2,573 research outputs found

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Using information engineering to understand the impact of train positioning uncertainties on railway subsystems

    Get PDF
    Many studies propose new advanced railway subsystems, such as Driver Advisory System (DAS), Automatic Door Operation (ADO) and Traffic Management System (TMS), designed to improve the overall performance of current railway systems. Real time train positioning information is one of the key pieces of input data for most of these new subsystems. Many studies presenting and examining the effectiveness of such subsystems assume the availability of very accurate train positioning data in real time. However, providing and using high accuracy positioning data may not always be the most cost-effective solution, nor is it always available. The accuracy of train position information is varied, based on the technological complexity of the positioning systems and the methods that are used. In reality, different subsystems, henceforth referred to as ‘applications’, need different minimum resolutions of train positioning data to work effectively, and uncertainty or inaccuracy in this data may reduce the effectiveness of the new applications. However, the trade-off between the accuracy of the positioning data and the required effectiveness of the proposed applications is so far not clear. A framework for assessing the impact of uncertainties in train positions against application performance has been developed. The required performance of the application is assessed based on the characteristics of the railway system, consisting of the infrastructure, rolling stock and operational data. The uncertainty in the train positioning data is considered based on the characteristics of the positioning system. The framework is applied to determine the impact of the positioning uncertainty on the application’s outcome. So, in that way, the desired position resolution associated with acceptable application performance can be characterised. In this thesis, the framework described above is implemented for DAS and TMS applications to understand the influence of positioning uncertainty on their fundamental functions compared to base case with high accuracy (actual position). A DAS system is modelled and implemented with uncertainty characteristic of a Global Navigation Satellite System (GNSS). The train energy consumption and journey time are used as performance measures to evaluate the impact of these uncertainties compared to a base case. A TMS is modelled and implemented with the uncertainties of an on-board low-cost low-accuracy positioning system. The impact of positioning uncertainty on the modelled TMS is evaluated in terms of arrival punctuality for different levels of capacity consumption. The implementation of the framework for DAS and TMS applications determines the following: • which of the application functions are influenced by positioning uncertainty; • how positioning uncertainty influences the application output variables; • how the impact of positioning uncertainties can be identified, through the application output variables, whilst considering the impact of other railway uncertainties; • what is the impact of the underperforming application, due to positioning uncertainty, on the whole railway system in terms of energy, punctuality and capacity

    Transmission-Based Signaling Systems

    Get PDF
    In this chapter, we describe the principal communication systems applied to the transmission-based signaling (TBS) systems for railways. Typical examples are communication-based train control (CBTC), European Rail Traffic Management System (ERTMS), and distance to go (DTG). Moreover, to properly address some of the challenges that need to face these systems, we will provide a deep insight on propagation issues related to all the environments (urban, suburban, rural, tunnel, etc.). We will highlight all the communication-related issues and the operational as well. Finally, a detailed survey on the directions of research on all these topics is provided, in order to properly cover this interesting subject. In this research, hot topics like virtual coupling are explained as well

    MASSIVE MIMO FOR HIGH-SPEED TRAIN COMMUNICATION SYSTEMS

    Get PDF
    With the current development in wireless communications in high-mobility systems such as high-speed train (HST), the HST scenario is accepted as among the different scenarios for the fifth-generation (5G). Massive Multiple-Input-Multiple-Output (MIMO) systems, which are equipped with tens or hundreds of antennas has become an improved MIMO system which can assist in achieving the ever-growing demand of data for 5G wireless communication systems. In this study, the associated 5G technologies, as well as the equivalent channel modeling in HST settings and the challenges of deploying massive MIMO on HST, was investigated The channel model was modeled using the WINNER II channel model. With regrads, the proposed non-stationary IMT-A massive MIMO channel models, the essential statistical properties such as the spatial cross-correlation function (CCF), local temporal autocorrelation function (ACF) of the massive MIMO channel model using different propagation scenarios such as open space, viaduct and cutting was analyzed and investigated. The results from the simulations were compared with the analytical results in other to show that the statistical properties vary with time as a result of the non-stationarity of the proposed channel model. The agreement between the stationary interval of the non-stationary IMT-A channel model and the HST under different propagation scenarios shows the efficiency of the proposed channel model. Based on findings; the impact of the deployment of a large antenna on the channel capacity should be thoroughly investigated under different HST propagation scenario. Also, more HST train propagation scenarios such as the tunnel, hilly terrain, and the station should be considered in the non-stationary IMT-A massive MIMO channel models

    Adaptive Railway Traffic Control using Approximate Dynamic Programming

    Get PDF
    Railway networks around the world have become challenging to operate in recent decades, with a mixture of track layouts running several different classes of trains with varying operational speeds. This complexity has come about as a result of the sustained increase in passenger numbers where in many countries railways are now more popular than ever before as means of commuting to cities. To address operational challenges, governments and railway undertakings are encouraging development of intelligent and digital transport systems to regulate and optimise train operations in real-time to increase capacity and customer satisfaction by improved usage of existing railway infrastructure. Accordingly, this thesis presents an adaptive railway traffic control system for realtime operations based on a data-based approximate dynamic programming (ADP) approach with integrated reinforcement learning (RL). By assessing requirements and opportunities, the controller aims to reduce delays resulting from trains that entered a control area behind schedule by re-scheduling control plans in real-time at critical locations in a timely manner. The present data-based approach depends on an approximation to the value function of dynamic programming after optimisation from a specified state, which is estimated dynamically from operational experience using RL techniques. By using this approximation, ADP avoids extensive explicit evaluation of performance and so reduces the computational burden substantially. In this thesis, formulations of the approximation function and variants of the RL learning techniques used to estimate it are explored. Evaluation of this controller shows considerable improvements in delays by comparison with current industry practices

    Performance analysis of massive multiple input multiple output for high speed railway

    Get PDF
    This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned
    corecore