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ABSTRACT

Nowadays an increasing number of applications need to maintain local copies

of remote data sources to provide services to their users. Because of the dynamic

nature of the sources, an application has to synchronize its copies with remote sources

constantly to provide reliable services. Instead of push-based synchronization, we

focus on pull-based strategy because it doesn’t require source cooperation and has

been widely adopted by existing systems.

The scalability of the pull-based synchronization comes at the expense of in-

creased inconsistency of the copied content. We model this system under non-Poisson

update/refresh processes and obtain sample-path averages of various metrics of stal-

eness cost, generalizing previous results and studying its statistical properties.

Computing staleness requires knowledge of the inter-update distribution at the

source, which can only be estimated through blind sampling – periodic downloads

and comparison against previous copies. We show that all previous approaches are

biased unless the observation rate tends to infinity or the update process is Poisson.

To overcome these issues, we propose four new algorithms that achieve various levels

of consistency, which depend on the amount of temporal information revealed by the

source and capabilities of the download process

Then we focus on applying freshness to P2P replication systems. We extend

our results to several more difficult algorithms – cascaded replication, cooperative

caching, and redundant querying from the clients. Surprisingly, we discover that

optimal cooperation involves just a single peer and that redundant querying can

hurt the ability of the system to handle load (i.e., may lead to lower scalability).

ii



DEDICATION

my family

iii



ACKNOWLEDGEMENTS

I sincerely devote my utmost appreciation to my advisor Professor Dmitri Logu-

inov, without whom this dissertation is not possible. With his fully supporting and

and invaluable guidance, I learn the skills to produce solid and meaningful results,

write technical papers, and give impressive presentations. I am always surprised by

his creativity and inspired by his insightful discussion. His great passion for solving

problem, strong demand for excellence, and persistent attention for detail will make

a numerous impact on me for the rest of career life.

I would like to thank Dr. Riccardo Bettati, Dr. James Caverlee, and Dr.

Narasimha Reddy for serving on my committee and providing insightful feedback

on my research. In addition, I am also indebted to Professor Daren B.H. Cline for

his efforts to make our results more rigorous and solid. I receive enormous help from

anonymous reviewers of IEEE INFOCOM, IEEE/ACM Transactions on Networking.

I extend my thanks to them for assisting me to improve this work.

Furthermore, I sincerely appreciate my friends and fellow students here who make

my life here more enjoyable. I owe gratitude to Xiaoming, Zhongmei, Tanzir, Zain,

Yi and all other former and current IRL members, who provide help when it was

needed.

Last, but not least, I gratefully acknowledge my family members for their constant

support and encouragement. I express my special gratitude to my parents, who take

care of my son Ethan during hard times, and my wife Yi, who has been my best

supporter and helper.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Staleness Modeling . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Update Measurement . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 P2P Application . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. ON SAMPLE-PATH STALENESS IN LAZY DATA REPLICATION* . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Staleness Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Updates and Synchronization . . . . . . . . . . . . . . . . . . 12
2.2.3 Cost of Staleness . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Relationship to Prior Work . . . . . . . . . . . . . . . . . . . 15

2.3 Age Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Main Framework . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Staleness Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Age Independence . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



2.4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Source Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Update Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Stochastic Dominance . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Penalty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 Phase-Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1 Real-Life Update Processes . . . . . . . . . . . . . . . . . . . 43
2.6.2 Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.3 Aggregation (Many-to-One) . . . . . . . . . . . . . . . . . . . 46
2.6.4 Load-Balancing (One-to-Many) . . . . . . . . . . . . . . . . . 50
2.6.5 Many-to-Many . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3. TEMPORAL UPDATE DYNAMICS UNDER BLIND SAMPLING . . . . 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Age Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Modeling M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Quantifying Bias in M1 . . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 Achieving Consistency in M1 . . . . . . . . . . . . . . . . . . . 68
3.4.5 Method M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Comparison Sampling: Constant Intervals . . . . . . . . . . . . . . . 73
3.5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.2 Method M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.3 Method M4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.4 Undoing Bias in M3 . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Comparison Sampling: Random Intervals . . . . . . . . . . . . . . . . 82
3.6.1 Straightforward Approaches . . . . . . . . . . . . . . . . . . . 82
3.6.2 Method M6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.7.1 Dataset and Poisson Assumption . . . . . . . . . . . . . . . . 87
3.7.2 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . 89

vi



4. STOCHASTIC MODELS OF PULL-BASED DATA REPLICATION IN
P2P SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Single-Hop Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 System Model and Notation . . . . . . . . . . . . . . . . . . . 97
4.3.2 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.3 Freshness Probability . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Best Download Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Cascaded Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.2 Freshness Residuals . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.3 Cascaded Freshness . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.5 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Cooperative Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2 Simple Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6.3 Convergence of Freshness . . . . . . . . . . . . . . . . . . . . . 119
4.6.4 Full System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Redundant Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.7.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 126

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

vii



LIST OF FIGURES

FIGURE Page

2.1 System model (arrows signify the direction of information requests). . 11

2.2 Process notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Penalty lags and process age. . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Examination of (2.36) under µ = 2. . . . . . . . . . . . . . . . . . . . 29

2.5 Visualizing the proof of Theorem 5. . . . . . . . . . . . . . . . . . . . 30

2.6 Examination of (2.41) under λ = µ = 2. . . . . . . . . . . . . . . . . 32

2.7 Examination of (2.42) under w(x) = x, µ = 2. . . . . . . . . . . . . . 33

2.8 Examination of (2.56) and (2.57) under µ = 2. . . . . . . . . . . . . . 37

2.9 George W. Bush page dynamics. . . . . . . . . . . . . . . . . . . . . . 45

2.10 Application of staleness models to the update process of George W.
Bush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Update/sample process notation. . . . . . . . . . . . . . . . . . . . . 56

3.2 Method taxonomy (shaded boxes indicate Poisson-only techniques). . 58

3.3 Illustration of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Verification of (3.5) under Pareto U (µ = 2). . . . . . . . . . . . . . . 61

3.5 Simulation results of M1 under exponential S (λ = 1, µ = 2). . . . . 64

3.6 Tail sandwich of M1 under Pareto updates and constant S (µ = 2). . 67

3.7 Verification of (3.30) under Pareto updates and λ = 1. . . . . . . . . 69

3.8 Performance of M2 under Pareto U and constant S (µ = 2, λ = 100). 71

3.9 Average relative error of ζ(T ) of M2 under Pareto U and exponential
S (µ = 2,m = 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



3.10 Comparison sampling in M3 with constant intervals of size ∆. . . . . 75

3.11 Pitfalls of M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 Verification of (3.45) under Pareto U (µ = 2). . . . . . . . . . . . . . 80

3.13 Illustration of G-M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.14 Bias of G-M4 with Pareto updates (µ = 2, λ = 1). . . . . . . . . . . . 84

3.15 Simulations of M6 under Pareto updates (h = 0.05, µ = 2, λ = 1). . . 87

3.16 Inter-update delay distribution. . . . . . . . . . . . . . . . . . . . . . 87

3.17 Pages with exponential updates. . . . . . . . . . . . . . . . . . . . . 88

3.18 Optimal choice of methods. . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 System model. Arrows represent pull-based requests for information. 97

4.2 Illustration of age and other variables. . . . . . . . . . . . . . . . . . 98

4.3 Simulation results of (4.8) under µ = 2. . . . . . . . . . . . . . . . . . 101

4.4 Ordering of freshness under different families of distributions. . . . . . 103

4.5 Cascaded replication at depth two. . . . . . . . . . . . . . . . . . . . 105

4.6 The age and residual of V in process ϕ(t). . . . . . . . . . . . . . . . 107

4.7 Visualizing the proof of Lemma 7. . . . . . . . . . . . . . . . . . . . . 107

4.8 Residual distribution GV (x) under Pareto U (α = 3, β = 1) and ex-
ponential D (λ = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Processes ϕi−1(t) and ϕi(t) in cascaded replication. . . . . . . . . . . 113

4.10 Cascaded freshness with exponential D and λ = µ = 2. . . . . . . . . 115

4.11 Cache server number and service rate under cascaded caching (expo-
nential U with µ = 2 and 1− ϵ = 0.7). . . . . . . . . . . . . . . . . . 116

4.12 Cooperative replication. . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.13 Effect of k and ν in cooperative replication (µ = λ = 1,m = 10).
Exponential U and C. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



4.14 Effect of m on service rate R (ϵ = 0.5, µ = 1, B = 10). All distribu-
tions are exponential. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.15 Redundant querying with exponential D. . . . . . . . . . . . . . . . . 123

4.16 Redundant querying with k = 3. . . . . . . . . . . . . . . . . . . . . 125

x



LIST OF TABLES

TABLE Page

3.1 Convergence of Both ∆-Consistent Meth-
ods under Pareto U (µ = 2, λ = 1) . . . . . . . . . . . . . . . . . . . . 82

3.2 Top 10 most frequently modified Wikipedia articles . . . . . . . . . . 89

3.3 Method comparison using κ(T ) (λ = 0.5, T = 105) . . . . . . . . . . . 90

3.4 Method comparison using w(T ) (λ = 0.5, T = 105) . . . . . . . . . . 91

4.1 Optimal Service Rate Comparison Between Cooperative and Non-
Cooperative Replication . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Improvement From Redundant Querying Compared to Non-Redundant125

xi



1. INTRODUCTION

1.1 Overview

Nowadays an increasing number of applications need to maintain local copies of

remote data sources to provide services to their users. Because of the dynamic na-

ture of the sources, an application has to synchronize its copies with remote sources

constantly to provide reliable services. The synchronization strategy can be broadly

classified as push-based policy and pull-based policy. In push-based synchronization,

the source is allowed to inform its copies whenever it detects important information

changes. While appropriate for certain systems with a few machines, this strategy

has difficulty to deal with large scale applications in real life, due either either to

source noncooperation or the source difficulty of maintaining large number of copies.

Instead, pull-based synchronization strategy, which is known to improve both scala-

bility and availability, has been widely adopted in the current Internet (e.g., HTTP,

DNS, network monitoring, web caching, web crawling, RSS feeds, stock-ticker aggre-

gators, certain types of CDNs, sensor networks).

The scalability of the pull-based synchronization comes at the expense of in-

creased inconsistency of the copied content [52, 108]. From the perspective of system

designer, the objective is to minimize the system inconsistency cost given limited

network resources (or minimize the resource usage given fixed inconsistency cost).

To achieve the objective, we need to formally define inconsistency cost, which leads

to our first work.

Our first work is to propose a general framework to define the inconsistency cost.

We first consider a system with a single source and a single replica. In existing

studies, the update of a source was usually modeled as a Poisson process [7, 8, 15,

1



14, 20, 29, 31, 34, 40, 49, 53, 58, 61, 65, 66, 84, 95, 106] and the refresh events

were renewal process with either constant or exponential cycle length. While certain

measurement results [15, 66] verified the correctness of the model, other measurement

studies [67, 7, 37, 63] showed that the Poisson model is not universally applicable.

Thus existing models and results are no longer applicable for general update and

refresh patterns.

Our second work is to measure the update distribution of a source, which is a

prerequisite to compute inconsistency cost. Again, existing works [7, 17, 44, 61] all

assume Poisson update, which means that the inter-update delays {Ui}∞i=1 follow

exponential distribution FU(x) = 1− e−µx. Under this assumption, the only variable

unknown is the rate µ, which makes the estimation easier. For general update pro-

cess, the problem becomes challenging because the measurement need to know the

distribution of {Ui}∞i=1 in addition to its mean value.

Our last work is to apply the knowledge obtained above to study the perfor-

mance of distributed systems such as P2P replication and DNS. To deal with various

complicated applications in real world, we need to develop basic modules, which is

tractable and easily understandable. Then we can extend the proposed modules to

more complicated scenarios.

1.2 Contributions

The contribution of this work can be classified to three folds.

1.2.1 Staleness Modeling

Consider a single source driven by an update process NU and a single replica

with the corresponding download process ND, which is independent of NU . We

propose a general framework for modeling staleness under arbitrary stochastic pro-

cesses (NU , ND), in contrast to prior work that has only considered Poisson cases

2



[7], [8], [14], [15], [17], [20], [31], [34], [40], [49], [53], [59], [61], [65], [66], [84], [95],

[106]. Since staleness age and various penalties derived from it are usually defined

in terms of sample-path averages [14], [15], [17], [20], [31], [34], [40], [59], [65], [66],

[84], [95], [106], questions arise about their existence and possible variation across

multiple realizations of the system. We address this issue by identifying the weakest

set of conditions for which the distribution of staleness age exists and converges to

a deterministic limit.

Armed with these results, we model interaction between the age processes of

(NU , ND). For staleness to be a function of inter-update delays, we discover that

sample-path ages of both processes, examined at the same random time QT , must

be asymptotically independent. Interestingly, this condition does not automatically

follow from independence of NU and ND, their stationarity, ergodicity, or even all

three constraints combined. Instead, we show that it translates into a form of ASTA

(Arrivals See Time Averages) [62], where the download process ND must observe the

sample-path distribution of update age.

Under the condition of age-independence, we next derive the distribution of time

by which the replica trails the source, the fraction of consumers that encounter a

stale copy, the average number of missing updates from the replica at query time,

and the general staleness cost under all suitable penalty functions w(x). Our results

involve simple closed-form expressions that are functions of limiting age distributions

of both processes.

We also analyze conditions under which ND produces provably optimal penalty

for a given download rate. We show that penalty reduces if and only if inter-refresh

delays become stochastically larger in second order. This leads to constant syn-

chronization delays being optimal under all NU and w(x). This, however, presents

problems in satisfying ASTA and creates a possibility of worst-case (i.e., 100%) stal-

3



eness due to phase-lock between the source and the replica. To this end, we discuss

broad requirements for ensuring that ND avoids these drawbacks while remaining

optimal.

Finally, we consider the practical aspects of staleness, including experimenta-

tion with Wikipedia page updates, error analysis of previous Poisson models, es-

timation of search-engine bandwidth requirements, and generalization to multiple

sources/replicas.

1.2.2 Update Measurement

We formalize blind update sampling using a framework in which both NU and

NS are general point processes. We then consider a simplified problem where the

source provides last-modification timestamps for each download. We develop the

necessary tools for tackling the more interesting cases that follow, build general

intuition, consider conditions under which provably consistent estimation is possible,

and explain the pitfalls of existing methods under non-Poisson updates.

Armed with these results, we next relax the availability of last-modified times-

tamps at the source. For situations where constant Si is acceptable, we show that

unbiased estimators developed earlier in the paper can be easily adapted to this

environment and then suggest avenues for reducing the amount of numerical compu-

tation in the model, all of which forms our third contribution. We finish the paper by

considering random Si and arrive at our last contribution, which is a novel method

that can accurately reconstruct the update distribution under arbitrary FU(x) and

mildly constrained FS(x).

At last, we evaluate the Poisson update assumption and compare our methods

on the Wikipedia dataset. We show that Poisson updates assumption hardly holds

because it requires not only the inter-update delays to be exponentially distributed
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but also independency between delays. Then we compare the accuracy of our meth-

ods use the top 10 most frequently modified articles in our dataset, from which we

conclude the optimal methods to use in different scenarios.

1.2.3 P2P Application

Based on the results on the freshness probability p, we analyze cascaded synchro-

nization, where replicas receive content from other replicas along a fixed multi-hop

path from the source. A common arrangement covered by this model is a b-way

replication tree, which limits the source to b concurrent downloads, but keeps client-

scalability arbitrarily high depending on the depth of the tree. Assuming independent

operation among the replicas, we derive a recursive model that provides freshness at

each level i. Our results show that in certain cases p decays exponentially fast as

a function of the depth, suggesting an interesting coupling between system size and

staleness.

Next we propose a model of cooperative caching, in which m replicas form a single

layer, in which each participant can synchronize not only with the source, but also

k other replicas. For a target p, the goal is to determine the optimal (m, k) that

maximizes the service rate of the entire system. The main caveat of this model is

that it takes into account bandwidth constraints at the source and each replica. We

show that making k or m too large is detrimental to performance; instead, each

parameter has a unique optimal value that achieves the highest service rate, which

can be 2− 7 times larger than under non-cooperative replication.

Finally we examine a scenario called redundant querying, in which consumers

have access to multiple independent caches. Issuing parallel queries to k replicas out

of the m available, the hope is to improve freshness by selecting the most up-to-date

copy of the source. We first show that freshness in this case can be computed using

5



the original update process and a superposition of download processes from each

of the contacted replicas. However, taking bandwidth into account, this analysis

also leads to a surprising conclusion that redundant querying with k ≥ 2 sometimes

produces lower performance than non-redundant.
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2. ON SAMPLE-PATH STALENESS IN LAZY DATA REPLICATION*

2.1 Introduction

With the massive growth of the Internet and deployment of large-scale distributed

applications, mankind faces new challenges in acquiring, processing, and maintaining

vast amounts of data. In response to this flood of information, companies deploy

cloud-based solutions designed to provide replicated and distributed support to the

skyrocketing storage and processing demand of their users.

One interesting problem in these applications is the highly-dynamic nature of

content, especially when perfect synchronization of sources, replicas, intermediate

caches, and various computation is impossible. In fact, many large-scale distributed

systems (e.g., airline reservations, online banking, web search engines, social net-

works) operate under constant data churn and may never see consistent snapshots

of the entire network. As a result, these applications may hold and/or manipulate a

mixture of objects that existed at the source at different times t in the past. This

leads to questions about staleness, synchronization costs, and techniques for deciding

optimal refresh policies.

In traditional databases, the source opens outbound communication with the

replicas whenever it detects important changes. This enables push-based operation

that actively expires stale content and broadcasts notifications into the system. Even

under multi-hop replication, staleness lags in these systems are described by simple

models that can be reduced to convolutions of single-hop notification delays. In

*Reprinted with permission from “On Sample-Path Staleness in Lazy Data Replication” by
Xiaoyong Li, Daren Cline, and Dmitri Loguinov, 2016, IEEE/ACM Transactions on Networking,
Copyright by IEEE 2016.

7



other cases, however, scalability and administrative autonomy require that sources

operate independently and provide information only based on explicit request, espe-

cially when they are unable to track their replicas or adopt modifications to existing

protocols.

This pull-based replication (also called optimistic or lazy) improves both scal-

ability of the service and availability of the data, but at the expense of increased

age of manipulated content [52], [108]. This model of operation has enjoyed ubiq-

uitous deployment in the current Internet (e.g., HTTP, DNS, network monitoring,

web caching, RSS feeds, stock-ticker aggregators, certain types of CDNs, sensor net-

works); however, it still poses many fundamental modeling challenges. Our goal is

to study them in this paper.

2.1.1 Motivation and Objectives

Suppose a replica is a system whose goal is to synchronize against information

sources, apply certain processing to downloaded content, and serve results to data

consumers. One challenge of this architecture is that sources not only require pull-

based operation, but also lack the ability to predict future updates, which makes

real-time estimates of remaining object lifetime (i.e., TTL) unavailable to the replica.

As information evolves at the source, which we call data churn, the replica may

become stale and provide responses to that do not reflect the true state of the system.

In such cases, we assume that user satisfaction and system performance are directly

rated to the amount of time by which the replica is lagging behind the source. To

convert time units into cost, suppose the application applies some weight function

w(x) to the age of stale content to determine the penalty associated with a particular

refresh policy and data-churn process. Then, the goal of the system is to optimize

the expectation of penalty observed by a stream of arriving customers.
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This problem has been considered in the context of web systems [7], [8], [14], [15],

[17], [20], [31], [34], [40], [49], [53], [59], [61], [65], [66], [84], [95], [106]; however, ana-

lytical results have predominantly assumed a Poisson update process at the source,

with function w(x) limited to either 1 or x. However, real systems driven by human

behavior often require more complex families of processes (e.g., with heavy-tailed

inter-update distributions, non-stationary dynamics, and slowly decaying correla-

tion). Similarly, user sensitivity to outdated material may experience rapid increases

for small x and eventual saturation for larger x, in which case other weight functions

might be more appropriate. Since application performance under general update

processes and wider classes of w(x) is currently open, we aim to fill this void below.

2.1.2 Contributions

Consider a single source driven by an update process NU and a single replica

with the corresponding download process ND, which is independent of NU . Our first

contribution is to propose a general framework for modeling staleness under arbitrary

stochastic processes (NU , ND). Since staleness age and various penalties derived

from it are usually defined in terms of sample-path averages [14], [15], [17], [20], [31],

[34], [40], [59], [65], [66], [84], [95], [106], questions arise about their existence and

possible variation across multiple realizations of the system. We address this issue

by identifying the weakest set of conditions for which the distribution of staleness

age exists and converges to a deterministic limit.

Armed with these results, our second contribution is to model interaction between

the age processes of (NU , ND). For staleness to be a function of inter-update delays,

we discover that sample-path ages of both processes, examined at the same random

time QT , must be asymptotically independent. Interestingly, this condition does not

automatically follow from independence of NU and ND, their stationarity, ergodicity,
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or even all three constraints combined. Instead, we show that it translates into a

form of ASTA (Arrivals See Time Averages) [62], where the download process ND

must observe the sample-path distribution of update age.

Under the condition of age-independence, our third contribution is to derive the

distribution of time by which the replica trails the source, the fraction of consumers

that encounter a stale copy, the average number of missing updates from the replica at

query time, and the general staleness cost under all suitable penalty functions w(x).

Our results involve simple closed-form expressions that are functions of limiting age

distributions of both processes.

Our fourth contribution is to analyze conditions under which ND produces prov-

ably optimal penalty for a given download rate. We show that penalty reduces if

and only if inter-refresh delays become stochastically larger in second order. This

leads to constant synchronization delays being optimal under all NU and w(x). This,

however, presents problems in satisfying ASTA and creates a possibility of worst-case

(i.e., 100%) staleness due to phase-lock between the source and the replica. To this

end, we discuss broad requirements for ensuring that ND avoids these drawbacks

while remaining optimal.

We finish the paper with our last contribution that considers the practical aspects

of staleness, including experimentation with Wikipedia page updates, error analysis

of previous Poisson models, estimation of search-engine bandwidth requirements, and

generalization to multiple sources/replicas.

2.2 Staleness Formulation

We start by explaining the underlying assumptions on the system, defining the

various processes that determine information flow, and specifying the metrics of

interest.
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Figure 2.1: System model (arrows signify the direction of information requests).

2.2.1 System Operation

We assume a model of distributed data generation, replication, and consumption

shown in Fig. 2.1. During normal system operation, sources sustain random updates

in response to external action (e.g., new posts on Facebook, traffic congestion in

Google maps) or possibly some internal computation (e.g., MapReduce [28] indexing

with periodic writes to disk). In either case, each update represents certain non-

negligible information that manipulates the current state of the source.

Replicas operate independently of the sources and perform one of the two general

functions shown in the figure – many-to-one aggregation in part (a) and one-to-many

replication in (b). The former case arises when the replica executes certain processing

on multiple objects to provide the consumer with results that cannot be obtained

otherwise. These applications include search engines, data-centric computing, and

various web front-ends that cache queries against back-end databases. The purpose of

the latter case is to handle failover during source crashes and/or ensure scalable load

distribution under heavy customer demand. Applications in this category include

CDNs, large websites, data centers (e.g., Amazon EC2), and various distributed file

systems.

The final element of Fig. 2.1 is the consumer, which sends a stream of requests
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Figure 2.2: Process notation.

that represent either queries for information or attempts to recover the most-recent

state of the source after it has crashed.

2.2.2 Updates and Synchronization

We next model interaction between a single source and a single replica, which is

a prerequisite to understanding system performance. Suppose the source undergoes

updates at random times 0 = u1 < u2 < . . . and define NU(t) = max{i : ui ≤ t} to

be a stochastic process that counts the number of updates in [0, t]. When referring

to the entire process, rather than its value at some point, we omit t and write simply

NU .

For the replica, denote its random download (synchronization) instances by 0 =

d1 < d2 < . . . and the corresponding point process by ND(t) = max{k : dk ≤ t}. This

formulation neglects processing delays and treats all events as instantaneous. We

additionally assume that both processes are simple and independent. Now, suppose

the inter-update delays of NU are given by a random process {Ui}∞i=1 and inter-

download cycles of ND by {Dk}∞k=1, which are illustrated in Fig. 2.2. Each of these

sequences may be of fairly general nature, e.g., correlated and/or non-stationary.
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2.2.3 Cost of Staleness

To understand the penalty of outdated content, supposeM(t) = NU(t)−NU(dND(t))

counts the number of updates missing from the replica at time t (e.g., in Fig. 2.2,

M(t) = 2). This is a discrete-state process that increments for each update and

resets to zero for each synchronization.

Definition 1. A replica is called stale at time t if M(t) > 0. Otherwise, it is called

fresh.

From the consumer’s perspective, stale material reduces user satisfaction and

lowers system performance, which needs to be translated into a cost metric that can

be expressed via some known parameters of the system. The most basic penalty is the

probability that the replica is stale at the time of request, i.e., P (M(t) > 0), which

determines how often users see outdated information and/or fail to fully restore

a crashed source. The second obvious metric is the expected number of missing

updates E[M(t)], which measures the amount of lost information during a crash

and estimates the difficulty in recreating it from the most recent checkpoint. This

penalty is also important for Internet archiving applications that aim to capture

every snapshot of the source [50] and situations when larger M(t) may imply higher

information divergence between the replica and the source.

More sophisticated cases are also possible. Suppose the source runs some com-

putation, with updates representing certain intermediate states that are written to

disk. A crash at time t requires computation to be restarted, which means that the

penalty is determined not by M(t), but rather by the duration of the computation

that was lost due to staleness. Services that charge per CPU time-unit (e.g., Amazon

EC2) may want to optimize against this metric rather than E[M(t)]. Furthermore,

if the difficulty of recovering each update from other storage is proportional to the
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delay since the update was made, then staleness cost may be based on the combined

lag of all missing updates at time t.

Definition 2. For a stale replica at time t, define lags L1(t) > L2(t) > . . . > LM(t)(t)

to be backward delays to each unseen update, i.e, Li(t) = t− uNU (t)−M(t)+i.

This concept is illustrated in Fig. 2.3(a) for the first two lags. To keep the model

general and cover the various options already seen in the literature [7], [8], [14], [15],

we assume that the consumer is sensitive to either just lag L1(t), i.e., how long the

source has been stale at time t, or the entire collection of lags {L1(t), . . . , LM(t)(t)},

i.e., how long each uncaptured update has been stale. Since it is usually difficult to

predict the value of information freshness to each customer, one requires a mapping

from staleness lags to actual cost, which we assume is given by some non-negative

weight function w(x).

Definition 3. At time t, the source penalty is given by the weight of the delay since

the replica was fresh last time:

η(t) =


w(L1(t)) M(t) > 0

0 otherwise

, (2.1)

while the update penalty is given by the aggregate weight of all staleness lags:

ρ(t) =


∑M(t)

i=1 w(Li(t)) M(t) > 0

0 otherwise

. (2.2)

For example, w(x) = 1 produces the first two metrics discussed above, i.e.,

P (M(t) > 0) via E[η(t)] and E[M(t)] via E[ρ(t)]. Both (2.1) and (2.2) are ran-

dom variables, which suggests that system performance should be assessed by their
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average values. But as neither NU nor ND is assumed to be stationary, the expected

penalty requires additional elaboration. Instead of considering E[η(t)] and E[ρ(t)],

which may depend on time t, it is more natural to replace them with sample-path

averages [15]:

η̄ = lim
T→∞

1

T

∫ T

0

η(t)dt and ρ̄ = lim
T→∞

1

T

∫ T

0

ρ(t)dt, (2.3)

where consumers are modeled as being equally likely to query the replica at any time

in [0,∞).

2.2.4 Relationship to Prior Work

The majority of the literature on source penalty η̄ is limited to Poisson NU ,

either constant or exponential D, and w(x) = 1 or x [10], [14], [15], [20], [65], [97],

[101], [106]. There has been only one attempt to model η̄ under a renewal process

NU , in which [101] assumed w(x) = 1 and the entire sequence of refresh instances

{d1, d2, . . .} was known. While appropriate in some cases, this model is difficult to

evaluate in practice when ND is given by its statistical properties.

Update penalty ρ̄ has received less exposure, with almost all papers considering

Poisson updates and just constant D. This includes w(x) = 1, where ρ̄ is usually
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called divergence [49] or blur [29], with analysis available in [31], [34], [84], and

w(x) = x, where ρ̄ is known as additive age [58], aggregated age [59], delay [84], or

simply cost [31]. Finally, ρ̄ with a general w(x) was called obsolescence cost in [34]

and analyzed under a non-stationary Poisson NU , but no closed-form results were

obtained.

The Poisson assumption on NU allows easy computation of the various metrics

of interest. Outside these special cases, superposition of non-memoryless processes

produces much more complex behavior.

2.3 Age Model

While (2.3) is convenient, it is unclear whether these limits exist, if they are finite,

and under what conditions they are deterministic. We investigate these issues next.

2.3.1 Main Framework

We start by performing a convenient transformation of (2.3) to remove the inte-

grals. Define QT to be a uniform random variable in [0, T ], which models the random

query time of consumers. Suppose QT is independent of NU and ND, in which case

(2.3) is the limit of E[η(QT )|NU , ND] and E[ρ(QT )|NU , ND] as T → ∞. To keep for-

mulas manageable, we sometimes omit explicit conditioning on processes (NU , ND);

however, it should be noted that all expectations and probabilities are still computed

within each sample path (i.e., with respect to QT only).

At time t, suppose age processes AU(t) and AD(t), shown in Fig. 2.3(b), specify

delays to the previous update and synchronization event, respectively. Using this

notation and observing that M(t) > 0 is equivalent to AU(t) < AD(t), define an
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ON/OFF staleness process:

S(t) =


1 AU(t) < AD(t)

0 otherwise

, (2.4)

whose properties at random time QT determine whether the consumer sees outdated

information or not.

To analyze (2.4), our next topic is the behavior of AU(QT ) and AD(QT ) as T →

∞, including existence of these limits and their relationship to {Ui}∞i=1 and {Dk}∞k=1.

2.3.2 Assumptions

We next aim to establish a minimal set of conditions under which analysis of

staleness admits closed-form results. Consider a point process N with cycle lengths

{Xi}∞i=1, where each Xi ∼ Fi(x) is a random variable. In order for the age A(QT )

of this process to have a usable limiting distribution as T → ∞, one must impose

three constraints on N , which we discuss informally and motivate next, followed by

a more rigorous definition.

The first restriction is that collection {Xi}∞i=1 within each sample-path have some

limiting distribution F (x). If this fails to hold, staleness in (2.3) does not exist either.

The second prerequisite is that F (x) not be a random limit. This condition ensures

that almost all sample-paths produce the same result. Finally, the third condition is

that an o(1) fraction of cycles must consume an o(1) fraction of length as n → ∞.

Allowing otherwise would be a problem because F (x), being a limiting distribution,

does not capture these intervals, but QT still lands there with a non-diminishing

probability as T → ∞ (we discuss an example demonstrating this effect shortly).

Let 1A be an indicator variable of A and F̄ (x) = 1 − F (x) the complementary

CDF (cumulative distribution function) of F (x). We are now ready to summarize
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our discussion.

Definition 4. A process N is called age-measurable if:

1. For all x ≥ 0, except possibly points of discontinuity of the limit, sample-

path distribution Hn(x) of variables {X1, . . . , Xn} converges in probability as

n → ∞:

Hn(x) :=
1

n

n∑
i=1

1Xi≤x
P→ F (x); (2.5)

2. Function F (x) is deterministic with mean 0 < δ < ∞;

3. The average cycle length converges to δ in probability as n → ∞:

Zn :=
1

n

n∑
i=1

Xi
P→ δ =

∫ ∞

0

F̄ (x)dx. (2.6)

Note that any renewal process {Xi}∞i=1 satisfies this definition since all Fi(x) are

the same, which from the weak law of large numbers trivially leads to F (x) = Fi(x)

and Zn → δ. Furthermore, condition (2.6) resembles mean-ergodicity, which is nor-

mally stated with a stronger type of convergence (e.g., mean-square or almost-sure)

and only for stationary processes. For other cases, the fact that indicator variables

are uniformly bounded allows application of the Dominated Convergence Theorem

(DCT) [74] to show that F (x) is the limiting average of individual distributions:

E[Hn(x)] =
1

n

n∑
i=1

Fi(x) → F (x). (2.7)

It is pretty clear that (2.5) is not implied by (2.6). If {Xi}∞i=1 are uniformly

bounded, the reverse can be inferred (i.e., (2.6) follows from (2.5)); however, this
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does not hold universally. In fact, many random variables used in practice (e.g.,

exponential and Pareto) are not bounded and thus require an explicit assumption

that convergence in (2.6) take place. Additionally, even if this limit exists, it does

not generally equal δ, which is why we require that as well.

2.3.3 Distribution

Define the sample-path distribution of age A(QT ), in points QT uniformly placed

in [0, T ], to be:

G(x, T ) := P (A(QT ) ≤ x|N). (2.8)

For an age-measurable process N , suppose the residual (age) distribution of its

F (x) is given by:

G(x) :=
1

δ

∫ x

0

F̄ (y)dy. (2.9)

It is well-known that a renewal [103] or regenerative [85] assumption on N yields

G(x, T ) → G(x) as T → ∞. Our next result produces a condition that is both

sufficient and necessary for this to hold.

Theorem 1. Process N is age-measurable if and only if N(T )/T is almost surely

bounded and G(x, T ) converges in probability to G(x).

Proof. We start with the forward (sufficiency) proof. Consider an age-measurable N

and let Sk =
∑k

i=1Xi be the k-th arrival point of this process. Note that almost-sure

boundedness of N(T )/T immediately follows from (2.6) and the fact that δ > 0. The

rest of the proof deals with convergence of G(x, T ).

Assume some constant x ≥ 0. Then, event A(QT ) ≤ x is equivalent to the

existence of some k ≥ 1 such that QT belongs to the k-th interval [Sk, Sk+1), under
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the condition that starting point Sk ≤ T and age QT − Sk ≤ x. Defining

Wk = min((T − Sk)
+, Xk, x), (2.10)

where (x)+ = max(x, 0), we get:

G(x, T ) =
∞∑
k=1

P (Sk ≤ QT < Sk +Wk|N). (2.11)

Since QT is uniform in [0, T ], the probability that it falls into an interval of length

Wk is simply Wk/T :

G(x, T ) =

N(T )∑
k=1

min(T − Sk, Xk, x)

T
, (2.12)

where the upper limit is reduced from ∞ to N(T ) since (T −Sk)
+ = 0 for k > N(T ).

Recalling that all probabilities and expectations are dependent on the sample path,

it follows that G(x, T ) is a random variable. Our goal below is to show it converges

to a constant as T → ∞. To this end, first observe that it can be bounded as:

∑N(T )−1
k=1 min(Xk, x)∑N(T )

k=1 Xk

≤ G(x, T ) ≤
∑N(T )

k=1 min(Xk, x)∑N(T )−1
k=1 Xk

, (2.13)

where we use the fact that T−Sk ≥ Xk for all k ≤ N(T )−1 and T ∈ [
∑N(T )−1

k=1 Xk,
∑N(T )

k=1 Xk].

Next, notice that (2.5) implies that for all bounded, continuous functions f(x)

[74]:

1

n

n∑
i=1

f(Xi)
P→

∫ ∞

0

f(x)dF (x), (2.14)
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which leads to:

1

N(T )

N(T )−1∑
k=1

min(Xk, x)
P→

∫ ∞

0

min(y, x)dF (y). (2.15)

Using (2.6), we also have:

lim
T→∞

1

N(T )

N(T )−1∑
k=1

Xk = lim
n→∞

1

n

n−1∑
k=1

Xk = δ. (2.16)

Since both bounds in (2.13) have the same limit, G(x, T ) converges in probability1

to the ratio of (2.15) to (2.16):

1

δ

∫ ∞

0

min(y, x)dF (y) =
1

δ

∫ x

0

F̄ (y)dy, (2.17)

where the second integral follows from expanding the min function and integrating

by parts.

We now present the reverse (necessity) proof. Assume that G(x, T ) → G(x) for

some G(x) and N(T )/T is bounded. Our goal is to show convergence of (2.5) and

(2.6) to such deterministic limits that satisfy (2.9). From the Bolzano-Weierstrass

theorem [38], every subsequence nk contains a further subsequence n′
k → ∞ such

that

Zn′
k

P→ δ{n′
k}, (2.18)

where δ{n′
k} > 0 with probability 1 from N(T )/T being bounded. Note that this

limit may depend on the subsequence. To show finiteness of δ{n′
k}, notice that (2.13)

1Moreover, since G(x, T ) monotone and bounded by 1, convergence is uniform in x [4].
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and G(x, T ) → G(x) implies that for all x ≥ 0:

∑n
i=1min(Xi, x)∑n

i=1Xi

P→ G(x). (2.19)

The left side of (2.19) is concave in [0,∞], which means that G(x) must be either

concave or degenerate at x = 0. From (2.18) and (2.19), we know that:

x ≥ 1

n′
k

n′
k∑

i=1

min(Xi, x)
P→ δ{n′

k}G(x), (2.20)

where letting x → 0 establishes that the latter case is impossible. Therefore, G(x)

must be concave, G(x) > 0 for x > 0, and finally δ{n′
k} < ∞.

From Helly’s selection theorem [4], there exists a further subsequence n′′
k → ∞ of

n′
k along which (2.18) holds and:

Hn′′
k
(x)

P→ F{n′′
k}(x), (2.21)

where the limit is a proper CDF from Prohorov’s theorem [4]. What remains to

prove is that limits (2.18), (2.21) are independent of the subsequence and establish

their relationship to G(x). Using an analog of (2.14) for subsequences and applying

(2.15): ∑n′′
k

i=1min(Xi, x)∑n′′
k

i=1Xi

P→ 1

δ{n′′
k}

∫ x

0

F̄{n′′
k}(y)dy. (2.22)

Invoking (2.19), this limit equals G(x). Assuming F (x) is some CDF, a function

can be represented in the form of (2.9) using a unique pair (δ, F (x)). Therefore,

F (x) must be F{n′′
k}(x), which shows that for every subsequence nk there exists a

further subsequence n′′
k such that Hn′′

k
(x) → F (x) and Zn′′

k
→ δ. But this means that

the full sequence Hn(x) → F (x) and Zn → δ ∈ (0,∞), i.e., (2.5), (2.6), and (2.9)
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hold.

To elaborate on this result, consider independent variables:

Xi =


1 wp 1− 1/

√
i

√
i wp 1/

√
i

, (2.23)

whose limiting distribution in (2.5) is a constant with δ = 1. However, Zn in (2.6)

converges to 2. Consequently, the distribution of age A(QT ) cannot be determined

based on F (x). Even worse, (2.9) suggests the age is uniform in [0, 1], while A(QT )

is asymptotically finite only with probability 1/2.

2.3.4 Expectation

While Theorem 1 establishes when A(QT ) has a limiting distribution, convergence

of expectation E[A(QT )|N ] or suitability ofG(x) for computing it are not guaranteed.

Furthermore, given that consumers may apply generic weights w(x) to the various

age-related metrics, it is important to identify when E[w(A(QT ))|N ] exists as T →

∞.

To build intuition for the next result, assume X ∼ F (x) is a non-negative variable

and define its age A to be a random variable with CDF G(x) in (2.9). Then, we are

interested in the relationship between E[w(A)] and X. To this end, suppose for any

locally integrable function w(x), we set w1(x) = w(x) and then recursively integrate

the result n− 1 times to define:

wn(x) :=

∫ x

0

wn−1(y)dy. (2.24)

Using integration by parts in Lebesgue-Stieltjes integrals and keeping in mind
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that wn+1(0) = 0 for n ≥ 1:

E[wn+1(X)] =

∫ ∞

0

wn(x)F̄ (x)dx = E[wn(A)]E[X]. (2.25)

Therefore, in order for E[w(A)] to exist, one must ensure that both E[w2(X)] and

E[X] do. Note that the latter does so by (2.6), but the former requires an additional

constraint.

Definition 5. A point process N is called age-measurable by weight function w(x)

if it is age-measurable and

1

n

n∑
i=1

w2(Xi)
P−→

∫ ∞

0

w2(x)dF (x) < ∞. (2.26)

Note that age-measurable by a constant is equivalent to simply age-measurable

since in that case (2.26) becomes (2.6). We omit the proof of the next result as it

follows that of Theorem 1 pretty closely.

Theorem 2. For a process N that is age-measurable by w(x), the sample-path ex-

pectation of w(A(QT )) converges in probability as T → ∞:

lim
T→∞

E[w(A(QT ))|N ] =

∫ ∞

0

w(x)dG(x). (2.27)

To understand this better, consider another counter-example:

Xi =


1 wp 1− 1/i

7
√
i wp 1/i

(2.28)

The limiting distribution in (2.5) is again a constant equal to 1, but this time

(2.6) converges to δ = 1, which makes this process age-measurable. However, for
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w(x) = x, the sum in (2.26) oscillates between 25 and 30 as n increases, while the

corresponding integral is 1/2. As a result, N is not measurable by w(x) and E[A(QT )]

does not converge as T → ∞.

From this point on, we omit explicit conditioning on the sample-path since results

do not depend on N for age-measurable processes. However, we keep in mind that

all probabilities and expectations involving QT are still taken in the sample-path

sense.

2.4 Staleness Cost

This section models the probability of staleness and expected cost under both

penalty metrics defined earlier.

2.4.1 Age Independence

We now return to examining (2.4). In order to determine when the replica is stale,

one requires comparison of AU(QT ) with AD(QT ), which may not be independent

random variables, even if NU and ND are. To prevent such cases, which are called

phase-lock [5], conditions known as ASTA (Arrivals See Time Averages) [62] must

apply to the age of one process when sampled by the arrival points of the other.

This issue is delayed until a later section, but now we define more clearly what

independence of AU(QT ) and AD(QT ) means.

Specifically, suppose (NU , ND) are age-measurable. Then, let FU(x) and FD(x)

be respectively the limiting CDF functions of interval lengths defined in (2.5), with

the corresponding average rates µ and λ, i.e.,

1

µ
=

∫ ∞

0

F̄U(x)dx and
1

λ
=

∫ ∞

0

F̄D(x)dx. (2.29)

Further, let U ∼ FU(x) and D ∼ FD(x) be random update and download cycle
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lengths. Similarly, suppose GU(x) and GD(x) are the limiting CDFs of age from (2.9),

with lower-case functions gU(x) and gD(x) representing the corresponding PDFs.

When the necessary limits exist, let AU ∼ GU(x) and AD ∼ GD(x) denote the two

random ages as T → ∞.

Definition 6. Two age-measurable point processes NU and ND are called age-independent

if for all x, y ≥ 0:

lim
T→∞

P (AD(QT ) < x|AU(QT ) = y) = GD(x). (2.30)

If either NU or ND is Poisson, (2.30) is guaranteed from PASTA (Poisson Arrivals

See Time Averages) [102], which explains why prior work did not encounter these

nuances. To shed more light on this condition, consider independent stationary

renewal processes NU and ND with lattice2 inter-arrival distributions, each with

integer span. Due to stationarity, the first cycles are U1 ∼ GU(x) and D1 ∼ GD(x).

Both AU(QT ) and AD(QT ) have continuous distributions; however, conditioning on

the pair of sample paths, AU(QT )−AD(QT )−U1 +D1 can only take integer values.

Consequently, age-independence (2.30) cannot hold, not even asymptotically.

2A random variable X is called lattice if there exists a constant c such that X/c is always an
integer.
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Unconditionally, however, the ages are independent:

P (AU(QT ) ≤ x,AD(QT ) ≤ y)

= E[E[1AU (t)≤x1AD(t)≤y|QT ]]

=
1

T

∫ T

0

E[1AU (t)≤x1AD(t)≤y]dt

=
1

T

∫ T

0

P (AU(t) ≤ x)P (AD(t) ≤ y)dt

= GU(x)GD(y), (2.31)

although this has no bearing on staleness.

To give a more concrete meaning to the conditional probability in (2.30), we have

the next result.

Theorem 3. Age-independence implies that AD(t) sampled in update points of NU

produces a sequence of random variables that converges in distribution to GD(x):

lim
T→∞

1

NU(T )

NU (T )∑
i=1

1AD(ui)<x = GD(x). (2.32)

Proof. First define d(y, T ) to be the number of points in [0, T ] where AU(t) = y

occurs. Recalling that u1 = 0, this can be expressed as:

d(y, T ) =

NU (T )∑
i=1

1Ui≥y,ui+y≤T =

NU (T )∑
i=1

1Ui≥y · 1ui+y≤T .

Next, let c(y, T ) be the number of these points in which the download age AD is
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smaller than x:

c(y, T ) =

NU (T )∑
i=1

1Ui≥y,ui+y≤T,AD(ui+y)<x

=

NU (T )∑
i=1

1Ui≥y · 1ui+y≤T · 1AD(ui+y)<x. (2.33)

Noticing that

P (AD(QT ) ≤ x|AU(QT ) = y) =
c(y, T )

d(y, T )
(2.34)

and applying Theorem 1, we get using (2.30):

GD(x) = lim
T→∞

lim
y→0

c(y, T )

d(y, T )

= lim
T→∞

1

NU(T )

NU (T )∑
i=1

1AD(ui)<x, (2.35)

which is (2.32) with the two sides swapped.

2.4.2 Preliminaries

Our first objective is to derive the probability of staleness.

Theorem 4. Assuming that NU and ND are age-independent, the probability of

staleness at time QT converges in probability as T → ∞ to:

P (S(QT ) = 1) → p := µ

∫ ∞

0

F̄U(y)ḠD(y)dy. (2.36)

Proof. Due to the existence and independence of AU(QT ) and AD(QT ) in the limit,
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Figure 2.4: Examination of (2.36) under µ = 2.

we immediately obtain:

p = P (AD > AU) =

∫ ∞

0

ḠD(y)dGU(y). (2.37)

Expanding dGU(y) = µF̄U(y)dy leads to the result.

To perform a self-check against prior results with Poisson NU , observe that (2.36)

simplifies to p = 1−λ(1−e−µ/λ)/µ under constantD and µ/(µ+λ) under exponential

D, which are consistent with [15], [20]. Simulations in Fig. 2.4 examine model

accuracy in more interesting cases of general renewal processes. We use Pareto CDF

1 − (1 + x/β)−α with α = 3 and mean β/(α − 1) = β/2. Observe in the figure

that the model matches simulations very well, with constant download intervals

performing significantly better against Pareto update cycles in (a) than the other

way around in (b). For example, synchronizing pages at their update rate (i.e.,

λ = µ = 2) serves stale copies with probability 33% in the former case and 66% in

the latter. Furthermore, for the same p, the scenario in (a) requires roughly 4 times

less bandwidth than in (b).

The next intermediate result is the distribution of the first lag L1(QT ), which

relies on p in (2.36).
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Figure 2.5: Visualizing the proof of Theorem 5.

Theorem 5. If NU and ND are age-independent, the CDF of L1(QT ) converges in

probability as T → ∞ to:

FL(x) = 1− µ

p

∫ ∞

0

F̄U(y)ḠD(x+ y)dy. (2.38)

Proof. Consider the ON/OFF staleness process in Fig. 2.5(a) and suppose the query

time t falls in the ON period. Then, since t is uniformly random within this cycle, the

backward delay L1(t) is symmetrical to the forward (residual) delay RD(t), meaning

they have the same distribution. Note that it is important to condition on AD(t) >

AU(t) since residual RD(t) depends on age AD(t), i.e.,

P (L1(t) > x) = P (RD(t) > x|AD(t) > AU(t)). (2.39)

Since NU and ND are age-independent, we can condition on AU(QT ) = y without

impacting the distribution of AD(QT ) or RD(QT ). Following the proof of Theorem

1, define Lk = dk + y and Mk = min(T, dk+1 − x) to be the lower/upper boundaries

within synchronization interval k such that if QT ∈ [Lk,Mk], then RD(QT ) > x and

AD(QT ) > y. See Fig. 2.5(b) for an illustration.

Define CT = P (L1(QT ) > x|AU(QT ) = y) and observe that it converges as
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T → ∞:

CT =
1

pT

∞∑
k=1

P (Lk ≤ QT ≤ Mk)

=
1

pT

N(T )∑
k=1

(Dk − (x+ y))+

→ λ

p

∫ ∞

0

max(z − (x+ y), 0)dFD(z)

= −λ

p

∫ ∞

x+y

(z − (x+ y))dF̄D(z) =
λ

p

∫ ∞

x+y

F̄D(z)dz

=
1

p

∫ ∞

x+y

gD(z)dz =
ḠD(x+ y)

p
. (2.40)

Unconditioning AU(QT ) and keeping in mind that its distribution is well-defined

as T → ∞, we get (2.38).

Theorem 5 allows a simple expression for the fraction of requests c(τ) that observe

content outdated by less than τ time units, which was called β-currency in [7] and

∆-consistency in [97]. This can be expressed as:

c(τ) = 1− F̄L(τ)p =

∫ ∞

0

gU(y)GD(τ + y))dy, (2.41)

which conveniently simplifies to P (AD −AU < τ), where AD −AU is the generalized

lag between the replica and the source, i.e., non-positive values mean fresh states.

Fig. 2.6 compares (2.41) to simulations using λ = µ. As seen in the figure, this

page retrieved at a random time is stale by less than τ = 0.4 days (9.6 hours) with

probability c(τ) = 98% in the first case and 62% in the second.

2.4.3 Source Penalty

We are now ready to derive a general formula for η̄.
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Figure 2.6: Examination of (2.41) under λ = µ = 2.

Theorem 6. If NU and ND are age-independent, while ND is age-measurable by

w(x), the source penalty converges in probability to:

η̄ = λµ

∫ ∞

0

F̄U(y)

∫ ∞

0

w(x)F̄D(x+ y)dxdy. (2.42)

Proof. First, observe that

η̄ = E[w(L1)]P (AD > AU), (2.43)

where L1 ∼ FL(x). Working back from (2.38), the tail CDF of L1 can be written

more compactly as:

P (L1 > x) = P (AD − AU > x|AD > AU). (2.44)

Since L1 = AD − AU > 0, conditioned on AD > AU , it suffices that only ND be

measurable by w(x). In that case:

η̄ = E[w(L1)]P (AD > AU) = p

∫ ∞

0

w(x)dFL(x), (2.45)
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Figure 2.7: Examination of (2.42) under w(x) = x, µ = 2.

or equivalently:

η̄ =

∫ ∞

0

gU(y)

∫ ∞

0

w(x)gD(x+ y)dxdy. (2.46)

which immediately leads to (2.42) after expansion of gU(x) = µF̄U(x) and gD(x+y) =

λF̄D(x+ y).

With w(x) = 1, (2.42) reduces to staleness probability p already discussed above.

For the other case w(x) = x seen in the literature, we obtain the expected staleness

age η̄ = E[L1(t)]p by which the replica trails the source. Under Poisson NU and

constant D, we get from (2.42):

η̄ =
1

2λ
− 1

µ
+

λ(1− e−µ/λ)

µ2
, (2.47)

and when both distributions are exponential:

η̄ =
µ

λ(λ+ µ)
. (2.48)

These special cases are consistent with [14]. Simulations in Fig. 2.7 additionally

confirm that (2.42) is accurate under general renewal processes. Also observe in the
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figure that the combination in (b) continues to offer inferior performance to that in

(a); however, the difference between the two scenarios is now more pronounced. For

example, using the same λ = µ considered earlier, search-engine clients encounter

indexing results outdated on average by 0.06 days (1.5 hours) in the left subfigure

and by 0.8 days (19 hours) in the right. This example shows how drastically the cost

changes based on the shape of FU(x) and FD(x), which emphasizes the importance

of utilizing models that can accurately handle any underlying processes (NU , ND).

We now offer a more intuitive look at source penalty. Modifying w(x) to be zero

for negative x, we can rewrite (2.42) in a more compact form:

η̄ = E[w(AD − AU)] = λE[w2(D − AU)]. (2.49)

This result shows that η̄ is determined by the positive deviation of the generalized

lag AD −AU from zero, or equivalently by that of D−AU , where the weight applied

to each deviation is given respectively by w(x) and w2(x). The only caveat is that

simplification (2.49) requires weight functions that can explicitly handle negative

arguments, e.g., a constant penalty would be w(x) = 1x≥0 rather than just w(x) = 1.

Throughout the rest of the paper, we avoid the extra notation dealing with x < 0,

but keep this in mind.

2.4.4 Update Penalty

Unlike the previous section, we next show that ρ̄ admits a much simpler result

that depends only on the mean update rate µ rather than the entire distribution

FU(x). This was first observed through simulations in [31] for constant D, but no

explanation or extension to other cases was offered.

Theorem 7. Assuming NU and ND are age-independent, while ND is age-measurable
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by w2(x), the update penalty converges in probability to:

ρ̄ = µE[w2(AD)] = λµE[w3(D)]. (2.50)

Proof. Using Lebesgue-Stieltjes integrals and treating point processes as random

measures, we can re-write (2.2) as:

ρ(t) =

∫ t

t−AD(t)

w(t− s)dNU(s). (2.51)

Taking the expectation along each sample path:

ρ̄ = lim
T→∞

E
[∫ QT

QT−AD(QT )

w(QT − s)dNU(s)
]

= lim
T→∞

1

T

∫ T

0

∫ t

t−AD(t)

w(t− s)dNU(s)dt

= lim
T→∞

1

T

∫ T

0

w2(AD(t))dNU(t)

= lim
T→∞

1

T

NU (T )∑
i=1

w2(AD(ui)). (2.52)

Applying (2.32), the sequence {AD(u1), AD(u2), . . .} sampled in update points

{ui} converges in distribution to that of AD(QT ) as T → ∞. Then, (2.52) becomes:

ρ̄ = lim
T→∞

µE[w2(AD(QT ))]. (2.53)

Since ND is w2(x)-measurable, (2.27) shows that this expectation converges and

its limit equals µE[w2(AD)]. By (2.25), this is also λµE[w3(D)].

To compare against prior results, consider Poisson NU and constant D. Then,

(2.50) produces ρ̄ = µ/(2λ) for w(x) = 1 and µ/(6λ2) for w(x) = x, both of which
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match previous analysis of these special cases [58], [84], [106]. Generalizing to ex-

ponential D, we obtain from (2.50) respectively µ/λ and µ/λ2. Interestingly, this

shows that switching downloads from constant intervals to exponential doubles the

number of missing updates and sextuples their combined age.

For w(x) = 1, a simple closed-form expression is possible for all D:

E[M(t)] =
λµE[D2]

2
=

µ

2λ

(
1 + λ2V ar[D]

)
. (2.54)

For example, Pareto D produces in (2.54):

E[M(t)] =
µ(α− 1)

λ(α− 2)
, (2.55)

which for α = 3 is quadruple that of constant D and double that of exponential

D. Another peculiar case is α → 2, where E[M(t)] tends to infinity regardless of

NU . In fact, the update process itself may exhibit V ar[U ] = ∞, but the expected

number of updates by which the replica falls behind will still become unbounded as

α approaches 2.

Since source penalty ρ̄ sums up the ages of all missing updates, it allows usage

of decaying functions w(x) such that their integral is increasing. We demonstrate

this effect using w(x) = 1/(1 + x), for which w2(x) = log(1 + x). This cost function

increases rapidly for small x, but then becomes less sensitive to staleness as the age

of replicated content grows. Since w3(x) = (1+ x) log(1 + x)− x, constant D yields:

ρ̄ = µ[(λ+ 1) log(1 + 1/λ)− 1]. (2.56)
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Figure 2.8: Examination of (2.56) and (2.57) under µ = 2.

For D ∼ Pareto(α, β) with α = 3 and β = 2/λ, we get:

ρ̄ = 2µ


2 log(2/λ)−2+λ

(λ−2)2
λ ̸= 2

0.25 λ = 2

. (2.57)

Fig. 2.8 confirms that both models are accurate, with constant D enjoying a 60%

lower penalty compared to Pareto.

2.5 Optimality

Motivated by (2.54) and consistently worse performance of Pareto D, the goal of

this section is to understand the impact, if any, of V ar[D] on penalty and determine

whether there exists an optimal distribution FD(x) that, for a fixed download budget

λ, provably results in the lowest cost for all NU and all suitable functions w(x).

2.5.1 Stochastic Dominance

We start with general concepts from economics and game theory that are useful

for understanding optimality. For two non-negative random variables X ∼ FX(x)

and Y ∼ FY (x), let their CDF difference be:

H(x) = FY (x)− FX(x), (2.58)
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whose generalizationHn(x) is given by (2.24). Then, we have the following definition.

Definition 7. Variable X is said to stochastically dominate Y in n-th order, which

we write as X ≥n
st Y , if Hn(x) ≥ 0 for all x ∈ R.

This concept is important because desirable characteristics of D can be inferred

from those of AD, as shown next.

Lemma 1. Assume E[X] = E[Y ] and n ≥ 2. Then, X stochastically dominates Y

in n-th order, i.e., X ≥n
st Y , iff the age of Y stochastically dominates the age of X

in (n− 1)-st order, i.e., AY ≥n−1
st AX .

Proof. Let GX(x) and GY (x) be the CDF of AX and AY , respectively. Define:

J(x) = GY (x)−GX(x), (2.59)

which can be expressed using H2(x) as:

J(x) =

∫ x

0
(1− FY (x))dy

E[Y ]
−

∫ x

0
(1− FX(y))dy

E[X]

=

∫ x

0
(FX(y)− FY (y))dy

E[X]
= − 1

E[X]
H2(x). (2.60)

Integrating both sides n− 2 additional times leads to:

Jn−1(x) = − 1

E[X]
Hn(x). (2.61)

From this and Definition 7, it follows that X ≥n
st Y implies AY ≥n−1

st AX and

vice versa.

As given by the next lemma, first-order stochastic dominance allows one to deter-

mine the relationship between expected utilities E[w(X)] and E[w(Y )]. While it is
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possible to establish a more general version of this result using n-th order dominance,

it would restrict w(x) to a narrower class of functions and thus would be less useful

in practice.

Lemma 2. Condition X ≥1
st Y holds iff for all non-decreasing functions w(x) it

follows that E[w(X)] ≥ E[w(Y )].

2.5.2 Penalty Analysis

Returning to the topic of information staleness, our goal is to determine the

condition under which both types of penalty can be reduced without changing the

refresh rate. Define η̄(D1) and η̄(D2) to be the source penalties corresponding to

random synchronization intervals D1 and D2, both with mean 1/λ. For the opposite

problem, i.e., finding the worst update distribution, define η̄(U1) and η̄(U2) to be the

penalties that correspond to update intervals U1 and U2 under a fixed µ.

The next result shows that stochastic (rather than variance) ordering is needed

to improve staleness penalty. Define w(x) to be a measure if it is non-negative,

non-decreasing, and right-continuous with w(x) = 0 for x < 0.

Theorem 8. Assume the conditions of Theorem 6. For a given NU and fixed down-

load rate λ, D1 ≥2
st D2 iff η̄(D1) ≤ η̄(D2) for all measures w(x). Similarly, with a

given ND and fixed µ, U1 ≥2
st U2 iff η̄(U1) ≥ η̄(U2) for all measures w(x).

Proof. Using (2.49), observe that η̄ = E[w(AD − AU)] is fully determined by the

properties of variable X = AD − AU . For a fixed AU , it is not difficult to show that

X becomes stochastically smaller in first order iff AD does. Applying Lemmas 1-2,

this means that penalty η̄ gets smaller iff D increases stochastically in second order.

Similarly, for a fixed AD, X gets stochastically larger in first order iff AU becomes

stochastically smaller. Again applying Lemmas 1-2, penalty η̄ increases iff U becomes

stochastically larger in second order.
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A similar result holds under update penalty ρ̄. Note that all FU(x) with the same

µ are equivalent here, which is why we state only half of Theorem 8, and w(x) is less

restricted.

Theorem 9. Assume the conditions of Theorem 7. For a given NU and fixed λ,

D1 ≥2
st D2 iff ρ̄(D1) ≤ ρ̄(D2) for all non-negative w(x).

Proof. Since ρ̄ = µE[w2(AD)], where w2(x) is a measure for all non-negative w(x),

Lemmas 1-2 yield that ρ̄ decreases iff D gets stochastically larger in second order.

The preceding results set up motivation to ask the question of whether there

exists a distribution that dominates all others in second order. We answer this next.

Lemma 3. For a given mean, a constant stochastically dominates all other random

variables in second order.

Proof. Suppose l is the fixed mean of all distributions under consideration. Let

FX(x) = 1x>l be the CDF of a constant and FY (x) be the CDF of another random

variable Y such that E[Y ] = l. Our goal is to show that H2(x) ≥ 0.

When x ≤ l, we have trivially:

H2(x) =

∫ x

0

(FY (y)− FX(y))dy =

∫ x

0

FY (y)dy ≥ 0. (2.62)

For x > l, we get:

H2(x) =

∫ l

0

FY (y)dy +

∫ x

l

(FY (y)− 1)dy

= l +

∫ x

0

FY (y)dy − x = l −
∫ x

0

(1− FY (y))dy

≥ l −
∫ ∞

0

(1− FY (y))dy = 0, (2.63)

where we use the fact that l =
∫∞
0
(1− FY (y))dy.
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This leads to the main result of this section.

Theorem 10. When the conditions of Theorems 8-26 hold, constant inter-synchronization

delays are optimal under the corresponding staleness metric.

This allow us to resolve the relationship between the variance of D and penalty.

If E[D1] = E[D2], then D1 ≥2
st D2 implies V ar[D1] ≤ V ar[D2], but the opposite is

not true. This shows that for a given download rate, just reducing the variance of

refresh intervals, without enforcing D1 ≥2
st D2, is insufficient to improve the penalty

across all functions w(x). As an example, recall the special case of ρ̄ with w(x) = 1

in (2.54), where the penalty was reduced iff the variance of D was; however, no

such causality exists for w(x) = x or log(1 + x). On the other hand, if reduction

in penalty holds for all measures w(x), then stochastic ordering between D1 and D2

follows and thus variance has to decrease (i.e., ordering of variances is necessary, but

not sufficient).

2.5.3 Phase-Lock

Even though constant D is optimal from the staleness perspective, it unfortu-

nately fails to guarantee age-independence (2.30) against all underlying NU . We

now deal with principles related to ASTA (Arrivals See Time Averages) [62], placing

them in our context. In general, ASTA can be viewed as a condition that allows

discrete and continuous sample-path averages of a process X(t) to be equal almost

surely:

lim
n→∞

1

n

n∑
k=1

X(tk) = lim
T→∞

1

T

∫ T

0

X(t)dt. (2.64)

Let X(t) = 1AD(t)<x and tk = uk. Then, if (2.64) holds for all x, it follows

that the distribution of refresh age AD(t) sampled in update points uk equals that
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sampled in uniformly random instances QT , which in turn is equivalent to our earlier

formulation (2.30). While we have given conditions for the right side of (2.64) to

exist and equal a constant almost surely, existence of the left side or its equality to

the integral is not guaranteed. ASTA analysis focuses on the properties of points

{tk} and their relationship to X(t) that allow (2.64) to hold; however, this normally

requires conditions that are difficult to verify in practice (e.g., LAA, WLAA, LBA

[62]). We therefore discuss guidelines for ensuring that (2.64) is satisfied, without

becoming engrossed in unnecessary rigor.

While sampling constant update cycles with constant synchronization intervals

sometimes leads to phase-lock, we next discuss how to achieve asymptotic age-

independence in such cases. To build intuition, suppose Ui = 5 and Dk = π for

all k ≥ 1. Then, from the equidistribution theorem, AU(dk) = kπ (mod 5) is a

uniformly random variable in [0, 5], meaning that AU(dk) has the same distribution

as AU(QT ). The key observation is to ensure that ND puts its download points

uniformly across the cycles of NU .

In general, sequence ak = kξ (mod T ), where T is rational, ξ is irrational, and

k ∈ N, is uniformly distributed in [0, T ], in which case for any Riemann-integrable

function, an ASTA-like condition automatically holds:

lim
n→∞

1

n

n∑
k=1

f(ak) =
1

T

∫ T

0

f(x)dx. (2.65)

While using Dk = π to sample Ui = 5 works well, there is a possibility that

Ui itself happens to be a multiple of π. To preclude these cases, ND must exhibit

enough randomness to prevent Dk/Ui from becoming deterministically an integer.

One option for doing so is to require that either process employ non-lattice cycle

lengths. Recall that non-lattice distributions may be entirely continuous, including
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the classical PASTA (Poisson Arrivals See Time Averages) [102] and the uniform

distribution often suggested for network measurement [5]. However, they can also

be entirely discrete. In such cases, cycle lengths must distribute mass across at least

two values (a, b), where a/b is irrational, e.g., pairs (π, 1) or (e,
√
2). By bringing

spread |b − a| closer to zero, it is possible to obtain a variety of approximations to

the optimal (constant) synchronization delay with mean l = (a+ b)/2.

Note that a non-lattice distribution may still enter phase-lock if its cycle lengths

follow a deterministic pattern, e.g., both updates and downloads strictly alternate

between 1 and π. To rule out these cases, it is sufficient to require that the non-

lattice process randomize its delays, leaving the other one general. This produces

the following.

Theorem 11. If either NU or ND uses iid, non-lattice cycle lengths, age-independence

holds.

Proof. The result follows from the equidistribution theorem and the iid nature of

delays.

2.6 Applications

We now examine the presence of Poisson updates in real data sources and show

how to apply the developed models to solve several classes of multi-source/replica

problems.

2.6.1 Real-Life Update Processes

We first discuss possible reasons for the frequent use of memoryless source-update

processes in the literature. If indeed this is universal, extensions to non-Poisson dy-

namics may be unnecessary. While modeling convenience is one possible explanation

[20], there is certain belief in the field that updates to individual web pages can be
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accurately described by a Poisson process, which has fueled this line of modeling for

over a decade [7], [8], [14], [15], [17], [31], [34], [40], [49], [53], [59], [61], [65], [66],

[84], [95], [106].

Intuitively, there is no fundamental reason why a single source should exhibit

Poisson dynamics, especially when modified by humans. A more likely scenario would

be heavy-tailed behavior observed in many areas of computer networks [25], [54], [72]

and user-driven distributed systems [9], [79], [92]. Another intuitively reasonable

inter-update distribution is constant, where certain information is injected into the

system periodically by design or is obtained from an ON/OFF source (e.g., sensors

trying to conserve energy).

Closer examination of the origin [15] of the Poisson conclusion reveals several

limitations. First, the distribution of page inter-update intervals was sampled using

incomplete observation, meaning that some of the updates went unnoticed. As a

result, bias could have been introduced in the measurements. Second, the exponen-

tial distribution was fitted to updates of multiple pages rather than a single page.

Poisson dynamics have been known to emerge when aggregating arrival processes

[2] and summing up variables [3], which does not tell us much about the individual

distributions being combined. Finally, to conclude that NU is Poisson, it is insuffi-

cient to observe an exponential distribution in {Ui}∞i=1; instead, one must also show

stationary independent increments [103].

2.6.2 Wikipedia

Even though certain measurement studies [7, 18, 45, 63] have found non-Poisson

updates among web pages, they also lack ground truth. These pitfalls can be avoided

if model verification is performed over sources that expose information about each

update. One particularly interesting source with public traces of all modification
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Figure 2.9: George W. Bush page dynamics.

timestamps is Wikipedia [100]. From a search-engine perspective, this website rep-

resents a realistic example of data churn stemming from user interaction with each

other (e.g., edits from other people), flash crowds in response to external events, and

diurnal activity patterns of the human lifecycle. Wikipedia is also well-suited for

purposes of model validation and discussion.

To shed light on the complexity of real FU(x), we plot in Fig. 2.9(a) the tail

CDF of inter-update delay for the most frequently modified article – “George W.

Bush” with 44, 296 updates in 10 years (mean delay E[U ] = 1.86 hours). The figure

is a close match to Pareto tail (1 + x/β)−α with α = 1.4 and β = 0.93. In Fig.

2.9(b), we show the corresponding auto-correlation function ρ(h) with a power-law

fit h−0.37, which suggests long-range dependence (LRD) with Hurst parameter 0.81.

Of course, LRD effects might be caused and/or compounded by non-stationarity. To

address this question, Fig. 2.9(c) shows the update rate throughout the day, clearly
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indicating non-stationary dynamics.

This example underscores the need to keep the model general and not limit results

to renewal or even stationary cases, which was our goal with assumptions (2.5)-

(2.6). Approximating FU(x) as non-lattice and using constant D, we next compute

the probability of staleness for this page by supplying (2.42) with George W. Bush’

empirically computed distribution FU(x). We contrast the result against the closest

Poisson formula 1 − λ(1 − e−µ/λ)/µ from [15]. Fig. 2.9(d) shows that (2.42) is

accurate, but the Poisson approximation suffers over 100% relative error for much of

the examined range.

What is more important is the performance of the model in providing an accurate

assessment of the download bandwidth needed to achieve a given p. We invert the

formulas to solve for λ as a function of p and plot the result in Fig. 2.10(a). These

results show a much more dramatic difference. For example, 20% staleness requires

95 downloads/day according to previous Poisson models, while in reality this can

be achieved with just 8. To illustrate this better, we show the ratio of these two

curves in Fig. 2.10(b), where the amount of Poisson overestimation varies from one

to almost two orders of magnitude depending on the desired p.

2.6.3 Aggregation (Many-to-One)

When a single replica tracks M sources, as in Fig. 2.1(a), performance is assessed

by its ability to provide usable aggregate information to the consumer. If sources

are independent, many results are relatively easy to obtain. For example, consider a

system that selects a replica and loads it with a MapReduce job that has to execute

over the data of all sources. A computation may be considered successful if at

least one source is fresh at the time of job request. Then, the fraction of successful

attempts is 1−
∏M

i=1 pi, where pi in (2.36) is the probability of staleness for source i.
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Figure 2.10: Application of staleness models to the update process of George W.
Bush.

Alternatively, application consistency may require that all sources be simultaneously

fresh, which leads to the probability of success via
∏M

i=1(1− pi).

A more interesting problem is optimal allocation of download rates to different

sources. Suppose qi is the probability that an incoming query requests data from

source i and µi is its update rate. Then, the goal is to allocate refresh rates λi so as

to optimize the expected staleness cost C(λi, µi) for a given bandwidth budget Λ:

min
M∑
i=1

qiC(λi, µi) subject to
M∑
i=1

λi ≤ Λ, (2.66)

where C(λi, µi) refers to either η̄ or ρ̄.

For Λ ≪
∑M

i=1 µi and certain choices of w(x), solutions to (4.38) using cost η̄ are

known to completely starve frequently modified sources in favor of those that are

updating slowly [15]. Since (4.38) does not have a closed-form solution under η̄ even

in the simplest cases, specific conditions for starvation are not clear. Complete loss

of synchronization for sources whose µi is above some (typically unknown) threshold

may be an unwelcome surprise for many applications. This naturally leads to the

question of whether ρ̄ suffers from the same drawback. We address this next.

Theorem 12. Assume qiµi > qjµj > 0 and let refresh delays be optimal (i.e.,
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constant). Then, the solution to (4.38) using ρ̄ guarantees that λi > λj > 0.

Proof. Using Lagrange multipliers, we get that all partial derivatives of qiC(µi, λi)

must equal some constant κ:

κ = −∂[qiC(µi, λi)]

∂λi

= −qiµi
∂[λiw3(1/λi)]

∂λi

, (2.67)

which follows from (2.50) and Di = 1/λi. Expanding, we get κ = qiµif(λi), where

f(x) =
w2(1/x)

x
− w3(1/x) (2.68)

is a monotonically non-increasing function:

f ′(x) = −w2(1/x)

x2
− w(1/x)

x3
+

w2(1/x)

x2
= −w(1/x)

x3
. (2.69)

Notice that f(λi) ≥ 0 for all λi since w3 is an integral of w2(x) from 0 to 1/λi.

Therefore, κ ≥ 0 and the relationship between µi and λi is determined by:

λi = f−1
( κ

qiµi

)
. (2.70)

If since f is non-increasing, larger qiµi implies larger λi. Finally, since f(x) > 0

for all x > 0, it follows that its inverse f−1 has the same properly and thus no positive

qiµi > 0 can achieve λi = 0. This means the optimal allocated rate must be strictly

positive (i.e., no starvation).

To explain how optimization with ρ̄ can be used, we assume constant D and

w(x) = 1, with the goal to maximize
∑M

i=1 qiE[Mi(t)]. Solving (4.38), the optimal
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download rate of each page is proportional to the square root of qiµi:

λi = Λ

√
qiµi∑M

j=1

√
qjµj

. (2.71)

The optimal penalty is then:

M∑
i=1

qiE[Mi(t)] =
M∑
i=1

qiµi

2λi

=
(
∑M

j=1

√
qjµj)

2

2Λ
. (2.72)

Define random variable µ to have the same distribution as {µ1, . . . , µM}. Then,

for the most basic scenario where all pages are equally popular, i.e., qi = 1/M , we

get:

M∑
i=1

qiE[Mi(t)] = M
E[

√
µ]2

2Λ
. (2.73)

For the other extreme, where pages are searched for in proportion to their modi-

fication rate, i.e., qi ∼ µi, we have:

M∑
i=1

qiE[Mi(t)] = M
E[µ]

2Λ
. (2.74)

To put these models in perspective, we use Wikipedia’s distribution of µ, which

happens to be quite heavy-tailed (i.e., Zipf shape α = 0.6). The average update

rate across all pages is E[µ] = 8 updates/day; however, 98% of them exhibit µi less

than 1/day, 90% less than 1/week, and 50% below 8/year. Using this distribution

in (2.73) and (2.74) shows that optimizing staleness of the entire Wikipedia under

uniform page access qi = 1/M requires 46 times less bandwidth Λ than under Zipf.

This can be explained by the fact that keeping frequently modified pages fresh costs
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more bandwidth. This effect is related to the variance of
√
µ:

E[µ]

E[
√
µ]2

=
V ar[

√
µ] + E[

√
µ]2

E[
√
µ]2

=
V ar[

√
µ]

E[
√
µ]2

+ 1. (2.75)

Consider extrapolating these results to M = 100B sources and keeping the ex-

pected consumer lag
∑M

i=1 qiE[Mi(t)] below ω updates. We use the two models above

as lower/upper bounds on the actual search-engine crawl rate. The first case requires

download capability Λ1 = M ·E[
√
µ]2/2ω = 99/ω thousand pages per second (pps),

while the second one Λ2 = M · E[µ]/2ω = 4.6/ω million pps. For ω = 10 and 25

KB per page, these translate into 2 and 92 Gbps, respectively. Results can be easily

adjusted to non-Wikipedia situations as long as E[
√
µ] and E[µ] are known.

2.6.4 Load-Balancing (One-to-Many)

The issue of redundant replication from a single source, as in Fig. 2.1(b), to m

nodes is quite different from the opposite case considered in the previous subsection.

When the source fails, suppose the goal is to deduce the expected penalty afforded by

the freshest member of the entire collection of m replicas. The issue at stake is how

this 1×m case compares to a single replica with some refresh rate λ and optimal D.

To keep comparison fair, assume that each of the m replicas is allowed budget λ/m

in synchronization with the source. Decentralized operation leads to much better

robustness under failure, but is it possible that this causes reduced freshness? If

so, what is the amount of extra download bandwidth needed to keep both scenarios

equally stale?

The main caveat in solving this problem is that staleness at different replicas is

no longer independent. This happens because updates at the source simultaneously

make all copies outdated, which means that reliability does not benefit exponen-

tially with increased m. To overcome this issue, let N1
D, . . . , N

m
D be the download
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processes used by the individual replicas. Then, observe that the entire collection

can be replaced by a single replica that implements a refresh pattern N∗
D, which is a

superposition of all point processes {N i
D}mi=1. Therefore, the source can be recovered

during the crash with a probability determined solely by N∗
D.

If we assume centralized scheduling between the replicas, then it is possible to run

the system optimally (i.e., using a perfectly spaced out round-robin) and thus keep

the overall penalty exactly the same as with a single replica. Under fully decentralized

(i.e., independent) replica operation and m → ∞, each rate λ/m → 0 and thus N∗
D

likely converges in distribution to a Poisson process with rate λ (Palm-Khintchine

theorem [46]). This creates a problem, however, because exponential D requires

noticeably more overhead than constant D to achieve the same staleness penalty.

For example, using our model for ρ̄ and discussion after (2.54), this difference is by

a factor of 2 for w(x) = 1 and by a factor of 6 for w(x) = x, which shows that a

distributed cluster of replicas may need to consume 100 − 500% more bandwidth

than a centralized solution for a given level of QoS (quality-of-service).

2.6.5 Many-to-Many

We conclude the paper by noting that Internet applications often combine the last

two scenarios, i.e., M × 1 and 1×m replication, into a single framework. However,

these problems are usually separable into subproblems that can be reduced to the

analysis above. For example, suppose we are interested in the probability that a

query to a random subset of j replicas finds at least one of the k sources fresh.

First, we compute the staleness probability for each source based on the aggregate

synchronization processN∗
D from j replicas. Second, since each source is independent,

we multiply these probabilities to deduce the likelihood that all k sources are stale.

Taking the complement of the result, we get the desired probability.
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3. TEMPORAL UPDATE DYNAMICS UNDER BLIND SAMPLING

3.1 Introduction

Many distributed systems in the current Internet manipulate objects that ex-

perience periodic modification in response to user actions, real-time events, data-

centric computation, or some combination thereof. In these cases, each source (e.g.,

a webpage, DNS record, stock price) can be viewed as a stochastic process NU that

undergoes updates (i.e., certain tangible changes) after random delays U1, U2, . . .

Consistent estimation of inter-update distribution FU(x) is an important problem,

whose solution yields not only better caching, replication [56], and allocation of

download budgets [55], but also more accurate modeling and characterization of

complex Internet systems [15, 17, 21, 23, 29, 53, 66, 69, 70, 71, 84, 90, 101, 106].

Similar issues arise in lifetime measurement, where Ui represents the duration of

online presence for object or user i [9, 79, 92, 99].

The first challenge with measuring update-interval dynamics is to infer their

distribution using blind sampling, where variables U1, U2, . . . are hidden from the

observer. This scenario arises when the source can only be queried over the net-

work using some process NS whose inter-download delays S1, S2, . . . are bounded in

expectation from below (e.g., due to bandwidth and/or CPU restrictions). Unlike

censored observations in statistics, which have access to truncated values of each Ui,

the sampling process here has a tendency to miss entire update cycles and land in

larger-than-average intervals.

The second challenge in blind sampling is to reconstruct the distribution of Ui

from severely limited amounts of information available from each download. Specif-

ically, the observer can only compare the two most-recent copies of the source and
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obtain indicator variables Qij of a change occurring between downloads i and j, for

all i < j. This constraint is necessary because the source generally has no ability to

determine object modification timestamps (e.g., dynamic webpages served by scripts

are considered new on each download). Furthermore, even for static pages, object

updates are very application-specific (e.g., search engines may remove ad banners

and other superfluous information before indexing), which makes variables U1, U2, . . .

hidden not just from the observer, but also the source.

Existing studies on this topic [7, 17, 43, 44, 61] use Poisson NU and constant

Si. Due to the memoryless assumption on FU(x), the problem reduces to estimating

just rate µ = 1/E[Ui], rather than an entire distribution, and many complex inter-

actions between NS and NU are avoided in the analysis. However, more interesting

cases arise in practice, where non-Poisson updates are quite common [7, 18, 45, 63].

Furthermore, guaranteeing constant Si is impossible in certain applications where

the return delay to the same object is computed in real-time and is governed by the

properties of trillions of other sources (e.g., in search engines). Thus, new analytical

techniques are required to handle such cases.

3.1.1 Contributions

Our first contribution is to formalize blind update sampling using a framework

in which both NU and NS are general point processes. We then consider a simplified

problem where the source provides last-modification timestamps for each download.

Our contribution here is to develop the necessary tools for tackling the more in-

teresting cases that follow, build general intuition, consider conditions under which

provably consistent estimation is possible, and explain the pitfalls of existing methods

under non-Poisson updates.

Armed with these results, we next relax the availability of last-modified times-
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tamps at the source. For situations where constant Si is acceptable, we show that

unbiased estimators developed earlier in the paper can be easily adapted to this

environment and then suggest avenues for reducing the amount of numerical compu-

tation in the model, all of which forms our third contribution. We finish the paper by

considering random Si and arrive at our last contribution, which is a novel method

that can accurately reconstruct the update distribution under arbitrary FU(x) and

mildly constrained FS(x).

Our last contribution is to evaluate the Poisson update assumption and compare

our methods on the Wikipedia dataset. We show that Poisson updates assumption

hardly holds because it requires not only the inter-update delays to be exponentially

distributed but also independency between delays. Then we compare the accuracy

of our methods use the top 10 most frequently modified articles in our dataset, from

which we conclude the optimal methods to use in different scenarios.

3.2 Related Work

Analytical studies on estimating the update distribution under blind sampling

have all assumed NU was Poisson and focused on determining its average rate, i.e., µ

for stationary cases [7, 17, 43, 44, 61] and µ(t) for non-stationary [89]. Extension to

general processes was achieved by [61] under the assumption that sampling intervals

Si were infinitely small; however, the problem in these scenarios is trivial since every

Ui is available to the observer with perfect accuracy.

In measurement literature, the majority of effort was spent on the behavior of

web pages, including analysis of server logs [67], page-modification frequency during

crawling [7, 14, 45, 63], RSS feed dynamics [84], and content change between con-

secutive observations [1, 36, 66]. Problems related to estimation of FU(x) have also

emerged in prediction of future updates [15, 16, 35, 47, 73, 95], with a good survey
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in [64], and user lifetime measurement in decentralized P2P networks [9, 79, 92, 99].

3.3 Overview

This section introduces notation, formulates objectives, and lays down a roadmap

of the studied methods.

3.3.1 Notation and Assumptions

Let ui be the time of the i-th update at the source. Define NU(t) = max{i : ui ≤

t} to be the number of updates in the time interval [0, t] and suppose Ui = ui+1 − ui

represents the inter-update delay. Similarly, denote by sj the j-th sampling time.

Let NS(t) = max{j : sj ≤ t} be the number of samples in [0, t] and Sj = sj+1 − sj

be the inter-sample delay. At time t, define age AU(t) = t − uNU (t) and residual

RU(t) = uNU (t)+1 − t as the backward/forward delays to the nearest update. These

are illustrated in Fig. 3.1. Note that interval Ui in the figure cannot be seen or

measured by the observer, which is why we called it “hidden” earlier.

Since most real applications have only one sample path, we adopt the sample path

approach in [55] to model both processes, which needs the following assumption.

Assumption 1. Both NU and ND are age-measurable.

Age measurable assumption guarantees the existence and convergence of the inter-

update delay distribution. This allows us to define random variables U ∼ FU(x)

and S ∼ FS(x) to represent the lengths of update/sample cycles, respectively [55].

Furthermore, denote by µ = 1/E[U ] and λ = 1/E[S] the corresponding rates.

Suppose AU and RU are the equilibrium versions of AU(t) and RU(t), respectively,

as t → ∞. From previous results in [55], they have the same CDF:

GU(x) := µ

∫ x

0

(1− FU(y))dy, (3.1)
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Figure 3.1: Update/sample process notation.

whose density is gU(x) := G′
U(x) = µ(1 − FU(x)). We set the goal of the sampling

process to determine the distribution FU(x) based on observations at times s1, s2, . . .,

i.e., using a single realization of the system.

3.3.2 Applications

Knowledge of FU(x) enables performance analysis in many fields that employ lazy

(i.e., pull-based) data replication. For example, search engines implement a sampling

process NS using crawlers that periodically revisit web content and merge updates

into backend databases. These companies are often concerned with staleness of pages

in their index and the probability that users encounter outdated results. In order

to determine the download frequency needed to maintain staleness below a certain

threshold, the expected number of updates by which the index is trailing the source,

or the amount of bandwidth needed for a collection of pages, accurate knowledge of

source dynamics is required [55].

In another example, suppose a data center replicates a quickly changing database

(driven by some update process NU) among multiple nodes for scalability and fault-

tolerance reasons. Because of the highly dynamic nature of the source, individual

replicas may not stay fresh for long periods of time, but their collection may offer

much better performance as a whole. In such cases, questions arise about the number

of replicas k that should be queried by clients to obtain results consistent with the
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source [56] and/or the probability that a cluster of n replicas can recover the most-

recent copy of the source when it crashes [55]. Similar problems appear in multi-hop

replication and cooperative caching, where service capacity of the caching network

is studied as well [56].

Finally, accurate measurement of FU(x) enables better characterization of In-

ternet systems, their update patterns in response to external traffic, and even user

behavior. While it is possible to use the exponential distribution to approximate

any FU(x), as typically done in the literature [7, 17, 43, 44, 61], this can lead to

significant errors in the analysis. As shown in [55] using the search-engine example

and Wikipedia’s update process NU , the exponential assumption may produce errors

in the download bandwidth that are two orders of magnitude. In more complicated

settings, such as cascaded and cooperative systems [56], the impact of inaccurate

FU(x) may be even higher.

3.3.3 Caveats

The sample-path approach, in general, leads to a possibility of phase-lock where

the distance of download points from the last update, i.e., {AU(sj)}j≥1, is not a

mixing process. For example, consider Ui = 1 for i ≥ 1 and Sj = 2 for j ≥ 1, in

which case update ages observed at {sj}∞j=1 are all equal to zero. Since this case

cannot be distinguished from Ui = 0.5 or Ui = 2, it is easy to see how phase-lock

precludes consistent estimation of FU(x). The problem can be avoided by requiring

that the considered cycle lengths exhibit certain mixing properties. This leads to our

next definition.

Definition 8. A random variable X is called lattice if there exists a constant c such

that X/c is always an integer, i.e.,
∑∞

i=1 P (X/c = i) = 1.

Lattice distributions are undesirable in our context as they produce phase-lock.
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Figure 3.2: Method taxonomy (shaded boxes indicate Poisson-only techniques).

Before introducing the condition to avoid phase-lock, we need the following definition.

Definition 9. A random process is called age-mixing if it is renewal and its inter-

delay distribution F (x) is non-lattice.

Now we are ready to present our conditions to prevent phase-lock [55].

Assumption 2. At least one of U and S is age-mixing.

This condition is easy to satisfy with any continuous random variable, including

exponential U in previous work. A more esoteric example would be a discrete variable

placing mass on two numbers whose ratio is irrational, e.g., (π, 3) or (e,
√
2).

3.3.4 Roadmap

As illustrated in Fig. 3.2, we partition the various approaches into two broad

categories. In age sampling, the observer has access to the last-modified timestamp

uNU (sj) at each download point sj, or equivalently, the update age AU(sj). Although

now rare, this information can still be sometimes obtained from the HTTP headers,

timestamps within the downloaded HTML, or sitemaps [64]. As shown in the figure,

we call the two studied methods in this category M1 and M2. They operate by

deriving FU(x) from the collected age samples, where M1 has been proposed in

previous work [17, 61] for Poisson-only cases and M2 is novel.
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In comparison sampling, we assume that the observer retains the most recent

copy of the object or a fingerprint of its relevant portions (e.g., after removing ads

and repeated keywords). Define Qij to be an update-indicator process:

Qij =


1 update occurs between si and sj

0 otherwise

. (3.2)

Unlike the previous scenario, estimation of FU(x) here must use only binary values

{Qij}. Going back to Fig. 3.2, we study comparison sampling under two strategies.

For constant S, we first analyze two methods we call M3 and M4, which are discrete

versions of M1 and M2, respectively. We then propose a novel method M5 that is

both consistent and computationally efficient. For random S, we introduce our final

approach M6 that is unbiased under the most general conditions.

3.4 Age Sampling

This section is a prerequisite for the results that follow. It starts with under-

standing state of the art in this field and its pitfalls. It then shows that a simple

modification allows prior work to become unbiased under non-Poisson updates.
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3.4.1 Basics

In age sampling, the observer has a rich amount of information about the update

cycles. This allows reconstruction of FU(x) in all points x ≥ 0, which we set as our

goal.

Definition 10. Suppose F̃ (x, T ) is a CDF estimator that uses observations in [0, T ].

Then, we call it consistent with respect to distribution F (x) if it converges in proba-

bility to F (x) as the sampling window becomes large:

lim
T→∞

F̃ (x, T ) = F (x), x ≥ 0. (3.3)

Note that consistent estimation of FU(x) is equivalent to that of GU(x) since there

is a one-to-one mapping (3.1) between the two functions. Specifically, knowledge of

GU(x) allows numerical differentiation and/or kernel density estimators to obtain

gU(x) = G′
U(x), from which FU(x) = 1 − gU(x)/gU(0) follows. Furthermore, the

update rate µ = 1/E[U ] is also readily available as gU(0). Under Poisson NU , the

memoryless property ensures that FU(x) = GU(x); however, in more general cases,

this distinction is important.

3.4.2 Modeling M1

To estimate the mean µ of a Poisson update process, prior studies [17, 61] pro-

posed that only a subset of age samples {AU(sj)}j≥1 be retained by the observer.

Specifically, when multiple sample points land in the same update interval, only the

one with the largest age is kept, while the others are discarded. As shown in Fig.

3.3, points sj−1 and sj hit the same update cycle [ui−1, ui], in which case only AU(sj)

is used in the measurement and AU(sj−1) is ignored. It was perceived in [17, 61]

that doing otherwise would create a bias and lead to incorrect estimation, but no
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Figure 3.4: Verification of (3.5) under Pareto U (µ = 2).

proof was offered. Compared to the previous studies [17, 61] which mainly focus on

constant S, we consider S as a general random variable. We call this method M1

and study its performance next.

From Fig. 3.3, notice that M1 collects ages AU(sj) at such points sj that satisfy

RU(sj) < Sj, or equivalently Qj,j+1 = 1. All other age measurements are ignored.

Defining 1A as the indicator variable of event A, the fraction of age samples retained

by M1 in [0, T ] is given by:

p(T ) :=
1

NS(T )

NS(T )∑
j=1

1RU (sj)<Sj
, (3.4)

which is an important metric that determines the overhead of M1 and its bias later

in the section. Expansion of (3.4) in the next result follows from Assumption 2, the

equilibrium residual equation for non-lattice intervals, and the law of large numbers

[103].

Theorem 13. As T → ∞, p(T ) converges in probability to:

p := lim
T→∞

p(T ) = P (RU < S) = E[GU(S)]. (3.5)

This result shows that p is affected not just by the update distribution FU(x), but
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also the sample distribution FS(x). To see this effect in simulations, we use constant

and exponential S to sample Pareto FU(x) = 1 − (1 + x/β)−α, where α = 3 and

β = 1 throughout the paper. Fig. 3.4 confirms a good match between the model and

simulations. As expected, p decreases as the sampling rate λ = 1/E[S] increases,

which is caused by an increased density of points landing within each update interval

and thus a higher discard rate. The figure also shows that constant S samples more

points than the exponential case. In fact, it is possible to prove a more general result

– constant S exhibits the largest p (i.e., highest overhead) for a given λ.

Let K(x, T ) be the number of samples that M1 obtains in [0, T ] with values no

larger than x:

K(x, T ) :=

NS(T )∑
j=1

1RU (sj)<Sj
1AU (sj)≤x. (3.6)

Then, it produces a distribution in [0, T ] given by:

G1(x, T ) :=
K(x, T )

K(∞, T )
. (3.7)

Theorem 14. Denoting by F̄ (x) = 1− F (x) the complement of function F (x) and

letting T → ∞, the tail distribution of the samples collected by M1 converges in

probability to:

Ḡ1(x) := lim
T→∞

Ḡ1(x, T ) =
E[GU(x+ S)−GU(x)]

E[GU(S)]
. (3.8)

Proof. Under Assumption 2 and T → ∞, AU(sj) and RU(sj) converge to their
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equilibrium versions AU and RU , respectively. Therefore:

lim
T→∞

K(x, T )

NS(T )
= P (AU ≤ x,RU < S). (3.9)

From Theorem 13, we know that:

lim
T→∞

K(∞, T )

NS(T )
= p = E[GU(S)]. (3.10)

Dividing (3.9) by (3.10) yields:

G1(x) = lim
T→∞

G1(x, T ) =
P (AU ≤ x,RU < S)

E[GU(S)]
, (3.11)

where E[GU(S)] > 0 is guaranteed for all cases except S being zero with probability

1. To derive the numerator of (3.11), condition on RU and S:

P (AU ≤ x,RU < S)

=

∫ ∞

0

[∫ z

0

P (AU ≤ x|RU = y)gU(y)dy
]
dFS(z), (3.12)

Expanding the probability of event AU ≤ x given a fixed residual RU = y leads

to:

P (AU ≤ x|RU = y) =
P (y < U ≤ x+ y)

P (U > y)

=
FU(x+ y)− FU(y)

1− FU(y)
. (3.13)

Recalling that gU(y) = µ(1− FU(y)) is the residual density and applying (3.13),
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Figure 3.5: Simulation results of M1 under exponential S (λ = 1, µ = 2).

the inside integral of (3.12) becomes:

∫ z

0

P (AU ≤ x|RU = y)gU(y)dy

= µ

∫ z

0

(FU(x+ y)− FU(y))dy

= µ

∫ z

0

F̄U(y)dy − µ

∫ z+x

x

F̄U(w)dw

= GU(z) +GU(x)−GU(x+ z). (3.14)

This transforms (3.11) to:

G1(x) =

∫∞
0

(GU(z) +GU(x)−GU(x+ z)) dFS(z)

E[GU(S)]

=
E[GU(S)−GU(x+ S)] +GU(x)

E[GU(S)]
, (3.15)

which is the complement of the tail in (3.8).

Observe from (3.8) that M1 generally measures neither the update distribution

FU(x) nor the age distribution GU(x). To see the extent of this bias, Fig. 3.5(a) plots

simulation results for exponential S and Pareto U in comparison to (3.8). Observe

in the figure that our model closely tracks the simulated tail Ḡ1(x), which remains
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heavy-tailed, albeit different from that of the target distribution FU(x). Fig. 3.5(b)

shows that M1 is indeed unbiased for exponential FU(x). We next investigate other

conditions under which this approach may work well.

3.4.3 Quantifying Bias in M1

Suppose D1 ∼ G1(x) is the random variable observed by M1 over an infinitely

long measurement period. Our goal in this subsection is to determine the relationship

between D1, U , and AU under different sampling strategies and update distributions.

We first re-write (3.8) in a more convenient form.

Theorem 15. The tail distribution measured by M1 can be expressed in two alter-

native forms:

Ḡ1(x) = ḠU(x)
P (AU < x+ S|AU > x)

P (AU < S)
(3.16)

= F̄U(x)
E[

∫ S

0
P (U > x+ y|U > x)dy]

E[
∫ S

0
P (U > y)dy]

. (3.17)

Proof. We first show (3.16). Recalling that GU(x) = P (AU < x) yields:

Ḡ1(x) =
P (AU < x+ S)− P (AU < x)

P (AU < S)

= ḠU(x)
P (x < AU < x+ S)

P (AU < S)P (AU > x)
. (3.18)

From the definition of conditional probability, we get:

P (x < AU < x+ S)

P (AU > x)
= P (AU < x+ S|AU > x). (3.19)

Substituting (3.19) into (3.18), we get (3.16).
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To establish (3.17), rewrite (3.18) as:

Ḡ1(x) = F̄U(x)
P (x < AU < x+ S)

P (AU < S)P (U > x)
, (3.20)

whose numerator can be transformed to:

P (x < AU < x+ S) = µE
[∫ x+S

x

F̄U(y)dy
]

= µE
[∫ S

0

F̄U(x+ y)dy
]
, (3.21)

where we use the fact that gU(x) = µF̄ (x). Dividing (3.21) by F̄U(x) produces:

P (x < AU < x+ S)

P (U > x)
= µE

[∫ S

0

P (U > x+ y|U > x)dy
]
.

Similarly, we can expand:

P (AU < S) = µE
[∫ S

0

P (U > x)dy
]
. (3.22)

Substituting the last two equations into (3.20), we obtain the desired result in

(3.17).

Theorem 15 suggests that the tail of D1 may indeed have some relationship to

those of AU and U . In order to establish this formally, we need to define three classes

of variables.

Definition 11. Variable X is said to be NWU (new worse than used) if P (X >

x + y|X > y) > P (X > x) for all x, y ≥ 0. If this inequality is reversed, X is said

to be NBU (new better than used). Finally, if P (X > x+ y|X > y) = P (X > x) for

all x, y ≥ 0, the variable is called memoryless.
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Figure 3.6: Tail sandwich of M1 under Pareto updates and constant S (µ = 2).

Note that NWU distributions are usually heavy-tailed, with two common repre-

sentatives being Pareto and Weibull. Conditioning on U ’s survival to some age y, its

residual length U − y is stochastically larger than U itself. NBU are typically light-

tailed distributions, exemplified by uniform and constant. Finally, the memoryless

class consists of only exponential distributions, where past knowledge has no effect

on the future.

When both U and AU are NWU, as is the case with Pareto distributions, Theorem

15 shows that Ḡ1(x) is “sandwiched” between the other two tails, i.e., F̄U(x) serves as

a lower bound and ḠU(x) as an upper. This means that D1 is stochastically smaller

than AU , but stochastically larger than U . Fig. 3.6 shows an example confirming

this, where the faster sampling rate in (b) moves the curve closer to F̄U(x). The

relationship among the tails is reversed if U and AU are NBU. For exponential

update distributions, all three tails are equal, which leads to the following result:

Corollary 1. Exponential is the only update distribution that allow M1 to be consis-

tent with FU(x) for all S.

We examine a few other cases next.
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3.4.4 Achieving Consistency in M1

Now that we know that Ḡ1(x) is contained between the tails of update and

age distributions, there are two intuitive ways how bias can be removed. First,

we could tighten the distance between tails F̄U(x) and ḠU(x); however, this can

only be achieved by forcing the source to undergo updates with U that is “closer”

to exponential. As this is usually impractical, the second technique is to adjust the

sampling distribution FS(x) such that the distance of Ḡ1(x) to one of U ’s tails shrinks

to zero. To this end, our next result demonstrates that D1 “leans” towards U or AU

solely based on the fraction of retained samples p.

Theorem 16. For p → 1, variable D1 sampled by M1 converges in distribution to

AU . For p → 0 and mild conditions on S, variable D1 converges in distribution to

U .

Proof. Recall that p = E[GU(S)]. When E[GU(S)] → 1, so does E[GU(S + x)].

Therefore:

Ḡ1(x) =
E[GU(S + x)]−GU(x)

E[GU(S)]
→ ḠU(x). (3.23)

To prove the second part, assume that S/E[S] converges to a random variable

with mean 1. Since p → 0 implies that S → 0 almost surely, we get:

GU(S)

E[S]
=

∫ S

0
F̄U(y)dy

E[U ]E[S]
=

S
∫ 1

0
F̄U(Sy)dy

E[U ]E[S]
→ µ, (3.24)

where we use the fact that F̄U(Sy) → 1 for all fixed y.

Noticing that GU(S)/E[S] is upper bounded by random variable µS/E[S], the

latter of which has a finite mean, and applying the dominated convergence theorem
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Figure 3.7: Verification of (3.30) under Pareto updates and λ = 1.

(DCT), we get:

lim
p→0

E[GU(S)]

E[S]
= µ. (3.25)

Similarly, we obtain:

GU(S + x)−GU(x)

E[S]
=

∫ S+x

x
F̄U(y)dy

E[U ]E[S]

=
S
∫ 1

0
F̄U(Sy + x)dy

E[U ]E[S]
, (3.26)

which converges to µF̄U(x). Applying the DCT again, we get:

lim
p→0

E[GU(S + x)−GU(x)]

E[S]
= µF̄U(x). (3.27)

Combining (3.25) and (3.27) produces:

lim
p→0

E[GU(S + x)−GU(x)]

E[GU(S)]
= F̄U(x), (3.28)

which is what we intended to prove.

To understand this result, we discuss several examples. In order to converge p to
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1, method M1 has to sample with sufficiently large S to achieve P (S > RU) = 1. For

general FU(x), this can be guaranteed only if S converges to infinity, in which case

the measurement process will be quite slow. If an upper bound on U is known, then

setting S to be always larger can also produce p = 1. In these scenarios, however,

M1 will sample GU(x) and additional steps to recover FU(x) must be undertaken.

To achieve p = 0, M1 has to use high sampling rates such that each update

interval contains an infinite number of samples, i.e., S must converge to zero. In this

case, the method may consume exorbitant network resources and additionally create

undesirable load conditions at the source.

3.4.5 Method M2

Instead of using the largest age sample for each detected update, a more sound

option is to use all available ages. While extremely simple, this method has not been

proposed before. We call this strategy M2 and define G2(x, T ) to be the fraction of

its samples with values smaller than or equal to x in [0, T ]:

G2(x, T ) :=
1

NS(T )

NS(T )∑
j=1

1AU (sj)≤x. (3.29)

The next result follows from Assumption 2 and the equilibrium residual equation

[55].

Theorem 17. Method M2 is consistent with respect to the age distribution:

G2(x) := lim
T→∞

G2(x, T ) = GU(x). (3.30)

Next we use simulations to verify the usefulness of (3.30). From Fig. 3.7, ob-

serve that the sampled distribution of M2 does in fact equal GU(x). To obtain
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Figure 3.8: Performance of M2 under Pareto U and constant S (µ = 2, λ = 100).

FU(x) = 1 − gU(x)/gU(0) from an empirical CDF GU(x), we adopt numerical dif-

ferentiation from [98]. This method uses bins of size h and k-point derivatives,

bounding Taylor-expansion errors to O(hk/k!). For the estimator to work, it must

first accurately determine gU(0) = 1/E[U ]. Using k = 5 and non-symmetric (i.e.,

one-sided) derivatives around x = 0, Fig. 3.8(a) demonstrates that the estimated

E[U ] monotonically decreases in h and eventually stabilizes at the true value. Since

h is a user-defined parameter independent of (NU , NS), it can be arbitrarily small.

Thus, a binary search on h to find the flat region in E[U ] can always determine its

value with high accuracy. Applying this technique, the update distribution estimated

by M2 is shown in Fig. 3.8(b) in comparison to FU(x). Notice that the two curves

are indistinguishable.

3.4.6 Discussion

Although M1 has fewer samples, its network traffic remains the same as that of

M2, because they both have to contact the source NS(t) times in [0, t]. However, the

smaller number of retained values in M1 may lead to lower computational cost and

better RAM usage in density-estimation techniques that utilize all available samples

(e.g., kernel estimators). For the route we have taken, i.e., differentiation of G2(x),

the two methods exhibit the same overhead.

71



We now focus on the performance of M2 in finite observation windows [0, T ]. One

potential issue is the redundancy (and high dependency) of samples that it collects

(i.e., all ages within the same update interval are deterministically predictable),

which is what M1 tried to avoid. While necessary, can this redundancy lead to

slower convergence? For a given T , would it be better to collect fewer samples that

are spaced further apart?

Define

ζ(T ) :=
1

NS(T )

NS(T )∑
j=1

AU(sj) (3.31)

to be the average age observed by M2 in [0, T ] using one realization of the system. We

now use deviation of ζ(T ) from E[AU ] = µE[U2]/2 as indication of error. Specifically,

let

ϵ(T ) := E
[
|1− ζ(T )

E[AU ]
|
]
. (3.32)

be the expected relative error computed over m sample-paths.

First, we fix the sampling rate λ = 1 and change T from 100 to 10M time

units. As expected, ϵ(T ) in Fig. 3.9(a) monotonically decreases as the observation

window gets larger, confirming asymptotic convergence of M2 discussed throughout

this section. Next, we keep T constant at 10K and vary E[S]. As shown in Fig.

3.9(b), the error drops with E[S], but then stabilizes. This means that having more

samples, regardless of how redundant, improves performance only up to a certain

point.
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Figure 3.9: Average relative error of ζ(T ) of M2 under Pareto U and exponential S
(µ = 2,m = 1000).

3.5 Comparison Sampling: Constant Intervals

In contrast to the previous section, the remaining methods do not have access to

age; instead, they must work with binary observations Qij, which indicate whether

an update occurred between two sampling points si and sj. This section deals with

constant inter-download delay. This special case of comparison sampling is not just

simple to implement and the only one considered in the literature, but also maximally

polite (i.e., least bursty) for a given download rate λ.

3.5.1 Basics

Assume constant inter-sample delays S = ∆ and notice that all observations

related to update intervals must be multiples of ∆. It is therefore impossible to

reconstruct FU(x), or even GU(x), in every point x. This requires an adjustment in

objectives.

Definition 12. An estimator F̃ (x, T ) is ∆-consistent with respect to distribution

F (x) if it can correctly reproduce it in all discrete points xn = n∆ as T → ∞:

lim
T→∞

F̃ (xn, T ) = F (xn), n = 1, 2, . . . (3.33)
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As we discuss above and confirm below, none of the methods can measure FU(x)

directly (unless the sampling rate is infinite or U is exponential). As a result, all

algorithms generally face the issue of recovering FU(x) from GU(x). The main caveat

of this section is that knowledge of the age distribution in discrete points is generally

insufficient for ∆-consistent estimation of FU(x). This occurs because the estimated

GU(x) lacks data in every interval (xn, xn+1), which precludes differentiation and

leaves gU(x) unobtainable.

Depending on the smoothness of GU(x) and/or prior knowledge about the tar-

get distribution, one can use interpolation between the known points GU(xn). In

such cases, FU(x) may be reconstructed with high accuracy using kernel density-

estimation techniques; however, the result is application-specific. We thus do not

dwell on numerical methods needed to perform these manipulations and instead fo-

cus on ∆-consistency in regard to GU(x).

3.5.2 Method M3

Prior work in several fields [9, 17, 61, 79, 92] has suggested an estimator, which

we call M3, that rounds the distance between each adjacent pair of detected updates

to the nearest multiple of ∆, from which it builds a distribution G3(x). This tech-

nique was used in [17, 61] to track webpage updates, in [76] to estimate lifetimes of

storage objects, and in [9, 79, 92] to sample user lifetimes in P2P networks. In the

OS/networking literature, the approach is known as Create-Based Method (CBM)

because it tracks each object from its creation, as opposed to other methods that

track deletions.

Define rk to be the number of downloads after which the k-th update is detected,
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Figure 3.10: Comparison sampling in M3 with constant intervals of size ∆.

i.e.,

rk := min
{
m ≥ 1 :

m∑
j=1

Qj,j+1 = k
}
. (3.34)

Then, the samples collected by M3 are (rk+1−rk)∆ for k = 1, 2, . . . To understand

this better, Fig. 3.10 shows an example where updates are detected after downloads

j and j + 4, which produces rk+1 − rk = 4 and a single sample 4∆. Based on the

description in prior work, this technique serves the purpose of directly measuring Ui

by counting full intervals of size ∆ that fit in [ui, ui+1]. As a result, the output of M3

is usually expected to produce the update distribution FU(x).

While this makes sense for the case in Fig. 3.10, the method becomes grossly

inaccurate when multiple updates occur within ∆ time units of each other, which

brings us back to the issue of hidden variables Ui. Consider Fig. 3.11, where 2/3 of

the visible update durations are less than ∆. Since M3 in this scenario produces one

sample 4∆, it skews the mass of the distribution to much higher values than needed.

We now model the performance of M3 under general U and obtain the limiting

distribution of its samples. Define G3(x, T ) to be the CDF of observed durations in

[0, T ]:

G3(x, T ) :=

∑∞
k=1 1rk≤T1(rk+1−rk)∆≤x∑∞

k=1 1rk≤T

. (3.35)
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Figure 3.11: Pitfalls of M3.

Then, we have the following result.

Theorem 18. The tail distribution of M3 is a step-function:

Ḡ3(xn) := lim
T→∞

Ḡ3(xn, T ) =
GU(xn+1)−GU(xn)

GU(∆)
. (3.36)

Proof. Notice from Fig. 3.11 that age samples collected by M3 can be viewed as

discrete versions of those in M1. Indeed, define x
+ = ∆⌈x/∆⌉ to be x rounded-up to

the nearest multiple of ∆. Then, the sample obtained by M3 at download instance

sj is A
+
U(sj). Since condition A+

U(sj) < xn is equivalent to AU(sj) < xn for xn = n∆,

we obtain:

G3(xn, T ) =

∑NS(T )
j=1 1RU (sj)<Sj

1AU (sj)≤xn∑NS(T )
j=1 1RU (sj)<Sj

, (3.37)

which is exactly the same as G1(xn, T ) in (3.7). Therefore, the tail of G3(xn, T )

converges to the result in (3.8), with S replaced by ∆. Doing so produces (3.36).

Since G3(x) has no information between discrete points xn, it must be constant in

each interval [xn, xn+1), which means it is a step-function.

Define a random variableD3 ∼ G3(x). With the result above, its average becomes

readily available.
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Theorem 19. The expectation of D3 is given by:

E[D3] =
∆

GU(∆)
. (3.38)

Proof. It is well-known that the mean of a non-negative lattice random variable can

be obtained by summing up its tail distribution:

E[D3] = ∆
∞∑
n=0

Ḡ3(xn). (3.39)

Expanding Ḡ3(xn) using (3.36) and canceling all but two remaining terms leads

to the desired result.

Similar to M1, method M3 is consistent when FU(x) is exponential, which is shown

as follows:

Corollary 2. Exponential is the only update distribution that allow M3 to be ∆-

consistent with FU(x) for all ∆.

However, in broader NWU/NBU settings, its distribution lies between FU(x)

and GU(x). As sampling interval ∆ → ∞, which corresponds to p → 1, variable D3

converges in distribution towards AU . When ∆ → 0, which reflects p → 0, D3 tends

to U . Unfortunately, neither scenario is usable in practice, which makes the method

generally biased.
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3.5.3 Method M4

Using the rationale behind M2, we now propose another new method, which we

call M4. At each sampling point sj, the obtained value is:

D4(sj) :=


∆ Qj−1,j = 1

D4(sj−1) + ∆ otherwise

. (3.40)

For the example in Fig. 3.10, this method collects four samples – ∆, 2∆, 3∆ and

4∆. Denote by G4(x, T ) the distribution generated by M4 in [0, T ]. Then, we have

the following result.

Theorem 20. Method M4 is ∆-consistent with respect to the age distribution:

G4(xn) := lim
T→∞

G4(xn, T ) = GU(xn). (3.41)

Proof. It is not difficult to see that M4 collects samples A+
U(sj) in all points sj.

Therefore,

G3(xn, T ) =

∑NS(T )
j=1 1A+

U (sj)≤xn
,

NS(T )
(3.42)

where x+ = ∆⌈x/∆⌉ as before. Since the CDF is computed only in discrete points

xn, the above can be written as:

G3(xn, T ) =

∑NS(T )
j=1 1AU (sj)≤xn

NS(T )
= G2(xn, T ), (3.43)

which converges to GU(x) using (3.30).

Define a random variable D4 ∼ G4(x), where G4(x) is a continuous step-function
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taking jumps at each xn. Interestingly, even though M3 keeps the largest age sam-

ple in each detected update interval [ui, ui+1], the mean of its values E[D3] is not

necessarily larger than that of D4. For example, with Pareto updates and ∆ = 1,

we get E[D4] = 1.63 and E[D3] = 1.33. This can be explained by our previous dis-

cussion showing that under NWU update intervals the tail Ḡ3(x) is upper-bounded

by Ḡ4(x), which implies E[D4] ≥ E[D3]. Note that if U is NBU, this relationship is

again reversed.

3.5.4 Undoing Bias in M3

From the last two subsections, we learned that M4 is always ∆-consistent with

respect to GU(x), while M3 is biased unless U is exponential or ∆ is infinitely small.

One advantage that M3 may have is that it operates with significantly fewer sam-

ples. As mentioned in the previous section, M3 is inconsistent but widely used by

researchers to measure lifetimes in storage objects and P2P systems. This raises the

question of whether one can achieve ∆-consistency using exact same samples as M3.

To this end, let x+ = ∆⌈x/∆⌉ be x rounded-up to the nearest multiple of ∆ and

define:

G5(xn, T ) :=
1

T

T/∆∑
j=1

min(xn, A
+
U(sj))Qj,j+1 (3.44)

to be an estimator that takes samples of M3, passes them through the min function,

and normalizes the resulting sum by window size T . Note that the number of terms

in the summation is K(∞, T ), i.e., the number of detected updates.

Theorem 21. Estimator M5 is ∆-consistent with respect to the age distribution:
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Figure 3.12: Verification of (3.45) under Pareto U (µ = 2).

G5(xn) := lim
T→∞

G5(xn, T ) = GU(xn). (3.45)

Proof. We start with an auxiliary result:

n−1∑
k=0

1AU (sj)>xk
=

n−1∑
k=0

1A+
U (sj)>xk

=
n−1∑
k=0

1⌈AU (sj)∆⌉>k

= min(n, ⌈AU(sj)∆⌉) = min(xn, A
+
U(sj))

∆
. (3.46)

Next, applying this to expansion of (3.44):

G5(xn, T ) =
∆

T

T/∆∑
j=1

Qj,j+1

n−1∑
k=0

1AU (sj)>xn

=
∆

T

n−1∑
k=0

T/∆∑
j=1

1AU (sj)>xnQj,j+1

=
K(∞, T )

NS(T )

n−1∑
k=0

Ḡ3(xn, T ), (3.47)

where K(x, T ) is given by (3.6) and Ḡ3(xn, T ) by (3.37). Since K(∞, T )/NS(T )
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converges to p, we get after applying (3.36) to the expansion of Ḡ3(xn, T ):

G5(xn) = p
GU(xn)

GU(∆)
= GU(xn),

where we use the fact that p = GU(∆).

Fig. 3.12 shows that M5 accurately obtains the tail of GU(x), even for ∆ bounded

away from zero. We next compare M5 with M4 to see if the reduction in the number

of samples has a noticeable impact on accuracy. The first metric under consideration

is the Weighted Mean Relative Difference (WMRD), often used in networking [33].

Assuming H(x, T ) is some empirical CDF computed in [0, T ], then the WMRD

between H(x, T ) and GU(x) is:

w(T ) :=

∑
n |H(xn, T )−GU(xn)|∑

n(H(xn, T ) +GU(xn))/2
. (3.48)

The second metric is the Kolmogorov-Smirnov (KS) statistic, which is the maxi-

mum distance between two distributions:

κ(T ) := sup
x

|H(x, T )−GU(x)|. (3.49)

Simulations results are shown in Table 3.1. Observe that M4 performs slightly

better for T ≤ 103, but then the two methods become identical and their error decays

as 1/
√
T . Even if T is small, the minor loss of accuracy in M5 may well be worth a

20% reduction in the number of samples. As given in Fig. 3.4(a), larger λ leads to

even higher savings, e.g., 80% for λ = 10.
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Table 3.1: Convergence of Both ∆-Consistent
Methods under Pareto U (µ = 2, λ = 1)

T
M4 M5

w(T ) κ(T ) w(T ) κ(T )
102 3.5× 10−2 6.4× 10−2 3.7× 10−2 6.7× 10−2

103 1.4× 10−2 2.2× 10−2 1.4× 10−2 2.2× 10−2

104 4.7× 10−3 7.2× 10−3 4.7× 10−3 7.3× 10−3

105 1.5× 10−3 2.4× 10−3 1.5× 10−3 2.4× 10−3

106 4.1× 10−4 5.8× 10−4 4.1× 10−4 5.8× 10−4

107 2.2× 10−4 2.6× 10−4 2.2× 10−4 2.6× 10−4

3.6 Comparison Sampling: Random Intervals

Although M4 and M5 are consistent estimators of GU(x), they do not generally

guarantee recovery of FU(x). Furthermore, constant S may not always be achievable

in practice. For instance, search engine juggle trillions of pages, whose download

rate is dynamically adjusted based on real-time ranking and budgeting. It may

thus be difficult to ensure constant return delays to each page. Additional problems

stem from lattice update processes, where constant S fails to satisfy Assumption 2,

rendering measurements arbitrarily inaccurate.

In this section, we consider comparison sampling with random intervals. We first

show that extending M4 to this scenario delivers surprisingly biased results. Then,

we present our new method M6 and verify its correctness using simulations.

3.6.1 Straightforward Approaches

Our first attempt is to generalize M4 to random S, which we call G-M4. For a

given sj, define the most-recent sample point after which an update has been detected
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Figure 3.13: Illustration of G-M4.

as:

s∗j := max
i<j

{si : Qij = 1}. (3.50)

Then, G-M4 rounds age AU(sj) up to sj − s∗j . An example is shown in Fig. 3.13,

where the measured value is sj+2 − sj. For constant S, this method is identical to

M4, which we know is consistent. The main difference with random S is that the

amount of round-off error in G-M4 varies from interval to interval. This issues has a

profound impact on the result, as shown in Fig. 3.14. Observe that the exponential

case becomes somewhat consistent only for xn ≫ 0 and the Pareto case produces a

tail that is completely different from the actual ḠU(x). This motivates us to search

for another approach.

3.6.2 Method M6

Our rationale for this technique stems from the fact that Qij = 1 if and only

if AU(sj) < sj − si. Therefore, counting the fraction of pairs (i, j) that sustain an

update may lead to GU(x). Define y
◦ = h⌈y/h⌉ to be the rounded-up value of y with

respect to a user-defined constant h. Let yn = nh and:

Wij(yn) :=


1 (sj − si)

◦ = yn

0 otherwise

. (3.51)
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Figure 3.14: Bias of G-M4 with Pareto updates (µ = 2, λ = 1).

Then, the number of inter-sample distances sj − si in [0, T ] that round up to yn

is given by:

W (yn, T ) :=

NS(T )∑
i=1

NS(T )∑
j=i+1

Wij(yn) (3.52)

and the number of them with an update is:

Z(yn, T ) :=

NS(T )∑
i=1

NS(T )∑
j=i+1

QijWij(yn). (3.53)

We can now define estimator M6 by its CDF:

G6(yn, T ) :=
Z(yn, T )

W (yn, T )
(3.54)

For a given λ, method M6 has the same network overhead as the other methods;

however, it utilizes Θ(n2) pairwise comparisons, significantly more than the other

methods, which are all linear in n. Despite a higher computational cost, M6 gains

significant accuracy advantages when distances si−sj are allowed to sweep all possible

points x ≥ 0. Combining this with bins of sufficiently small size creates a continuous

CDF, which allows recovery of not only GU(x), but also FU(x).
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Theorem 22. Assume h → 0, NS is age-mixing, and FS(x) > 0 for all x > 0.

Then, method M6 is consistent with respect to the age distribution:

G6(y) := lim
T→∞

G6(y, T ) = GU(y). (3.55)

Proof. First, it helps to observe that:

Qij = 1RU (si)≤(sj−si). (3.56)

Since the download process is renewal, it follows that:

sj − si ∼ F
∗(j−i)
S , (3.57)

where F ∗k(x) denotes a k-fold convolution of distribution F (x). Furthermore, the

renewal nature of NS implies that variable sj − si is independent of si. Now, let

Yk ∼ F ∗k
S (x) (3.58)

be a random variable with the same distribution as S1 + . . . + Sk and define the

renewal function driven by FS(x) as [103]:

MS(t) = 1 +
∞∑
k=1

F ∗k
S (t). (3.59)

Then, renewal theory shows for x > h and n → ∞ that:

1

n

n∑
i=1

n∑
j=i+1

1RU (si)≤(sj−si) 1sj−si∈(x−h,x] (3.60)
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converges to

∞∑
k=1

P (RU ≤ Yk, Yk ∈ (x− h, x])

=
∞∑
k=1

∫ x

x−h

GU(y) dF
∗k
S (y) =

∫ x

x−h

GU(y) dMS(y). (3.61)

Let n = NS(T ) and assume that h(T ) = T−δ, where δ ∈ (0, 1) ensures that h

diminishes to zero at some appropriate rate1. Since GU(x) is continuous, it follows

that:

lim
T→∞

Z(yn, T )

W (yn, T )
= lim

h→0

∫ x

x−h
GU(y) dMS(y)∫ x

x−h
dMS(y)

= GU(x) (3.62)

for each x > 0.

The assumption that FS(x) contains non-zero mass in the vicinity of zero is

necessary for accurate estimation of gU(x) at x = 0, which then leads to FU(x). This

can be accomplished by a number of continuous distributions, e.g., exp(λ) or uniform

in [0, 2λ]. It should also be noted that M6 works for lattice S, but in that case it

offers no benefits over M4. Fig. 3.15 compares the M6 estimator against GU(x) under

two sampling distributions FS(x), both satisfying Theorem 22. Compared to Fig.

3.14, this result is overwhelmingly better.

3.7 Discussion

We have finished establishing our methods in previous sections. In this section, we

first introduce our Wikipedia dataset and show that Poisson update assumption is not

universally applicable, especially on our dataset. Then, we compare the performance

1From well-known results in non-parametric function estimation, δ = 1/5 should be optimal for
the mean squared error of the estimate.
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Figure 3.15: Simulations of M6 under Pareto updates (h = 0.05, µ = 2, λ = 1).
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Figure 3.16: Inter-update delay distribution.

of our methods and propose the optimal choice of our methods in different scenarios.

3.7.1 Dataset and Poisson Assumption

Wikipedia [100] is a collaborative editing website which keeps the all the revi-

sion histories of its pages. This provides us modification timestamps of all pages,

from which we can obtain the inter-update delays by subtracting two consecutive

timestamps. We downloaded 3.6 million English Wikipedia articles and computed

the update intervals of all pages. The average number of updates among all pages is

71.4. Because all sampling methods require sufficiently large amount of samples, our

first focus is the most frequently modified article “George W. Bush”, whose CCDF

is shown in Fig. 3.16(a). Observe that it fits Pareto tail (1 + x/β)−α with α = 1.4
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Figure 3.17: Pages with exponential updates.

and β = 0.93 well. Fig. 3.16(b) displays the inter-update delay distribution of all

articles. Curve fitting on the data shows that update delay distribution matches

Weibull tail e−(x/ν)k with ν = 400 and k = 0.5. Results in both figures show that

inter-update delay distributions are not exponential.

Even when the inter-update delay distribution is exponential, a Poisson pro-

cess requires the independency between delays. To find articles with exponential

inter-update delays, we compute coefficient of variation of all pages with non-trivial

modification history. It can be shown that for exponential X, the coefficient of vari-

ation v =
√

V ar[X]/E[X] is 1. Then we scan for articles with |v − 1| ≤ 0.1 among

444K pages with at least 100 updates and obtain exactly 202 results. As shown in

Fig. 3.17(a), the joint distribution of selected articles fits exponential pretty well. To

measure the dependency between delays, we use the auto-correlation function ρ(h).

Note that iid processes should exhibit ρ(h) = 0 for all lags h = 1. Observe from

Fig. 3.17(b) that the auto-correlation was heavy-tailed, which matches a power-law

function h−γ with γ = 0.25. This suggests long-range dependence (LRD) with Hurst

parameter H = 0.87. This prevents the applicability of previous models [17, 61]

because of the Poisson update assumption. With our new model and proofs, M1 and

M3 can now be applied to the correlated case as long as FU(x) is exponential.
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Table 3.2: Top 10 most frequently modified Wikipedia articles
Page updates E[U ] (hrs) duration (days)
George W. Bush 44,296 1.86 3,433
LWWE * 33,744 1.46 2,058
Wikipedia 30,407 2.70 3,420
United States 28,771 2.90 3,482
Michael Jackson 25,558 3.22 3,433
Jesus 23,027 3.82 3,670
Britney Spears 21,549 3.85 3,454
World War II 21,424 3.83 3,418
Wii 21,023 3.00 2,630
Adolf Hitler 20,964 3.91 3,413
*LWWE: List of World Wrestling Entertainment personnel

3.7.2 Method Comparison

Now we start comparing the performance of our methods. In order to get enough

samples, we choose the top 10 most frequently modified Wikipedia articles as our test

data. This is listed in Table 3.2 with the first page “George W. Bush” experiencing

more than two times updates than the last ”Adolf Hitler”. The average inter-update

delays E[U ] spans from 1 to 4 hours. Majority of pages have duration between 9 to

10 years. More frequently modified page does not always gives lower E[U ] because

pages have different duration intervals.

Since all our methods compute GU(x) first and apply numerical derivative to

obtain FU(x), we focus on comparing the difference between GU(x). For the top 10

articles shown in Table 3.2, we compute GU(x) using (3.1) as the ground truth. We

simulate all our methods with time T = 100, 000 hours to test their performance.

We repeat the update traces when the update sample duration is less than T . The

performance metrics in consideration are WMRD in (3.48) and KS in (3.49). We

do not consider methods M1 and M3 because they both are unbiased only when the
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Table 3.3: Method comparison using κ(T ) (λ = 0.5, T = 105)

Page
Exponential S Constant S
M2 M6 M2 M4 M5 M6

1 0.19% 1.19% 0.06% 1.07% 1.07% 1.07%
2 0.13% 1.26% 0.08% 1.40% 1.40% 1.40%
3 0.25% 1.34% 0.08% 0.56% 1.00% 0.56%
4 0.19% 1.33% 0.09% 0.73% 0.73% 0.73%
5 0.63% 1.51% 0.07% 0.62% 0.62% 0.62%
6 0.32% 1.50% 0.06% 0.54% 0.54% 0.54%
7 0.11% 1.30% 0.06% 0.41% 0.41% 0.41%
8 0.31% 1.23% 0.06% 0.47% 0.47% 0.47%
9 0.22% 1.13% 0.09% 1.08% 1.08% 1.08%
10 0.25% 1.34% 0.08% 0.46% 0.46% 0.46%

inter-updated delay distribution is exponential, which is not the case for the top 10

Wikipedia articles.

We use both exponential S and constant S with the same mean E[S] = 30

minutes to sample the pages. The methods which work under exponential S include

M2 and M6, both of which produce continuous CDF curves. We compute WMRD

and KS at discrete points from 0 to 1000 hours with gap 3 minutes. Observe from

Table 3.3 and 3.4 that M2 performs much better than M6 because it M2 has the

knowledge of the age of the update which M6 does not have.

For constant S = ∆, we consider age-based method M2 and comparison based

methods M4, M5, and M6. Notice that all compassion based methods produce dis-

crete CDF at points which are multiple of ∆ = 0.5 hours. To make a fair comparison,

we compute their WMRD and KS at the same points as M2 and M6 under expo-

nential S. Since the evaluation points have smaller granularity than ∆, we apply

linear interpolation to get the values at all points. Table 3.3 and 3.4 shows that

age-based method M2 produces better results than comparison-based methods M4,

M5 and M6. When age information is not available, M4 is better choice than M6
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Table 3.4: Method comparison using w(T ) (λ = 0.5, T = 105)

Page
Exponential S Constant S
M2 M6 M2 M4 M5 M6

1 0.02% 0.13% 0.01% 0.01% 0.02% 0.01%
2 0.002% 0.10% 0.001% 0.001% 0.005% 0.01%
3 0.03% 0.11% 0.01% 0.01% 0.04% 0.01%
4 0.07% 0.19% 0.02% 0.02% 0.04% 0.04%
5 0.41% 0.39% 0.02% 0.02% 0.02% 0.07%
6 0.18% 0.33% 0.04% 0.04% 0.43% 0.10%
7 0.04% 0.21% 0.02% 0.02% 0.02% 0.05%
8 0.04% 0.15% 0.01% 0.01% 0.06% 0.03%
9 0.02% 0.13% 0.03% 0.03% 0.02% 0.01%
10 0.12% 0.25% 0.03% 0.03% 0.03% 0.06%

because its lower complexity and higher accuracy. However, this does not preclude

the usefulness of M5 because existing methods such as CBM already measure lots of

traces using M3, which is biased but can be corrected by applying M5. Furthermore,

M5 needs less number of samples which is useful to balance the accuracy and system

capacity, especially in system with limited space.

According to our discussion above, we propose our optimal choice under different

scenarios, as shown in Fig. 3.18. When age is available, method M2 is always

preferable. For comparison-based methods under constant S, M4 should be used if

one wants to start a new measurement, while M5 should be used to correct the bias

of existing measurement samples collected by M3. Finally, when age is not available

and S is random, M6 should be adopted since it is the only option.
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4. STOCHASTIC MODELS OF PULL-BASED DATA REPLICATION IN P2P

SYSTEMS

4.1 Introduction

P2P file sharing systems have received tremendous interest in recent years among

both Internet users and computer networking professionals. In the study of these

networks, one fundamental problem is to handle peer overload that may arise due to

the highly popular nature of certain content and/or temporal fluctuations in demand

(e.g., flash crowds). A common solution for static files is to replicate them from each

source to multiple peers, which distributes the load and thus improves file-query

efficiency. Examples include protocols that replicate content close to the owner

[26, 78, 91], near the requester [42], and along query paths [24, 77, 107].

With real-time operation of certain P2P applications, such as online auctions [39],

decentralized collaboration [109], web caching [51], and online games [105], replica-

tion faces new challenges related to data churn (i.e., periodic content updates at the

source). To provide accurate and reliable query results in these systems, replicated

material must be continuously synchronized with that at the source. Without an

effective consistency-maintenance strategy, these applications may suffer from de-

graded performance and lower user participation.

The majority of existing P2P synchronization methods are push-based. To allow

the source easy discovery of replica location, these networks often employ structured

P2P networks to establish a mapping from file IDs to nodes where they can be found

[11, 13, 48, 57, 77, 104, 107]. Since the source must track the status and location of

each replica, as well as reconfigure the distribution tree, these methods may suffer

from high maintenance overhead, especially when the network structure is volatile
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(i.e., under high user churn).

In unstructured P2P networks, management of replicas is usually achieved by

message spreading [19, 27, 41, 60], which may generate large amounts of redundant

traffic and even lead to network collapse when search rates become sufficiently high.

To address this problem, several studies [60, 81, 82, 83, 96] propose pull-based consis-

tency control, which allows replicas to self-manage their membership in replication

paths and decide when to download content from the source. Pull-based techniques

have also been used in pub/sub systems [12, 32] and hybrid push/pull methods found

application in decentralized online social networks [88].

In databases, it is well-known [52], [108] that pull-based synchronization improves

both scalability and availability of the data, but at the expense of increased age of

the content served to clients. As the source evolves, replicas in these networks go

through periods of staleness, during which they provide outdated responses that

do not reflect the true condition of the source. To measure system performance,

it is generally accepted that the probability of freshness (i.e., likelihood that the

most-recent version is available to consumers) accurately reflects the quality of a

replication strategy. Although this metric has been considered by researchers in

web-based systems [10, 15, 20, 71, 69, 101], it has never been explored in the context

of P2P systems. We aim to fill this void below.

4.1.1 Contributions

We start by considering a single source driven by an update process NU and a

single replica with the corresponding download process ND, which is independent of

NU . Our first contribution is to propose a general framework for modeling freshness

under arbitrary renewal processes (NU , ND). This allows us to derive the freshness

probability p in closed-form as a function of inter-update distribution FU(x) and
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inter-download distribution FD(x). Our formula for p generalizes all previous ana-

lytical results in the literature [7], [8], [14], [15], [17], [20], [31], [34], [40], [49], [53],

[59], [61], [65], [66], [84], [95], [106], which were predominantly limited to Poisson NU

and two simple cases of FD(x).

Given a fixed download rate λ, our second contribution is to obtain a condi-

tion that allows comparison of freshness achieved by different download strategies

FD(x). We show that freshness improves if the inter-synchronization interval be-

comes stochastically larger in second order. This allows us to prove that constant

delays are optimal against all NU . For the same p, they require 33% less bandwidth

than exponential inter-download delays and 50% less than Pareto.

Based on these results, our third contribution is to analyze cascaded synchroniza-

tion, where replicas receive content from other replicas along a fixed multi-hop path

from the source. A common arrangement covered by this model is a b-way replication

tree, which limits the source to b concurrent downloads, but keeps client-scalability

arbitrarily high depending on the depth of the tree. Assuming independent operation

among the replicas, we derive a recursive model that provides freshness at each level

i. Our results show that in certain cases p decays exponentially fast as a function of

the depth, suggesting an interesting coupling between system size and staleness.

Our fourth contribution is to propose a model of cooperative caching, in which m

replicas form a single layer, in which each participant can synchronize not only with

the source, but also k other replicas. For a target p, the goal is to determine the

optimal (m, k) that maximizes the service rate of the entire system. The main caveat

of this model is that it takes into account bandwidth constraints at the source and

each replica. We show that making k or m too large is detrimental to performance;

instead, each parameter has a unique optimal value that achieves the highest service

rate, which can be 2− 7 times larger than under non-cooperative replication.
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Our last contribution is to examine a scenario we call redundant querying, in which

consumers have access to multiple independent caches. Issuing parallel queries to k

replicas out of the m available, the hope is to improve freshness by selecting the most

up-to-date copy of the source. We first show that freshness in this case can be com-

puted using the original update process and a superposition of download processes

from each of the contacted replicas. However, taking bandwidth into account, this

analysis also leads to a surprising conclusion that redundant querying with k ≥ 2

sometimes produces lower performance than non-redundant.

4.2 Related Work

Consistency maintenance in existing P2P networks can be classified into push-

based and pull-based. In the former, the source is responsible for sending updates to

replicas whenever it deems necessary. To achieve this, the source has to know the

location of all of its replicas either by utilizing a rigid network structure that maps

files to nodes [11, 13, 77, 104, 107] or randomly flooding the graph [19, 27, 41, 60].

In pull-based methods, nodes become replicas, discontinue being such, and adjust

their download policy independently of the source. Existing work in this direction

[81, 82, 83] focuses on determine the polling frequency using a family of linear-increase

multiplicative-decrease (LIMD) algorithms.

In other fields, pull-based data synchronization has also been studied. In the

context of web systems [10, 15, 20, 101], sources are typically HTML pages modified

by their owners. Replicas can be search engines that use web-crawlers to periodically

reload content and refresh their indexes; however, additional applications are possible

as well – online monitoring systems [69, 71] of highly dynamic web streams (e.g., stock

market, traffic), traditional web caching [21, 22, 23], RSS feed aggregation [84], and

many others.
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Figure 4.1: System model. Arrows represent pull-based requests for information.

In the analytical literature, freshness p was first proposed by Coffman et al. [20]

and later used by much of the follow-up work [10, 15, 14, 65, 101]. Other ways to

capture staleness include information divergence between the source and its replica

[66], age of the content served to clients [15], the number of missing updates at the

replica [29], [49], and their combined age [58, 59, 84]. In all of these cases, models

are derived under the assumption that the update process NU is Poisson. There has

been only one attempt [101] to relax this constraint, but it required deterministic

knowledge all download instances. While appropriate in some cases, this model is

difficult to evaluate in practice when inter-download delays are random and given by

their distribution FD(x).

4.3 Single-Hop Replication

In this section, we consider a single source and one of its replicas. We first

introduce our assumptions and notation, define freshness p, and derive its closed-

form model. We then use simulations to highlight several examples.

4.3.1 System Model and Notation

We assume a model of data generation, replication, and consumption in Fig. 4.1.

During system operation, the source experiences random updates in response to ei-

ther external events (e.g., price bids in e-auctions, status changes in online games) or

some internal computation (e.g., indexing, MapReduce output). In either case, each

update represents certain tangible information that manipulates the current state

of the source. The replica has no direct knowledge of these updates and must infer
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Figure 4.2: Illustration of age and other variables.

their occurrence only through periodic downloads. Its goal is to provide consumers

with up-to-date responses to various types of queries.

Let ui denote the time when the i-th update occurs at the source. Define

NU(t) = max{i : ui ≤ t} to be the number of updates in [0, t] and Ui = ui+1 − ui

as the i-th inter-update delay. Similarly, let dk be the k-th download instance,

ND(t) = max{k : dk ≤ t} the number of such points in [0, t], and Dk = dk+1 − dk

the k-th inter-synchronization delay. To keep the system tractable, assume that

ND and NU are independent renewal processes. This means that update intervals

{Ui}∞i=1 and synchronization delays {Di}∞i=1 are two sets of independent and identi-

cally distributed (iid) variables. This allows us to replace them with random variables

U ∼ FU(x) and D ∼ FD(x), respectively.

4.3.2 Performance Measure

Observe that a local copy at the replica is fresh if and only if the last update

time uNU (t) is smaller than the last download time dND(t). Freshness of the data can

thus be modeled by an alternating (ON/OFF) process:

ϕ(t) =


1 uNU (t) < dND(t)

0 otherwise

, (4.1)
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where t represents the time of a consumer’s request to the replica. In practice, it is

more convenient to express ϕ(t) as a function of age. Define the download age at t

to be the time lag from the last synchronization to t:

AD(t) = t− dND(t) (4.2)

and the update age to be that from the last update:

AU(t) = t− uNU (t). (4.3)

These definitions are illustrated in Fig. 4.2, where the empty circles are update

events and the solid ones are download instances. Using the figure, it is not difficult

to see that a copy is fresh if and only if the download age is smaller than the update

age, which means that:

ϕ(t) =


1 AU(t) > AD(t)

0 otherwise

. (4.4)

We model the consumer as querying the replica at some large time t by which the

system can be considered stationary. As t → ∞, AU(t) and AD(t) converge to their

equilibrium versions, which we call AU and AD, respectively. Define µ = 1/E[U ] to

be the update rate and let λ = 1/E[D] be the download rate. Then, from renewal

theory [103], the two ages have well-known distributions:

GU(x) := P (AU < x) = µ

∫ x

0

(1− FU(y))dy (4.5)
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and

GD(x) := P (AD < x) = λ

∫ x

0

(1− FD(y))dy. (4.6)

This allows us to formulate the main metric of system performance – the limiting

probability that consumers encounter a fresh copy:

p := lim
t→∞

P (ϕ(t) = 1) = P (AU > AD). (4.7)

To keep notation simple and prevent unnecessary explanation, we generally use

FX(x) to represent the distribution of variable X, GX(x) to denote its age distribu-

tion similar to (4.5)-(4.6), and lower-case functions fX(x) and gX(x) as the corre-

sponding densities. We also use F̄X(x) = 1 − FX(x) as the CCDF (complementary

cumulative distribution function) of variable X and replace X(t) with its limiting

variable X as t → ∞, whenever doing so is appropriate.

4.3.3 Freshness Probability

Our next result directly follows from (4.4).

Theorem 23. Freshness experienced by consumers in steady-state is given by:

p = E[ḠU(AD)] =

∫ ∞

0

ḠU(x)gD(x)dx. (4.8)

To perform a self-check against prior results with Poisson NU , observe that (4.8)

simplifies to p = λ(1− e−µ/λ)/µ under constant D and λ/(λ+ µ) under exponential

D, which is in agreement with [15], [20]. We use simulations to examine model

accuracy in more interesting cases of general renewal processes. Since U and D are

non-negative random variables defined on (0,∞), our Pareto CDF is 1− (1+x/β)−α

for α > 1 and β > 0. The mean of this distribution is β/(α − 1), where α is kept
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Figure 4.3: Simulation results of (4.8) under µ = 2.

at 3 throughout the paper. We simulate each process to large enough t to reach

stationarity of the underlying processes. This typically requires a few hundred units

of time.

Observe in Fig. 4.3 that the model matches simulations very well, with constant

download intervals performing significantly better against Pareto update cycles in

(a) than the other way around in (b). For instance, using download rate λ = 3,

which is 50% faster than the update rate µ = 2 in the figure, part (a) achieves 75%

freshness, while part (b) only 43%. It is unclear, however, whether constant D is

always better than Pareto and what impact FU(x) has on the resulting p. We address

this question next.

4.4 Best Download Strategy

In this section, we study conditions under which one combination of processes

(NU , ND) performs better than another.

4.4.1 Basics

Noticing from (4.6) that gD(x) = G′
D(x) = λ(1 − FD(x)), the result in (4.8)

shows that expected freshness p is impacted by not only the product of update and

download rates µλ, but also the entire functions FD(x) and FU(x). To establish order
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between distributions, we need the next definition commonly used in game theory

and statistics.

Definition 13. Variable X is said to be stochastically larger than Y , which is written

as X ≥st Y , if F̄X(x) ≥ F̄Y (x) for all x ≥ 0. Variable X is stochastically larger

than Y in second order, which is written as X ≥2
st Y , if

∫ x

0
F̄X(y)dy ≥

∫ x

0
F̄Y (y)dy

for all x ≥ 0.

Since ḠU(x) is a monotonically non-increasing function, it is easy to show that

(4.8) produces the following result.

Lemma 4. For two download strategies driven by inter-synchronization delays X

and Y , freshness pX ≥ pY when the age of Y stochastically dominates that of X,

i.e., AY ≥st AX .

To make this result useful, we next translate stochastic dominance between ages

to that between the corresponding variables.

Lemma 5. Assuming E[X] = E[Y ] > 0, variable X is stochastically larger than Y

in second order, i.e., X ≥2
st Y , if and only if the age of Y is stochastically larger

than that of X, i.e., AY ≥st AX .

Proof. Let GX(x) and GY (x) be the CDFs of AX and AY , respectively. Define:

J(x) = ḠY (x)− ḠX(x) (4.9)

and expressed it as:

J(x) =

∫ x

0
F̄X(y)dy

E[X]
−

∫ x

0
F̄Y (y)dy

E[Y ]
. (4.10)
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Figure 4.4: Ordering of freshness under different families of distributions.

Since both means are positive and equal to each other, we get that AY ≥st AX

iff J(x) ≥ 0 for all x ≥ 0, which holds iff X ≥2
st Y .

Combining these observations, we obtain the following.

Theorem 24. For a given NU and two download distributions FX(x) and FY (x) with

the same rate λ, freshness pX ≥ pY when X stochastically dominates Y in second

order. Similarly, for a given ND and two update distributions FW (x) and FZ(x) with

the same rate µ, freshness pW ≥ pZ when Z stochastically dominates W in second

order.

4.4.2 Examples

Our last result shows that freshness is improved when D becomes stochastically

larger in second order or U becomes the opposite, i.e., smaller. To put this in

perspective, consider three classes of distributions often observed in practice. The

first one is NWU (new worse than used), which means that conditioned on the fact

that an interval is at least y time units, its surplus length beyond y is stochastically

larger than the original interval size, i.e., P (X > x + y|X > y) ≥ P (X > x) for all

x, y ≥ 0. While many heavy-tailed distributions belong to NWU, two most common

examples are Pareto and Weibull. If the inequality is reversed, we obtain what is
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known as NBU (new better than used). Examples include uniform and constant.

Finally, if P (X > x+y|X > y) = P (X > x), the distributions are called memoryless

(i.e., exponential).

Suppose X is NWU, Y is memoryless, and Z is NBU such that E[X] = E[Y ] =

E[Z]. It then follows [30] that Z ≥2
st Y ≥2

st X. Applying this observation to Fig.

4.4(a), it is no wonder than Pareto D produces worse freshness than exponential,

which in turn is worse than constant. For a fixed probability p = 0.5, the optimal case

requires 33−50% less bandwidth than the other two distributions. This relationship

is reversed in application to U in Fig. 4.4(b) – Pareto is the best, while constant is

the worst.

4.4.3 Optimality

From the discussion above, NBU download delays are better than NWU and

exponential; however, it is unclear which NBU distribution is the best and whether

other classes may be better than NBU. We are now ready to seek answers to these

questions.

Lemma 6. For a given mean, a constant stochastically dominates all other random

variables in second order.

Proof. Suppose l is the fixed mean of all distributions under consideration. Let

FX(x) = 1x>l be the CDF of a constant and FY (x) be the CDF of another random

variable Y such that E[Y ] = l. Define:

δ(x) :=

∫ x

0

(F̄X(y)− F̄Y (y))dy (4.11)

and observe that it suffices to prove that δ(x) ≥ 0 for all x ≥ 0. For x ≤ l, notice
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Figure 4.5: Cascaded replication at depth two.

that F̄X(x) = 1 and thus:

δ(x) =

∫ x

0

FY (y)dy ≥ 0. (4.12)

For x > l:

δ(x) =

∫ x

0

F̄X(y)dy −
∫ x

0

F̄Y (y)dy

= l −
∫ x

0

F̄Y (y)dy ≥ l −
∫ ∞

0

F̄Y (y)dy = 0,

where we use the fact that
∫∞
0

F̄Y (y)dy equals the mean E[Y ] of a non-negative

random variable Y .

This leads to the main result of this section.

Theorem 25. For a fixed download rate λ, constant inter-synchronization delays

are optimal under all NU .

4.5 Cascaded Replication

We begin this section by introducing our cascaded model and show that freshness

at each level can be determined if we know the residual distribution of ON cycles of

ϕ(t). We then derive a recursive formula for the freshness at each layer i and finish

this section with simulations and discussion.
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4.5.1 Objectives

Motivated by the fact that replication trees are a common mechanism to scale

the system to a large number of clients, we next consider a cascaded model in which

caches at level i download content from those at level i − 1. As before, replicas

operate independently of the source and each other. As illustrated in Fig. 4.5, it

suffices to consider a single branch of the tree that starts from the source (at level

0) and traverses towards the leaves.

We assume that each level i of the tree operates using inter-download delays

D(i) ∼ F
(i)
D (x) and has its own freshness process ϕi(t). This allows nodes near the

root to synchronize faster or slower than those near the leaves (e.g., due to bandwidth

constraints of the source or other reasons). Our task is to derive the average freshness

pi for queries directed towards replicas at depth i. Unlike (4.7), which is a simple

function of two ages, there is no obvious way (yet) to express how pi depends on the

parameters of the system. The next subsection builds enough results to perform just

that.

4.5.2 Freshness Residuals

For now, assume the single-layer case. Given the freshness process ϕ(t) in Fig.

4.6, define the ON durations (i.e., periods when ϕ(t) = 1) to be given by some

variable V . Note that ϕ(t) transitions from OFF to ON upon the first download

following an update. It similarly goes from ON to OFF at the first update following

a download. At time t, define the age AV (t) and residual RV (t) as the backward and

forward delays, respectively, to the end of the ON segment.

Our later sections will require the distribution of RV (t), which is our focus here.

Let the residual of the update process at time t be the interval from t to the next
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Figure 4.7: Visualizing the proof of Lemma 7.

update event:

RU(t) = uNU (t)+1 − t. (4.13)

When t lands in an ON cycle, Fig. 4.6 shows that RV (t) is the same with RU(t),

which yields:

P (RV (t) < x) = P (RU(t) < x|ϕ(t) = 1)

= P (RU(t) < x|AU(t) > AD(t)). (4.14)

This is a subtle point, but RV (t) and RU(t) have different distributions, unless

U is exponential. Conditioning on the ON state of ϕ(t) introduces bias into RV (t),

which in certain cases makes it stochastically larger than update residuals RU(t) and

at other times smaller (see below). In order to simplify (4.14), we need the following

lemma.
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Lemma 7. Consider a renewal process with interval lengths X ∼ FX(x). As t → ∞,

the probability that the age of this process at time t is greater than a and simultane-

ously the residual is greater than b is:

lim
t→∞

P (AX(t) > a,RX(t) > b) = ḠX(a+ b). (4.15)

Proof. Without loss of generality, assume that t lands on the k-th renewal cycle.

As shown in Fig. 4.7, we can assign a random reward to this cycle equal to Sk =

max{Xk − a − b, 0} (i.e., length of the shaded box) and use the renewal-reward

theorem to obtain:

lim
t→∞

P (AX(t) > y,RX(t) > x) =
E[Sk]

E[X]
. (4.16)

Using integration by parts:

E[Sk] =

∫ ∞

0

max{z − a− b, 0}dFX(z)

= −
∫ ∞

a+b

(z − a− b)dF̄X(z) =

∫ ∞

a+b

F̄X(z)dz

= E[X]ḠX(a+ b), (4.17)

which immediately produces the desired result.

Armed with Lemma 7, we are ready to obtain the residual distribution of ON

durations.

Theorem 26. The residual distribution of V is given by:

GV (x) := P (RV < x) = 1− E[ḠU(AD + x)]

E[ḠU(AD)]
. (4.18)
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Proof. Re-writing (4.14) and applying Lemma 7:

ḠV (x) = lim
t→∞

P (RU(t) > x|AU(t) > AD(t))

=
1

p
lim
t→∞

P (RU(t) > x,AU(t) > AD(t))

=
1

p

∫ ∞

0

gD(y) lim
t→∞

P (RU(t) > x,AU(t) > y)dy

=
1

p

∫ ∞

0

gD(y)ḠU(x+ y)dy. (4.19)

Recalling (4.8) and collapsing the integral, we get (4.18).

Fig. 4.8(a) shows that the model matches simulations very accurately under

Pareto U . As mentioned earlier, when the update distribution is exponential, i.e.,

FU(x) = GU(x) = 1− e−µx, from (4.18) we get:

GV (x) = 1− E[e−µ(AD+x)]

E[e−µAD ]
= 1− e−µx, (4.20)

which indicates that GV (x) remains exponential with the same rate µ. However, this

is not true for non-exponential cases. To see this, we plot in Fig. 4.8(b) the tails

of RU and RV for Pareto U . Observe in the figure that the latter is more heavy-

tailed than the former. In fact, it can be shown that RV ≥st RU for NWU update

distributions and the opposite for NBU.

Recalling (4.5)-(4.6), analysis above allows easy access to the CDF of ON dura-

tions:

FV (x) : = P (V < x) = 1− gV (x)

gV (0)
= 1− E[gU(AD + x)]

E[gU(AD)]
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Figure 4.8: Residual distribution GV (x) under Pareto U (α = 3, β = 1) and expo-
nential D (λ = 2).

and the average amount of time the replica stays fresh:

E[V ] =
1

gV (0)
=

E[ḠU(AD)]

E[gU(AD)]
. (4.21)

Denote by random variable W the OFF durations and let RW be its residual. We

can obtain similar results for the OFF durations.

Corollary 3. The residual distribution of W given by:

GW (x) := P (RW < x) = 1− E[ḠD(AU + x)]

1− p
. (4.22)

This leads to the CDF of OFF durations:

FW (x) : = P (W < x) = 1− gW (x)

gW (0)
= 1− E[gD(AU + x)]

E[gD(AU)]

and its average:

E[W ] =
1

gW (0)
=

E[ḠD(AU)]

E[gD(AU)]
. (4.23)
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Notice that the numerators in (4.21) and (4.23) can be simplified to:

E[ḠU(AD)] =

∫ ∞

0

ḠU(x)gD(x)dx

= P (AU > AD) = p (4.24)

and

E[ḠD(AU)] =

∫ ∞

0

ḠD(x)gU(x)dx

= P (AU < AD) = 1− p, (4.25)

respectively.

The denominators in (4.21) and (4.23) have the same value:

E[gU(AD)] = E[gD(AU)]

=

∫ ∞

0

(1− gD(y))(1− gU(y))dy. (4.26)

Then we can get the time fraction that the replica is fresh:

E[V ]

E[V ] + E[W ]
= p. (4.27)

This provides us another way to get freshness p by applying the renewal reward

theorem [103] to the alternating renewal process ϕ(t), where the renewal cycle is

V +W and the reward at each cycle is V .

4.5.3 Cascaded Freshness

We now return to the main problem of this section and reactivate usage of

sub/super-scripts i to denote the depth of the replica in the tree. As illustrated
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in Fig. 4.9, the copy at level i is fresh at time t if and only if the copy at level i−1 is

fresh and the download age A
(i)
D (t) is smaller than the current age A

(i−1)
V of the ON

duration at level i− 1:

ϕi(t) =


1 A

(i−1)
V (t) > A

(i)
D (t), ϕi−1(t) = 1

0 otherwise

. (4.28)

Our first result allows pi to be expressed as a function of the residual ON duration

within the previous level i− 1.

Lemma 8. The expected freshness at depth i is given by:

pi = E[ri−1(A
(i)
D )], (4.29)

where

ri(y) = lim
t→∞

P (R
(i)
V (t) > y, ϕi(t) = 1). (4.30)

Proof. Using (4.28) and recalling from renewal theory that A
(i−1)
V (t) has the same

distribution as R
(i−1)
V (t):

pi = lim
t→∞

P (ϕi(t) = 1)

= lim
t→∞

∫ ∞

0

P (R
(i−1)
V (t) > y, ϕi−1(t) = 1)g

(i)
D (y)dy

=

∫ ∞

0

ri−1(y)g
(i)
D (y)dy = E[ri−1(A

(i)
D )], (4.31)

where ri(y) was given earlier in (4.30).

Our next step is to recursively expand ri(y).
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Figure 4.9: Processes ϕi−1(t) and ϕi(t) in cascaded replication.

Lemma 9. For all i ≥ 1:

ri(y) = E
[
ḠU

(
y +

i∑
k=1

A
(k)
D

)]
. (4.32)

Proof. First, observe from Fig. 4.9 that residual ON durations at levels i and i− 1

are the same as long as the i-th replica is fresh:

P (R
(i)
V (t) > y, ϕi(t) = 1) = P (R

(i−1)
V (t) > y, ϕi(t) = 1).

On the right-hand side of this result, expanding event ϕi(t) = 1 using (4.28) and

applying Lemma 7, we get:

P (Ri
V (t) > y, ϕi(t) = 1)

= P (R
(i−1)
V (t) > y,A

(i−1)
V (t) > A

(i)
D (t), ϕi−1(t) = 1)

= P (R
(i−1)
V (t) > y + A

(i)
D (t), ϕi−1(t) = 1). (4.33)

Letting t → ∞ and closely examining the last equation, notice that it provides a
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recursive formula on ri(y):

ri(y) = ri−1(y + A
(i)
D ) = r1

(
y +

i∑
k=2

A
(k)
D

)
, (4.34)

where the last result is obtained by repeatedly expanding ri−1(.). Since r1(y) =

P (RV > y)p, we can combine (4.18) and (4.8) to obtain:

r1(y) = E[ḠU(y + A
(1)
D )]. (4.35)

Merging (4.34)-(4.35), we immediately get (4.32).

This leads to our main result.

Theorem 27. The probability of freshness at depth i is:

pi = E[ḠU(Qi)], (4.36)

where Qi = A
(1)
D + A

(2)
D + . . .+ A

(i)
D .

To perform a self-check, notice that p1 in (4.36) reduces to p in (4.8). For i ≥ 2,

the model is also quite simple – it says that the freshness at level i is given by that

of a single-layer system in which the download process ND operates using intervals

D whose age AD is the summation of ages at levels 1, 2, . . . , i. For example, using

constant D(i) = d, each of the ages A
(i)
D is uniform in [0, d]. For non-trivial i, their

convolution Qi is approximately Gaussian with mean id/2.

4.5.4 Discussion

Analyzing (4.36), first notice that it makes no difference in which order the repli-

cas form the chain – freshness pi only depends on the summation Qi =
∑i

k=1A
(k)
D .
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Figure 4.10: Cascaded freshness with exponential D and λ = µ = 2.

Therefore, placing high-rate download processes towards the top of the tree and slow

towards the bottom produces exactly the same freshness as doing vice versa. Keep-

ing source overload in mind, the best strategy may then be to design trees with high

branching factors b (i.e., low depth) and slow λ near the root, placing faster processes

towards the leaves.

When the update process at the source is Poisson, i.e., GU = 1 − e−µx, the tail

CDF of U decomposes into a product:

pi =
i∏

k=1

E
[
ḠU(A

(k)
D )

]
=

i∏
k=1

p(A
(i)
D ), (4.37)

where p(A
(i)
D ) is the freshness probability of N

(i)
D working directly with the source.

Therefore, if we know that replicas A and B separately achieve freshness pA and pB,

their cascaded performance will produce freshness pApB at level 2. If additionally

the download processes are all homogeneous, i.e., F
(i)
D (x) = F

(j)
D (x) for all (i, j, x),

the freshness value pi is an exponentiation of the single-step model (4.8).

Note that multiplicative reduction in pi as a function of i presents an interesting

tradeoff – as the tree size scales exponentially up, freshness scales exponentially

down. In order to prevent pi → 0, one must increase the download rate λi at depth i
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Figure 4.11: Cache server number and service rate under cascaded caching (expo-
nential U with µ = 2 and 1− ϵ = 0.7).

such that
∑∞

i=1 log p(A
(i)
D ) > −∞. One of the slowest growing functions that satisfies

this condition is p(A
(i)
D ) = 1 − (i + 1)−ρ, where ρ is slightly larger than 1. Using

exponential D as an example, we get p(A
(i)
D ) = λi/(λi + µ), which translates into

λi = µ((i+1)ρ− 1), showing that bandwidth requirements must scale super-linearly,

but at least not exponentially, with i.

We next use simulations with homogeneous download delays to compare the decay

rate in pi for exponential and Pareto U . Fig. 4.10 shows that model (4.36) is quite

accurate and that the Pareto case in (b) decreases much slower than the exponential

in (a). This suggests that NWU distributions of U are easier to scale than either

exponential or NBU. This can be confirmed by noticing that the heavier the tail

ḠU(x), the slower pi decays in (4.36).

4.5.5 System

A real system needs to serve its clients under certain freshness level. Denote by

1 − ϵ the freshness threshold that the system wants guarantee. Assume the all the

servers in the network is homogeneous with same bandwidth B. Now we study the

effects of cascades level i on the system service rate and the number caching servers.

From the discussion above, it seems beneficial to put all replicas in the first level.
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However, the maximum number of replicas m under this scenario is limited, which in

turn puts constrains on the service rate s. Specifically, to achieve certain freshness

ratio 1 − ϵ, each replica has to download from the source with rate λ, which can

be computed by inverting (4.8). Given fixed sources bandwidth B, the number of

replicas in the first level m is limited to B/λ, which gives the service rate to the

client s = m(B − λ).

4.6 Cooperative Caching

In this section, we consider a novel cooperative model in which all replicas are

at level 1, but they are allowed to communicate with each other. We first introduce

the details of this configuration and the corresponding notation. We follow that up

with analyzing parameter selection and formulating optimality conditions that lead

to best freshness.

4.6.1 Model and Notation

As shown in Fig. 4.12, suppose there are m replicas in the system that form

a cluster. As before, N
(i)
D is the download process between each replica i and the

source; however, we now additionally assume that N
(i)
C represents the communication

process that each replica uses to poll other nodes within the cluster. At each point of

N
(i)
C , the node contacts k other peers and selects the freshest response for download.

All processes are renewal and independent of each other. Let C ∼ FC(x) describe

the length of cycles in each communication process and ν = 1/E[C] be its rate.

In order for a replica to cooperate with others, it has to know their location.

One option is to require that the source maintain a replica list ordered by the most-

recent download timestamp. This list can then be disseminated to replicas upon

each contact with the source. In order to choose k peers among m, we consider two

strategies: random and recent. The former selects k peers in m uniformly randomly
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Figure 4.12: Cooperative replication.

(assuming global knowledge or other mechanisms) and the latter selects those with

the largest contact timestamps.

4.6.2 Simple Scenario

With a fixed per-node intra-cluster communication bandwidth kν, the first ques-

tion is how to choose k and ν such that they provide the highest freshness. With

cooperation, closed-form derivations are difficult because downloads follow random

cascaded chains (i.e., s → x1 → x2 → . . . where s signifies the source and xk the k-th

replica ID along this chain). We therefore use simulations to study this problem.

For random selection, observe from Fig. 4.13(a)-(c) that the expected freshness

p achieves a global maximum at k = 1, which is noticeably higher than in non-

cooperative cases (i.e., k = 0). Freshness then monotonically decreases as the number

of contacted nodes k increases. This can be explained by the fact that the replicas’

freshness processes {ϕi(t)}t≥0 are highly correlated, i.e., an update at time t makes

all of them transition from ON to OFF. Thus, the benefit of contacting k ≥ 2 peers

at lower rate ν is smaller than contacting one peer with higher ν.

Interestingly, recent selection in Fig. 4.13(a)-(c) peaks at later points k ≥ 2,

but then succumbs to the same effect. In fact, as k gets larger, the most-recent list

becomes essentially composed of random nodes and both methods converge. In all

studied cases, random selection beats recent. The intuition is that the latter is biased
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Figure 4.13: Effect of k and ν in cooperative replication (µ = λ = 1,m = 10).
Exponential U and C.

towards certain peers that were the most up-to-date at time dk, but are no longer the

freshest by the next download instance dk+1. Instead, results show that a random

peer has fresher information when we average over the entire interval [dk, dk+1]. This

indicates that the optimal strategy is to choose exactly one uniformly random peer

(i.e., k = 1) and hence keep ν as large as possible.

4.6.3 Convergence of Freshness

We now fix k = 1 and vary ν in Fig. 4.13(d) to analyze the effect of C and

ν. As before, NBU synchronization performs the best, followed by exponential and

NWU. Reasoning similar to that used in previous sections suggests that constant C

remains optimal for cooperative caching. In the figure, p starts at 0.5 and gradually

improves to 0.72− 0.78 depending on the distribution of C; however, what happens

to freshness as intra-cluster bandwidth ν becomes very large? We address this next.
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Theorem 28. As ν → ∞, freshness under random selection equals that computed

using the original update process NU and a superposition N∗
D of m download processes

{N (i)
D }mi=1.

Note that this result holds for all k ≥ 1. We are now able to compute the

limiting freshness probability for the case in Fig. 4.13(d) with exponential C. Since

a superposition of Poisson process remains Poisson, we get that p∞ = mλ/(mλ +

µ) = 0.91. As an alternative to raising ν, freshness can be increased by allowing

bidirectional communication between replicas. When A requests updates from B,

it can offer its own content for upload to B. This effectively doubles rate ν in our

model, but keeps it fully applicable to this technique as well.

4.6.4 Full System

We now consider a more realistic cooperative replication system that has two

conflicting goals – serving clients and maintaining freshness. The tradeoff arises

from bandwidth consumption – larger ν leads to higher freshness, but reduces the

ability of each node to answer consumer queries.

Let s be the service rate that each replica can offer to its clients and suppose that

all peers have the same bandwidth constraint B (including the source). The system

is considered usable if the average freshness is no smaller than 1 − ϵ, where ϵ > 0

is some design parameter. Define p(λ, k, ν) to be the freshness probability achieved

by a cluster using the source download rate λ, k-way cooperation, and intra-cluster

synchronization rate ν. Then, the objective is to maximize the combined service rate

R := ms = m(B − λ− kν) subject to:


mλ ≤ B

p(λ, k, ν) ≥ 1− ϵ

. (4.38)
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Figure 4.14: Effect of m on service rate R (ϵ = 0.5, µ = 1, B = 10). All distributions
are exponential.

Since all peers are homogenous, the source bandwidth should be shared equally,

which means that the first line of (4.38) reduces to m = B/λ. For non-cooperative

replication, both k and ν are zero and thus R = B2/λ − B. The only unknown

parameter is λ, which can be determined from the freshness condition of (4.38) as

λ = q−1(1− ϵ), where q(x) = p(x, 0, 0). For example, with exponential U and D:

q(x) =
x

x+ µ
= 1− ϵ, (4.39)

from which we get:

λ =
µ(1− ϵ)

ϵ
and R =

B2ϵ

µ(1− ϵ)
−B. (4.40)

For cooperative replication, the previous subsection shows that the optimal case is

k = 1. Now suppose we fix m. This allows us to determine the remaining parameters

of the system using the model above. Indeed, λ = B/m and ν = q−1
2 (1 − ϵ), where

q2(x) = p(λ, 1, x). To understand why there is an inherent tradeoff in this system,

notice that larger m affords the system more combined bandwidth R = m(B − λ−

kν); however, this also leads to lower source-synchronization rate λ = B/m, which
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Table 4.1: Optimal Service Rate Comparison Between Cooperative and Non-
Cooperative Replication

1− ϵ Non-cooperative R Cooperative R Ratio
0.4 270 1865 6.9
0.5 90 590 6.6
0.6 50 134 2.7
0.7 33 42 1.3

decreases freshness. To compensate for lower freshness, replicas must communicate

with other peers at a higher rate ν, which in turn lowers R.

Thus, there must be an optimal m that maximizes the service rate for a given set

(ϵ, B,NU). To demonstrate this, we plot simulation results in Fig. 4.14(a), where

R hits a peak at m = 240 and then drops monotonically. The improvement ratio

between cooperative and non-cooperative R in Fig. 4.14(b) reaches 4 by m = 90 and

6 by m = 200. Table 4.1 shows additional scenarios. Observe that cooperative repli-

cation is more effective when the target freshness is smaller. The benefit decreases

as ϵ → 0 since it becomes progressively more difficult to find peers with exceedingly

fresh copies.

4.7 Redundant Querying

To obtain fresher results, existing work [6] suggests that consumers contact multi-

ple replicas. As illustrated in Fig. 4.16, this model uses a single-layer non-cooperative

caching with redundant queries to achieve higher robustness against staleness. Con-

tacting k ≥ 2 random replicas and retrieving the freshest copy, consumers effec-

tively replace a single download process ND with a superposition N∗
D of k processes

{N (i)
D }ki=1. This observation is similar to Theorem 28 except the number of super-

posed processes is k rather than m.

To understand this better, suppose the download processes in replicas are inde-
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Figure 4.15: Redundant querying with exponential D.

pendent Poisson with the same rate λ. Then the superposition process N∗
D is also

Poisson, but with rate kλ. Improvement is shown in Fig. 4.15, where growth in k

from 1 to 4 yields an increase in p from 0.5 to 0.8 for exponential U and from 0.45

to 0.75 for Pareto U .

4.7.1 Analysis

As before, suppose 1 − ϵ is the target freshness at the user and p(λ) is that

achieved by a non-redundant system (i.e., using k = 1). Then, recalling the previous

section, there is a unique download rate λ = p−1(1− ϵ) that determines the optimal

cluster size m = B/λ and the combined service rate:

R = m(B − λ) =
B2

λ
−B. (4.41)

We now contrast this with a redundant configuration. Define λ′ to be the down-

load rate of each replica and λ∗ = kλ′ to be that of the superposed process N∗
D.

Since freshness is now determined by λ∗ = p−1
∗ (1 − ϵ), where p∗(x) is the fresh-

ness probability under N∗
D, we can lower each λ′ and hopefully increase system size

m∗ = B/λ′ = Bk/λ∗ beyond m. However, the main caveat is that each replica now

serves k times more traffic to the clients, which means that the best possible query
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rate of the new system is:

R∗ =
m∗(B − λ′)

k
=

B2

λ∗ − B

k
. (4.42)

4.7.2 Discussion

In the simplest case of exponential D, both ND and N∗
D are Poisson, which

immediately leads to λ∗ = λ since functions p(x) and p∗(x) are the same. This

shows that the redundant system can support exactly m∗/m = k times more servers,

but the service-rate ratio R∗/R stays pretty close to 1, i.e., there is virtually no

benefit. To tackle more complex cases, assume k is sufficiently large, in which case

the superposition process N∗
D tends to Poisson from the Palm-Khintchine theorem

[68]. From (4.40), we know that λ∗ = µ(1− ϵ)/ϵ, which leads to a closed-form service

rate:

R∗ =
B2ϵ

µ(1− ϵ)
− B

k
. (4.43)

If D has an NWU distribution, k-way aggregation makes D∗ stochastically larger

in second order and thus improves freshness (see the discussion in Section 4.4.2).

Counter-intuitively, however, if D has an NBU distribution, transition to a Poisson

N∗
D makes the redundant case perform worse than the non-redundant. These effects

are shown in Table 4.2 for k = 20 and B = 1000. As target freshness increases, the

Pareto case gradually improves and finishes with rates 110% above those in the non-

redundant scenario. The opposite trend occurs with constant D, which gradually

becomes worse and ends up losing 44% of service capacity in the last row.
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Figure 4.16: Redundant querying with k = 3.

Table 4.2: Improvement From Redundant Querying Compared to Non-Redundant
1− ϵ Pareto D exponential D constant D

m∗/m R∗/R m∗/m R∗/R m∗/m R∗/R
0.1 21.8 1.1 20 1 18.0 0.90
0.3 26.6 1.3 20 1 14.6 0.73
0.5 32.8 1.6 20 1 12.5 0.63
0.7 42.3 2.1 20 1 11.2 0.56
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5. SUMMARY AND FUTURE WORK

5.1 Summary

This work focus on studying staleness in pull-based data synchronization systems.

Our work can be partitioned to four topics.

We first introduced a novel model of sampled age under general non-Poisson

update/synchronization processes and applied it to obtain many useful metrics of

staleness. We additionally established that constant inter-refresh intervals were op-

timal for all considered cases and provided guidelines for achieving ASTA even in

those cases. We finally considered a family of related problems stemming from 1×m

and M × 1 replication, showing that they can be easily solved from the preceding

analysis of the 1× 1 case.

Second, we studied the problem of estimating the update distribution at a remote

source under blind sampling. We analyzed prior approaches in this area, showed

them to be biased under general conditions, introduced novel modeling techniques

for handling these types of problems, and proposed several unbiased algorithms that

tackled network sampling under a variety of assumptions on the information provided

by the server and conditions at the observer.

Third, we considered the data staleness in the context of P2P replication net-

works. We extended our results to cascaded and cooperative replication, finding

solutions to a number of optimization problems in those contexts. We also exam-

ined redundant querying and found cases when doing so was detrimental to system

performance.
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5.2 Future Work

We assume that download process is age-independent of the update process, which

might not hold in certain systems. For example, some existing systems [60, 75, 80,

87, 86, 94, 93, 97] choose to increase the next download interval if an update is

detected in the current download cycle and decrease otherwise. When should these

adaptive strategy should be chosen and what’s their performance?

There is another potential way to break the age-independence assumption and

gain better performance. Specifically, the update process is non-stationary [84] and

exhibit diurnal patterns while the download process can synchronize more at day-

time than at night to capture more updates. Under this scenario, how to measure

and model the update process? How much performance gain can one in this case

compared to the constant download strategy.

Given age-independent assumption, the resource allocation problem can be solved

in closed form. How to choose the adaptation strategy for each page given fixed

download budget? Can we solve the problem using stochastic control theory? For

non-stationary update process, how to solve the resource allocation problem?

We only consider that the update history is available in this work. However, we

might have more information in certain applications. For example, pages in search

engine have file type, file size, content and link to its neighbors. Can we use these

information to improve the download performance?
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