1,485 research outputs found

    Risk-based strategies for wind/pumped-hydro coordination under electricity markets

    No full text
    International audienceWhen participating in an electricity market, wind power generation may be penalized by increased regulation costs due the stochastic nature of the wind resource. The negative impact associated to the stochastic nature of wind may be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant. In this paper, focus is put on advanced methods for reducing regulation costs. A novel method is proposed for the intra-day scheduling and operation of such a plant in an electricity market environment. Such method is able to minimize the imbalance penalty risks associated to wind power forecast uncertainty through a rolling-window approach. Results based on a real-world test case are presented and discussed

    Systematic categorization of optimization strategies for virtual power plants

    Get PDF
    Due to the rapid growth in power consumption of domestic and industrial appliances, distributed energy generation units face difficulties in supplying power efficiently. The integration of distributed energy resources (DERs) and energy storage systems (ESSs) provides a solution to these problems using appropriate management schemes to achieve optimal operation. Furthermore, to lessen the uncertainties of distributed energy management systems, a decentralized energy management system named virtual power plant (VPP) plays a significant role. This paper presents a comprehensive review of 65 existing different VPP optimization models, techniques, and algorithms based on their system configuration, parameters, and control schemes. Moreover, the paper categorizes the discussed optimization techniques into seven different types, namely conventional technique, offering model, intelligent technique, price-based unit commitment (PBUC) model, optimal bidding, stochastic technique, and linear programming, to underline the commercial and technical efficacy of VPP at day-ahead scheduling at the electricity market. The uncertainties of market prices, load demand, and power distribution in the VPP system are mentioned and analyzed to maximize the system profits with minimum cost. The outcome of the systematic categorization is believed to be a base for future endeavors in the field of VPP development

    A review on the virtual power plant: Components and operation systems

    Full text link
    © 2016 IEEE. Due to the high penetration of Distributed Generations (DGs) in the network and the presently involving competition in all electrical energy markets, Virtual Power Plant (VPP) as a new concept has come into view, with the intention of dealing with the increasing number of DGs in the system and handling effectively the competition in the electricity markets. This paper reviews the VPP in terms of components and operation systems. VPP fundamentally is composed of a number of DGs including conventional dispatchable power plants and intermittent generating units along with possible flexible loads and storage units. In this paper, these components are described in an all-inclusive manner, and some of the most important ones are pointed out. In addition, the most important anticipated outcomes of the two types of VPP, Commercial VPP (CVPP) and Technical VPP (TVPP), are presented in detail. Furthermore, the important literature associated with Combined Heat and Power (CHP) based VPP, VPP components and modeling, VPP with Demand Response (DR), VPP bidding strategy, and participation of VPP in electricity markets are briefly classified and discussed in this paper

    Towards near 100% renewable power systems: Improving the role of distributed energy resources using optimization models

    Get PDF
    The envisioned near 100 % renewable Power Systems, crucial in attaining the sustainability goals aspired by society, will call for the active and multifaceted participation of all the actors involved in the energy systems. Time-varying renewable energy systems (vRES), such as solar photovoltaic (PV) and wind, will play a decisive role in meeting the ambitious renewable targets. This is due to the large availability of natural resources and the rapid decrease in investment costs observed in the last two decades. In fact, most of the scenarios to achieve near 100% RES in Europe strongly rely on these two energy sources. However, the high temporal and spatial variability of the power generated by these technologies represents a challenge for preserving the high-security standards of supply, quality of service, and the robustness of current power systems, especially with the foreseen contributions from vRES. With an emphasis on the vital role these renewable technologies play in this process, this work aims to develop new methods and tools that may assist different players in different stages of this transition. The three leading contributions are: 1. A Multiyear Expansion-Planning Optimization Method (MEPOM) to be used in the planning processes carried out by system operators and governmental entities. 2. An Optimal Design and Sizing of Hybrid Power Plants (OptHy) decision-support tool to be used in accessing investment decisions and other managing actions led by renewable power plant owners and investors. 3. A Decision-aid Algorithm for Market Participation and Optimal Bidding Strategy (OptiBID) that market agents may adopt to operate and value their renewable energy assets in the electricity markets

    Stochastic optimization for the daily joint operation of wind/PV and energy storage

    Get PDF
    This paper deals with the problem of optimal bidding in a day-ahead market of electricity for a power producer having joint operation of wind with photovoltaic power systems and storage of energy. Uncertainty, not only on electricity market prices, but also on wind and photovoltaic powers, has to be faced in order to achieve optimal bidding. The problem is viewed as a sort of a two-stage stochastic optimization problem formulated by mix-integer linear programming. A case study with data from the Iberian Peninsula is presented and a comparison between joint and disjoint operations is discussed, allowing concluding that the joint operation attenuates the economic impact of disjoint operation volatility

    Utilizing the flexibility of distributed thermal storage in solar power forecast error cost minimization

    Get PDF
    Highlights • Combines dynamic optimization and numerical weather prediction (NWP). • Annual solar PV forecast error cost for the 1 MWp plant is 830€. • Solar PV generation imbalances reduced by 10% with demand side management. • Average and marginal benefits per household decrease with increasing network size.Intermittent renewable energy generation, which is determined by weather conditions, is increasing in power markets. The efficient integration of these energy sources calls for flexible participants in smart power grids. It has been acknowledged that a large, underutilized, flexible resource lies on the consumer side of electricity generation. Despite the recently increasing interest in demand flexibility, there is a gap in the literature concerning the incentives for consumers to offer their flexible energy to power markets. In this paper, we examine a virtual power plant concept, which simultaneously optimizes the response of controllable electric hot water heaters to solar power forecast error imbalances. Uncertainty is included in the optimization in terms of solar power day-ahead forecast errors and balancing power market conditions. We show that including solar power imbalance minimization in the target function changes the optimal hot water heating profile such that more electricity is used during the daytime. The virtual power plant operation decreases solar power imbalances by 5–10% and benefits the participating households by 4.0–7.5 € in extra savings annually. The results of this study indicate that with the number of participating households, while total profits increase, marginal revenues decrease

    Renewable energy sources offering flexibility through electricity markets

    Get PDF
    corecore