2 research outputs found

    A Pragmatic Model to Predict Future Device Aging

    Get PDF
    To predict long term device aging under use bias, models extracted from voltage accelerated tests must be extrapolated into the future. The traditional model uses a power law, to linearly fit the test data on a log-log plot, and then extrapolates aging kinetics. The challenge is that the measured data do not always follow a straight line on the log-log plot, calling the accuracy of such prediction into question. Although there are models that can fit test data well in this case, their prediction capability for future aging is typically not verified. The key advance of this work is the development of a methodology for extracting models that can verifiably predict future aging over a wide (Vg, Vd) bias space, when aging kinetics do not follow a simple power law. This is achieved by experimentally separating aging into four types of traps and modelling each of them by a straight line individually. The applicability of this methodology is verified on 3 different CMOS processes where it can predict aging at least 3 orders of magnitude into the future. The contributions of each type of traps across the (Vg, Vd) space are mapped. It is also shown that good fitting with test data does not warrant good prediction, so that good fitting should not be used as the only criterion for validating a model

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    corecore