuits with complementary metal-oxide-semiconductor (CMOS) transistors. Neuromorphic com-

puting systems process information using energy-efficient asynchronous and event-driven meth-

ods [4]. Neuromorphic computing systems are often more adaptive, fault-tolerant, and flexible

than traditional computing systems [5]. Conventional computing systems utilize Von-Neumann

architecture with one or more central processing units physically, with separated the main mem-

ory, which leads to a critical bottleneck in today’s computing system—the memory wall [6]. On

the other hand, neuromorphic computing systems are characterized by near memory computing:

the synapses, as well as the neurons of the neural network are implemented in the same loca-

tion to perform both information storage and nonlinear computation. Therefore, neuromorphic

computing paradigms offer an attractive solution for implementing alternative non-Von-Neumann

architectures with advanced and emerging technologies [5].

This neuromorphic computing paradigm is now being researched by an increasing number of

research groups. Many recent works try to use new materials and nanotechnologies for build-

ing nanoscale devices that can emulate some of the properties of the biological neurons and

synapses [7–11]. At the system level, remarkable brain-inspired neuromorphic computing plat-

forms have been developed to perform pattern recognition and machine learning tasks [12] and

for fast simulation of biology neuro-system models [13]. All researches show orders of energy
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efficiency and throughput improvement over traditional computers.

1.1.2 The Needs and Challenges for Ultra-low Power and Ultra-low Voltage Data Converters

Most of the computation of neuromorphic computing system is completed in analog domain. How-

ever, input/output data and intermediate data being transmitting between computing cores are al-

ways in digital domain. Thus data converters are essential building blocks in neuromorphic com-

puting systems. Unfortunately, data converters, especially analog-to-digital converters (ADCs)

consumes significant amount of power and silicon area. For example, in ISAAC architecture, the

ADCs consumes 58% of the total power and 30% of the total area [14]. Moreover, many of the

neuromorphic systems work under ultra-low supply voltage below 0.5 V [4, 5]. Thus, ultra-low

voltage and low-power operation is desirable for ADCs in neuromorphic computing systems.

The charge redistribution successive-approximation-register (SAR) ADC is suited for low-voltage

and low-power operation. In particular, SAR ADCs can be deployed for wide frequency range be-

cause of its simple analog circuitry and the high precision of capacitor matching in modern semi-

conductor processes [15–19]. However, using CMOS technology, ADCs with advanced process

can operate at high speed whereas their minimum power consumption is limited by static leakage

power at low frequency. Moreover, the leakage current will degrade the accuracy of capacitor based

feedback digital-to-analog converters (DACs). The problem of leakage current becomes worse as

process scales. For instance, the of leakage current of the 16-nm CMOS transistors is about 100

x higher than that of 40-nm CMOS. Therefore, we can not obtain enough power reduction by just

utilizing process scale down.

The other issue related to the low voltage operating of the advanced CMOS process is the de-

crease of the on resistance in switches in the ADCs. During operation, the input analog signal is

sampled when the clock signal is high. To reduce the on-resistance of the switch especially for
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the input sample and hold (S/H) switches, bootstrapped circuits [20] are commonly used. How-

ever, the added circuity to implement bootstrapped will significantly increase the power and area

consumption.

1.1.3 Recent Progress of Neuromorphic Circuits and Architectures

The human brain’s cognitive power emerges from noisy, imprecise and unreliable components.

This realization has motivated scientists and engineers to explore event-based probabilistic neural

networks [21, 22]. Emulation of biological neuronal dynamics, including leaky-integrate-and-fire

(LIF) neurological stochasticity and event-driven design, is fundamental for the implementation of

such systems. The LIF is often emulated in silicon [7–9]. However, in those designs capacitors

are leveraged to perform the integration and store the membrane potential. This makes the neuron

layout difficult to scale with technology, and hinders the integration capability of the neuromorphic

hardware.

In addition to the deterministic neurological dynamics, the value of noise as a resource for neural

computation had already been addressed in the context of artificial neural networks [23, 24]. The

stochasticity of biological process mainly emerges from the unreliability of synapses and stochastic

openings and closings of membrane channels [24]. However, for the sake of mathematical simplic-

ity, noise is usually projected into the spike generation process of the presynaptic neuron [24]. In

this way, noise in the network can be modeled by a stochastical firing neuron [25]. The common ap-

proach to add stochasticity to a deterministic neuron is to introduce uncorrelated background noise

into every neuron [9]. This degrades power efficiency and limits scalability. In an event-based

neural network, only the arrival of events will trigger processing; otherwise the system remains

silent and consumes little power. Thus, all the neurons can adapt their speed according to input

spikes [21], leading to superior performance per watt (PPW) metric.
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Recently, research has focused on exploiting the emerging nanoscale devices to emulate the dy-

namics of neural systems [26–28]. Due to non-volatility, high scalability, and energy efficiency, the

memristor crossbar is a promising candidate and has been used to simulate the synapses [28, 29].

Additionally, due to their successful application as memory cells, researchers have proposed in-

memory neural networks based on memristors [30, 31] that have the potential for much higher

speed and lower energy consumption than today’s Von Neumann computer architecture. In 2016,

Tuma et al. [22] used the phase configuration of chalcogenide-based phase-change material as the

membrane potential of the neuron. Also, conductive bridge memory (CBRAM) was used to mimic

the neuron in [32, 33]. In [22], however, the magnitude of reset pulse is high (6 V), which can

increase the power consumption and cause reliability issues. In [32], a negative voltage source is

needed to reset the CBRAM device and thus increase the design complication. In [33], a 10 pF ca-

pacitor is used as the membrane, making the neuron hard to scale with the evolution of technology.

Moreover, the research of integrating the memristor based neurons with the memristor synapses is

still not yet fully explored.

Although deterministic neurons can be used to implement stochastic behavior based on exploiting

network-generated variability [34], this approach is less attractive due to the lack of direct control

over stochastic properties of such networks (e.g., the input rate dependent stochastic spiking train

cannot be straightforwardly mapped onto such network, and can be only approximated [9]). More-

over, Poissonian statistics generated by a network itself is usually only stable for a limited input

range, if no additional noise generation mechanism is used [9, 35].

Among all the current memory technologies, metal-oxide ReRAM attracts much attention, because

of its compatibility with conventional semiconductor processes and low write energy. In [36], M.

Lee et al. have demonstrated that the ReRAM have superior cycling endurance of over 1012,

reducing the risk of reading error caused by the gradually decreased off-state resistance after long-

time operation. Here, for the first time, we introduce an artificial neuron that uses the metal-oxide
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ReRAM device to realize integration-and-fire with stochastic dynamics. The actual membrane

potential of the neuron is stored as the length of the conducting filament, therefore the membrane

capacitor is omitted in our design. The random generation and migration of oxygen vacancies result

in built-in stochastic behavior. We propose a behavioral model that include the cycle-to-cycle and

device-to-device variations of the ReRAM for fast behavioral simulation. We design a ReRAM-

based neural circuit and examine the area, process variation effect, and power consumption of the

circuit.

Spiking neural network (SNN) is regarded as the third generation neural network for its potential

in improving the latency and energy efficiency of the deep neural network (DNN) [37]. On the

other hand, traditional Von Neumann architecture suffers from “memory wall” [6], where moving

data and operating the memory buses is much more expensive than computing itself [38], espe-

cially for the data and computing intensive neural network tasks [39, 40]. In-memory computing

architectures are promising solutions to address this problem by moving computing to memory.

By designing processing units inside/near the memory array, in-memory architectures dramati-

cally diminish the overhead of data movements [27, 41]. So, it is natural to combine in-memory

computing and SNN to introduce a new generation of compact and energy efficient neural network

architecture.

The emerging non-volatile memory (NVM), such as phase changing memory (PCM) [42], spin-

transfer torque magnetic random access memory (STT-MRAM) [43], and resistive random access

memory (ReRAM) [44], have long attracted researcher’s attention because the crossbar structure is

very suitable for designing the synapse arrays [10, 11]. The NVM synapses provide high through-

put and small silicon estate occupation [45], especially when high-density 3D stacking is em-

ployed [46]. In [30], Aayush Ankit et al. propose RESPARC, the first reconfigurable in-memory

SNN architecture built on NVM crossbars. RESPARC uses analog neurons to accumulate spike

current from the NVM crossbar and programmable switches to transfer spiking packets. However,
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the implementation of analog neurons that process the output current of the crossbar are relatively

complex and hinders seamless integration with highly dense synaptic arrays.

Moreover, even with the aggressive scaling of technology, realizing the capacitance densities mea-

sured in biological neuronal membranes (∼ 10fF/µm2) is challenging [47]. Most recently, re-

searchers begin to explore the possibility to use NVMs as the neurons [47–49]. With the help

of NVM neurons, it is possible to embed all computing in an SNN—multiply-accumulate oper-

ation (MAC) of synaptic signals and integrate-and-fire (IF) of membrane potential—in the NVM

memory arrays.

1.2 Chapter Outline

This dissertation will focus on ultra-low power circuits and architectures for neuromorphic com-

puting tasks. Chapter 1 give a brief introduction on the ultra-low power neuromorphic computing

and recent progress on the neuromorphic circuits and architectures. Chapter 2 proposes a ultra-low

power SAR ADC to convert the output analog neuromorphic signal back to digital. Chapter 3

increase the signal-to-noise ratio of the proposed ADC to 76 dB using noise shaping technology.

Chapter 4 introduce a ReRAM based artificial neuron that will function as the integrate-and-fire

membrane with very little area and power consumption. Chapter 5 shows a low power architecture

utilizing the ReRAM based neuron to perform machine learning workloads. Finally, chapter 6

draws the conclusion of this dissertation.
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CHAPTER 2: ULTRA-LOW POWER ADC DESIGN USING EMERGING

TUNNELING FIELD EFFECT TRANSISTORS

1In the past few years, with the advancement of power-constrained applications, such as energy

harvesting systems, wireless sensor networks, and biomedical implants, there has been a grow-

ing interest in temperature stable ultra-low-power designs. As an important module that links the

digital core to the real world, the energy efficiency and temperature stability to perform analog

to digital conversion (ADC) have profound impact on the overall system performance. For low-

resolution ADCs, where noise floor is no longer the power limiting factor, the energy efficiency

is limited by CMOS technology for its 60 mV/dec sub-threshold slope (SS) [50]. In addition, the

sensitivity of sub-threshold circuit to temperature increases when comparing to circuit working in

strong inversion, which may introduce large temperature drift that even cause the circuit fail to

function properly. Tunneling field effect transistor (TFET), with its superior IDS-VGS characteris-

tic and weaker temperature dependency, is considered a strong candidate for ultra-low-power and

ultra-low-VDD design. Moreover, TFET is a standard CMOS process flow compatible device [51].

Therefore, it can be potentially utilized to address the growing challenge for the CMOS technology

for ultra-low power ADC design.

The goal of this chapter is to explore and utilize the advantages of 20-nm TFET device character-

istics to design energy efficient and low temperature variation successive approximation register

(SAR) ADC operating under ultra-low supply voltage VDD. We explore the design, analysis, per-

formance and temperature stability of the TFET 6-bit successive approximation register (SAR)

ADC. The SAR ADC topology is chosen due to its outstanding energy efficiency with low to mod-

1This chapter was published as Lin, Jie, and Jiann-Shiun Yuan. “Ultra-low power successive approximation
analog-to-digital converter using emerging tunnel field effect transistor technology.” Journal of Low Power Electronics
12.3 (2016): 218-226.
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erate resolution and medium sampling rate [52], where power dissipation of the ADC is mainly

limited by technology [50]. We also investigate the temperature variation of the TFET SAR ADC

from -55◦C to 125◦C. This chapter is organized as follows. Section II presents the advantage of

the TFET transistors over CMOS counterparts in terms of energy efficiency and temperature ef-

ficiency. Section III presents circuit implementation of ultra-low power SAR ADC. Section IV

presents the energy and performance evaluation of the SAR ADC. The conclusion is provided in

Section IV to summarize our results

2.1 TFET’S Advantages on Ultra-Low Power ADC Design

2.1.1 Challenges in Ultra-Low-Power Low Temperature Variation Design on CMOS Technology

In mixed signal design, due to the limited number of transistors, the static energy (transistor leak-

age) is negligible. And the dynamic energy of the digital part can be expressed as:

ED =
1

2
αCV 2

DD (2.1)

where α is the oversampling ratio. Differing from digital circuits, the power dissipation of analog

part of the circuit is limited by noise floor and signal bandwidth. For an ideal class B operation,

the power dissipation of analog circuit is [50]:

EA = β
1

VDD
kBT · SNR ·

1

gm/IDS
(2.2)

where kB is the Boltzmann’s constant; T is the absolute temperature; β is a constant related to

circuit topology and SNR is signal-to-noise ratio. From [50] it is noted that when the resolution
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is low (SNDR<60 dB), the energy is mainly limited by the characteristic of CMOS technology,

more specifically, by the ratio of gm/IDS , which can be written as [51]:

gm
IDS

=
ln(10)

SS
(2.3)

For CMOS transistors, SS = ln(10)kB/q ≈ 60mV/dec, corresponding to a gm/IDS ratio of 38.3

V−1 at room temperature. As a result, energy efficiency of low resolution ADCs is limited by SS

of CMOS technology.

2.1.2 Energy Efficiency of TFET

TFETs utilize a gate voltage to control the band-to-band tunneling across a p-n junction [53]. The

cross-section and energy band diagrams of n-channel TFET in OFF and ON states are shown in

Fig. 2.1a and 2.1b. From Fig. 2.1, when zero bias voltage is applied to the gate of the TFET, the

conduct band minimum of the channel EC is above the valence band maximum of the source EV .

Thus the band-to-band tunneling is shut down and the device is off. When a bias voltage is applied

to the gate of the transistor, the conduction band of the channel is shifted down. A tunneling

window, VTW , will be created if EC is below EV . As a result, electrons in the source will tunnel

into the channel and the device is on.

Using Kane-Sze tunneling formula, the drain current of TFET can be modeled as

ID = afVTW ξe
−b/ξ (2.4)

where where a, b, and f are coefficients determined by the martial properties; ξ = ξ0(1 + γ1VDS +

γ2VGS), γ1 and γ2 being constants, is the average electrical field. As a result, the SS of TFET and

9



be expressed as:

SST = ln(10)IDS
∂IDS
∂VGS

−1
= ln(10)

[
1

VTW

dVTW
dVGS

+
ξ + b

ξ2
dξ

dVGS

]−1
(2.5)

G

P N- N

TOX
S D

EC
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S D

No tunneling

P N- N

(a)

G

P N- N

TOX
S D

EC

EV

S D

P N- N

VGS

qVTW

(b)
Figure 2.1: Cross-section and energy band diagram of a TFET when the device is biased in (a)
OFF (b) ON state

With a thin and/or high k gate dielectric, the gate-source voltage can directly control the tunneling

window, i.e., dVTW/dVGS ≈ 1. As a result, the first term in Eq. 2.5 decreases with the VGS .

Also, based on definition of ξ, the second term of Eq. 2.5 decreases with the VGS too. Hence,

TFET is able to overcome the 60 mV/dec SS when VDD is low, and thus can achieve a gm/IDS

ratio well above 40 V−1. Moreover, GaSb-InAs heterojunction with lower bandgap to silicon is

employed [53] to improve tunneling probability. As a result, gm/IDS ratio can be further improved.

For an ADC with median or low SNR, the performance is not limited by noise. Thus, sampling

frequency becomes an important parameter to measure circuit performance. TFET impact on ADC
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energy efficiency with a fixed sampling frequency is explored as follows: according to Eq. 2.1,

VDD is a major input for ADC energy efficiency. Consequently, it is highly important to reduce

the SS and maintain higher drive current because it eventually leads to lower supply voltage and

hence the low power dissipation. A comparison of I-V characteristic of TFET and 20 nm CMOS

transistor predicted by the model equations is shown in Fig. 2.2.

0.0 0.2 0.410-3

10-2

10-1

100

101

102

i D
 (

A/
m

)

VGS (V)

 iD (TFET)
 iD (20nm CMOS)

Figure 2.2: I-V characteristic comparison between TFET and CMOS transistor

From Fig. 2.2, within the sub-threshold region, TFET shows higher on-current per channel width,

leading to a lower delay. Consequently, with the same sampling frequency, TFET based ADCs

can work under lower VDD, which shows an improved energy efficiency over that of CMOS

technology.

For an ADC with median or low SNR, Eq. 2.2 can be reduced according to [50]:

EA = A
1

gm/IDS
(2.6)

where A is a constant. Eq. 2.6 shows that gm/IDS ratio is another major constraint to the energy

of the ADC. Allowing the transistor to work in the sub-threshold region will make the transistor
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to approach the maximum gm/IDS ratio. However, lowering VDD will also increase the transistor

delay and hence lower the transit frequency (fT ) of the transistor, limiting the sampling frequency

of the ADC. A trade-off between fT and gm/IDS is simulated and the results is shown in Fig. 2.3.

To make a fair comparison, the dimension of both TFET and CMOS transistors are set the same as

40 nm × 20 nm.

10 20 30 40 50 60108

109

1010

1011

f T (
H

z)
 

gm/IDS (V
-1)

 fT (TFET)
 fT (20nm CMOS)

Figure 2.3: Tradeoff between gm/IDS and fT in 20 nm TFET and CMOS technologies

From Fig. 2.3, for a fixed fT and hence a fixed sampling frequency, TFET transistors deliver

higher gm/IDS ratio, particularly in median or low frequency region (fT < 5 GHz). In order to

achieve fT = 5 GHz, a 20nm CMOS device need to be biased such that gm/IDS ≈ 22 V−1. With

TFET transistors, 5 GHz fT can be achieved with a gm/IDS ≈ 37 V−1, indicating a 40% energy

reduction, according to Eq. 2.2.

2.1.3 The Temperature Dependence of TFET

In the OFF state (VGS or VGS < Vth) IDS is constituted by a leakage current, and its temperature

variation is mainly contributed by thermal generation in the depletion region [54, 55], and the

12



temperature dependence of IDS can be modeled as:

IDS(T ) = IDS0 + α(T − T0) (2.7)

where α is a constant and T0 = 300 K. In the ON state, where VGS > Vth, IDS increases as tem-

perature gets higher due to reduced energy band. In this situation [54], IDS can be expressed as:

IDS(T ) = IDS0

√
T

T0
(2.8)

The look up table based model in [53] did not include temperature effect of TEFT. To account for

the temperature variation of on and off current, combining Eq. 2.7 and Eq. 2.8 together, the IDS

of model in [53] can to modified as:

IDS = IDS0

1

1 + e−C(VGS−Vth)
+ [IDS0 + α(T − T0)]

1

1 + e−C(VGS−Vth)
(2.9)

where C is a constant and IDS0 is IDS at 300K. With the help of sigmoid function, we integrate

both temperature dependence of on current and off current of TFET into the model. An extra

simulation is performed to verify the temperature effect of TFET. We generate series of IDS-VGS

curve using the modified model in a temperature ranging from -55◦C to 125◦C, as shown in Fig.

2.4.

2.2 TFET Based SAR ADC Design

A key difference between TFET and CMOS transistors is TFET transistor’s is unidirectional con-

duction. As a result, some components need to be modified to keep the circuit function properly.

Transmitting gates and D flip flops (DFF) are main blocks in digital part of the ADC.
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Figure 2.4: IDS-VGS characteristic of TFET
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Figure 2.5: TFET version of transmitting gate and TFET version of DFF

Consequently, TFET version transmitting gates and DFFs need to be modified to address for the

unidirectional conduction of TFET itself. In Fig. 2.5 two transmitting with opposite charging

direction were put in parallel to perform bi-directional conduction. A comparison 20 nm CMOS

and TFET transmitting gate as a sampling switch is shown in Fig. 2.6 and Fig. 2.7. A 10 kHz,

rail-to-rail sinusoidal wave at VDD of 0.3V is sampled by CMOS and TFET transmitting gate,

respectively, and the output signal is shown in Fig. 2.6.

Because that CMOS transistors’ largeRon in sub-threshold region, CMOS switch fails to track the

input signal.
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Figure 2.6: Comparison between CMOS and TFET transmitting gate as a sampling switch
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Figure 2.7: (a) output spectrum of CMOS switch and (b) output spectrum of TFET switch

Especially when input voltage is at the middle between VDD and GND rails, and will produce

large harmonic distortion in output signal, as shown in Fig. 2.7a. To address this problem, the gate

drive of the CMOS switch need to be boosted using complex bootstrapped switching schemes.

On the other hand, TFET transistors have larger gm/IDS ratio and consequently a smaller Ron

than CMOS counterparts. Therefore, TFET switches can track the input signal precisely without

boosting the gate drive of the switch, resulting a 30 dB lower 3rd harmonic distortion than its

CMOS counterpart, as shown in Fig. 2.7b.
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Figure 2.8: Schematic of the comparator omitting the tail current source

A single stage dynamic comparator is used due to its zero static power and high speed. Under

ultra-low VDD, the tail current source is omitted to account for the shrinking voltage headroom,

as shown in Fig. 2.8. When signal CLK is low, the comparator is resetting and signal “A” and

“B” are connected to VDD. When CLK is toggling, the input transistor M1 and M2 will generate a

differential current to trigger the latch. It can be observed that the comparator has no static power

dissipation.

A 6-bit SAR ADC topology for VDD ranging from 0.3 V to 0.5 V was proposed [52]. However,

the single ended structure has poor immunity to power supply noise and common mode level

drafting. As a result, to guarantee the performance, other circuits such as low noise LDO and

precise voltage reference are needed to provide supply and bias to the ADC, which increase the

power dissipation. To address the influence of supply noise and common mode level drafting, a

fully differential structure is introduced. Fully differential structure can also provide twice the

input and output swing of the ADC/DAC than that in [52], which further improve the immunity of

the supply noise by 6 dB. Moreover, fully differential structure can cancel even order distortion,

which greatly improve ENOB of the ADC.

Fig. 2.9 shows principal blocks of the 6-bits SAR ADC including the DAC, comparator and control

logic. In Fig. 10, Ci = 2Ci+1; C6 = CC = 5 fF, and the total capacitance used in the DAC is 640
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Figure 2.9: The principal blocks of the 6-bits SAR ADC

To make the maximum utilization of the supply voltage, the positive and negative voltage reference

are VDD and GND, respectively, and VCM is set to be VDD/2. Due to fully differential operation,

noise on supply voltage can be cancelled and the circuit that generate VCM can be coarse thus

reduce area and power dissipation of supporting circuit of the ADC. The input signal is sampled

via TFET switches shown in Fig. 2.5. The feedback switches are also implemented with TFET

switches to switch among VDD, GND and common level voltage VCM. The comparator designed

in Fig. 2.8 is adopted in Fig. 2.9 to perform low power signal comparison and generate decision

signal to control SAR logic circuit. SAR logic module, which is shown in Fig. 2.11b, comprises

TFET based logic gates, and generates the clock of all sampling switches and feedback switches.

Finally, the output is saved by TFET based DFFs. The fully differential switch procedure is shown

in Fig. 2.10a and the ideal DAC output is shown in Fig. 2.10b.

The clock scheme generated by SAR logic is shown in Fig. 2.11a. CLK is the external clock;

CLK COMP is the clock that triggers the comparator; CLKS is the sampling clock and CLKi is

the clock that control the feedback switch of Ci, as shown in Fig. 2.11b. The sampling period

is eight clock cycles thus there is enough time for the sampling circuit to settle. When sampling

clock is high, the comparator is disabled and all capacitor’s bottom plate is connected to VCM.
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Figure 2.11: (a) timing diagram of the ADC, and (b) SAR logic schematic

When the sampling clock becomes low, the top plate of capacitor array is isolated and the compara-

tor begins to compare the voltage on them. CLKi will become high after i-th decision is made and

switch the bottom plate of Ci to VDD or GND. In Fig. 2.11b, CLKi is feed into a non-overlapping

clock generation module to ensure that the bottom plate of the capacitor Ci will not connected to

both VCM and VDD/GND simultaneously. Signal VSVCMi, VSVDDi and VSGNDi are the control sig-

nal for switches connect bottom plate of capacitor Ci to VCM, VDD and GND, respectively. VCOMP

is the output voltage of the comparator and can determine the bottom plate of Ci is switched to
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VDD or GND.

2.3 Simulation Results

Transistor-level simulation and analysis of the TEFT based ADC is performed using Cadence

Spectre with modified VerilogA TFET transistor model. A 20 nm CMOS based ADC is also

designed by replacing all TFET transistors by 20 nm CMOS transistors (20nm PTM-MG spice

model [56]). This CMOS based ADC is also simulated using Cadence Spectre to compare the

performance of TFET and CMOS technology. The full range input to the ADC are two sinusoid

waves of peak-to-peak value of VDD and the phase difference is 180◦, making the differential

mode peak-to-peak value of full range input signal 2VDD. The minimum TFET transistor length

is 20 nm. Both the VerilogA model for TFET and PTM-MG model include parasitic capacitance

[53], [56]. To explore the TFET benefits in subthreshold region, the typical supply voltage is set to

be 0.3V. The typical temperature is 25 ◦C. Power dissipation of the ADC is measured in terms of

energy, which is defined as Energy = Power / Sampling Frequency.
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Figure 2.12: (a) ENOB vs. input frequency, and (b) ENOB vs. temperature
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Fig. 2.12a shows the effective number of bits (ENOB) with respect to input frequency. A contin-

uous degradation of ENOB with respect to in frequency is observed due to increased nonlinearity

and electrical and/or quantization noise. When input signal is a 1 MHz sinusoid wave with peak-

to-peak voltage of 0.3 V, the ADC can obtain an ENOB of 5.7 bits. If the frequency of the sinusoid

wave is increased to 8 MHz, the ENOB will decrease to 5.3 bits. Fig. 2.12b shows the ENOB

with respect to temperature. The frequency of input sinusoidal wave is 1M Hz. When tempera-

ture is 125◦C, the ENOB is reduced from 5.7 bits to 4.3 bits because of reduced charge mobility.

When temperature is -55◦C, the ENOB reduced to 4.5 bits due to the increased leakage current and

threshold voltage. The ENOB variation in temperature ranging from -55◦C to 125◦C is 24%.

0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

2.0

En
er

gy
 (p

J)

VDD (V)
Figure 2.13: Energy vs VDD

Fig. 2.13 shows the energy of the ADC with respect to VDD. The ADC energy is obtained by

setting sampling frequency to the maximum that the comparator can make correct decision. The

ADC energy increases almost quadatically versus VDD. The ADC can achieve an energy of 0.1 pJ

at the supply voltage of 0.1 V. When VDD increases to 0.5V, the ADC energy will increase to 1.8

pJ.

Also, INL and DNL of the ADC is simulated at typical conditions, And the simulation result is
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shown in Fig. 2.14.
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Figure 2.14: (a) DNL and (b) INL of the ADC

Fig. 2.14 shows the differential nonlinearity (DNL) (Fig. 2.14a) and the integral nonlinearity

(INL) (Fig. 2.14b) performance. The SAR ADC has the maximum +0.1/ − 0.2 LSB DNL and

+0.4/− 0.3 LSB INL.

To compare the performance of TFET and 20 nm CMOS technology, both TFET based ADC and

CMOS based ADC are simulated for ENOB and energy under the same condition.
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Figure 2.15: ENOB vs VDD of TFET and CMOS based ADCs
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Fig. 2.15 shows the ENOB of both TFET based ADC and CMOS based ADC with respect to

VDD. When VDD is 0.1 V, the ENOB of the TEFT based ADC is 5.1 bits. The ENOB increase

rapidly with the VDD and achieves 5.7 bits when VDD is 0.3 V. When VDD is above 0.3 V, the

ENOB become saturated and become 5.8 bits when VDD is 0.5 V. Because the large on resistance

of CMOS transistor, the CMOS based ADC cannot work with VDD under 0.4V. For VDD is 0.4

V and 0.5 V, the ENOB of CMOS based ADC is 4.4 bits and 4.8 bits, respectively. The difference

is made by the nonlinearity introduced by sampling switches, as shown in Fig. 2.6 and Fig. 2.7.

Fig. 2.16 shows the energy of the both ADCs with respect to temperature. At -55◦C, the energy

of the TFET based ADC will increase due to increased sub-threshold leakage current. On the

other hand, at 125◦C, the energy of the TFET based ADC will also increase due to reduced carrier

mobility. At 25◦C the energy of TFET based ADC is 0.61 pJ. The energy variation in temperature

ranging from -55◦C to 125◦C is 31.5%. On the other hand, CMOS based ADC also suffer from

increased sub-threshold leakage current at low temperature and reduce carrier mobility at high

temperature. At 25◦C the energy of CMOS based ADC is 0.95 pJ, 55% larger than TFET based

ADC. The energy variation in temperature for CMOS ADC ranging from -55◦C to 125◦C is 81%.
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Finally, Comparison between TFET and reported CMOS ADCs [57] is made, as shown in Fig.

2.17. From Fig. 2.17, the TFET based SAR ADC can achieve energy 3 times lower than state of

art CMOS ADCs.
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Figure 2.17: ADC energy comparison between CMOS and TFET

2.4 Conclusion

A TFET based 6-bit SAR ADC is designed and evaluated. The ADC can achieve an ENOB of

5.7 to 5.3 with input frequency ranging from 1 to 8 MHz, and The ENOB variation in temperature

ranging from -55◦C to 125◦C is 24%. Under the VDD of 0.1V, energy is 0.1 pJ with 31.5%

variation with temperature ranging from -55◦C to 125◦C.
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CHAPTER 3: A 12-BIT ULTRA-LOW VOLTAGE NOISE SHAPING SAR

ADC USING EMERGING TUNNELING FETS

1During the era of Internet of Things (IoT), tremendous sensor nodes are self-powered and they

impose great challenges for circuit designers. Analog-to-Digital converters (ADCs) are essential

functional block for sensor interfaces that digitize the analog signal from the sensor for subsequent

digital processors. Most of the power supply of the sensor nodes—the harvesting devices such

as solar cells—can only generate extremely low output voltage that is usually under 0.5 V, and

limited power. Therefore, ultra low-voltage and low-power operation is inevitable for wireless

sensor nodes [58]. The output of the sensor usually need to be digitized by a ADC with moderate

resolution (10–12 bits) and bandwidth (1–1000 kHz). Moreover, output signal of the signal is

also usually small, even at the level of micro volts [59]. In these applications, ADCs are the most

critical and power hungry blocks. Among various ADC architectures, successive approximation

register (SAR) ADC shows a better power efficiency [58, 60, 61]. Furthermore, SAR ADC can be

opamp-free and thus easily benefit from technology advancing and can have no static power. These

reasons arouse many researches on exploring SAR ADC in depth.

However, the accuracy of SAR ADC is hard to reach resolution over than 10 bits due to fundamen-

tal and related second-order effects. As with all ADCs, KT/C noise limits sampling accuracy. For

moderate resolution ADCs, the minimum capacitance to achieve sufficient low sampling noise is

usually larger than that the required capacitance needed to achieve adequate matching. In addition,

the number of unit capacitance increase exponentially with the accuracy of the ADC, leaves great

difficulty for layout matching and parasitic reduction. To Solve this problem, a significant advan-

1This chapter was published as Lin, Jie, and Jiann-Shiun Yuan. “A 12-bit ultra-low voltage noise shaping
successive-approximation register analogto-digital converter using emerging TFETs.” Journal of Low Power Elec-
tronics 13.3 (2017): 497-510.
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tageous method is to use oversampling because it attenuates noise KT/C noise. But without noise

shaping, oversampling is usually unattractive. Noise shaping has been efficiently demonstrated

in SAR ADCs [60–62]. Those works only shape noise to the first order noise transfer function,

with the set-back of limited attenuation at low frequency and less degree of freedom in parameter

design.

In this work, for the first time, we proposed a 2nd order noise shaping SAR (NSSAR) ADC that

provides 20 dB more attenuation than the first counterparts. By optimize the design parameters of

the ADC, the KT/C noise generated by the integrators are reduced, leading to a reduced area and

power consumption. Under ultra-low VDD, energy efficiency is limited by CMOS technology for

its 60 mV/dec sub-threshold slope (SS) [63]. As a result, tunneling field effect transistor (TFET),

with its superior IDS-VGS characteristic, is strong candidate for ultra-low-power and ultra-low-

VDD design. Using the TFETs we can realize the 2nd order NSSAR and achieve an over 10 bits’

accuracy that not reported before under ultra-low VDD.

The chapter is organized as follows. In Section II, the architecture of the proposed NSSAR ADC

is introduced and analyzed. Section III describes the modeling of the TFETs. Section IV discuss

circuit design using TFETs for the NSSAR. The simulation results and comparison with previous

works are presented in Section V. Finally, the conclusions are drawn in Section V.

3.1 Second-Order Noise Shaped SAR (NSSAR) ADC Design

3.1.1 System Design

The SAR ADC can be treated as a zero order sigma-delta modulator without any form of noise

shaping. As a result, noise shaping can be realized by insert filters into the signal path [61, 62].

In principle, the only active block necessary in a passive loop filter is the comparator of the SAR
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ADC and avoid other active circuits (amplifiers or buffers). Thus the passive loop filter is a suitable

choice for ultra-low power, ultra-low VDD operation. Due to the feedback path of the ADC is

primarily defined by the SAR algorithm, feed-forward sigma-delta architectures are promising

candidacies to for NSSAR ADCs. Moreover, since the input signal to the loop filter is only the

shaped quantization noise, the requirements on the linearity of the loop filter is greatly reduced.

As a result, the influence of parasitic capacitance in the passive integrator is addressed by the feed-

forward architecture. The signal-flew diagram of a first order NSSAR ADC [61] is shown Fig. 3.1.

gz-1 a(1-a)

 (1-a)z-1

-

Q(z)

Vin(z)

Dout(z)

Figure 3.1: Signal flew diagram of a first order NSSAR ADC

From Fig. 3.1 The transfer function of the first order NSSAR ADC and the stability condition for

g are [61]

Dout(z) = Vin(z) +
1− (1− a)z−1

1− (1− a)(1− ga)z−1
Q(z) (3.1)

and

− 1

1− a
< g <

2− a
a(1− a)

(3.2)

where a is the noise leakage caused by limited DC gain of the passive integrator and g is a constant

that used to control the location of the pole in the noise-transfer-function (NTF). From Eq. 3.1 and

Eq. 3.2 the minimum DC gain of NTF while keeping the system stable is a/2. Then, for the first

order modulator, the only way to decrease the DC gain of NTF is to increase the DC gain of the

passive integrator, at the cost of excessive area and power consumption.

26



An alternative way to lower the DC gain of NTF is to increase the order of noise shaping in the

NTF. Based on the feed-forward architecture, we propose a second order NSSAR ADC with the

signal-flew diagram shown in Fig. 3.2. In Fig. 3.2, another passive integrator is insert between

the quantizer and the first integrator. Theoretically, using this architecture, any order of noise

shaping can be realized. However, parasitic capacitors in the switches will dramatically increase

the leakage in the integrator in the later stages. Thus, we chose to only use 2nd order architecture.

We kept the feed-forward path from the input to the quantizer and the single feedback path from

the digital output to the input that relax the linearity requirement for the loop filter and make the

system level design more correspond to circuity realization based on the SAR ADC. Moreover,

2nd order architecture provides more degree of freedom to for systemic optimization in the system

design phase.
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 (1-a1)z-1  (1-a2)z-1
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Vin(z)

Random 
Number
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z-1  b2a2

Vn1 Vn2
Vn3

Vn4

Figure 3.2: Signal flew diagram of the second order NSSAR ADC propose in this paper

From Fig. 3.2, the transfer function of the 2nd order NSSAR ADC is

Dout(z) = Vin(z) +
[1− (1− a1)z−1] [1− (1− a2)z−1]

1 + Az−1 +Bz−2
[Q(z) +D(z)] (3.3)

where WhereQ(z) is the quantization noise,D(z) is the dither signal, which we will mention later,
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and A and B are

A = −2 + a1 + a2 + a1b1g1

B = 1− a1 − a2 + a1a2 − (a1b1 − a1a2b1)g1 + a1a2b1b2g2

(3.4)

Thus, the NTF has two zeros and two pols as

Z1 = 1− a1

Z2 = 1− a2

P1 =
−A−

√
A2 − 4B

2

P2 =
−A+

√
A2 − 4B

2

(3.5)

The stability condition for the NTF is then |P1| < 1 and |P2| < 1. Moreover, from Eq. 3.3 to 3.5,

when A = 2 and B = 1, the system has the minimum DC gain of NTF while being stable. Under

this condition, the DC gain of the NTF is a1a2/4, improved by a factor of a2/2 comparing to the

first order NSSAR. From Eq. 3.5, we can summarize a procedure to determine parameter g1 and

g2.

1. First, determine the location of the poles as P1 and P2.

2. Second, using A = −(P1 + P2) to get the value of A and hence calculate the value of g1

using Eq. 3.4.

3. Third, using Eq. 3.5 to calculate B and using Eq. 3.4 to obtain the value of g2.

Moreover, from Eq. 3.4 and Eq. 3.5, a rule of thumb can be summarized that to make max utilize

of the poles that can obtain a larger attenuation to theQ(z), while keeping system stable, parameter

g1 and g2 need to be select as large as possible.
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Figure 3.3: Comparison of NTF of this work with previous publication

In Fig. 3.3, we plot the magnitude response of NTF of 2nd NSSAR (all poles are at origin point)

with the parameter that a1 = 0.11, a2 = 0.25, and compared it with NTF of previous work. The

2nd NSSAR provides an extra 19 dB of attenuation at low frequency comparing to previous first

order works, indicating an increase of ENOB of over 2.8 bits.

System level simulation of the 1st and 2nd order NSSAR is performed using matlab. We use a 6-bit

quantizer in the simulation to model the original 6-bit SAR ADC. To manifest the influence of

limited cycles, we set the input level to be 0.01 Vref. The parameters of the ADCs are shown in

Table 3.1. From Eq. 3.1 and Eq. 3.3 to Eq. 3.5 the zeros and poles of the transfer function are

Z1st = 0.8, P1st = 0, Z2nd1 = 0.8, Z2nd2 = 0.89, P2nd1 = −0.58 and P2nd2 = 0.02. Therefore, the

attenuation of the NTF at low frequency will increase by a factor of |P1 − 1||P2 − 1|, which is 3.9

dB. Moreover, poles are far from unit disk, providing a save margin for system stability.

Fig. 3.4 shows the output power spectrum density (PSD) using matlab. The magnitude is normal-

ized with respect to the input signal. The output of the 1st order NSSAR (see Fig. 3.4b) shows

series of discrete peaks in the frequency spectrum caused by limited cycles. As mentioned before,
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this peaked noise spectrum is problematic in certain applications such as artificial cochlear.

Table 3.1: Parameters Used in System Simulation
Order Symbol Quantity
First a 0.25

g 4
Second a1 0.11

a2 0.25
b1 0.8
b2 0.88
g1 25
g2 50

On the other hand, with the dither and 2nd noise shape, the weak signal can be detecting with

reasonable signal to noise ratio which is over 60 dB.
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Figure 3.4: (a) output PSD of the 2nd order NSSAR and (b) of 1st order NSSAR

3.1.2 Circuit Realization of the NSSAR

Based on the principle of the proposed transfer function, a NSSAR ADC was implemented. In

order to address the input swing limited by the ultra-low VDD, fully differential is adopted to
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double the input swing at the cost of more silicon area occupied.
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Figure 3.5: Schematic of the 2nd order noise shaped SAR ADC with dither injection

The designed ADC comprises a 6-bit SAR ADC [64] and a second order passive integrator. we

make one extra switching of the DAC array CC based on the final comparator decision so that the

residue is based on the full resolution of digital estimation [62]. Moreover, quantizer and the feed-

back DAC use the same capacitor array in the NSSAR ADC, henceforth, the DAC mismatch error

transfer function (ETF) is always 1 and the mismatch error can be easily estimated and calibrated

in digital domain [61]. The applied coefficients are the same as those used in Fig. 3.2, and the sam-

pling frequency is 1.38 MHz with the maximum input bandwidth of 43.1 kHz. The oversampling

ratio (OSR) is 16. The schematic of the ADCs is shown in Fig. 3.5.

The schematic of the two-stage state integrator is shown in Fig. 3.6. To ensure that the integrator

works properly, the sampling capacitors are reset every operation cycle. To derive the transfer

function of integrator, firstly consider the passive integrator comprising Cdac, Cs1, Ci1 and corre-
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sponding switches, and we have the follow equation:

Vout1st[n] =
Ci1

Ci2 + Cs1
Vout1st[n− 1] +

Cs1
Ci1 + Cs1

Cdac
Cdac + Cs1

Vin[n− 0.5] (3.6)

Vin[n]

Cdac Cs1 Ci1

Ti1 Ti2 Ti1 Vout[n]

Vout1st[n]

Cs2 Ci2

Ti2

Figure 3.6: Schematic of two-stage integrator

Consider that the sampling frequency is much higher than the signal bandwidth, we can safely

assume that Vin[n− 0.5] = Vin[n]. Consequently,

Vout1st(z)

Vin(z)
=

b1a1
1− (1− a1)z−1

(3.7)

where a1 = Cs1/(Ci1 +Cs1) and b1 = Cdac/(Cs1 +Cdac). In our design, we set Ci1 = 2Cdac. And

the sampling capacitor Cs1 = 1/8Ci1. Thus it follows that a1 = 0.11 and b1 = 0.8, the same as

shown in Table 3.1. The same as Eq. 3.6, we get the equation for the second stage integrator as

Vout[n] =
Ci2

Ci2 + Cs2
Vout[n− 1] +

Cs2
Ci2 + Cs2

Ci1
Ci1 + Cs1

Vout1st[n− 0.5] (3.8)

Also, it is safe to assume that Vout1st[n− 0.5] = Vout1st[n] still holds. Using Eq. 3.8, we can obtain

that
Vout(z)

Vout1st(z)
= − b2a2

1− (1− a2)z−1
(3.9)

where a2 = Cs2/(Ci2 + Cs2) and b2 = Ci1/(Cs2 + Ci1). To obtain the value in Table 3.1, we set

Cs2 = 2Cs1, Ci2 = 0.75Ci1. Henceforth, a2 = 0.11, b2 = 0.8. Henceforth, the NTF shown in Fig.

3.4 is synthesized by the two-stage passive integrator and the capacitor ratio we used.
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In [61], W. Guo and N. Sun proposed the noise analysis of the 1st order NSSAR ADC. In our work,

we extend their work from investigating the noise performance under specified system parameters,

g = 1/a, to more general system parameters. Moreover, combined with analysis in the previous

subsection, we provide a detailed optimization for system parameters that leads to better perfor-

mance of the 2nd order NSSAR. In Fig. 3.2, Vn1 is the KT/C from noise of the DAC capacitors, Vn2

is the noise sampled by Ci1, Vn3 is the noise sampled by Ci2 and Vn4 is the input referred noise of

the summing comparator. Using Eq. 3.7 and Eq. 3.9, expression for Vn1 to Vn3 can be written as

V
2

n1 =
KT

Cdac

V
2

n2 =
a1KT

ci1
+

a21b
2
1

1− b1
KT

Cdac
=
a1(0.5− 0.5b1 + a1b

2
1)

1− b1
KT

Cdac

V
2

n3 =
a2KT

ci2
+

a22b
2
2

1− b2
KT

Ci1
=
a2(0.66− 0.66b2 + 0.5a2b

2
2)

1− b2
KT

Cdac

(3.10)

whereK is the Bozeman constant and T is the absolute temperature. Using Fig. 3.2, we can derive

the transfer function of the ADC including noise source as

Vout(z) = Vin(z) + Vn1(z)

+
g1 [1− (1− a1 − a1a2b1b2g2/g1)z−1] z−1

1 + Az−1 +Bz−2
Vn2(z)

+
g2 [1− (1− a2)z−1] z−1

1 + Az−1 +Bz−2
Vn3(z)

+
[1− (1− a1)z−1] [1− (1− a2)z−1]

1 + Az−1 +Bz−2
[Q(z) +D(z) + Vn4]

(3.11)

In Eq. 3.11 Vn4 is shaped by the same NTF of the quantization noise. Therefore, it can be omitted

during circuit design. Vn1 is directly added to the input signal and not shaped by the loop filter.

The NTF of Vn2 and Vn3 are closely related to parameter g1 and g2 and, unlike the NTF of the

quantization noise, the larger the two parameter, the larger the NTFs are. Hence, the value needs

carefully tuned to achieve an optimal signal to noise ratio for the ADC. To accomplish that, we

use four quantities to illustrate the influence of the g1 and g2 on the performance of the ADC. The
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first one is |P1− 1||P2− 1|. As we mentioned in pervious subsection, |P1− 1||P2− 1| shows how

much the will poles affect the attenuation of the quantization noise. Fig. 3.7a shows the variation

of |P1 − 1||P2 − 1| versus the value of g1 and g2. As we predicted, when g1 and g2 become larger,

the attenuation coming out of the poles increases, displaying a darker color in Fig. 3.7a.

The second one is the NTF for the integrator noise, Vn2 and Vn3, to the output of the ADC, which

can be written as

NTFi =
√
αn2NTF 2

n2 + αn3NTF 3
n2 (3.12)

where

αn2 =
a1(0.5− 0.5b1 + a1b

2
1)

1− b1

αn3 =
a2(0.66− 0.66b2 + 0.5a2b

2
2)

1− b2

NTFn2 =
g1 [1− (1− a1 − a1a2b1b2g2/g1)z−1] z−1

1 + Az−1 +Bz−2

NTFn3 =
g2 [1− (1− a2)z−1] z−1

1 + Az−1 +Bz−2

(3.13)

From Eq. 3.10 to Eq. 3.13 it can be observed that NTFi is proportional the square of capacitance

used in the ADC and hence the square of area and power consumption. As a result, it is critical to

reduce the NTFi to improve the power and area efficiency of the ADC, particularly in ultra-low

VDD and ultra-low power. Fig. 3.7b shows the value of NTFi at DC versus g1 and g2. When g1

and g2 are small, the color in Fig. 3.7b is darker, revealing a decreasing in NTFi.

The last two quantities are |P1| and |P2|, which gives the criterion whether the system is stable. In

previous subsection, we show that to make sure that the system is stable, it should be satisfied that

|P1| < 1 and |P2| < 1. In Fig. 3.7c and Fig. 3.7d, we plot the value of |P1| and |P2| changing

with g1 and g2. Also, we highlight the boundary where the system is stable. To ensure the system

is stable, the data point for system parameters must locate near the darkest area in the figures to

guarantee a sufficient safe margin. Combining the four figures of merits, the optimized g1 and g2
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can be chosen by putting the data point in the dark portion in Fig. 3.7a to Fig. 3.7d. In our work

we set g1 = 25 and g2 = 50, as the red triangle in Fig. 3.7.
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Figure 3.7: Figures of merits to choose g1 and g2. (a) |P1 − 1||P2 − 1|, (b) NTF of the integrator,
(c) |P1| and (d) |P2|. The red triangle show the selection of g1 and g2 that g1 = 25, g2 = 50.

To determine the value of capacitance used in the NSSAR, we utilized the NTFi. So, the total

electrical noise at the output of the ADC is

V
2

tot = (1 +NTF 2
i )
KT

Cdac
(3.14)
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The number of bits and the dynamic range of the converter are related by [65]

V 2
s

V
2

tot

=
(2Vref )2/2

(1 +NTFi)KT/C
=

3
2
(2ENOB − 1)2

OSR
(3.15)

where Vs is the signal, Vref is the reference voltage. Using Eq. 3.15, and letting ENOB = 12, we

can calculate the Cdac is 444.3 fF. Henceforth, We set Cdac = 480 fF in this design.

VDD

GND

VCM

VDitherp

Ti1 Ti2

TS

LFSR

Cd Cant

VDD

GND

VCM

VDithern

Ti1 Ti2

TSCd Cant

Figure 3.8: Schematic of dither circuit

Limited-cycles is problematic phenomenon that rises in the sigma-delta when input level is low

[66, 67]. More seriously, when ADCs are applied in audio applications, limit cycles can result in

audible artifacts. To eliminate the influence of limited cycle, a dither circuit is added into the signal

path as shown in Fig. 3.2. Different from ordinary paradigms, an attenuator is employed to reduce

the amplitude of the dither signal to accommodate the limited low frequency attenuation of the

NTF. Given that the DC gain of NTF of the 2nd order NSSAR is around 30dB, to ensure that the

ADC has an ENOB over 12-bits, the attenuation factor is -40 dB in our design. Fig. 3.8 shows a

detailed schematic of the dither circuit.

Although self-dither technology is proposed by previous works [68], the dither is somehow related

to the input signal and the randomness of the dither may be jeopardized. Consequently, in Fig.
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3.8, A linear feedback shift register (LFSR) provides the pseudo-random number to switch the Cd

between VDD and GND. An attenuation capacitor Cant = 10Cd is connected in parallel with the

Cd. Due to charge sharing the magnitude of the dither voltage is reducing to 0.09 Vdither. Another

20 dB attenuation is realized in the summing comparator, which will be discussed in the following

section.

3.2 Implementation of the Building Blocks Using TFETS

Simply replacement of CMOS transistors with TFETs does not necessarily lead to a performance

improvement. This is caused by the unique behaviors of TFETs, such as ambipolarity and asym-

metry as mentioned in the Chapter 2. In following subsections, we describe the implementation of

key building blocks of the ADC with TFET.

3.2.1 Clock Generating and SAR Logic Design Using TFETs

In the circuit schematic, the clock generating circuit and SAR logic block is the main digital block

of the circuit generating the control bits according the output of the comparator. The asynchronous

clocking paradigm proposed in [69] could optimize the comparing interval and lead a faster oper-

ation speed. However, the control signal is determined by the comparator state. As a result, we

use synchronous clock scheme that is easy to generate extra control signal for passive integrators

when comparator is not working. The clock generate circuit is shown in Fig. 3.9.

In Fig. 3.9, clkext is the external clock with the frequency of 25 MHz. Signal clksar, clkint1 and

clkint2 are generated based on clkext using a 4-bit counter and corresponding combinational logic.

A non-overlapping clock generating block is employed here to guarantee that the sampling switch

can integrating switch will on be on at the same time.
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The logical gates in Fig. 3.9 can be realized by replacing the CMOS transistors with TFETs

in conventional logic gates. However, we redesign the D Flip-Flop (DFF) that using clocked

inverters instead of transmission gate to avoid the effect of ambipolar and asymmetry of TFETs.

The schematic of the TFET based DFF is shown in Fig. 3.10.

Fig. 3.11a and Fig. 3.11b shows the switch process and time diagram of the 2nd order noised

shaped SAR ADC. In Fig. 3.11a, the width of sampling pulse is 8 clkext cycles, which is 320 nS.

And the time for successive approximation process is also 8 clkext cycles. Finally, the operating

time of the passive integrator is 2 clkext cycles, which makes the whole operating period of the
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NSSAR 18 clkext cycles.
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Figure 3.11: (a) Timing diagram and (b)switching process of the ADC

In Fig. 3.11b, Vn−1 is the voltage stored in the integration capacitor from the last operation cycle

and be expressed as:

Vn−1 = g1Vint1 + g2Vint2 (3.16)

From Fig. 3.11, when sampling clock TS falls low, the external clock is applied to the comparator to

perform success approximation. Then, the ADC will output a 6-bit code and the differential residue

voltage of the DAC, Vdac, will be integrated onto the integration capacitors as Vint1 and Vint2 for the

next operation, respectively. The integration operation is controlled by the non-overlapping clock

signal Ti1 and Ti2.

Fig. 3.12 shows the DAC control logic.
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Figure 3.12: Schematic of DAC control logic

At the rising edge of Ti, a non-overlapping circuit pulls the control signal V SV CMi to GND to cut

the ith capacitor in the DAC from VCM . In the same time, according to the output of the comparator

VCOMP , the capacitor will be connected to VDD or GND under the control of signal V SV DDi or

V SGNDi. Non-overlapping of signal V SV CMi and V SV DDi/V SGNDi avoids multiple switches be

on at the same time, which causes excessive current consumption.

3.2.2 TFETS Based Sampling Switches Design

In Fig. 3.5, input sample-and-hold (S/H) of the ADC samples the input analog signal to all DAC

capacitors during the sampling phase and isolate the input node and comparator during successive

approximation process, which forms the feed-forward path in Fig. 3.2. Thus, the input switch must

have small on-resistance in the sampling mode and low leakage current in holding mode for all

input values to ensure the linearity of the sampling circuit. The complementary switch (C-switch)

with an PTFET and NTFET in parallel, as shown in Fig. 3.13a, is a promising candidate because

it guarantees low on resistance with input ranging from rail-to-rail, and reduces the influence of

asymmetric effect [70].
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Figure 3.13: Schematic of (a) C-switch and (b) T-switch

However, due to the effect of ambipolarity, leakage current will vary dramatically with the input

signal in the holding mode (the switches are off). To address this problem, we employed a T-

switch, as shown in Fig. 3.13b. As in Fig. 3.13b, when clock signal TN is high and T is low,

the switch works in hold mode. TFETs M1-M4 are off and M5 and M6 are on. As a result, both

PTFET’s source are tied to VDD and both NTFET’s source are tied to GND and the VGS of those

transistors are “0”. At the moment when M1-M4 is turning on, the voltage at net “A” and net “B”

will guarantee that the VDS of NTFETs is greater than “0” and the VDS of PTFETs is less than

“0”, thus minimize the effect of asymmetry. A drawback of T-switch is its area occupation—to

maintain low on resistance the width of M1-M4 is twice as their counterparts in C-switch.

Transistor level simulation is performed on both switch to verify their specifications. Transistor

dimension of TFETs in C-switch and T-switch are 400 nm / 20 nm and 800 nm / 20 nm, respec-

tively. Fig. 3.14a shows the on resistance of both transistors when VDD is 0.3V. Within the whole

input swing, the on resistance of both switches range from 20 kΩ to 55 kΩ.
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Figure 3.14: On resistance of C-switch and T-switch (b) isolation of C-switch and T-switch

Consequently, they produce a time constant from 9.6 nS to 26.4 nS combined with the Cdac, which

is sufficient small comparing to the sampling period (320 nS).

The reduction of ambipolar current because of zero VGS is shown in Fig 3.14b where clock signal

goes off at 100nS and at the same time a 240 mVpp, 25 kHz sinusoidal wave is applied to the input

Vin. With the zero VGS the ambipolar current is almost zero and results in a good isolation of the

switch in holding mode. On the other hand, for C-switch, ambipolar current is proportional to the

input voltage, and lead to a leakage of 37.7 mVpp from input to the voltage on top plate of Cdac.

Moreover, the C-switch and T-switch are used to sample a differential sinusoid signal to Cdac with

frequency of 25 kHz and amplitude of 2×240 mVpp with the sampling frequency of 1.041 MHz.

The spectrum of voltage of on top plate of Cdac is shown in Fig. 3.15a and 3.15b, for C-switch and

T-switch, respectively.
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Figure 3.15: (a) output spectrum of C-switch and (b) output spectrum of T-switch

3.2.3 Summing Comparator Design Using TFET

Fig. 3.16 shows the schematic of the dynamic comparator. We design TFETs version of the com-

parator by substitute CMOS transistors with corresponding TFETs. Four input pairs are employed

to implement the weighted summing in Fig. 3.2 and Fig. 3.5. As demonstrated in Eq. 3.11, the

offset and input referred noise will be attenuated by the NTF. Hence, we use minimum length of

the transistors, i.e. 20 nm, to save the area. The unit dimension of input transistors is 200 nm / 20

nm. Then, the input of the comparator is

VCOMP = Vdac + 25Vint1 + 50Vint2 + 0.1Vdither (3.17)

The output of the comparator is stored by a SR latch which is not shown in the figure. When TCOMP

is low, the output of the comparator is VDD and the SR latch will keep the previous value. At rising

edge of TCOMP, the differential current produced by the 4 input pairs will trigger the regenerative

feedback loop comprising M1-M4 and change the value stored in the SR latch.
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3.2.4 Feedback DAC Design

The feedback DAC is implemented with a binary-scaled charge-redistribution topology. Digital

bits (B1–B6) from DAC control logic drive the bottom of capacitors either to VDD or to GND to

produce the output. According to Eq. 3.15, to meet the requirement for KT / C noise, we set the

total capacitance of one side of the DAC as 480 fF. Consequently, the unit capacitance of the DAC

is Cdac / 26 = 7.5 fF. The capacitor can be realized using metal–oxide–metal sandwich structure, as

shown in [69].

3.3 Simulation Results

Transistor-level simulation and analysis of the TEFT based NSSAR ADC is performed using Ca-

dence Spectre with transient noise simulation module. with modified VerilogA TFET transistor

model. The minimum TFET transistor length is 20 nm.
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Figure 3.17: Output PSD of the NSSAR ADC when input frequency is (a) 5 kHz and (b) 25 kHz

To explore the TFET benefits in subthreshold region, the typical supply voltage is set to be 0.3 V.

The typical temperature is 25 ◦C. Under the normal condition, a 25 MHz external clock is used for

the ADC. As a result, according to Fig. 3.11a, the sampling frequency is 1.38 MHz.

Fig. 3.17 depicts the output PSD of the ADC when input is a 5 kHz and 25 kHz, 480 mVpp

differential sinusoidal signal. The simulated SNDR for the 5 kHz input signal is 72.14 dB and the

SFDR is 76 dB. Consequently, the ENOB for the 5 kHz input signal is 11.69 bits. The harmonics

of the 25 kHz input fall out of Nyquist frequency and submerges in the shaped noise. As a result,

we did not get the data on it. The SNDR for the 25 kHz input is 71.51 dB and the ENOB is 11.58

bits.

We also disabled the second stage integrator and the dither circuit to verify the impact of number

of orders of the NTF and dither circuit. Fig. 3.18 shows the output PSD of the first order NSSAR

with dither circuit disabled. The input signal is again a 25 kHz, 480 mVpp differential sinusoidal

wave. Due to limited cycles, the noise is concentrated into several discrete peaks, which can be

problematic in audio applications.
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The SNDR is 62.68 dB, 9 dB lower than that in 2nd order NSSAR.

Fig. 3.19 shows the SNDR performance versus input amplitude at frequency of 25 kHz. The

measured peak SNDR of the ADC is 71.98 dB when input is 0.51 VPP. When input further in-

creases, the SNDR will drop dramatically, due to the limitation of linearity of input S/H. Fig. 3.20

plots SNDR versus input frequency. As the input frequency increases, the SNDR reduces slightly.

When the sampling frequency is 1.38 MHz, the total power of the ADC is 0.94 µW. The power

consumption break-down is shown in Fig. 3.21.
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From Fig. 3.21, most of the power (77.6%) is dissipated on switched capacitor circuits indicating

that the power consumption is limited by KT/C noise.

Performances of the ADC are summarized and compared to previous works and shown in Table

3.2. Schreier FOM, (see Eq. (22)), is also employed to give the comprehensive figure of merit of

the ADCs .

FOM = SNDR + 10 log10

(
BW

power

)
(3.18)
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Table 3.2: Performance Summary and Comparisons
References [15] [17] [16] [19] [18] This work
Technology 90 nm 90 nm 180 nm 90 nm 90 nm 20 nm TFETs
VDD (V) 0.3 0.3 0.3 0.35 0.3 0.3

Bandwidth (kHz) 125 45 2.5 150 300 43.4
Power (nW) 52 35 15.9 285 187 940
ENOB (bits) 8.63 8.38 8.77 8.91 9.46 11.67
SNDR (dB) 53.71 52.2 54.55 55.5 58.7 71.98

Schreier FOM (dB) 177.5 173.3 166.5 172 180.7 178.7
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Figure 3.22: ADC energy comparison between CMOS and TFET

In Fig. 3.22, We compare the energy consumption of our design and ADCs reported in 2016 IEEE

International Solid- State Circuits Conference (ISSCC) and VLSI Symposia (VLSI) during last two

decades. From Fig. 3.22, our design is approaching the noise limit, which has a high consistency

with high portion of switch-capacitor power consumption shown in Fig. 3.21.
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3.4 Conclusion

This chapter for the first time presents a 12-bit SAR ADC with ultra-low 0.3V VDD using emerging

TFETs technology that suitable for IoT applications. The proposed 2nd order NSSAR architecture

is analyzed with respect of NTF, system stability and KT/C noise. Optimization method is intro-

duced in to trade-off between contradict system specifications. Emerging TFET is employ in our

design to replace CMOS counterparts for superior performance at sub-threshold region. With the

optimized 2nd noise shaping and the higher SS of TFETs, the ENOB is effectively increase and the

power consumption is mainly limited by noise performance. ADC achieves ENOB of 11.67 bits

and Schreier FOM of 178.7 dB, one of the highest among recent works.
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CHAPTER 4: ANALYSIS AND SIMULATION OF CAPACITOR-LESS

RERAM-BASED STOCHASTIC NEURONS FOR IN-MEMORY SPIKING

NEURAL NETWORK

1We propose the Neural Array—a modified one-transistor-one-ReRAM (1T1R) crossbar that in-

tegrates our ReRAM neurons with ReRAM synapses to form a compact and energy efficient in-

memory neural network. To the authors’ knowledge, this is the first effort to integrate the ReRAM-

based neurons with ReRAM crossbar-based synapses. We utilize the ternary weight, which is lim-

ited to {-1, 0, 1}, to omit the need for weight generation circuit, such as ADC-DAC [71] with ultra-

low power circuit implementation [49,72,73], and pulse-width-modulation (PWM) [22]. Thus we

simplify the design and lower the power consumption. Moreover, we show that weight ternariza-

tion can reduce the effect of device mismatch on network accuracy.

Subsequently, we employ the neuron into a deep belief network (DBN) with noisy rectified linear

unit (NReLU). We develop a simple algorithm to ternarize the weight of a trained DBN. We show

that the accuracy loss of the ternarization is negligible in our algorithm. To reduce the impact of

process variation on the classification accuracy, we model the mismatch of neurons as unknown

“noise” of the network and set “noise” to zero during ternarization, and thus the weight ternariza-

tion provides robustness to the network against device mismatch. Moreover, we utilize the sparsity

obtained from the ternarization to reduce the device usage, which will further reduce the area and

power consumption. We train the DBN on MNIST dataset [74] and simulate the spiking DBN in

MATLAB. We also show that the accuracy of ReRAM neuron-based DBN is robust against the

ReRAM process variation effect.

1This chapter was published as Lin, Jie, and Jiann-Shiun Yuan. “Analysis and simulation of capacitor-less
ReRAM-based stochastic neurons for the in-memory spiking neural network.” IEEE transactions on biomedical cir-
cuits and systems 12, no. 5 (2018): 1004-1017.
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This chapter is organized as follows. Section II describes the underlying device physics of ReRAM

and how to mimic the integrate-and-fire behavior with the growth of conducting filament. The

control circuit design of the ReRAM-based stochastic neuron is also included in this Section. In

Section 4.2, the simulation results of the ReRAM-based neuron are presented. In Section 4.3, a

DBN with NReLU on MNIST data set is trained. We ternarize and reorder the weight matrices so

that they are optimized and can be mapped from the NReLU DBN to a DBN of ReRAM neurons.

We also analyze the influence of the device mismatch on classification accuracy and show that the

weight ternarization can reduce the effect of device mismatch. Finally, the conclusion is given in

Section 4.4.

4.1 ReRAM-Based Stochastic Neuron

The basic device structure and the underlying physics involved for the ReRAM relies upon the

formation and rupture of the nanoscale conductive oxygen vacancies [75]. In the set process,

oxygen ions drift to the anode and create conductive oxygen vacancies through the oxide, thus

reducing the resistance of the device from a High Resistance State (HRS) to a Low Resistance

State (LRS). Inversely, in the the reset process, the oxygen ions move back to recombine with the

vacancies, resulting in the transition from a LRS to a HRS [75]. This process is modeled by growth

or rupture of one dimensional Conductive Filament (CF). The gap distance, g(t), between the tip

of the filament and the electrode, controls the ReRAM voltage-current curve through trap-assisted-

tunneling [26].

An artificial spike-based neuron consists of inputs (dendrites), the computation element (soma) and

the output (axon) as shown in Fig. 4.1. The key computational element is the soma that integrates

the input spikes to the membrane potential and generates a firing event.

51



Spike 
Generation 
& Control

...

SomaDendrites Axon

Water

Water

+ + + + + +

- - - - - -

Lipid 
Bilayer

TE

BE

ReRAM

Input 
Spikes

Output 
Spikes

Biology Device

Reset

Figure 4.1: Stochastic neuron based on a ReRAM device that consists of inputs (dendrites), the
computation part (soma) and the output (axon). The dendrites may be connected to multiple
synapses interfacing with other neurons in a network. The key computational element is the neuron
membrane which is emulated by a ReRAM device. It integrates the input spikes in terms of the
growth of conduct filament. The thresholding and spiking generation are performed by a simple
electrical circuit. Because of their inherent nanometer-scale dimensions and native stochasticity,
these ReRAM devices are able to implement large and dense populations of neurons for neuromor-
phic computation.

In a generic Integrate-and-Fire neuron, the membrane potential u is determined by the differential

equation [76].
du(t)

dt
=

1

τ
[F (u) +G(u)I] (4.1)

In Eq. 4.1, τ is the time constant of the neuron, F (u) is the “leaking” term and accounts for

imperfections in the cell membrane that lead to leakage of the accumulated charge, and G(u) is

the input resistance term. The membrane potential dynamically evolves, due to the input current.

Whenever the membrane potential reaches a certain threshold θ, the neuron fires and u(t) is reset

to its initial value. The neuron dynamic will resume its operation after a refractory period.

We leverage the similarity between the CF growth and the evolution of the membrane potential for

implementation of the soma in Fig. 4.1 with a ReRAM device and the spike generation and reset
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control circuit.

In the ReRAM-based neuron, we emulate the neuron features using the configuration of conductive

filament in a ReRAM as:

ur(t) = gmax − g(t) (4.2)

where gmax is the maximum gap distance. Jiang et al. [75] have modeled the evolution of the

the gap distance by applying Arrhenius law and the probability for oxygen ions to overcome the

migration barriers,EA. Thus, the evolution dynamic of the ur(t) with respect to the applied voltage

V is:
dur(t)

dt
= v0 exp

(
−qEA
kT

)
sinh

(
γa0q

TOXkT
V

)
(4.3)

where TOX is the oxide thickness, a0 is the hopping site distance, and γ is the field local enhance-

ment factor in terms of polarizability of the material [77]. From Eq. (4.3), the ReRAM-based

neuron preforms the temporal integration of the input signal the same way that the generic LIF

neuron model of Eq. (4.1) does.

In addition to the deterministic dynamics, the generation and migration of oxygen vacancies, which

are determined by the kinetic energy of the ions, is inherently random [75]. As a result, the activa-

tion of the ReRAM based neuron is stochastic as well.

To verify the I-V characteristics of the ReRAM, we use a modified Verilog-A model [75] with the

key parameters shown in Table 4.1. These parameters can be obtained by fitting the experimental

data in [27] with the model predictions. Fig. 4.2 depicts the simulated current-voltage character-

istics of the ReRAM driven by a DC voltage source. One can observe that the set/reset threshold

for the device is around 1.1V/1.25V, respectively. Thus, to ensure the ReRAM device is fully re-

set, we set the magnitude of both setting and resetting voltages to 1.3 V. Moreover, it can be seen

from the exp term in Eq. (4.3) that an increase in temperature caused by voltage pulse injected
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into the ReRAM will further increase u(t) and then result in more current generated. This positive

feedback between u(t) and temperature causes an abrupt setting of ReRAM devices [28]. The set

threshold also shows stochasticity in Fig. 4.2.

Table 4.1: Simulation parameters for ReRAM
Parameters Value1

Oxide thickness (TOX) 5 nm
Minimum gap distance (gmin) 0.1 nm
Maximum gap distance (gmax) 1.7 nm
Thermal resistance (Rth) 2100 K/W
Velocity-dependent attempt-to-escape freq. (γ0) 16
Activation energy for vacancy generation (EA) 0.6 eV
Threshold temperature for significant random variations (Tcrit) 450 K
Average switching distance parameter (g0) 0.27 nm
Average switching voltage parameter (V0) 0.43 V
Average switching current parameter (I0) 61.45 µA
Temperature fitting parameter (Tsmth) 500 K
Distance fitting parameter (δgo) 0.002 nm
1 The the 6σ variation of the parameters is 10%.
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Figure 4.2: I-V characteristics of the ReRAM model which shows its abrupt setting and gradual
resetting.

Thus, the ReRAM based neuron is different from the generic LIF neuron in three aspects:
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1. the missing leakage term F (u),

2. the nonlinearity of the hyperbolic sinh() function in Eq. (4.3), and

3. the random activation and device mismatch of the ReRAM device.

The first issue is addressed in recent research by mapping leak-less Integrate-and-Fire (IF) neuron

to the Rectified Linear Unit (ReLU) used in the Convolutional Neural Network (CNN) in [37, 78–

80]. Near lossless classification accuracy has been reported in the literature, which has shown the

validation of using leak-less IF neurons in large-scale spiking neural networks. In our work, we

utilize this mapping paradigm to explore the computing capacity of the ReRAM-based neuron,

instead of approximating the accuracy of the biological process.

Due to the nonlinearity in Eq. (4.3), it is difficult to control the growth rate of the conductance fila-

ment with the amplitude of input voltage pulses. As a result, we keep the amplitude of the voltage

constant through a voltage reference. In [22] the authors used the pulse-width-modulated input to

emulate the weight of the synapses. However, considering the large amount of synapses used in

the neural network, inclusion of the PWM generation circuit, such as the one reported in [81], will

consume excessive area and power. So in our design, we keep the input pulse width in the same

layer of the neural network constant, which limits our synapse weight W to {−1, 0, 1}. We prove

that the information loss due to limited synapse weight precision will only cause minor classifi-

cation accuracy loss as shown in Section 4.3. Also note, because pre-synaptic event is binary, the

input to the neuron is equal to the difference between the number of excitatory input spikes (W =

1) and inhibitory input spikes (W = -1). Thus, the precision of membrane potential is limited to

integer numbers. We utilize this limited precision to reduce the influence of the mismatch source of

the neuron activation, such as process variation of the ReRAM device. Therefore, no delicate cal-

ibration is needed in our design. Only a few global parameters are determined infrequently. Thus

the design complexity is greatly reduced. Detailed discussion and simulation results are given in
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Section 4.3.
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Figure 4.3: (a) The probability of set switching is simulated for one set of the model parameters in
Table 4.1 for 300 trials. In each trial, the height of the set pulse is 1.3 V and the width of the set
pulse is 10 ns. We change the random seed in every trail. We also calculate the mean value µ and
the standard deviation σ of the pulses needed to set the device. (b) 200 different sets of devices
parameters with 6σ variation of 10% are measured in the way described in (a). The mean value µ
(lower plot) and standard deviation σ (upper plot) for these 200 devices are presented with another
histogram graph.

To obtain the statistics for both activation stochasticity and device-to-device variation, we simu-

lated the pulse numbers required for triggering the set transition (with a fixed 10 ns pulse width)

during 300 trials with different random seeds in one device and repeated such simulation for 200

different devices with 6σ parameter variation of 10%, which is actually the worst case scenario

found for stable memristor devices noted in the literature [28,82,83]. Fig. 4.3 shows the simulated

statistical distribution of the ReRAM set triggered by the input spiking train. In Fig. 4.3a, for one

particular ReRAM, the number of input pulses need to set the device roughly follows a Gaussian

distribution with a mean value µ of 8.27 and standard derivation σ of 3.17. We also show the cumu-

lative distribution function (CDF) of the distribution, which we used to model the ReRAM device

for behavioral level simulation. In Fig. 4.3b, the distribution of the µ and σ process variability
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is shown. Due to the process variation, the average voltage pulse to set the ReRAM is centered

around 8.03 with a standard deviation about 0.97. Also, most devices have a σ of 3.08 with a

standard deviation of about 0.62.

We propose a simple behavioral level model of the ReRAM neuron that can be easily embedded

into machine learning codes and can be applied to different types of memristors with stochastic

accumulative-and-set process. Moreover, we include the process variation in the model to account

for device mismatch. Here, we assume that the set process of the memristors roughly follows

Gaussian distribution. Using the CDF shown in Fig. 4.3b, the output of the neuron is:

y =


1 with probability P = Φ(n)

0 with probability 1− P
(4.4)

n =


0 y = 1

n′ + (ne − ni) y = 0

(4.5)

where ne − ni is the difference between the number of excitatory input spikes and inhibitory input

spikes, n′ is the n from the last simulation step, and Φ(n) is the CDF of Gaussian distribution with

process variation:

Φ(n) =
1

2

[
1 + erf

(
n− µµ +N(0, σµ)

(µσ +N(0, σσ))
√

2

)]
(4.6)

where N(0, x) is a Gaussian distribution with zero mean and variance x. N(0, x) will be sampled

only once at the initialization of the program to model mismatch caused by process variation, as

shown in Fig. 4.3b. Compared to the circuit level model proposed by R. Naous et al. in [84], our

model is independent of technology and can be applied to other memristor devices with Gaussian
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Figure 4.4: Model predictions (solid lines) of the simulated set CDF. We employ 4 groups of pa-
rameters in Table 4.1 and calculate the µ and σ for each parameter for the ReRAM to be substituted
into Eq. 4.4. The behavioral level model can be applied to various of stochastic memristor devices
with Gaussian set process.

Moreover, it is compatible with the time-stepped behavioral level simulation [80] for large scale

networks. The only necessary calibration is to change the data of µµ, µσ, σµ and σσ through device

characterization.

To verify our model, we simulate the set process of the ReRAM with four groups of parameters

in Table 4.1, and compare the simulated CDF Φ(n) (see Fig. 4.3a) and the model prediction from

Eq. (4.6). One should note that the mismatch is now known, therefore we calculate the µ and σ for

each scenario and apply them to Eq. (4.6) respectively. Fig. 4.4 shows that the prediction of the

behavioral level model (solid line) fits perfectly to the device simulation. As a result, we use this

behavioral level model in our MATLAB code in Section 4.3.
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4.1.1 Spike Generation and Control Circuit Design

Since we use the ReRAM device to replace the membrane capacitor, our neuron does not use any

capacitor and is thus more area efficient than those of capacitor-based designs [7–9]. Moreover, the

abrupt set of the ReRAM (shown in Fig. 4.2) makes the firing easily detectable and eliminates the

need for high precision comparators. We design a simple artificial soma that detects the membrane

potential ur(t), generates the output spikes and resets the ReRAM device. As shown in Fig. 4.5a,

the artificial soma is composed of three main function blocks: current-voltage converter (MN1-

MN3 and MP1-MP3), ReRAM with an asynchronous read/write circuit (MN4, MN5, MP5 and

MP6), and a pulse generation module formed by a D-type flip-flop (DFF), a Schmitt trigger and a

delay unit.

As mentioned in the previous section, a voltage reference is needed to provide a fixed amplitude to

the setting voltage pulses. Hence, we use transistors MN1-MN3 and MP1-MP3 to perform current

to voltage conversion and signal conditioning. Vsetr is the reference voltage to set the ReRAM and

is equal to 1.3 V in our design. A transistor MN4 is connected in series with the ReRAM device,

forming a voltage divider consisting of the ReRAM and the on resistance of MN4. Initially, the

ReRAM is in high resistance state. As shown in Fig. 4.2, the resistance of the ReRAM is much

larger than the on resistance of MN4. Thus, the setting voltage pulse is mainly applied on the

ReRAM due to voltage division. After accumulating some input spikes, the ReRAM will switch

to the low resistance state, as shown in Fig. 4.2. Then the next input spike will generate a falling

edge to trigger the D-FF. Afterward, the ReRAM is disconnected from the input and will be reset

through transistors MN6 and MP4 for the next period of integration. A delay unit generates a

delayed reset signal (RST in Fig. 4.5a) to the DFF. Therefore, a voltage pulse is produced by the

feedback loop, comprised of the DFF and the delay unit. The output pulse width is controlled by

the delay unit, through which we can tune the spike pulse in the neural network layer effectively.
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Figure 4.5: (a) Schematic of the ReRAM based stochastic neuron. (b) Left: Layout of the neuron.
Right: area comparison between our neuron and an 1 pF capacitor.

Finally, to avoid the meta-stable state of the feedback loop, we utilize the hysteresis of the Schmitt

trigger and insert it between the DFF and the delay unit.

To realize a capacitor-less design and a controllable delay, we propose the simple two-transistor

(MN7 and MN8) implementation that utilizes the gate leakage current Il of the deep sub-micron
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transistor [85]:

Il = WLA
V 2
d

T 2
OX

exp

−
B

[
1−

(
1− Vd

φOX

) 3
2

]
TOX

Vd

 (4.7)

whereA andB are technology parameters, φOX is the barrier height for electrons in the conduction

band, Vd is the voltage as seen in Fig. 4.5a). Note that the delay td = (Vd − Vthres)/SR, where

Vthres is the threshold voltage to reset the DFF and SR is the slew rate:

SR =
Il
COX

=
IlTOX
WLεeεr

(4.8)

where εe and εr are the permittivity of a vacuum and the relative permittivity, respectively. Thus,

by substituting Eq. (4.7) into Eq. (4.8), we observe that the delay td is exclusively determined by

the voltage Vd and TOX . Therefore, we choose MN8 as a minimum size transistor in our design.

The proposed circuit has been designed and simulated using 65 nm CMOS technology. The layout

of the CMOS part of the neuron, including signal conditioning, ReRAM read/write, and spike

generation and reset, is shown in Fig. 4.5b with the area of 14×5 µm2. ReRAMs in a crossbar array

can achieve the smallest theoretical size of 4F 2 [29], where F is the feature size. Hence, the area of

ReRAM device is negligible and not shown in Fig. 4.5b. To estimate the area comparison between

our design and capacitor based designs [7–9], an 1pF Metal-Insulator-Metal (MIM) capacitor is

placed next to our neuron. Using the top two metal layers from the same 65nm CMOS technology,

the capacitor consumes 25 × 26 µm2 in the layout, which is more than 9 times larger than our

neuron size.
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Figure 4.6: (a) Simulation results of the membrane potential u(t) (the second row) and output
spikes (the third row) versus input spikes (the first row). (b) Distribution of interspike intervals in a
neuron. For different input interspike intervals (ISIs) from 1.25 µs to 20 µ, we record the distribu-
tion of output ISIs and using an exponential fit to approximate its probability density function. The
inset is coefficient of variance (CV) with reference to an ideal Poisson (CV=1). The ISI distribu-
tion and CV show that the output spiking train follows the Poisson process. (c) The average output
ISI versus input ISI and its statistics distribution. Inset: we run 100 Monte Carlo simulations for
the distribution of the ratio between the average output firing rate (rour) and the input firing rate
(rin). (d) Average output interspike interval of the neuron under different input spike widths. The
firing rate is Firing rate = 1/Average ISI. Linear fitting is also performed to verify the linearity.
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4.2 Results and Discussion

In our simulation, Berkeley Short-channel IGFET Model (BSIM4) [86] is used for the CMOS

transistor modeling. To ensure the ReRAM could be fully reset, Vsetr and Vresetr are set to 1.3 V.

The supply voltage VDD for the circuit is 1.3 V. The detailed values of the supply and bias voltage

sources are shown in Table 4.2.

Table 4.2: Bias and supply voltage sources
Name Value
Supply voltage (VDD) 1.3 V
Setting voltage reference (Vsetr) 1.3 V
Resetting voltage reference
(Vresetr)

1.3 V

Bias voltage for PMOS (VBP) 1.0 V
Bias voltage for NMOS (VBN) 0.5 V
Voltage reference for delay unit
(Vd)

1.3 V

To show the trajectory of membrane potential evolution and its relation to input spikes, a spike

train with a rate of 100 spikes/ms is applied to the neuron. As seen in Fig. 4.6a, the membrane

potential ur(t) evolves by integrating the input spikes. Stochastic process is also added to the

evolution of the membrane potential and results in the stochasticity of the firing. We have shown

the distribution of firing probability in Fig. 4.3. When the ur(t) approaches the threshold, the spike

generation module is triggered to fire an output spike as shown in the third row of Fig. 4.6a. At the

same time, the ReRAM is reset and ready to process another input spike train. No global clock is

needed to read or write the ReRAM, leading to a fully asynchronous operation. Thus, our artificial

soma is suitable for event-based systems.

To embed the soma circuit into the stochastic neural networks, it is important for us to investigate

the output inter-spike interval (ISI) distribution. We feed the soma circuit in Fig. 4.5a with input

spike trains with a fixed pulse width of 10 ns and ISIs of 1.25 µs, 2.5 µs, 5 µs, 10 µs and 20 µs. The
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simulation duration is 50 ms, and all output spikes in 50 ms are recorded. As a result, we recorded

2826, 1583, 941, 607, and 390 spike events for each input spike train respectively. The distribution

of the output ISI is shown in Fig. 4.6b. An important observation is that the output ISIs follow

an approximately exponential distribution, coinciding with the distribution that has been reported

by Sung Hyun et al. in [87]. In addition, the inset in Fig. 4.6b shows that the coefficient of

variance (CV) of the output ISIs is close to 1. We also count the number of spike events in every

1 ms for each input spike train and run the Kolmogorov–Smirnov test (KS test) on them with the

significance level of 0.05. Table 4.3 shows the output significance (p-value) and the expected value

λ. As shown, all p-values are well above the threshold significance of 0.05, which implies that

the output spike train of the neuron is a Poisson process. Since the Poisson spike train is the input

for most spiking neural networks [9, 21, 26, 28], a ReRAM-based neuron design is perfect for the

input layers of those neural networks. We also simulate the process variation of both the ReRAM

and the CMOS transistors with 10% variation of the parameters in Table 4.1 and the Monte Carlo

models of the BSIM4 for 100 samples. The 6σ variation of the expected value and the p-value

is also shown in Table 4.3, which shows a large mismatch within the neurons. We will show in

Section 4.3 that mismatch can be filtered out by ternarization of synapses weights.

Table 4.3: KS test for spike counts of each input spiking
train.
Input ISI 1 λ (6σ variation) Significance (6σ variation)2

1.25 µs 56.52 (29.95) 0.19 (0.02)
2.5 µs 31.66 (16.78) 0.37 (0.05)

5 µs 18.82 (9.97) 0.48 (0.04)
10 µs 12.14 (6.43) 0.23 (0.01)
20 µs 7.8 (4.13) 0.13 (0.03)

1 The simulation during is 50 ms and the sampling interval
is 1 ms.

2 The threshold significance is 0.05.

We use the widely accepted rate coding scheme for neuromorphic computing [7] to examine the
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output and input relationship for the proposed circuit. With the rate coding, information is encoded

by spike rate in the network and the spike width and height do not carry any information. Fig. 4.6c

shows the average output ISI with respect to the input ISI of the ReRAM-based neuron. The pulse

width of the input spike is 10 ns and the input ISIs spread from 5 µs to 20 µs. From Fig. 4.6c, the

ReRAM-based neuron exhibits a linear transfer function with add-on noise, which is similar to the

characteristics of the Noisy Rectified Linear Units used in the deep belief network. We unitize this

feature to map the DBN to IF network and achieve near-lossless accuracy. The mapping process

is described in detail in Section 4.3. Note that the fitting curve does not pass the origin. Instead,

it has an offset because the ReRAM has a chance to set by a single input spike and there will be

no ISI for this scenario. We ran 100 Monte Carlo simulations and depict all the output ISIs in Fig.

4.6c to show the impact of process variation. We calculate the output firing rate using r = 1/ISI

for every input ISI and divide the rout rate by corresponding rin. By doing so, we obtain 600 data

samples from the Monte Carlo simulation. Because of the technology drift, the average value (µr)

and standard deviation (σr) of ratio of rout and rin are 0.122 and 0.03, respectively.

From Eq. (4.7), the CMOS process variation effect can also change the output spike-width of the

ReRAM neuron, which is the input spike width of the succeeding neuron. Note that the neuron

in the same layer can share a control and spike generation circuit (see Section 5), thus the change

of the input spike width is global to all neurons in the same layer. Fig. 4.6d depicts how the

input spike width will affect the output spike frequency. We fix the input ISI to 10 µs (i.e. fix the

input frequency to 100 kHz), and record the average output ISI with respect to different input spike

widths. Then we can calculate the output firing rate with Firing rate = 1/Average ISI . We

also perform a linear fitting for the input spike width and the output firing rate and show the fitting

curve in Fig. 4.6d. The output firing rate exhibits good linearity with the input spike width, which

proves that the firing rate variation due to input spike width can be easily compensated by tuning

the Vd of the firing neuron circuit.
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Finally, we report the power dissipation. For over 1,000 firing events, the average energy for the

ReRAM device to fire a 10 ns spike, including the energy to set and reset the ReRAM, is 2.14 pJ,

and the average power for the whole circuit is 1.289 µW.

4.3 Application and Optimization of ReRAM Neurons in Deep Belief Network

We verify that ReRAM-based neurons are suitable for stochastic spike-based in-memory machine

learning through building a deep belief network with five layers of Restricted Bolzmann Machine

(RBM), and training it on the MNIST handwriting database [74]. The training set consists of

60,000 individual handwritten digits, each labeled 0-9 for the individual 28 × 28 pixel gray scale

images. The testing set includes 10,000 individual handwritten digits.

...

Abstraction layer 
(1000 Units)

...

Associative layer 
(1000 Units)

WI-A (784×1000)

WA-S (1000×1000) WL-S (10×1000)

...

Abstraction layer 
(1000 Units)

...

Label layer 
(10 Units)

WA-A (1000×1000)

...

Input layer 
(784 Units)

Figure 4.7: Architecture of the DBN for handwritten digit recognition. The connections between
layers represent the weights of a RBM.

The DBN is comprised of an input layer of 784 visual units (corresponding to the pixels of 28 ×

28 input images), two 1000-unit “Feature Abstraction Layers” that abstract the feature of the input

data, a 10-unit “Label Layer” with units corresponding to the 10 digit-classes and a 1000-unit
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“Association Layer” that associates the extracted feature with the “Label Layer”, as shown in Fig.

4.7.
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Figure 4.8: (a) Distribution of trained weight. A large portion of the weight is close to zero,
meaning that the information carried is not very important and can be omitted. (b) Visualization of
the WI-A learned by a subset of neurons in the abstraction layer for 28× 28 images in the MNIST
data set. Each image shows the vector of weights feeding into one neuron in the first abstract
layer. (c) Ternarized weight of Fig. 4.8b. Dark area correspond to WI-A,ij = −1, light area means
WI-A,ij = 1 and grey area means WI-A,ij = 0. (d) The influence of the mismatch of neurons on
the ternarized feature. The features extracted are maintained with variation on the intensity. More
importantly, the noise remains zero after mismatch is added.
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We label the synapses weight between the input layer and the first feature abstraction layer as

“WI-A”, the weight between the first and second feature abstraction layers as “WA-A”, the weight

between the second feature abstraction layer and association layer as “WA-S”, and the weight

between the the association layer and label layer as “WL-S”.

4.3.1 Emulate the Noisy Rectified Linear Unit with the ReRAM Neuron

The noiseless IF neuron has been utilized to replace the rectified linear unit (ReLU) in the con-

volutional neural network in [37, 78–80] obtaining near-lossless accuracy. In [80], Rueckauer et

al. have reported a one-to-one correspondence between an ReLU unit and a SNN neuron. This

proves that the spike rate of the neuron is proportional to the ReLU activation. Note that due to the

absence of leakage and refractory period, the time step value of the simulation is not important as

long as it is much larger than the pulse width of the spikes.

Similarly, we leverage the ReRAM neuron for the DBN architecture shown in Fig. 4.7 by exam-

ining the relationship of the DBN using NReLU [23] and the spiking DBN. First, the output firing

rate (1/ISI) of the neuron is linearly proportional to the input firing rate, as shown in Fig. 4.6c.

Note that now the weights are ternarized and the input of the neuron is the difference between the

number of excitatory input spikes and inhibitory input spikes. Moreover, if the input is negative

(i.e. there are more inhibitory input spikes), the neuron will not fire at all. Thus, the NReLU

activation: a = max(0, x + N(0, σ(x))) resembles a firing rate approximation of an IF stochastic

neuron with no refractory period. Second, for classification tasks, only the neuron with maximum

firing rates in the output label layer is recognized as the inferred label. Thus the absolute firing rate

of each neuron is not of importance and the overall rate can be scaled by a constant factor. Finally,

it is difficult to provide the bias to each spiking neuron layer; therefore, the relative scale of the

synapse weights to each other and the firing probability of the neuron are the only parameters that
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matter. As a result, we use the following procedure to convert trained DBNs with NReLU into IF

based DBNs with device mismatch:

1. Use NReLUs for all units of the network.

2. Fix the bias to zero throughout training.

3. Perform weight ternarization and reorder (see Section 4.3.2) the trained synapses to obtain

weights in the IF based DBN.

4. Use the behavioral level model of the ReRAM neuron obtained in Eq. (4.4) and (4.6) to

replace all NReLU units in the network.

5. Use the data from Fig. 4.3b to determine the mean value µµ and µσ.

6. Use the data from Fig. 4.3b to perform one-time Gaussian sampling to determine the mis-

match (N(0, σµ) and N(0, σσ)) of the ReRAM devices.

Note that from Fig. 4.6d, the CMOS technology drift will cause the transfer function of the neuron

to change. However, the firing rate can be scaled by changing Vd. Furthermore, because the

control circuit can be shared among the neurons, the CMOS process variation is global to the

network. Therefore the accuracy will only have minor degradation due to CMOS technology drift

(see Section 4.3.3).

4.3.2 Weight Ternarization

Human and animal studies show that mammalian brains undergo massive synaptic pruning during

childhood that removes synapses under a certain threshold during puberty [88]. Inspired by this

phenomenon, we propose ternarization of the weights in our neural network. Ternarization of the
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weights is crucial to implement our design in terms of 1) overcoming the nonlinearity between

the filament growth rate and the voltage magnitude, 2) reducing the influence of overfitting and

ReRAM mismatch, and 3) reducing the complexity of the design so that we can reorder the weight

matrix to utilize the sparsity of weight matrices.

After training, Fig. 4.8a is the distribution of the trained weights in double precision. One can ob-

serve that a large portion of the weights are close to zero, meaning that the corresponding synaptic

connections are very weak and can be omitted. Therefore, we ternarize each weight to be con-

strained to {−1, 0, 1} with two thresholds tloi and thii , where i is the layer index. The original

double precision weights WI-A, WA-A, WA-S , and WL-S can be ternarized as follows:

wij,ter =


−1, if wij < tloi .

0, if tloi ≤ wij ≤ thii .

1, if wij > thii .

(4.9)

where wij,ter is the ternarized entry of the weight matrix and wij is the entry in double precision.

From Eq. (4.9) the choice of the threshold tloi and thii is a trade-off between loss of information

and sparsity of the weight matrix. Moreover, Fig. 4.8a shows that the distribution of the trained

full-precision weights is roughly symmetrical with respect to zero. As a result, we have thii =

−tloi = AtiσWi
where σWi

is the standard deviation of the weight matrix Wi and Ati is the tuning

parameter.

More importantly, the ternarization can be considered as a regularization with the threshold of At

against overfitting—weights learned from training set contain irrelevant information or “noise”.

Fig. 4.8b and Fig. 4.8c illustrate the comparison of part of the weight matrix WI-A before and after

ternarization where At = 1.6. One can see that the first abstract layer learned some information

through training as shown in Fig. 4.8b. By ternarization in Fig. 4.8c, the clear part (relevant
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information) in Fig. 4.8b is kept and normalized to {−1, 1} and the blur part (“noise”) in Fig. 4.8b

is omitted and set to zero.

Also, if we consider the mismatch of the neurons as a unknown “noise” of the network model

that will only be sampled once during initialization, the ternarization can also reduce the impact

of the mismatch. Consider a membrane potential of a neuron with the index i in the lth layer in a

simulation time step:

ulri =
∑
i,j

Wij

[
µ(rl−1j,out) +N(0, σ(rl−1j,out))

]
(4.10)

where µ(rl−1j,out) is the average firing rate of the neuron j in the (l − 1)th layer and N(0, σ(rl−1j,out)

is Gaussian noise with zero mean and variance of rl−1j,out that models the process variation (see Fig.

4.6c). Note that theN(0, σ(rl−1j,out) will be sampled only once at the network initialization. Eq. 4.10

can be reorganized as:

ulri =
∑
i,j

Wij[1 +N(0,CV(rl−1j,out))]µ(rl−1j,out) (4.11)

where CV() is the Coefficient of Variation and can be expressed as:

CV(rl−1j,out) =
σ(rl−1j,out)

µ(rl−1j,out)
=
σ(rl−1j,out)/r

l−1
j,in

µ(rl−1j,out)/r
l−1
j,in

=
σr
µr

(4.12)

where µr and σr are defined in Fig. 4.6c and rl−1j,in is the input spike rate of the neuron. Using the

results shown in Fig. 4.6c, we set CV(rl−1j ) = 0.24.

From Eq. (4.11), the mismatch of the neurons can be integrated into the corresponding columns

of the weight matrix. Therefore, due to the distinct weight value gained from the ternarization, the

pattern of the feature learned from the training dataset (see Fig. 4.8c) will not be affected by the
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mismatch. Only the intensity of features is changed. Moreover, the “noise” is set to zero during

ternarization already, thus they will remain zero when mismatch is added. This keeps overfitting

error regularized. Fig. 4.8d is an example of the feature intensity variation due to neuron mismatch.

From Fig. 4.8d, the feature pattern is unchanged and no noise due to the mismatch is added, which

indicates minor accuracy loss caused by neuron mismatch. We verify this conclusion by simulating

the behavioral level model (Eq. (4.4)) in Section 4.3.3.

Also note from Fig. 4.8c that the ternarized weight matrix is sparse. We utilize the sparsity to

reduce area and power consumption of the hardware with the extended Cuthill-McKee algorithm

proposed by Cui and Qiu [89]. This algorithm leverages the linear transformation to effectively

break down any matrices into all-zero sub-blocks. The all-zero blocks do not require hardware

resource, and thus we can save power and area consumption through them. We map the reordered

matrix to the Process Element (PE) in Chapter 5 with array size of 32×32 and 64×64, respectively.

After the reordering, the only change in the Neural Array to accommodate the matrix reorder is to

change the input and output connections of the 1T1R crossbar [89]. Table 4.4 summarizes sparsity

of the original weight matrices and the reduction of device usage in terms of the number of 1T1R

ReRAM cells used. The size of the crossbar is set to either 32 × 32 or 64 × 64. In total metrics

reordering reduces the number of ReRAM cells used by 36% and 33%, respectively.

Table 4.4: Percentage of Reduction in Device Usage (Number of ReRAM Cells Used)

Size Sparsity
1T1R Used (% of Reduction)

32× 32 64× 64
WI-A 784 k 89% 515 k (35%) 538 k (32%)
WA-A 1,000 k 89% 656 k (35%) 677 k (33%)
WA-S 1,000 k 89% 622 k (38%) 658 k (35%)
WL-S 10 k 87% 5 k (45%) 5 k (45%)
Total 2,794 k 89% 1,800 k (36%) 1,879 k (33%)
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4.3.3 Classification Accuracy

We test the spiking DBN with both the ternarized weight matrices, and the method discussed in

Section 4.3.1 for mapping DBN with NReLU to IF DBN in MATLAB. We train the single RBM

with the contrastive divergence (CD) algorithm [90]. And we train the DBN with a greedy layer-

wise method proposed by Bengio et al. in [91], which trains one RBM at a time and continues until

the last RBM is trained. The 60,000 MNIST training set [74] is used for training. We partition the

original 60,000 training set into two sets of 50,000 data points for training and 10,000 data points

for validation.

The training parameters of the network are shown in Table 4.5. To map the NReLU to the spiking

neuron, we employ the model in Eq. (4.4) and Eq. (4.6), where the parameters µµ, µσ, σµ and

σµ are obtained from Fig. 4.3b. We perform the inference using this model, where the intensity

values of the MNIST images were normalized to values between 0 and 1. For inference, we

feed the 10,000 testing set to the network to get the classification accuracy. We generate Poisson

distributed spiking trains for each image pixel, with firing rates proportional to the pixel’s intensity

value. The simulation time step is 1 ms. To verify the impact of At, we perform inference on the

validation data set with At from 1.0 to 2.0. Fig. 4.9 shows the classification error rate as a function

of At. The base line is the full precision weight network without mismatch of the neurons (σµ

and σσ are zero), which is theoretically the highest accuracy we can obtain. When At is too large,

too much information is ignored and the error rate increases because of the biased network. On

the other hand, when we reduce the value of At to lower than 1.4 the error rate will also go up.

This is because when At is too small, too many irrelevant features or noise learned by the layer

is maintained. This causes the overfitting error of the network to increase. To get the optimized

performance, we choose At = 1.6.

To show the accuracy degradation due to weight ternarization, NReLU to ReRAM mapping and
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device mismatching, we simulate on the MNIST testing set with four networks. These networks are

a NReLU network with full precision weights (base line), a NReLU network with ternary weights

(for weight ternarization), an IF network with full precision weights (for device mismatch), and an

IF network with ternary weights (for device mismatch and weight ternarization). Table 4.6 shows

the classification accuracy of the four scenarios. The performance loss caused by ternarization

is negligible—under 1%. However, due to the extra overfitting error introduced by mismatch

between ReRAM devices, the accuracy loss that directly maps the NReLU with IF neurons is

significant (over 5%). Fortunately, we can use the weight ternarization as the regularization against

the mismatch and reduce the accuracy to roughly 1% using the ternarized weight.

Table 4.5: Train Parameters
Parameters Value Parameters Value

Learning rate 0.1 Batch size 100
Number of epochs 20 Momentum 0.5
Number of neurons 3794 Number of synapses 2,794,000

Table 4.6: Classification performance on the MNIST test set of the DBN, the ternarized DBN and
the spiking DBN

Neuron model Weight Precision Accuracy (%)
NReLU Full Precision 95.86
NReLU Ternarized 95.29

IF Full Precision 90.23
IF Ternarized 94.7

One drawback of the spike based neural network is that it needs multiple simulation steps to con-

verge to its final accuracy. This leads to multiple reading of the weights from memory, low through-

put and high power consumption [37, 80]. Thus we depict the time domain accuracy curve in Fig.

4.10. We multiply µµ, σµ, σµ and σσ with a coefficient ci to make the first-order approximation

of the neuron transfer function change regarding the global input parameters, such as input pulse

voltage and pulse width. It can be seen that the global parameters of the network will have a major

impact on the convergence time.
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Figure 4.10: Time to first output spike and performance based on the first output spike. All 10,000
MNIST test examples were presented to the spiking DBN for 70 ms. We change the parameters of
the neuron globally by multiplying the µµ, σµ, σµ and σσ with a coefficient ci
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This is because when the input ISI/output ISI is high (when voltage pulse height or pulse width

is low), more input spikes are needed to activate the neuron and thus the time needed for the

neurons in the label layer to get activated increases. However, some information will be lost when

the neuron is too sensitive and cause the final accuracy to drop (see the curve with ci = 0.5).

Therefore, the global parameters of the network need careful selection to balance the accuracy and

throughput/power consumption.

The model in Eq. (4.4) will change the distribution of the parameters of the neurons with each

initialization. We utilize this method to generate 300 neuron networks and perform inference on

them to examine the impact of process variation on accuracy. We also perform the inference on full

precision networks to illustrate the robustness of the ternarized network against device mismatch.

Fig 4.11a shows the accuracy distribution of the ternarized networks. The ternarized networks

show good average accuracy (µa = 94.64%) and are very robust against process variability (σa =

0.3%). On the other hand, process variation reduces the accuracy of the full precision network to

89.6% (see Fig. 15b) and its standard deviation is 1.75%, which is much higher than that of the

ternarized network.

4.4 Conclusion

A capacitor-less stochastic neuron circuit using the change of a conductive filament to represent

the membrane potential has been designed. Using the 65nm CMOS technology node, the circuit

is 14 × 5 µm2 in size and consumes 1.28 µW on average power dissipation. The output spikes

follow the Poisson distribution and can be used in stochastic spiking networks. We propose the

Neural Array that integrates the ReRAM-based neurons with ReRAM synapses. To mitigate the

implementation complexity of analog full precision synapses and depress the error raised by device

mismatch, we use the ternary weight for the synapses.
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Figure 4.11: (a) The ternarized networks show good average accuracy (µa = 94.64%) and is very
robust with σa = 0.3%. (b) The full precision network is more influenced by the device mismatch.
The µa is degraded to 89.6% and the σa is 1.75%.

Compared to the 1T1R ReRAM memory crossbar, the Neural Array has a smaller area overhead of

0.74% and a power overhead of 13.35%. We develop a simple algorithm using only one parameter

At to ternarize the weight. The accuracy degradation, due to ternarization and mapping, is about

1%. Furthermore, we utilize the sparsity from the ternarization and reorder the weight matrices

with the extended Cuthill-McKee algorithm to reduce the device usage for the synapses. The

number of ReRAM cells used is reduced by 36% and 33%, indicating smaller area usage and

lower power consumption. The neural network is robust against the ReRAM process variation

effect. The change of transfer function of the ReRAM will only affect the converge time.
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CHAPTER 5: A SCALABLE AND RECONFIGURABLE IN-MEMORY

ARCHITECTURE FOR TERNARY DEEP SPIKING NEURAL

NETWORK WITH RERAM BASED NEURONS

1In this chapter, we introduce the Process Element (PE), a modified memory array that utilizes

the one-transistor-one-ReRAM (1T1R) based neurons and synapses to implement spiking neural

network in memory. The PE comprises one route table to store route information, one synapse

array and one neuron array with modified periphery circuit to allow the 1T1R synapses to receive

the input spikes and deliver them to 1T1R neurons for membrane potential updating. The PE

has the same scalability as the memory array with a limited circuit add-on. Based on the PE, we

propose a three-layer architecture for deep spiking neural networks. The bottom layer is built upon

the PEs with a control unit to send the spike to targeted neurons. Several PEs are connected to

communicate with each other through a local router to form the second layer of the architecture,

Process Element Matrix (PEM). All PEMs, along with memory matrices, are connected to a global

router to assemble the topmost layer of the architecture. As a result, the architecture is highly

scalable by changing the size of the PE.

To achieve full-reconfigurability, we use the address event representation (AER) handshake se-

quence [92] as the communication protocol within the architecture and design the routing scheme

that supports both intra-PEM and inter-PEM routing. Different from the programmable switch

paradigm [30], AER is a bus-based communication scheme that can be easily integrated into the

memory bus controller [92, 93]. It also provides connections between arbitrary PEs in our ar-

chitecture (the programmable switches can only connect adjacent PEs). The architecture is fully

reconfigurable by just changing the data stored in the route tables.

1This chapter was published as Lin, Jie, and Jiann-Shiun Yuan. “A scalable and reconfigurable in-memory archi-
tecture for ternary deep spiking neural network with ReRAM based neurons.” Neurocomputing 375 (2020): 102-112.
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In summary, our key contributions are:

• We employ the ReRAM based neurons as the computing components to update the mem-

brane potential and integrate the neurons within a ReRAM memory array of synapses and

route tables and propose the PE—a spiking-neural-network-in-memory array. To the au-

thor’s best knowledge, this is the first attempt to merge all the computing and information of

the SNN into a memory array.

• We further propose a reconfigurable and scalable architecture based on the PE and present an

AER routing scheme to accommodate different network topologies. We extend AER spike

communication from a flat architecture to a fractal hierarchy which includes the intra-PEM

routing and the inter-PEM routing. This extension is critical in scaling up SNN systems

towards levels of modern DNN models.

• To address the design challenges in ReRAM based architectures, which we discuss in detail

in Sec. 5.1.3, we train our SNN model with ternary weights and show the robustness of

ternary SNN under device variation and random setup process.

• We evaluate our architecture with different spiking network topologies (spiking Resnet (SRes-

net) and spiking Squeezenet (SSqueez)) on two datasets (MNIST, CIFAR-10) and compare

our architecture’s performance with a digital/analog neuron baseline.

The rest of the chapter is organized as follows. Section II introduces the related background and

the challenges of our work. Section III describes the design of the PE with modification of the pe-

ripheral circuits. Section IV proposes the PEM architecture design, especially the intra-PEM and

inter-PEM communication. Section V uses case studies of two data sets (MNIST and CIFAR-10)

on two spiking neural network examples to analyze the accuracy, overhead, and energy consump-

tion of the architecture. Finally, Section VI draws the conclusion.
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5.1 Preliminaries and Challenges

5.1.1 Deep Spiking Neural Network

In SNNs, the input is encoded as spike trains and involve spike-based (0/1) information transfer

between neurons. At a particular instant, each spike is propagated through the layers of the net-

work while the neurons accumulate the spikes over time until the membrane potential exceeds the

threshold, causing the neuron to fire. In [37,94], the authors map pre-trained deep neural networks

(DNNs) to SNNs to perform low energy cognitive tasks. Also, in [94], Rueckauer et al. realize

some auxiliary layers in DSNN, such as Batch Normalization (BN), Max pooling and Softmax,

which dramatically reduces the gap of accuracy between DNN and DSNN. Another advantage of

the direct mapping method is that it utilizes a simple IF neuron model, which can be implemented

with ReRAM based neurons. In our work, two deep SNN topologies are evaluated—a very deep

Resnet [95] and a condensed Squeezenet [96].

5.1.2 ReRAM Based Neuron

The basic device structure and the underlying physics involved for the ReRAM relies upon the

formation and rupture of the nanoscale conductive oxygen vacancies [75]. For the neuron, the

neuron membrane potential can be emulated with the growth of conductive filament in a ReRAM

[48,49]. We define the membrane potential u(t) with the filament length u(t) = gmax−g(t), where

gmax is the maximum gap distance and g(t) is the gap distance in real time. Moreover, positive

feedback between u(t) and temperature causes an abrupt setting of ReRAM devices [28] and can

be used to imitate the integrate-and-fire model. As shown in Fig. 5.1a, following successive

applications of the voltage pulses on the top electrode (TE), u(t) (the red pillar) progressively

increases, enabling the temporal integration of spikes in the ReRAM device. When u(t) exceeds
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the threshold, the ReRAM based neuron is “firing”, and then a reset voltage will be applied to

the bottom electrode to reset the ReRAM to the initial condition. We redraw Fig. 4.6a here as

Fig. 5.1b to show the functionality of the ReRAM based artificial neuron. The second row shows

the evolution of the artificial membrane potential with the input spikes. When the u(t) exceeds

the threshold, the filament length will increase abruptly and is detected by the spiking circuit.

Thus a voltage spike (in the third row) will be generated and injected into the on-chip network.

The activation function in Eq. (4.4) and Eq. (4.5) can be approximated with a binary stochastic

neurons (BSN) [97] with the activation function

BSN(a) = 1z < sigm(a) (5.1)

where 1x is the indicator function on the truth value of x and z ∼ U [0, 1], and sigm(x) is the

Sigmoid function. Therefore, we use the BSNs to model the stochastic behavior of the ReRAM

neurons.
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Figure 5.1: (a) A demonstration of integrating, firing and resetting of ReRAM based neuron. (b)
Simulation results of the membrane potential u(t) (the second row) and output spikes (the third
row) versus input spikes (the first row).
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5.1.3 Design Challenges

Compared with the analog and digital neurons, some challenges exist in the ReRAM based neu-

ron design, such as the nonlinear response [48], large process variation [26, 48] and stochas-

tic setup process [28, 48, 49]. Also, limited bit levels of ReRAM [98] hinder the precision of

ReRAM synapses. Therefore, incorporating high precision of data and weights in SNNs be-

comes the main challenge for NVM implementation. Researchers in the field of machine learning

have demonstrated that ternary networks achieve satisfying recognition accuracy on ImageNet

dataset [99, 100]. Ternary networks use ternary weights w ∈ {wn, 0, wp} when processing the for-

ward propagation. It provides a promising solution to break the high precision limits in NVM SNN

accelerator design. From [48], the impact of process variation is negligible when ternary weight

is utilized. Also, the stochasticity can be modeled with device parameters using Eq. (4.4) and Eq.

(4.5) and added into the IF function during training to reduce the accuracy loss [48]. Therefore,

it will contribute a lot to energy efficiency if achieving a well-trained network model with ternary

level weight parameters and feature maps.

5.2 Process Element (PE) Design

The ternary SNNs can to address the design challenges of ReRAM-based neurons. Moreover,

the low precision 2-bit weight can simplify the hardware design and reduce overhead, e.g. the

ADC/DACs [20, 101] and pulse-width-modulation (PWM) circuity [47] with high overhead can

be removed. Based on these observations, we propose the PE, a novel ReRAM-memory array

implementing spiking neurons, ternary synapses and routing information that connects the neurons

to form the spiking network. The fundamental building block of the PE is the 1T1R cell. Fig. 5.2

shows the configuration of a 1T1R cell that functions as a synapse (up), and a neuron (down). For

the synapse implementation, a pulse voltage is applied to the gate of the selection transistor of the
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1T1R cell (also the word line (WL) of the memory cell). The presynaptic spike level Vpre is set

to VDD/2 to save power and avoid to write the ReRAMs accidentally. Vspike is the voltage pulse

generated by the spike generator (see Sec. 5.3.2.1) that turns on the select transistor for a duration

equaling the pulse width to develop or rapture the conductive filament and to reset the ReRAM.

The neuron cell is a modified version of the synapse cell which allows a reverse voltage pulse on

the ReRAM electrodes under the control of signal RESET to perform the reset of the ReRAM.

In Fig. 5.2, Vsetr and Vresetr are the two voltage sources to develop the conducting filament and

reset the ReRAM after firing. The resistance of the ReRAM is always positive. Therefore, we use

a similar manner as in [47] that employs a reversed voltage pulse to partially reset the ReRAM

device to mimic membrane depression causing by a negative postsynaptic signal. Vinhr is the

voltage to perform depression of the neuron by partially resetting the ReRAM. Signals pos and

neg are the sign of the postsynaptic signals. The post-synaptic pulse Vpost controls the select

transistor of the ReRAM cell. The additional switches in the 1T1R neuron cell will not introduce

the much overhead to our architecture because the number of neurons is much less (over two orders

of magnitudes) than the number of synapses.
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Figure 5.2: Signal of WL, SL and BL of the synapse (up) and neuron (down).

Fig. 5.3 shows the detailed design of the PE. In Fig. 5.3, the whole array is divided into three
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groups—two 2D arrays for the route table and the synapses respectively, and one 1D array for the

neurons. The route table array and synapses array share the same WL, and all three groups share

the same word line (WL) and WorD line Decoder (WDD). One neuron in the PE is corresponding

to one row in the route table that stores the destination of the event address it generates and a

column in the synapse array which is the fan in of the neuron. The neural network can be easily

scaled up by just enlarging the size of the array linearly. We use two ReRAM synapses to map one

ternary weight. As a result, the ratio between the number of 1T1R synapses and the number of

1T1R neurons is 2R where R is the row of the PE.
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Figure 5.3: Schematic of the PE. The memory array is divided into three groups: route table array,
synapses array, and neurons array. They have the same WL, BL and SL structures as the traditional
memory array, and therefore, the same scalability as the memory array.

The PE receives the input spikes by connecting the selection line (SL) to voltage source Vpre, as

shown in Fig. 5.2, and sent spikes to the WL through the bus multiplexer. A signal condition-

ing circuitry is connected to the bit line (BL) of the 1T1R synapses that amplifies the level of the

post-synaptic spike to VDD to drive the selection transistors of 1T1R neurons through the bus mul-

tiplexer. Thus, in our design, the WL of the synapses emulates the axons of the sending neurons,
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which transfers pre-synaptic spikes while the BL is the dendrites of the receiving neurons which

transfers the post-synaptic spikes. Therefore, in our later discussion, we call the WL address of

the synapses “axon ID”. Every column of 1T1R synapses composes the fan-in of a 1T1R neuron

with a physical interconnection between them to maximize the throughput. In case that the fan-

in of some neurons, such as the ones in the fully-connected layer of the neural network, exceeds

the crossbar size, we employ a time-multiplexing (TM) scheme to allow the neuron to receive the

spikes from multiple BLs of the synapses array. When the fan-in exceeds the limit, the neuron can

receive the spikes from the next three synapse columns through the time multiplexer, making the

maximum fan-in 4× of the physical fan-in.

With the development of conductive filament of the ReRAM, the 1T1R neuron can integrate the

input spikes until it reaches the firing threshold. When the neuron fires, the input spike will trigger

the sense amplifier (SA) to output an “1”. Note that this signal is used to control the readout of

the firing ReRAM and initiate the handshake communication only. Development of conductive

filament and reset of ReRAM is controlled by Vspike and the spike generator. The fire reg will store

this signal and toggle the bus multiplexer to connect the WL of the 1T1R neuron to the WDD.

Sequentially, the resistance state of ReRAMs in the neurons vector is read out through the memory

read circuit to identify the firing neuron’s ID. We add an extra tristate buffer, through which the

route table array is connected to the local bus that connects adjacent PEs to the router.

5.3 Reconfigurable in-Memory Architecture for Deep Spiking Neural Network

The topmost level among the three reconfigurable hierarchies of the in-memory architecture is

shown in Fig. 5.4a. As shown in 5.4a, the MEMs are memory matrices that only have data stor-

age capability to store the input AER packets and the global route table. Their micro-architecture

and circuit designs are similar to the design in [102]. The process element matrices (PEMs) com-
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prise of matrices of the PE in Fig. 5.3 and their associative periphery circuits. The MEMs and

PEMs communicate with each other through a global router, and a global route table encodes the

addresses. A global arbiter is employed to resolve contention for channel access.
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Figure 5.4: (a) Topmost level of the in-memory architecture. (b) Routing hierarchy.

5.3.1 Routing Scheme

AER protocol was introduced as an efficient means for point-to-point (P2P) communication of

neural spike events between arrays of neurons, in which addresses of neurons are communicated

over a shared digital bus, whenever they fire [93]. AER supports event-driven operation, which is

the major advantage of SNNs over DNNs, through a four-phase handshake sequence. Moreover,

AER is scalable and can be used to build large-scale network-on-chip [92, 93].

The routing scheme of our architecture comprises intra-PEM routing, which transfers address

events within the same PEM and the inter-PEM routing, which transfers the address events through-

out the whole architecture. As shown in 5.4b, the address events are partitioned in a hierarchically

optimal manner. The local routing in each PE is performed in parallel. Each local router recognizes

the event by a local address, unique to the presynaptic neuron and routes the event to parents (the

global router), children and/or siblings (the local routers of other PEMs) as needed, based on the
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connectivity at that level of spatial scale. It utilizes the local route table as a low latency address

look-up to identify the next destinations of the event. When an event arrives the local arbiter, the

local router will decide whether the addresses are physically located within this PEM. If the recip-

ients are in this PEM, the addresses are sent to the WDD to finish this routing. If the destination is

in a different PEM, the targeting information is placed on the global bus, and the global route table

will be looked up to find out the target PEMs.

Table 5.1 shows the layout of the AER packet. In our design, every firing neuron’s destination is

encoded through the local route table in the PE and then sent to a local router. At this moment, the

AER packet is 21 bits, including the 1-bit header that indicates whether the event is routing within

the same PEM or send to the global bus to other PEMs, the 10-bit fan-out information and the

10-bit axon ID. The fan-out is the number of target neurons that the address event will be sent to,

and axon ID is the address of the targeting WL. Henceforth, the total number of routable neuron

in each PEM is 210 = 1024 with the max fan-out of 1024. If the header indicating local/global

routing is “1”, the event will be sent to the global router, and another 6-bit header (PEM ID) is

added to the packet through the global route table to identify the ID of the PEMs that connected to

the global bus. As a result, the total routable neurons in our architecture are 64K. Finally, a parity

bit is added to the packet. The total number-of-bit of the AER packet is 28.

Table 5.1: AER packet layout
Bits Description
0 Parity bit
1-6 PEM ID
7 Header of local/global routing
8-9 Time multiplexing config
10-17 Fan out
18-19 PE ID
20-27 Axon ID
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5.3.2 PEM-Configurable and Scalable Process Element Matrix

A PEM is composed of multiple PEs tied together to the local router and the arbiter tree. The

design goal for PEM is to support both storage and computation with a minimum area overhead.

To achieve this goal, we maximize the reuse of peripheral circuits for both storage and computation.

Fig. 5.5 includes four PEs, each of which has PE with a 256 × 21 route table array, a 256 × 512

synapses array and a 256× 1 neurons array. A predecoder of conventional in-memory architecture

[103] is used for PE selection. One spike generator (Fig. 5.5 1 ) is shared by all PEs that converts

the incoming address event into a voltage pulse and generates the voltage pulse to reset the neurons.

A PE Control Unit (PECU) (Fig. 5.5 2 ) provides operation and input/output control. The local

router (Fig. 5.5 3 ) supports complex interconnect between neurons within the same PEM and

between different PEMs. The data communication follows the four-phase handshake protocol of

AER, which is shown in Fig. 5.5 4 . We also use the handshake signals Req and Ack to control

the spike generator and finite state machine (FSM) in the PECU and the local router. To prevent

the packet loss when multiple neurons want to send a spike event simultaneously, we employ an

arbiter tree to set up a queuing mechanism [92] to allow neurons to wait for their turn.

5.3.2.1 Spike Generator

In order to convert the digital address event signal to the voltage pulse that can set and reset the

ReRAM, we utilize the circuit we proposed in our previous works [48,49] as the spike generator, as

shown in Fig. 5.5 1 . The spike generator is triggered by the enable circuity under two conditions.

When signals Req and Ack are both high, which means the targeting synapses have been selected,

the spike generator sends a pre-synaptic pulse to this synapse. When signals Reset and Ack are

both high, which means the neuron is ready to be reset, the spike generator sends a post-synaptic

pulse to the neuron to reset the ReRAM.
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Figure 5.5: Left: Process Element Matrix structure. Right: functional blocks in PEM and the
four-phase handshake sequence. ¬ Spike generator to convert the spike events into voltage pulses;
 Process element control unit that controls the operation of the PE; ® Local router that routes
within the PE and between PEs in the PEM; ¯ The four-phase sequence.

The specific functionality of control signals is shown in the following section. The enable tree

will generate a rising edge to trigger the D-FF. A delay unit generates a delayed reset signal to

the D-FF. Hence, a voltage pulse is produced by this feedback loop comprising the D-FF and the

delay unit. The pulse width of the output spike is determined by a voltage controlled delay line

(VCLD). Since the energy of the pulse train is proportional to the pulse width, less wide pulses are

needed to set the ReRAM than narrow pulses. Thus, by tuning the pulse width, we can set up the

number of pulses that can trigger the artificial neuron, which effectively set up the threshold of the

neuron. We employ rate coding scheme in our architecture for its simplicity and straightforward

circuit implementation.

5.3.2.2 PE Control Unit

Fig. 5.5 2 shows the PECU design. We reuse the counter that heavily operated to reduce the

overhead. The PECU controls the input/output and spike generation of the PE. Also, the PECU

89



controls the set/reset of the ReRAM based neuron. Moreover, the PECU conducts the four-phase

handshake sequence shown in Fig. 5.5 4 . Fig. 5.6 shows the simplified finite state machine

(FSM) chart of the PECU. In Fig. 5.6, when receiving the input AER packet (the signal Req is

high), the down-counter will generate the targeting columns of the synapses and send the values

to the selection line decoder (SLD), according to the fan out bits in the packets. Thus the targeting

synapses will be connected to Vpre, as shown in Fig. 5.2. Also, one axon register will store the

information of the axon ID bits and send them to the word line decoder (WDD). If all the synapses

are selected (at this time the counter = 0), the PECU will set the signal Ack high and trigger the

spiking generating circuit. If the time multiplexing (TM) is needed, the TM bits will also be sent

to a counter to control the TM switches.

IDLE

Req = 0, Fire = 0

Req = 1, Counter != 0

Req = 1

Counter = 0 Req = 0

Fire = 1 Fire = 1, SA = 0

SA = 1, Req = 1
Ack = 1

Down Counting,
SLD =  Counter
WDD = Axon ID

Up counting,
WDD = Counter

Ack = 1 Route Tab = counter

Figure 5.6: Simplified FSM chart of the PECU. The loop on the left side is the working procedure
of the PECU to fetch the input AER packet and send the voltage spike to the recipient neurons.
The loop on the right side shows the output process that the PECU detects a neuron is firing and
generates an output AER packet and sends it to the local router.

When one of the neurons fires, the Fire signal is high. PECU will start an up counter and begin

to read out the ReRAMs in the neurons array. Then, the corresponding row in the route table will

be read out and sent to the local router. Then, the PECU will set Req to 1 to start the receiv-

ing sequence of the subsequent neurons. Finally, the PECU will reset the Req signal to end the
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handshake.

5.3.2.3 The Router

As shown in Fig. 5.5 3 , the local router allows the neuron to send the spike event within the PEM

and between PEMs. The local router has two AER input ports for internal routing (intra-PEM)

and external routing (inter-PEM), respectively. Also, the local router has four pairs of handshake

signals (Req and Ack) to fulfill the handshake sequence. To minimize the delay, we set that the

intra-PEM routing has higher priority than inter-PEM routing, i.e., the internal routing request will

be handled first.

Fig. 5.7 shows the handshake signal flow in all routing situations, while the number denotes the

order of the phases. For the internal routing mode, the route first exams the Header of local/global

routing (H bit). If the address event is going to the same PEM, then the AER packet is parsed, and

the PE ID is sent to the predecoder and the other parts of the packets are forward to the PECU of

the recipient PE. Also, the Req signal is sent to the PECU FSM to start the handshake sequence.

If the packet is sent to other PEMs, the packet is sent to the global bus, and a 6-bit PEM ID will

be added to the packet through the global route table. For external routing, the AER will be parsed

directly and sent to the according predecoder and PECU. The design of the global router is the

same as the external part of the local router, except that the PEM ID will be extracted instead of

PE ID.

5.4 Results and Discussion

In this Section, we present the results of various experiments that demonstrate the benefits and the

effectiveness of the proposed architecture in exploring the design space of 1T1R ReRAM arrays
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for deep SNN applications.
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numbers indicate the phase of the handshake protocol. The router also pass the handshake signals
(Req and Ack) to modules that are communicating.

We convert the input images into spike trains with rate code. For every input image, the input

activation is sampled as Poisson spike trains with rates proportional to the pixel intensities [104].

5.4.1 Ternarization of SNNs

In [48], the design challenges of the ReRAM-based neurons are addressed by the ternarization of

the spiking deep believe networks (SDBN). In this section, we extend the results of [48] by ternar-

izing spiking Resnet and spiking Squeezenet to facilitate mapping the SNNs to our architecture.

We construct the SNN model by direct mapping the pre-trained DNNs to SNNs [94]. We use the

following procedure to convert trained DNNs into IF based SNNs: 1) Use Binary Stochastic Neu-

rons (BSNs) [97] for all units of the network to mimic the stochastic setup of the ReRAM shown in
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Eq. (4.4) and (4.5), 2) Fix the bias to zero throughout training, 3) Implement special SNN layers,

such as Batch Normalization, Max pooling and Softmax, and 4) Perform weight ternarization and

normalization to train synapses and obtain weights in the DSNN.

5.4.1.1 Weight Ternarization

We ternarize each weight to {−1, 0, 1} with two thresholds: tloi and thii . The choice of the tloi

and the thii is a trade-off between loss of information and sparsity of the weight matrix [100].

To optimize the tloi and thii , C. Zhu et al. [100] solved the optimization problem of minimizing

L2 distance between the float-point weight matrix W i and the ternary weight matrix W i
ter. The

resulting thresholds are thii = −tloi = 0.7
n

∑
j w

i
j , where n is the total number of elements in theW i.

However, most of the network models are over-parameterized [105], leading to overly conservative

threshold choices. In [105], S. Han et al. pruned the connections between layers during training

and reduced the number of weights by 9× while keeping the original accuracy. Therefore, it is

feasible to optimize the W i
ter with a small portion of entries in W i. As a result, we propose the

new threshold equation as

thii = −tloi =
0.7

n

∑
j

wij
∣∣
wi

j>wth
(5.2)

where wth is the threshold below which the entry is pruned. We perform an experiment of SResnet

on CIFAR-10 dataset to fine-tune wth. We compare our results with the one using C. Zhu et al.’s

threshold equation [100] in Table 5.2.

Table 5.2: Influence of Pruning on Ternarization
With Pruning (Ours) Without Pruning [100]

Weight Sparsity 11% 49%
Accuracy 92.11% 88.53%
Connections 0.48 M 2.12 M
Neurons 13.8 k 13.8 k
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From Table 5.2, with the pruning, we can increase the weight sparsity to nearly 5×, which signifi-

cantly reduces the number of computation. Moreover, the accuracy is improved by 3.6% using the

pruning because that overfitting is suppressed by pruning the connections.

5.4.1.2 Threshold Normalization

In the DSNNs, the firing rate of the neurons is restricted to the range of [0, rmax], whereas BSNs

in DNNs do not have such constraints. Weight normalization avoids the approximation errors due

to too low or too high firing rates [37,94]. However, with the ternarization, the weights are limited

to {-1, 0, 1}, which is not normalizable. Thus we multiply the threshold with the normalization

constant to effectively normalize the weights. To show the effectiveness of threshold normalization,

we exam the activation function of the IF neuron after weight normalization:

si =


1, if 1

an

∑
j sjwi,j < Vth.

0, if others.
(5.3)

where si, sj are the spikes generated in the input and output layers, respectively, and an is the

normalization coefficient. Eq. (5.3) is equivalent to

si =


1, if

∑
j sjwi,j < anVth.

0, if others.
(5.4)

which normalizes the weight wi,j by an.
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5.4.1.3 Implementation of Auxiliary Layers

The auxiliary layers of the SNNs, such as Batch Normalization, Max pooling, and Softmax, play

critical roles to increase the accuracy of the SNN. The implementations of those special layers are

proposed in recent literature [94,106]. We modify those designs to realize the special layers for the

ternary SNNs. The Batch Normalization (BN) layer transforms the inputs to achieve zero-mean

and unit variance through the relation BN [x] = γ
σ
(x − µ) + β where mean µ, variance σ, and

the two learned parameters β and γ are all obtained during training [107]. The transformation

can be integrated into the weights after training, thereby eliminating the need to compute the

normalization repeatedly [94]. Specifically, we set ŵi,j = γ
σ
wi,j for the scaling part of BN, and add

a constant b̂i = β − γ
σ
µ or account for the offset part of BN, which can be presented with an input

spike train with constant rate.

In [94], Rueckauer et al. implement the spiking max pooling with a pooling gate that is param-

eterized by the history of the input neurons, which will raise the memory and computation cost.

To reduce the memory and computation usage, in our design, we employ the max pooling gate

proposed by Orchard et al. [106] that judges the neurons fires first having the maximal response to

the stimulus in that sampling time step. This judgment is based on two main observations. Firstly,

a stronger stimulus will generate spike trains at a higher rate. Secondly, the stronger the neuron’s

input weights are correlated with the spatial pattern of incoming spikes, the faster the membrane

potential will increase, leading to faster firing. Thus the max pooling gate will only propagate the

spikes from the neurons that fire first during one sampling time step.

To implement the Softmax layer, we use counters instead of ReRAMs to integrate the input spikes

and compute the Softmax on each counter’s output. Usually, the Softmax layer only appeared as

the last layer of the neural network, and the number of neurons in that layer is limited (which is

equal to the number of classification categories). Thus we can assume that the overhead of inserting
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of spiking Softmax layers is insignificant.

5.4.1.4 Accuracy

We evaluate the performance on MNIST [108] and CIFAR-10 [109] datasets. The SNNs and DNNs

were implemented in pytorch [110]. On the MNIST dataset, both DNN Resnet and Squeezenet

generate the validation accuracy of 99.6%. And the mapped DSNN’s validation accuracy achieves

99.6% for Resnet and 99.5% for Squeezenet (see Fig. 5.8a). The difference between DNN and

DSNN is negligible because the accuracy of deep network models saturates for MNIST dataset. On

the CIFAR-10 dataset, the baselines for DNN Resnet and Squeezenet are trained with validation

accuracy of 92.6% and 83.5%, respectively. Our converted DSNN yields the accuracy of 92.1%

for the SResnet and 82.8% for the SSqueeze. The accuracy losses of the DNN-DSNN mapping

are 0.5% and 0.7%, respectively (see Fig. 5.8b). It is noticeable that the Squeezenet converges

faster than the Resnet, indicating that the Squeezenet has a lower latency because of its relatively

shallower architecture than that of the Resnet. We also check the influence of the process variation

of the ReRAM device. We add Gaussian process variation with 0 mean and 20% standard deviation

to every ReRAM device. The results are listed and compared with the ideal device in Table 5.3.

From Table 5.3, the influence of the process variation is suppressed by the low precision weights,

which coincides the results in [48].

5.4.2 Architecture Evaluation Methodology

Our architecture consists of ReRAM arrays and CMOS peripherals. We build a cross-layer evalu-

ation platform to simulate our architecture. For a ReRAM device, the Verilog-A model based on

the equations in [75] is employed for the SPICE simulation with key parameters shown in Table

4.1.
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Figure 5.8: (a) Validation accuracy of SResnet (solid line) and SSqueeze (dashed line) on MNIST
dataset versus the number of time steps. (b) Validation accuracy of SResnet (solid line) and
SSqueez (dashed line) on CIFAR-10 dataset versus the number of time steps.

Table 5.3: Summary of Number of Operations
Network Dataset Process Variation Accuracy
SResnet MNIST 0% 99.6%
SResnet MNIST 20% 99.4%
SResnet CIFAR-10 0% 92.1%
SResnet CIFAR-10 20% 91.5%
SSqueeze MNIST 0% 99.5%
SSqueeze MNIST 20% 99.5%
SSqueeze CIFAR-10 0% 82.8%
SSqueeze CIFAR-10 20% 81.9%

The peripheral circuit consisting of PECUs and local routers is implemented at the Register Trans-

fer Level in Verilog HDL and mapped to 45nm technology with NCSU FreePDKTM and Synopsys

Design Compiler. Synopsys Power Compiler is used to estimate the energy consumption. The

analog part of the circuit such as the spike generator is simulated using HSPICE and laid out using

Cadence Virtuoso Layout Suite. The ReRAM array is modeled using an in-house modified ver-

sion of NVSim [111] that adds area and power of additional blocks, including tristate buffer, time

multiplexer, signal conditioning circuit, and fire register, to the original model. Table 5.4 lists the
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simulation parameters and the implementation metrics for our architecture. In Table 5.5, we also

summarize the area, power, and delay of the peripheral circuits, including PECUs, local roaters,

arbiters in the arbiter tree, tri-state buffers, and spike generators, in a single PEM.

Table 5.4: Parameters and Metrics
Parameters Value Parameters Value
Feature Size 45 nm VDD 1.6 V
No. of PEMs 64 PEM Size 4
No. of Neurons 64 k No. of Synapses 32 M
Route Table Capacity 1.34 Mbit Maximum Fan-in 1024
Gate Count 100288 Area 1.21 mm2

Frequency 100 MHz Power 59 mW

Table 5.5: Design Parameters of the Peripheral Circuit of the PEM
Circuit Name Quantity Area (µm2) Power (µW) Delay (ns)
PECUs 4 635 32.5 0.33
Arbiters 7 198 20 0.58
Router 1 1340 129 0.69
Tri-state Buffers 4 119 2.63 0.13
Spike Generator 1 128 46 0.98

We do not consider the training phase of the SNN and the energy expended in programming the

synapses arrays, because the training is done infrequently at the cloud or computer clusters. On

the other hand, the testing or evaluation phase tends to be involved much more frequently. Hence,

we evaluate our architecture for the more critical testing phase. Our benchmark comprises the

SResnet and SSqueeze we obtained for the MNIST dataset and the CIFAR-10 dataset. The SNNs

were trained using the ternarized synapses accommodate the design challenges of ReRAM-based

neurons. Table 5.6 shows the benchmark details.

In the evaluated SNNs, except for the input neurons and the counters in the Softmax layer, each

neuron has 21-bit route information that is stored in the route table. Thus the total size of the route

table is n× 21 bit, where n is the number of neurons in the SNN, excluding the neurons in the first
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layer and the counters that constitute the Softmax layer. We summarize the size of route tables of

the evaluated SNNs in Table 5.7. The size of the global route table is m × 6 bit, where m is the

number of the PEMs used in the SNN. It is easy to observe that the size of the global route table is

negligible compared to the local route table, thereby contributing little area and power overhead.

Table 5.6: Benchmark Details
Dataset SNN Type Layers Neurons Synapses
MNIST SResnet 18 8.5 k 0.32 M
MNIST SSqueeze 10 4.2 k 0.18 M

CIFAR-10 SResnet 18 13.8 k 0.48 M
CIFAR-10 SSqueeze 10 6.2 k 0.31 M

Table 5.7: Route Table Size
Dataset SNN Type Route table size
MNIST SResnet 167 kbit
MNIST SSqueeze 85.6 kbit

CIFAR-10 SResnet 285.6 kbit
CIFAR-10 SSqueeze 126.4 kbit

5.4.3 Performance Evaluation

We compare our architecture with several counterparts. The baseline is a CPU-only configuration

simulated using gem5 [112]. The parameters of the CPU is shown in Table 5.8 for simulation. We

also evaluate the Prime—an in-memory computing solution [41], with the parameters shown in

Table 5.9. The architecture in [41] is no optimized to operate SNNs. As a result, we replace the

Sigmoid activation function in [41] with a digital neuron proposed in [103] in the simulation.

Fig. 5.9 compares the energy savings and performance speedups obtained per classification for our

architecture over the CPU baseline and Prime on our benchmarks.

The energy saving and the process speed is normalized to the baseline.
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Table 5.8: Configuration of CPU
Parts Parameters

Processor 4 cores; Out-of-order
L1 cache 64 KB; Private 4-way
L2 cache 256 KB ; Private 8-way
L3 cache 24 MB ; Shared

Main Memory 32 GB; 533 MHz IO bus

Table 5.9: Configuration of Prime
Parts Parameters

Crossbar size 256× 256
Speed 100 MHz

Number of SAs 8 per crossbar
Activation Func Integrate-and-Fire

1 2 2 2

1 8 5 3
1 4 8 0

1 6 5 6

4 5 5 5 6 2 4 6 8 6 2 0
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Figure 5.9: Energy Saving and Performance Speedup comparison of our architecture versus CPU
baseline and Prime in-memory computing architecture per classification.

As shown in Fig. 5.9a, our architecture provides significant energy savings between 1222× and

1853× (three orders of magnitude improvement). Our architecture also shows over 3× energy

improvement of in-memory computing counterparts. For the speed performance, the benefit is

between 791× to 1120× and over two times of the Prime. Hence, our architecture efficiently

accelerates both network models.
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5.4.4 Overhead Evaluation

On the overhead evaluation, we do not consider the connected memory matrix. The ratio of MEM

and PEM in the system is the trade-off between computing power and energy consumption. We use

the original settings in NVSim [111] for a ReRAM array as our baseline. We model the baseline

ReRAM array with the same number of 1T1R cells as our PE. As the cost of enabling in-memory

SNN computing and spike event communication, the PEMs incurs 42% area overhead and 127%

power overhead. Fig. 5.10 shows the breakdown of the area and power overhead in PEM. The area

and power overhead due to computation (involving PECU and spike generator) is 20% and 48.1%,

respectively. On the other hand, the blocks that control the spike event communication introduce

21% area overhead and 77% power overhead.

Power OverheadArea Overhead

Base
Area

42%

0.04%

 PEU
 Arbiter
 Router
 Spike Gen
 Others

0.15%
25.39%

26.27%

48.15%

 

 

127%

Base
Power

1.53%
10.01%

28.8%

31.78%

27.88%

 PEU
 Arbiter
 Router
 Spike Gen
 Others

 

 

Figure 5.10: Left: the area overhead breakdown. Right: the power overhead breakdown

To evaluate the area and power overhead of the AER routing scheme, we change the baseline

configuration to incorporate the operation of the synapses and neurons in the PE, as well as the

PECU and spike generator that support the handshake protocol and provide the physical spike

signal. The overhead comprises the area and power consumption of the 1T1R cells composing the

routing table, the arbiter tree, and the local and global router. We show the overhead breakdown

in Fig. 5.11. The total area and power overhead related to AER addressing is 12% and 48%,

respectively. Extra 1T1R cells that form the route table introduce 15.96% of the area overhead and

5.66% of the power overhead. On the other hand, the control logic, including the router and the
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arbiter, contributes to 84.03% of the area overhead and 94.34% of the power overhead, respectively.
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Figure 5.11: Left: the area overhead breakdown. Right:the power overhead breakdown
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Figure 5.12: Change of overhead with the size of neurons vector

5.4.5 Comparison Between Varying Synapses Arrays

Fig. 5.12 shows the change in area and power overhead when the size of Synapses array is 64, 256

and 1024 while the number of neurons in one PE is kept the same. From Fig. 5.12, the overhead

will increase when the size of the vector decreases owing to the increasing amount of the periphery

circuit. However, keep raising the synapses array will lead to low utilization of the synapses on-
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chip, particularly for the sparse connected CNN. For example, the average synapse utilization of a

64 synapse array for the CIFAR-10 CNN application is around 40%. This number will decrease to

less than 3% when the synapse array size increases to 1024.

5.5 Conclusion

In this chapter, we propose the PE, a memory array based spiking neural network implementation.

We develop a reconfigurable hierarchy that efficiently implements SNNs of different topologies us-

ing the address event representation protocol. Additionally, our evaluation on MNIST and CIFAR-

10 datasets for SResnet and SSquessze shows that our architecture is a promising architecture to

implement SNNs in-memory and providing good results on performance improvement and energy

saving with reasonable overhead.
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CHAPTER 6: SUMMARY AND OUTLOOK

As described in this dissertation, by leveraging the potential of emerging device, we designed

ultra-low power circuits and architecture for neuromorphic computing systems. TFET devices has

a much steeper slope than the CMOS counterparts in the subthreshold region. Thus, It can be used

to design high performance circuit working under low supply voltage to increase the energy effi-

cient of the circuit. Also, the intrinsic physics of ReRAM technologies with biological primitives

provides new opportunities to develop efficient neuromorphic systems.

In chapter 2, we design a TFET based SAR ADC that can work at the supply voltage under 0.3 V

with resolution of over 5 bits. This result is already pass the technology limitation of the CMOS

ADCS by a large margin. The ADC can achieve an ENOB of 5.7 to 5.3 with input frequency

ranging from 1 to 8 MHz, and The ENOB variation in temperature ranging from -55◦C to 125◦C

is 24%. Under the VDD of 0.1V, energy is 0.1 pJ with 31.5% variation with temperature ranging

from -55◦C to 125◦C.

To increase the resolution of the ADC to meet the requirement of the neuromorphic system, we

change the structure of the ADC and add noise shaping into the signal path. We present the

noise-shaped SAR ADC in Chapter 3, with the optimized 2nd noise shaping and the higher SS

of TFETs, the ENOB is effectively increase and the power consumption is mainly limited by noise

performance. ADC achieves ENOB of 11.67 bits and Schreier FOM of 178.7 dB, one of the highest

among recent works.

The next circuit that is critical in the neuromorphic system is the artificial neuron that performs

integrate-and-fire as the calculation unit in the system. By explore the physical feature of the

ReRAM, we design the capacitor-less neuron using ReRAM in chapter 4. Using the 65nm CMOS

technology node, the circuit is 14 × 5 µm2 in size and consumes 1.28 µW on average power
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dissipation. The output spikes follow the Poisson distribution and can be used in stochastic spiking

networks. We use the ternary weight for the synapses. Compared to the 1T1R ReRAM memory

crossbar, the Neural Array has a smaller area overhead of 0.74% and a power overhead of 13.35%.

Finally, we propose the low power neuromorphic architecture in chapter 5. We propose the process

element (PE) to integrate ReRAM based neurons and synapses. We develop a reconfigurable hi-

erarchy that efficiently implements SNNs of different topologies using the address event represen-

tation protocol. Simulation results show that our architecture provides significant energy savings

between 1222× and 1853× (three orders of magnitude improvement). Our architecture also shows

over 3× energy improvement of in-memory computing counterparts. For the speed performance,

the benefit is between 791× to 1120× and over two times of the Prime. Hence, our architecture

efficiently accelerates both network models.
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