438 research outputs found

    A Comprehensive Analysis of Swarming-based Live Streaming to Leverage Client Heterogeneity

    Full text link
    Due to missing IP multicast support on an Internet scale, over-the-top media streams are delivered with the help of overlays as used by content delivery networks and their peer-to-peer (P2P) extensions. In this context, mesh/pull-based swarming plays an important role either as pure streaming approach or in combination with tree/push mechanisms. However, the impact of realistic client populations with heterogeneous resources is not yet fully understood. In this technical report, we contribute to closing this gap by mathematically analysing the most basic scheduling mechanisms latest deadline first (LDF) and earliest deadline first (EDF) in a continuous time Markov chain framework and combining them into a simple, yet powerful, mixed strategy to leverage inherent differences in client resources. The main contributions are twofold: (1) a mathematical framework for swarming on random graphs is proposed with a focus on LDF and EDF strategies in heterogeneous scenarios; (2) a mixed strategy, named SchedMix, is proposed that leverages peer heterogeneity. The proposed strategy, SchedMix is shown to outperform the other two strategies using different abstractions: a mean-field theoretic analysis of buffer probabilities, simulations of a stochastic model on random graphs, and a full-stack implementation of a P2P streaming system.Comment: Technical report and supplementary material to http://ieeexplore.ieee.org/document/7497234

    Modeling and Evaluation of Multisource Streaming Strategies in P2P VoD Systems

    Get PDF
    In recent years, multimedia content distribution has largely been moved to the Internet, inducing broadcasters, operators and service providers to upgrade with large expenses their infrastructures. In this context, streaming solutions that rely on user devices such as set-top boxes (STBs) to offload dedicated streaming servers are particularly appropriate. In these systems, contents are usually replicated and scattered over the network established by STBs placed at users' home, and the video-on-demand (VoD) service is provisioned through streaming sessions established among neighboring STBs following a Peer-to-Peer fashion. Up to now the majority of research works have focused on the design and optimization of content replicas mechanisms to minimize server costs. The optimization of replicas mechanisms has been typically performed either considering very crude system performance indicators or analyzing asymptotic behavior. In this work, instead, we propose an analytical model that complements previous works providing fairly accurate predictions of system performance (i.e., blocking probability). Our model turns out to be a highly scalable, flexible, and extensible tool that may be helpful both for designers and developers to efficiently predict the effect of system design choices in large scale STB-VoD system

    A New Stable Peer-to-Peer Protocol with Non-persistent Peers

    Full text link
    Recent studies have suggested that the stability of peer-to-peer networks may rely on persistent peers, who dwell on the network after they obtain the entire file. In the absence of such peers, one piece becomes extremely rare in the network, which leads to instability. Technological developments, however, are poised to reduce the incidence of persistent peers, giving rise to a need for a protocol that guarantees stability with non-persistent peers. We propose a novel peer-to-peer protocol, the group suppression protocol, to ensure the stability of peer-to-peer networks under the scenario that all the peers adopt non-persistent behavior. Using a suitable Lyapunov potential function, the group suppression protocol is proven to be stable when the file is broken into two pieces, and detailed experiments demonstrate the stability of the protocol for arbitrary number of pieces. We define and simulate a decentralized version of this protocol for practical applications. Straightforward incorporation of the group suppression protocol into BitTorrent while retaining most of BitTorrent's core mechanisms is also presented. Subsequent simulations show that under certain assumptions, BitTorrent with the official protocol cannot escape from the missing piece syndrome, but BitTorrent with group suppression does.Comment: There are only a couple of minor changes in this version. Simulation tool is specified this time. Some repetitive figures are remove

    Modeling and Control of Rare Segments in BitTorrent with Epidemic Dynamics

    Full text link
    Despite its existing incentives for leecher cooperation, BitTorrent file sharing fundamentally relies on the presence of seeder peers. Seeder peers essentially operate outside the BitTorrent incentives, with two caveats: slow downlinks lead to increased numbers of "temporary" seeders (who left their console, but will terminate their seeder role when they return), and the copyright liability boon that file segmentation offers for permanent seeders. Using a simple epidemic model for a two-segment BitTorrent swarm, we focus on the BitTorrent rule to disseminate the (locally) rarest segments first. With our model, we show that the rarest-segment first rule minimizes transition time to seeder (complete file acquisition) and equalizes the segment populations in steady-state. We discuss how alternative dissemination rules may {\em beneficially increase} file acquisition times causing leechers to remain in the system longer (particularly as temporary seeders). The result is that leechers are further enticed to cooperate. This eliminates the threat of extinction of rare segments which is prevented by the needed presence of permanent seeders. Our model allows us to study the corresponding trade-offs between performance improvement, load on permanent seeders, and content availability, which we leave for future work. Finally, interpreting the two-segment model as one involving a rare segment and a "lumped" segment representing the rest, we study a model that jointly considers control of rare segments and different uplinks causing "choking," where high-uplink peers will not engage in certain transactions with low-uplink peers.Comment: 18 pages, 6 figures, A shorter version of this paper that did not include the N-segment lumped model was presented in May 2011 at IEEE ICC, Kyot

    Contributions to High-Throughput Computing Based on the Peer-to-Peer Paradigm

    Get PDF
    XII, 116 p.This dissertation focuses on High Throughput Computing (HTC) systems and how to build a working HTC system using Peer-to-Peer (P2P) technologies. The traditional HTC systems, designed to process the largest possible number of tasks per unit of time, revolve around a central node that implements a queue used to store and manage submitted tasks. This central node limits the scalability and fault tolerance of the HTC system. A usual solution involves the utilization of replicas of the master node that can replace it. This solution is, however, limited by the number of replicas used. In this thesis, we propose an alternative solution that follows the P2P philosophy: a completely distributed system in which all worker nodes participate in the scheduling tasks, and with a physically distributed task queue implemented on top of a P2P storage system. The fault tolerance and scalability of this proposal is, therefore, limited only by the number of nodes in the system. The proper operation and scalability of our proposal have been validated through experimentation with a real system. The data availability provided by Cassandra, the P2P data management framework used in our proposal, is analysed by means of several stochastic models. These models can be used to make predictions about the availability of any Cassandra deployment, as well as to select the best possible con guration of any Cassandra system. In order to validate the proposed models, an experimentation with real Cassandra clusters is made, showing that our models are good descriptors of Cassandra's availability. Finally, we propose a set of scheduling policies that try to solve a common problem of HTC systems: re-execution of tasks due to a failure in the node where the task was running, without additional resource misspending. In order to reduce the number of re-executions, our proposals try to nd good ts between the reliability of nodes and the estimated length of each task. An extensive simulation-based experimentation shows that our policies are capable of reducing the number of re-executions, improving system performance and utilization of nodes

    Distributed Synchronization Under Data Churn

    Get PDF
    Nowadays an increasing number of applications need to maintain local copies of remote data sources to provide services to their users. Because of the dynamic nature of the sources, an application has to synchronize its copies with remote sources constantly to provide reliable services. Instead of push-based synchronization, we focus on pull-based strategy because it doesn’t require source cooperation and has been widely adopted by existing systems. The scalability of the pull-based synchronization comes at the expense of increased inconsistency of the copied content. We model this system under non-Poisson update/refresh processes and obtain sample-path averages of various metrics of staleness cost, generalizing previous results and studying its statistical properties. Computing staleness requires knowledge of the inter-update distribution at the source, which can only be estimated through blind sampling – periodic downloads and comparison against previous copies. We show that all previous approaches are biased unless the observation rate tends to infinity or the update process is Poisson. To overcome these issues, we propose four new algorithms that achieve various levels of consistency, which depend on the amount of temporal information revealed by the source and capabilities of the download process. Then we focus on applying freshness to P2P replication systems. We extend our results to several more difficult algorithms – cascaded replication, cooperative caching, and redundant querying from the clients. Surprisingly, we discover that optimal cooperation involves just a single peer and that redundant querying can hurt the ability of the system to handle load (i.e., may lead to lower scalability)

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor
    corecore