12,844 research outputs found

    Stochastic Differential Games and Energy-Efficient Power Control

    Full text link
    One of the contributions of this work is to formulate the problem of energy-efficient power control in multiple access channels (namely, channels which comprise several transmitters and one receiver) as a stochastic differential game. The players are the transmitters who adapt their power level to the quality of their time-varying link with the receiver, their battery level, and the strategy updates of the others. The proposed model not only allows one to take into account long-term strategic interactions but also long-term energy constraints. A simple sufficient condition for the existence of a Nash equilibrium in this game is provided and shown to be verified in a typical scenario. As the uniqueness and determination of equilibria are difficult issues in general, especially when the number of players goes large, we move to two special cases: the single player case which gives us some useful insights of practical interest and allows one to make connections with the case of large number of players. The latter case is treated with a mean-field game approach for which reasonable sufficient conditions for convergence and uniqueness are provided. Remarkably, this recent approach for large system analysis shows how scalability can be dealt with in large games and only relies on the individual state information assumption.Comment: The final publication is available at http://www.springerlink.com/openurl.asp?genre=article\&id=doi:10.1007/s13235-012-0068-

    Mean Field Energy Games in Wireless Networks

    Full text link
    This work tackles the problem of energy-efficient distributed power control in wireless networks with a large number of transmitters. The problem is modeled by a dynamic game. Each transmitter-receiver communication is characterized by a state given by the available energy and/or the individual channel state and whose evolution is governed by certain dynamics. Since equilibrium analysis in such a (stochastic) game is generally difficult and even impossible, the problem is approximated by exploiting the large system assumption. Under an appropriate exchangeability assumption, the corresponding mean field game is well defined and studied in detail for special cases. The main contribution of this work is to show how mean field games can be applied to the problem under investigation and provide illustrative numerical results. Our results indicate that this approach can lead to significant gains in terms of energy-efficiency at the resulting equilibrium.Comment: IEEE Proc. of Asilomar Conf. on Signals, Systems, and Computers, Nov. 2012, Pacific Grove, CA, US

    An Extended Mean Field Game for Storage in Smart Grids

    Full text link
    We consider a stylized model for a power network with distributed local power generation and storage. This system is modeled as network connection a large number of nodes, where each node is characterized by a local electricity consumption, has a local electricity production (e.g. photovoltaic panels), and manages a local storage device. Depending on its instantaneous consumption and production rates as well as its storage management decision, each node may either buy or sell electricity, impacting the electricity spot price. The objective at each node is to minimize energy and storage costs by optimally controlling the storage device. In a non-cooperative game setting, we are led to the analysis of a non-zero sum stochastic game with NN players where the interaction takes place through the spot price mechanism. For an infinite number of agents, our model corresponds to an Extended Mean-Field Game (EMFG). In a linear quadratic setting, we obtain and explicit solution to the EMFG, we show that it provides an approximate Nash-equilibrium for NN-player game, and we compare this solution to the optimal strategy of a central planner.Comment: 27 pages, 5 figures. arXiv admin note: text overlap with arXiv:1607.02130 by other author

    Boltzmann meets Nash: Energy-efficient routing in optical networks under uncertainty

    Full text link
    Motivated by the massive deployment of power-hungry data centers for service provisioning, we examine the problem of routing in optical networks with the aim of minimizing traffic-driven power consumption. To tackle this issue, routing must take into account energy efficiency as well as capacity considerations; moreover, in rapidly-varying network environments, this must be accomplished in a real-time, distributed manner that remains robust in the presence of random disturbances and noise. In view of this, we derive a pricing scheme whose Nash equilibria coincide with the network's socially optimum states, and we propose a distributed learning method based on the Boltzmann distribution of statistical mechanics. Using tools from stochastic calculus, we show that the resulting Boltzmann routing scheme exhibits remarkable convergence properties under uncertainty: specifically, the long-term average of the network's power consumption converges within ε\varepsilon of its minimum value in time which is at most O~(1/ε2)\tilde O(1/\varepsilon^2), irrespective of the fluctuations' magnitude; additionally, if the network admits a strict, non-mixing optimum state, the algorithm converges to it - again, no matter the noise level. Our analysis is supplemented by extensive numerical simulations which show that Boltzmann routing can lead to a significant decrease in power consumption over basic, shortest-path routing schemes in realistic network conditions.Comment: 24 pages, 4 figure

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Game-theoretical control with continuous action sets

    Full text link
    Motivated by the recent applications of game-theoretical learning techniques to the design of distributed control systems, we study a class of control problems that can be formulated as potential games with continuous action sets, and we propose an actor-critic reinforcement learning algorithm that provably converges to equilibrium in this class of problems. The method employed is to analyse the learning process under study through a mean-field dynamical system that evolves in an infinite-dimensional function space (the space of probability distributions over the players' continuous controls). To do so, we extend the theory of finite-dimensional two-timescale stochastic approximation to an infinite-dimensional, Banach space setting, and we prove that the continuous dynamics of the process converge to equilibrium in the case of potential games. These results combine to give a provably-convergent learning algorithm in which players do not need to keep track of the controls selected by the other agents.Comment: 19 page

    Ultra Dense Small Cell Networks: Turning Density into Energy Efficiency

    Full text link
    In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit energy, in ultra dense small cell networks (UDNs). Due to severe coupling in interference, this problem is formulated as a dynamic stochastic game (DSG) between small cell base stations (SBSs). This game enables to capture the dynamics of both the queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean-field game (MFG) in which the MFG equilibrium is analyzed with the aid of low-complexity tractable partial differential equations. Exploiting the stochastic nature of the problem, user scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean-field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 70.7% gains in EE and 99.5% reductions in the network's outage probabilities compared to a baseline model which focuses on improving EE while attempting to satisfy the users' instantaneous quality-of-service requirements.Comment: 15 pages, 21 figures (sub-figures are counted separately), IEEE Journal on Selected Areas in Communications - Series on Green Communications and Networking (Issue 2
    • …
    corecore