3,298 research outputs found

    Behavior-level Analysis of a Successive Stochastic Approximation Analog-to-Digital Conversion System for Multi-channel Biomedical Data Acquisition

    Full text link
    In the present paper, we propose a novel high-resolution analog-to-digital converter (ADC) for low-power biomedical analog frontends, which we call the successive stochastic approximation ADC. The proposed ADC uses a stochastic flash ADC (SF-ADC) to realize a digitally controlled variable-threshold comparator in a successive-approximationregister ADC (SAR-ADC), which can correct errors originating from the internal digital-to-analog converter in the SAR-ADC. For the residual error after SAR-ADC operation, which can be smaller than thermal noise, the SF-ADC uses the statistical characteristics of noise to achieve high resolution. The SF-ADC output for the residual signal is combined with the SAR-ADC output to obtain high-precision output data using the supervised machine learning method

    An Analog-to-Digital Converter Immunity Modelling based on a Stochastic Approach

    Get PDF
    This paper proposes a methodology to model an electronic board according to a bottom-up approach. This method is applied to build the model of a synchronous buck DC-DC converter board for conducted emission prediction purpose. The different steps to select the model terminals and the construction of the component and PCB interconnect models are described

    Stochastic resonance in electrical circuits—I: Conventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), a phenomenon in which a periodic signal in a nonlinear system can be amplified by added noise, is introduced and discussed. Techniques for investigating SR using electronic circuits are described in practical terms. The physical nature of SR, and the explanation of weak-noise SR as a linear response phenomenon, are considered. Conventional SR, for systems characterized by static bistable potentials, is described together with examples of the data obtainable from the circuit models used to test the theory

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde
    corecore