2,385 research outputs found

    Modeling and Mathematical Analysis of Swarms of Microscopic Robots

    Full text link
    The biologically-inspired swarm paradigm is being used to design self-organizing systems of locally interacting artificial agents. A major difficulty in designing swarms with desired characteristics is understanding the causal relation between individual agent and collective behaviors. Mathematical analysis of swarm dynamics can address this difficulty to gain insight into system design. This paper proposes a framework for mathematical modeling of swarms of microscopic robots that may one day be useful in medical applications. While such devices do not yet exist, the modeling approach can be helpful in identifying various design trade-offs for the robots and be a useful guide for their eventual fabrication. Specifically, we examine microscopic robots that reside in a fluid, for example, a bloodstream, and are able to detect and respond to different chemicals. We present the general mathematical model of a scenario in which robots locate a chemical source. We solve the scenario in one-dimension and show how results can be used to evaluate certain design decisions.Comment: 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA June 200

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    Towards Swarm Calculus: Urn Models of Collective Decisions and Universal Properties of Swarm Performance

    Full text link
    Methods of general applicability are searched for in swarm intelligence with the aim of gaining new insights about natural swarms and to develop design methodologies for artificial swarms. An ideal solution could be a `swarm calculus' that allows to calculate key features of swarms such as expected swarm performance and robustness based on only a few parameters. To work towards this ideal, one needs to find methods and models with high degrees of generality. In this paper, we report two models that might be examples of exceptional generality. First, an abstract model is presented that describes swarm performance depending on swarm density based on the dichotomy between cooperation and interference. Typical swarm experiments are given as examples to show how the model fits to several different results. Second, we give an abstract model of collective decision making that is inspired by urn models. The effects of positive feedback probability, that is increasing over time in a decision making system, are understood by the help of a parameter that controls the feedback based on the swarm's current consensus. Several applicable methods, such as the description as Markov process, calculation of splitting probabilities, mean first passage times, and measurements of positive feedback, are discussed and applications to artificial and natural swarms are reported

    Multiobjective optimization of electromagnetic structures based on self-organizing migration

    Get PDF
    Práce se zabývá popisem nového stochastického vícekriteriálního optimalizačního algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde ukázáno, že algoritmus je schopen řešit nejrůznější typy optimalizačních úloh (s jakýmkoli počtem kritérií, s i bez omezujících podmínek, se spojitým i diskrétním stavovým prostorem). Výsledky algoritmu jsou srovnány s dalšími běžně používanými metodami pro vícekriteriální optimalizaci na velké sadě testovacích úloh. Uvedli jsme novou techniku pro výpočet metriky rozprostření (spread) založené na hledání minimální kostry grafu (Minimum Spanning Tree) pro problémy mající více než dvě kritéria. Doporučené hodnoty pro parametry řídící běh algoritmu byly určeny na základě výsledků jejich citlivostní analýzy. Algoritmus MOSOMA je dále úspěšně použit pro řešení různých návrhových úloh z oblasti elektromagnetismu (návrh Yagi-Uda antény a dielektrických filtrů, adaptivní řízení vyzařovaného svazku v časové oblasti…).This thesis describes a novel stochastic multi-objective optimization algorithm called MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that MOSOMA is able to solve various types of multi-objective optimization problems (with any number of objectives, unconstrained or constrained problems, with continuous or discrete decision space). The efficiency of MOSOMA is compared with other commonly used optimization techniques on a large suite of test problems. The new procedure based on finding of minimum spanning tree for computing the spread metric for problems with more than two objectives is proposed. Recommended values of parameters controlling the run of MOSOMA are derived according to their sensitivity analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam forming in time domain…).

    The impact of agent density on scalability in collective systems : noise-induced versus majority-based bistability

    Get PDF
    In this paper, we show that non-uniform distributions in swarms of agents have an impact on the scalability of collective decision-making. In particular, we highlight the relevance of noise-induced bistability in very sparse swarm systems and the failure of these systems to scale. Our work is based on three decision models. In the first model, each agent can change its decision after being recruited by a nearby agent. The second model captures the dynamics of dense swarms controlled by the majority rule (i.e., agents switch their opinion to comply with that of the majority of their neighbors). The third model combines the first two, with the aim of studying the role of non-uniform swarm density in the performance of collective decision-making. Based on the three models, we formulate a set of requirements for convergence and scalability in collective decision-making
    • …
    corecore