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Abstract

Railway networks around the world have become challenging to operate in recent decades,

with a mixture of track layouts running several different classes of trains with varying op-

erational speeds. This complexity has come about as a result of the sustained increase in

passenger numbers where in many countries railways are now more popular than ever be-

fore as means of commuting to cities. To address operational challenges, governments and

railway undertakings are encouraging development of intelligent and digital transport sys-

tems to regulate and optimise train operations in real-time to increase capacity and customer

satisfaction by improved usage of existing railway infrastructure.

Accordingly, this thesis presents an adaptive railway traffic control system for real-

time operations based on a data-based approximate dynamic programming (ADP)

approach with integrated reinforcement learning (RL). By assessing requirements and

opportunities, the controller aims to reduce delays resulting from trains that entered a con-

trol area behind schedule by re-scheduling control plans in real-time at critical locations in

a timely manner.

The present data-based approach depends on an approximation to the value function of

dynamic programming after optimisation from a specified state, which is estimated dynam-

ically from operational experience using RL techniques. By using this approximation, ADP

avoids extensive explicit evaluation of performance and so reduces the computational bur-

den substantially. In this thesis, formulations of the approximation function and variants of

the RL learning techniques used to estimate it are explored. Evaluation of this controller

shows considerable improvements in delays by comparison with current industry practices.
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Transport operators are investing considerably to research and develop intelligent infras-

tructure systems to take advantage of the emerging information and communications tech-

nology (ICT) to manage their operations more efficiently. In the rail industry, the aim is

to get more out of the existing railway infrastructure to facilitate dealing with future an-

ticipated demand without the need for building expensive new rail infrastructure, therefore

resulting in a better value for investment.

In Great Britain, the current infrastructure manager Network Rail plans to invest millions

of pounds to develop and deploy such systems, referring to this programme as the Digital

Railway. One of the main projects in development by Digital Railway is Railway Traffic

Management (RTM). This thesis has developed RTM algorithms which would help realise

the vision of a Digital Railway. The main element of any RTM system is the underlying

algorithms, and as such, the present research contributes to the foundation of a digital rail-

way.

The adaptive railway traffic control system presented in this thesis is based on approxi-

mate dynamic programming (ADP) and uses reinforcement learning (RL) to explore the

underlying process of railway traffic from real-time data to make estimation of long term

performance. A growing and rich literature is available on RTM algorithms, though few

consider data-based approaches to solve this complex optimisation problem. This thesis

shows the potential of such approaches, which need to be further explored to realise a future

where intelligent transport systems aid integrated and seamless transport.
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Chapter 1

Introduction

“It is the mark of an educated person to be able to entertain a thought

without accepting it.” - Aristotle

Today’s cities are becoming larger and ever more congested. Railways are now more pop-

ular than ever before as means of commuting to cities and passenger numbers are expected

to grow in many countries around the world for the foreseeable future. With the increase

in passenger numbers over the past decades, and projections that this trend is to continue,

governments and railway undertakings are therefore eager to increase railway capacity and

customer satisfaction while at the same time managing cost and energy usage. This can be

achieved by exploiting information and communications technology in control of railway

networks. The reason behind this drive is to add more capacity and reliability into the rail-

way network by improved usage of current infrastructure and capabilities at affordable cost

[1, 2].

Timetabling (or scheduling) and traffic management are two essential elements of railway

operations. They allow for effective usage of railway resources including infrastructure,

crew and rolling stocks. Timetables also inform the operators and passengers of the move-

ment of trains. Because railway timetables are based on deterministic running of trains

and their dwell times at stations, time margins are added to timetables to accommodate un-

foreseen variations. Due to the time taken to compute a new timetable, full recalculation



1.1. Railway traffic control and re-scheduling 16

in response to disturbances is not possible and in current practice train dispatchers rely on

their own experience to modify railway operations to recover delays or limit their propaga-

tion onto other train services. However, the efficiency and effectiveness of these actions is

often unknown. In such cases deploying automatic re-scheduling tools has been shown to

improve performance by limiting delay and returning operation to the planned timetable as

quickly as possible.

Real-time regulation of railway traffic aims at ensuring safe, punctual and energy-efficient

train operations. These Railway Traffic Management (RTM) systems anticipate future con-

flicts based on current speeds and positions of trains and provide suitable control measures.

By using this real-time information to assess requirements and opportunities, the motion

of trains can be controlled advantageously through real-time management of sequencing of

trains and of acceleration and deceleration of individual trains. This will facilitate response

to perturbations and other minor deviations from scheduled operation and to major disrup-

tions to expedite recovery; in doing so it will support the operation of enhanced timetables

that meet the increasing call on rail network capacity by passenger and freight operations.

1.1 Railway traffic control and re-scheduling

Railway control systems exist to ensure that trains can run safely and efficiently. The rail-

way system is primarily concerned with the movement of passengers and goods; therefore,

railway control systems are charged with the positional regulation of trains. Railway control

systems oversee: i) longitudinal control of trains to maintain a safe distance between fol-

lowing trains, ii) crossing and switch control to regulate the movement of trains at junctions

and where crossing a path which could be taken by another train, and iii) platform control

at stations to guarantee safe train movement at stations.

The characteristics of rail transport differ from those of other transport modes in a number

of ways. Safe operation of trains cannot rely solely on the reaction of train drivers because

the speeds and low wheel-rail contact friction of trains result in long braking distances. The

required starting point for braking from high speed is usually beyond drivers’ line of sight
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[3]; hence, railway control systems make drivers aware of the need for braking well before

a driver can assess conditions downstream.

While dispatcher’s regulation of railway traffic, aims at ensuring safe, punctual and energy-

efficient train operations, due to the time taken to compute a new timetable in the presence

of perturbations, train dispatchers rely on their own experience to provide modifications to

the live railway timetable to recover deviations from the working timetable, while the effi-

ciency of this is often unknown.

Real-time re-scheduling introduces the process of varying the timetable by considering the

current position and speed of trains, and their delays. Therefore, a real-time rescheduling

system is equivalent to a dispatching support system which aids the railway operators to

reduce delays and increase efficiency of operations. Such a system would be designed to re-

schedule train movements in real-time following perturbations and, according to D’Ariano

[4], typically contains the following components:

• Conflict anticipation: Given the current infrastructure status, timetable, rolling stock

information, and the position and speed of each train, find potential conflicting train

services in a pre-established period of traffic prediction,

• Conflict resolution: Given the actual train delays, propose how to resolve anticipated

conflicts based on the most suitable and robust dispatching options to minimise delays

and, if required, energy consumption.

The critical factors for a good traffic management system can be summarised as use of

limited time to compute solutions, the ability to recover train delays, and a fast feedback

for rail operations. Hence, in the practical implementation of this system, important issues

are to compute appropriate dispatching measures and to co-ordinate the actions at network

level. This is a feasibility problem for which deadlock-free and conflict-free solutions have

to be computed within a time appropriate for rail operations.
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1.2 Solving the re-scheduling problem

Real-time RTM involves making decisions based on known information of the railway net-

work, together with available information from real-time observations. Such problems are

known as sequential decision problems, where decisions have to be made for the immedi-

ate future, but subsequent decisions are better made, or informed, once future information

becomes available.

Given the diversity of applications that can be modelled as a sequential decision problem,

it should not be surprising that there are more than one way to approach solving this op-

timisation problem. All approaches reported in the literature to solve these problems can

be considered as one of: i) exact algorithms, that evaluate all of the search space to find an

optimum solution, and ii) approximate algorithms, that trade optimality of exact solutions

for efficiency in time by obtaining near-optimal solutions at relatively low computational

cost.

Many optimisation algorithms have been investigated for re-scheduling. Majority have been

applied due to their success in solving comparable problems. The successful mathematical

approaches already applied to railway re-scheduling can be divided into:

• Graph-based algorithms, where the solution space is organised to allow for a struc-

tured way of searching for solutions [5, 4].

• Mixed-integer linear programmes, which are linear programs where some variables

are required to take integer values [6].

• Evolutionary algorithms, where solutions are found through iterative improvements

[7].

It is apparent that approximate approaches, such as evolutionary algorithms, have been

shown to be capable of solving the re-scheduling problem.

An approach that has been reported to be effective in solving control problems [8], and

specifically traffic control problems [9, 10], in recent decades, and not systematically in-

vestigated for railway re-scheduling, is the approximate form of dynamic programming. In
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this thesis, we focus on this unexplored approach that has been effectively applied to similar

applications.

1.3 Approximate dynamic programming

A popular approach used to model sequential decision problems is dynamic programming

(DP) [11], which provide exact solutions for optimisation over time. DP decomposes a

sequential problem into a series of sub-problems with discrete time-steps between them.

At each time-step, the system is characterised by a number of state variables that specify

the sub-problem. Computation routine of DP involves construction of the value function

that associates the optimised future value with each state. Therefore, the value function

represents the long term costs/rewards associated with optimal future actions. The prop-

erty required to solve a DP is referred to as the principle of optimality, which states that

knowledge of the current state of the system conveys all the information necessary about

its previous behaviour for determining the optimal policy henceforth. Under this principle,

results obtained from DP are globaly optimal.

Even though DP characterises an elegant way of representing an optimisation problem, it

suffers from the curses of dimensionality [12]. This refers to the computational demand

involved in calculations of DP which are exponential to the size of each of the state space,

information space and decision space. Therefore DP is not practical for operational use

where large state and action spaces exist.

To address difficulties associated with DP, the approximate dynamic programme (ADP)

approach to decision-making has been developed. ADP is a variant of DP which uses ap-

proximation to evaluate future states subject to subsequent optimal control decisions. It is

often used when the foresight of a DP is needed but the problem is too complicated for a

DP strategy to be able to tackle it in an efficient and timely manner.

ADP is able to model complex problems with highly stochastic nature. Many data-based

control approaches have also been developed based on DP principles in the recent decades.

This means it is now possible to model complex sequential problems as DP with integrated
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data-based components and solve them by using real-time data to learn the underlying pat-

terns of complex operations allowing for development of highly adaptive systems.

The foundation of ADP is based on an algorithmic strategy that steps forward through time

to calculate near-optimum decisions. To do so, ADP approximates the optimal performance

that could be achieved from future states, and plans accordingly. In this forward process, the

focus is on the near-future for which information is more reliable and decisions imminent.

In this study we focus on an approximation to the value function which is used to evaluate

the future consequence of control decisions. This entails optimisaton of parameter values

that lead to a sufficiently accurate approximation to the optimal value function. To achieve

this, the machine learning method of reinforcement learning can be incorporated for com-

puting parameters in real-time to update approximations according to each observation of

state transition.

1.4 Reinforcement learning

Reinforcement learning (RL) is a method of machine learning, that is a computational ap-

proach to learning from interaction with the control environment, similar to how intelligent

beings learn to perform tasks. RL methods are generally used in practical domains when a

model of the system is not available or the dynamics of the system are too complicated to be

captured analytically. In RL, a system that is learning from a control process is a learning

agent, which seeks to improve the performance policy for each state, solely by means of

interacting with the environment. In the most challenging cases of control, actions may

affect not only the immediate outcome but also the next outcome and, through that, all

subsequent outcomes. These two characteristics (trial-and-error search and delayed reward)

are the two most important distinguishing features of reinforcement learning [13].

In many cases in the literature [14] ADP and RL are used interchangeably to refer to the

same learning based algorithmic strategies. This is because RL relies on the formulae of

DP to estimate future values of performance as well as the immediate ones, therefore, it

is closely related to ADP where it can be employed to learn with parameterised approxi-
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mations to address the classical curses of dimensionality in DP. Indeed, Tsitsiklis and Van

Roy [15] proved that for linear function approximation, under certain assumptions, this

approximation process for the parameters converges to the unique optimal parameter values

with probability 1. As for nonlinear approximation, general conditions for convergence are

yet to be established. As RL and ADP share important fundamental characteristics, RL is

used in this thesis to develop ADP for railway traffic management.

1.5 Research objectives

A growing literature is available on real-time RTM [16, 17, 18] which has developed the

theoretical effectiveness and benefits of using such tools. However, a review of the avail-

able literature on RTM reveals that comparatively few industrial prototypes of these systems

have been implemented in practice [19, 20, 21].

One significant difficulty with the approaches to real-time train re-scheduling is that they

are heavily affected by the size of problem instances. The complicated nature of railway

operations means that there are a large number of: i) possible states; ii) feasible actions

which can be taken; and iii) possible outcomes of making each decision. This means that

for complex congested railway networks calculating optimal solutions could be compu-

tationally intractable due to the number of cases to be considered, which renders RTM

for large railway networks too inefficient to implement. Furthermore, most re-scheduling

approaches in the literature assume optimisation in an ideal environment and report results

from testing in simulations configured accordingly. However, the railway environment has

a highly stochastic nature in which efficiency and robustness of re-scheduling controls are

the essence of reliable operations.

It is therefore desirable to build upon the existing re-scheduling methods to develop frame-

works in which optimisation can be achieved reliably and in a timely manner as this

represent the practical requirements of railway operations closely. This will increase the

chances of effective implementation of real-time traffic management systems in practice.
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Given the robustness of ADP in tackling optimisation and control problems, as is presented

in the literature, the purpose of this investigation is to develop an RTM framework that is

adaptive (adjusts the parameters that control responses), based on ADP with distinct data-

based learning techniques, that optimises railway traffic by controlling train sequences at

critical points (such as junctions, merges and crossings). The framework that is developed

for this is evaluated, by computer simulation, to investigate the effectiveness of ADP in

tackling railway re-scheduling for large and dynamic networks, and also in a stochastic

environment to investigate the performance of our adaptive approach under uncertainties

present in practical operating environments.

1.6 Outline of this thesis

In the remainder of this thesis, railway control systems and the state of the art in real-time

railway re-scheduling are reviewed in Chapter 2. Chapter 3 introduces fundamentals of

ADP, outlines how it reduces computational burden compared to DP, and develops learn-

ing techniques based on reinforcement learning, hence forming the methodology of the

framework developed in this thesis. Chapter 4 presents the proposed RTM framework by

combining knowledge and methods from Chapters 2 and 3. Chapter 5 evaluates the adaptive

framework of Chapter 4 in simulations representing the stochastic nature of rail operations,

and on a large and dynamic network. Finally, a summary of this thesis and concluding re-

marks on future research is presented in Chapter 6. Figure 1.1 presents the objectives and

relationships of the aforementioned Chapters.
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Figure 1.1: Outline of this thesis with each chapter’s objective.



Chapter 2

Railway Traffic Management

“The knowledge of anything is not acquired or complete unless it is known

by its causes.” - Ibn Sina

To ensure safe railway operations, movement of trains traveling on the same tracks are reg-

ulated using railway control systems. These systems ensure that a safe distance separates

all trains from others they are following to give train drivers the required distance to bring a

train to a halt if necessary. This limits capacity utilisation but is essential in terms of safety.

To maximise operational efficiency while respecting safety rules of railway control sys-

tems, railway timetables are produced in a complicated and exhaustive process that may

take months. Unfortunately, unrecoverable deviations from the timetables may result in

poor performance and therefore, in such instances, a revised timetable (or schedule) could

improve performance.

With the emergence of new control systems that are intertwined with advanced information

and communications technology, real-time data from the railway network can be exploited

readily to re-schedule plans that would result in an optimised performance.

In this Chapter we review current and future railway control systems to asses opportunities

for real-time traffic management, review current state of the art in real-time railway re-

scheduling approaches, and examine the prospects of approximate dynamic programming

methods for re-scheduling.
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2.1 Railway control systems

Railway control systems ensure safe and efficient operations, so as to satisfy the expecta-

tions of customers, regulatory authorities and the railway operators [22, 23]. As transport

systems are mainly concerned with the movement of passengers and goods, railway control

systems are tasked with positional control of trains on tracks. Woodland [3] summarises the

essential purpose of any train control system as:

• Longitudinal control: maintain a safe distance between following trains and regulate

the passage of trains according to the service density and speed required, accounting

for the planned schedule;

• Crossing and switch control: safeguard the movement of trains at junctions, and

where crossing a path, which could be taken by another train;

• Platform control: control train movement between, and at, stations.

This clearly makes railway control systems an integral part of the railway system, and

as they ensure safe operations by controlling movement of trains, they inherently affect

capacity on the network and speed of trains. This places conflicting requirements upon the

control system: those of safety and those of operational capacity.

Traditionally, the objective of train control systems has been centred around safety, and

other considerations such as capacity have been promoted as secondary; the rational being,

an unsafe transport mode would not be practical and not able to compete with other trans-

port modes.

The major difference in rail transport compared to other transport modes is that train move-

ments are restricted to one degree of freedom and trains only follow the direction of rails.

Given the high speeds of trains and the low coefficient of friction between rails and train

wheels, giving rise to long braking distances, it is in most cases unsafe to rely on train

drivers’ reactions to bring trains to a halt if another train is occupying their path. Therefore,

railway control systems have been developed to assist train drivers and inform them well in

advance of a stopping point to start applying the brakes.
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Furthermore, fixed railway infrastructure and the requirement to maintain a safe longitu-

dinal separation between trains, make planning track access (or scheduling) for trains of

utmost importance in terms of railway operations. The aim of railway scheduling is there-

fore to ensure optimal usage of the available rail infrastructure.

In the remainder of this Section, current and planned railway control systems are intro-

duced to assess requirements and opportunities for prospective railway traffic management

systems.

2.1.1 Fixed block colour light signalling

Current railway control systems are still mostly based on fixed block signalling, in which

all tracks are divided into a series of fixed locations called blocks [24]. The operational

principles of these systems are [3]:

• A train cannot be authorised to enter a block if it is occupied, and

• The distance separating a train from the next one downstream (ahead) must always

be greater than the braking distance required for the rear train to stop safely.

According to these principles, knowledge of trains’ positions at all times is critical, and

therefore train detection systems are used. In fixed block colour light signalling instead of

reporting the exact position of trains, unlike other positioning systems, occupancy of blocks

is automatically monitored; if a block is unoccupied, then another train can use this block.

In one widely used detection method, the control system detects the presence of a train in

blocks automatically and at all times using track circuits.

Track circuits are the earliest, yet still most widely adopted train detection sensors. The

principles governing track circuits are simple which has resulted in their popularity. In its

simplest form, track sections are insulated from adjutant sections and a feed provides a

voltage through the tracks to a relay at the other end of the section. If the section is empty,

electric current can circulate in the rails and the relay without interruption, energising the

relay, as long as the section is free, and indicating an unoccupied track section. In the event
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Figure 2.1: Working principles of unoccupied and occupied track circuits.

of presence of a train in the section, the axle of the train will interrupt the electric current

by providing a path with lower resistance between rails, causing a short circuit. This causes

the relay to drop due to the lack of current and this indicates an occupied track section [25].

This working principle of track circuits is illustrated in Figure 2.1. It has to be noted that

other forms of train detection also exist, e.g. axle counters, where number of axles going

into and out of blocks are counted and compared.

With the assistance of train detection sensors, train movements are controlled using traffic

lights, similar to those on the road network, placed on the side or above the tracks. Train

drivers are informed of occupancy status of tracks downstream by the colour of these sig-

nals.
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2.1.1.1 Two-aspect signalling

The most basic form of colour light fixed block signalling is the two-aspect signalling

system that at each instant shows one of red (stop) or green (proceed) aspect. Two-aspect

signalling is normally employed on networks where train driver’s sighting distance exceeds

barking distance of trains, and therefore, drivers are able to sight and react according to the

signals. In such cases, once a driver observes a red signal, they are required to bring the

train to a halt before the front of the train reaches the signal. In the case of a green signal,

drivers may proceed to the next block beyond the current signal.

As signals may fail and signalling systems are vulnerable to driver error, an additional

safety distance, called an overlap, beyond the signal is required to be unoccupied for the

signal to authorise movement into the block. The distance for overlap is usually calculated

to present the worst case stopping distance under emergency braking plus a safety margin

to allow for a safe distance to be present between trains in this worst case. In addition to

the overlap, another additional safety distance exists, this time between the point where

the driver should be able to sight the aspect of the signal, the sighting point, and the signal

itself. This is termed the sighting distance, and it allows the driver to sight the signal and,

in case of a red signal, bring the train to a halt safely using service braking rate before the

front of the train reaches the signal.

Figure 2.2 [24] presents the layout of a two-aspect signalling system, and shows the mini-

Figure 2.2: A two-aspect signalling system.
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mum distance required between the front of two following trains to ensure safe operations.

This safe separation distance is given as

H2 = S+B+X2 +O+L, (2.1)

where

• H2 is the two-aspect spacing distance,

• S is the sighting distance,

• B is the braking distance,

• X2 is the signal separation distance or block length,

• O is the overlap length,

• L is the length of train 1.

In instances where, for any reason, the signal is not observable by the driver, a repeater

signal is installed to inform the driver of the upcoming signal aspect; this is presented as

“Signal 1R” and “Signal 2R” in Figure 2.2.

Two-aspect signalling systems are normally employed in underground (metro) systems.

The reason being the relatively low speed of operations in underground systems which

allows train drivers to safely respect signals as they come into sight. In cases where higher

operational speeds are required, two-aspect signalling may not be practical.

2.1.1.2 Three-aspect signalling

To regulate train movements on mainlines, where high operational speeds are common

place, three-aspect signalling offers improved practicality compared to two-aspect sig-

nalling. In this approach, signals are capable of displaying three aspects [26]:

• Green for proceed,
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Figure 2.3: A three-aspect signalling system.

• Yellow for caution, and

• Red for stop.

The layout of a three-aspect signalling system is presented in Figure 2.3 [24]. In this setup,

if a signal shows a green aspect, the driver can be sure of at least two empty blocks ahead,

and therefore the train can proceed into the next section at maximum permitted speed. If

a yellow aspect is displayed, the driver is required to start braking as this means the next

signal is currently displaying a red aspect.

The minimum safe spacing distance in a three-aspect signalling system, H3, is therefore

calculated by

H3 = S+2X3 +O+L . (2.2)

The best achievable headway under the three-aspect system will be when signal spacing is

equal to the calculated braking distance, which is not an improvement on what is achievable

by use of two-aspects signalling.

2.1.1.3 Four-aspect signalling

To increase line capacity compared to three-aspect signalling, four-aspect signalling can

be employed [27]. In this approach the signals are brought closer together, meaning that

blocks are now shorter than the braking distance of trains. The warning that the train is
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Figure 2.4: A four-aspect signalling system.

approaching a red signal is still delivered to drivers at a safe position, however this is not

delivered by the first signal before the red signal, but by the one before that. In a four-aspect

signalling system, the aspects are:

• Green for proceed,

• Double-yellow for preliminary caution,

• Yellow for caution, and

• Red for stop.

The sequence of these aspects is presented in Figure 2.4 [24].

Under these conditions, drivers are required to start braking after a double-yellow signal.

The safe separation distance is then calculated by:

H4 = S+3X4 +O+L . (2.3)

If the average signal spacing is equal to half of the calculated braking distance, then the

resulting headways would present an improvement on what is possible under two and three-

aspect signalling systems. A further advantage on three-aspect signalling is that signals do

not need to be placed with the same separation distance, as long as the distance between
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a double-yellow and a red signal allow trains to safely brake to a halt. This approach re-

quires more signals to be installed, therefore this system is more expensive than the others

discussed so far in this Section.

2.1.1.4 Five or more aspect signalling

The same principle can be applied to adopt any number of aspects for railway signalling. A

generalised headway distance equation for three or more aspects can be presented as:

Hn = S+(n−1)Xn +O+L , where n≥ 3 . (2.4)

Railway operators use signalling systems of four or less aspects, due to the cost associated

with five or more aspect signalling systems. Furthermore, train drivers would not be able

to observe and react to signal aspects satisfactorily in systems with high aspects. There-

fore, the most common signalling system on mainlines are four-aspect signalling systems

which offer a good balance between capacity utilisation, cost, and ease of use for drivers [3].

2.1.2 Moving-block signalling

Fixed block signalling, significantly limits capacity on railway networks, due to the fact that

blocks are fixed infrastructures and entry into blocks is only permitted once the block and

its overlap are unoccupied. In practice this translates into trains accelerating toward signals,

Figure 2.5: A Moving-Block signalling system.
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then stopping for them if a red aspect is displayed, and start accelerating from a speed of

zero once the signal turns green. Trains are inherently heavy, and accelerating from a zero

speed requires significant power and takes a long time, therefore having trains constantly

stopping and starting to move is clearly time consuming and not efficient which further re-

duces capacity utilisation.

A proposed system to improve on fixed block signalling is to abandon the concept of fixed

blocks on the rail network altogether. This idea, which was first introduced in 1938 [3],

requires trains separation to be reduced to running sufficiently far behind the leading train

as to respect a safe braking distance, which is dependent on the relative speeds and charac-

teristic of the following train. This system is commonly referred to as moving-block control

and requires temporally continuous monitoring of speed, position and control of trains.

The concept of moving-block train control is one which is applicable to fleeting or follow-

ing train moves. In this concept, the movement authority limit, which specifies the distance

that a train is permitted to travel, of a following train is extended nearly constantly to the

location of the rear of the leading train. As the name implies, in some cases the limit of

authority is not a fixed signal location, but can move along the track.

Apart from the infrastructure cost savings associated with moving-block signalling com-

pared with fixed-block signalling, the most significant improvement in terms of capacity is

achieved by adopting a varied braking distance B(v) which is specific to instant train speeds

v and therefore, depending on the capabilities of trains, the braking distance can be adjusted

to the instantaneous safety requirements of operations. This allows trains to safely close up

at lower speeds, so that during disruption or on the approaches to stations, headway is not

lost because trains are running slowly through sections spaced for higher speeds.

Figure 2.5 [24] presents a moving-block signalling systems, where trains are controlled to

stop at a safe headway distance behind the leading train, instead of at fixed location signals.

This has the effect of allowing trains to travel closer together, e.g. during disruptions, in-

stead of stopping at a location designed for higher speeds trains can follow leading trains

more closely.
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Therefore, the minimum separation of trains in a moving-block signalling system, can be

calculated as:

Hm = B(v)+O+L . (2.5)

2.1.3 Automatic Train Control

Automatic Train Control (ATC) is a generic term to describe systems that reduce the amount

of human involvement in the operation of trains. ATC has been introduced in railway sys-

tems with the primary goal of improving safety, although other benefits resulting from au-

tomation could include reduced staffing costs and more consistent regulation of train ser-

vices.

As railways have grown in complexity and traffic, ATC has become more common place to

minimise human errors in operations. As automatic control allows for more sophisticated

control strategies, ATC systems can be employed to [24]:

• Increase safety,

• Reduce energy consumption,

• Reduce the amount of track-side equipment, thereby decreasing cost,

• Improve passenger comfort, and

• Improve the performance of railway control systems.

Adopting ATC on underground systems is more straightforward compared to mainline rail-

way lines, as the similar train mechanical characteristics and stopping patterns on under-

ground lines, make automation less complicated. Mainline railway lines are more difficult

to automate fully because, they include more complicated mixed traffic scenarios, and there-

fore, mainline railways tend to employ limited ATC.

ATC can be separated into three functions:

• Automatic Train Protection (ATP),

• Automatic Train Operation (ATO), and
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• Automatic Train Supervision (ATS).

These will be discussed in turn.

2.1.3.1 Automatic Train Protection

Automatic Train Protection (ATP) is used to automatically activate train’s braking systems

in cases where the train speed exceeds that of the permitted speed-limit, or if trains pass red

signals. Therefore, ATP is used to ensure safe driving of trains with respect to permitted

speeds on the rail network [28].

To accomplish safe speeds, trains carry ‘fail-safe’ computers that monitor speeds while

trains are moving. These calculations require the following data [26]:

• Current train speed,

• Train length,

• Train braking performance,

• Maximum permitted speed of train,

• Route data , which includes maximum line speeds, and

• ‘Distance to go’, which informs trains of the distance to the next stopping or slowing

down position; data such as any Temporary Speed Restrictions (TSRs) can also be

accounted for in this data.

The ATP system is therefore able to calculate continuously the maximum safe speed by

constructing braking curves for the next stopping or slowing down position. If train speed

exceeds this maximum safe speed then the following sequence of actions will be applied

[3]:

• A warning will be displayed to the driver,

• If the speed continues to exceed the maximum safe speed, then service brakes will

automatically be applied,
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• If service braking is not able to reduce the speed as desired, then emergency brakes

will automatically be applied to bring the train to a halt.

There are two main classes of ATP systems: continuous ATP and intermittent ATP. As the

names suggest, continuous ATP is capable of receiving movement authorities continuously,

while intermittent ATP can only receive movement authorities when the train passes a ‘bea-

con’.

2.1.3.2 Automatic Train Operation

In principle, the braking curves calculated by ATP systems are how train drivers should drive

to comply with the signalling systems and hence ensure safe operations on the rail network.

Therefore, ATP can be extended to drive trains automatically; this is called Automatic Train

Operation (ATO). The benefits of such a system include [26]:

• Cost savings associated with training and employing train drivers,

• Elimination of human errors in driving trains,

• Smooth, consistent and regulated accelerations, and

• Instant reaction to changing conditions on the line.

Many railways around the world, employ ATO and ATP systems concurrently on trains.

Even though ATO is an extension of ATP, the systems are maintained separate as the func-

tionality is different and ATP, being a ‘fail-safe’ system concerned with safe speeds, should

be able to intervene in decisions made by ATO. Therefore, it is usual to install both ATP

and ATO on trains, whereas ATP can be installed without ATO.

2.1.3.3 Automatic Train Supervision

Automatic Train Supervision (ATS) is a generic term for describing systems which reduce

the reliance on human involvement in the central control functions of a railway [3]. While

ATP and ATO are concerned with automating actions of human drivers, ATS is concerned
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with automation of signallers’ roles, and is therefore responsible for co-ordination of all

individual train movements in accordance with operational requirements.

Adoption of ATS is generally expected to enhance operations by performing tasks such as

[26]:

• Routing trains as efficiently as possible according to service patterns,

• Automatic re-scheduling of services in the event of perturbations,

• Relaying information regarding current conditions to trains’ systems, and

• Regulation of traffic in case of minor deviations from the timetable.

ATS is therefore intended to improve performance and is not a vital control system, the

failure of which would not directly affect railway safety.

2.1.4 European Train Control System

The European Train Control System (ETCS) is the ATP system component of the European

Rail Traffic Management System (ERTMS), a European Union led system to facilitate the

interoperability of a trans-European rail system. ERTMS aims to deploy a unified traffic

management system for Europe which utilises modern communication technologies to de-

velop a new and more efficient signalling system [29]. Other similar systems also exist

around the world, such as the Chinese Train Control System (CTCS).

As well as ETCS, ERTMS also includes the Global System for Mobile Communications-

Railway (GSM-R) which is a radio-based system providing communications between trains

and control centres, and the European Traffic Management Layer (ETML) which is a con-

cept to optimise railway operations through improved management of train running to

maximise the potential of a given layout and to reduce scheduling conflicts [29].

Railway operators around the world are moving toward deploying the ideas and concepts

developed in systems similar to ERTMS, and have made commitments to use these systems

to control railway traffic in the near future. As such, ERTMS presents the direction of
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developments of future railway control systems, and so in the remainder of this Section, the

control component of ERTMS, i.e. ETCS, will be presented in more detail. ETCS has been

divided into different functional levels, described by the ERTMS Programme Team (and

adopted in this thesis) as levels 1, 2 and 3, which are considered in turn.

2.1.4.1 ETCS - Level 1

ETCS-Level 1 is designed as an overlay on the conventional signalling systems presented

in Section 2.1.1. In this system, the movement of trains are dictated by the conventional

signalling system and its trackside equipments, such as the signals and track-circuits.

Operation of Level 1 requires use of intermittent transmissions from Eurobalises. These are

beacons that are placed near signals on the rail network and transmit data to trains as they

pass over them. There are two variance of Eurobalises:

• Fixed-data balise: transmits stored data to train’s on-board antenna, and

• Variable-data balise: transmits variable data to train’s on-board antenna and is con-

trolled by a line-side electronic unit (LEU) which is connected via a permanently

attached cable.

As a train passes over a balise, the on-board antenna activates the transpondere by emitting

a low powered electromagnetic signal; this prompts the balise to transmit its information

using the power from the signal, and depending on the size of data, transmits can be made at

speeds of up to 500 km/h [30]. Using data transmitted via balises, trains’ on-board systems

are able to calculate braking points and speed profiles required for safe operations, and

display the Limit of Movement Authority (LMA) information to the driver via the Driver

Machine Interface (DMI). Figure 2.6 [29] shows an illustration of the ETCS DMI and the

other in-cab instruments.

The train-borne ETCS system, using the absolute location information from balise mes-
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Figure 2.6: ETCS DMI and the in-cab instruments.

sages and an odometry system, determines speed and location of the train and therefore is

able to provide continuous speed supervision and protects against overrun of the movement

authority. In the event the movement authority is exceeded, emergency brakes are applied.

In ETCS-Level 1, given that ATP is in use and monitors speeds based on the calculation of

braking curve, the movement authority can only be updated once trains pass over a balise.

As ATP is a fail-safe system, an infill balise is placed a further distance before each signal

Figure 2.7: The working principle of ETCS - Level 1.
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to provide information on block occupancies downstream as early as possible so that the

driver is able to adjust train’s speed without ATP overriding this decision. Figure 2.7 [29]

presents the principles of ETCS-Level 1.

2.1.4.2 ETCS - Level 2

Similar to Level 1, ETCS-Level 2 can be used as an overlay on the conventional railway

signalling systems. In this setup, train detection and separation functions are based on

principles of fixed block colour light signalling systems, with intermittent balises mainly

providing location referencing. The main difference with Level 1 is the use of continuous

wireless communication with the traffic control centre by GSM-R. Movement authorities

are then transmitted to trains by radio from the central interlocking rather than the signals.

Therefore, under Level 2, a train does not have to wait until it passes over a balise to get a

new movement authority, it can receive them by radio at any time that sufficient blocks are

cleared ahead of the train [31]. The in-cab DMI will then display the movement authority

beyond what may otherwise be observed from the signals, and when appropriate authorise

operation at higher speeds. Figure 2.8 [29] presents the principles of ETCS-Level 2.

Given the principles of ETCS-Level 2, this system can operate purely based on the in-cab

signalling provided by the DMI and without needing line-side signals. The main advantages

are, reduced cost of installment and maintenance of traffic signals, and a more responsive

Figure 2.8: The working principle of ETCS - Level 2.
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traffic control system that issues movement authorities immediately by radio as and when

they can be issued. Drivers can therefore adjust train speeds appropriately even if signal

sighting points have not been reached.

2.1.4.3 ETCS - Level 3

Unlike Level 1 and 2, ETCS - Level 3 does not rely on conventional fixed block signalling’s

train detection. In a Level 3 system, train location and mitigation of the risks involved

in the loss of train integrity are performed by a track-side Radio Block Centre (RBC), in

conjunction with the trains themselves [31]. According to Level 3, all trains transmit their

position and train integrity reports to the RBC, and the RBC in return, based on the position

of all trains, issues movement authorities back to the trains. These information is then

displayed on the in-cab DMI. Figure 2.9 [29] presents the principles of ETCS-Level 3.

Thus far all the different functional levels of ETCS presented, comply with the principles

set out by fixed block signalling; however, as Level 3 does not rely on fixed train detection

systems, unlike Level 2, it is possible to implement it as a moving block signalling system.

This may allow for better capacity utilisation, as trains could travel closer together. Other

benefits could include: improved perturbation recovery and the ability to have bi-directional

movement on all lines [3].

Figure 2.9: The working principle of ETCS - Level 3.
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2.2 Real-time railway re-scheduling

Given the safety restrictions put in place by railway control systems and the complex nature

of operations, railway operators produce timetables to use the system capacity at their dis-

posal more effectively. Timetabling is the process of constructing a set of planned running

schedule for trains, which includes times of arrival or departure at specific locations along

the network [32]. The aim is to produce a schedule that is conflict free, can cope with minor

deviations from the timetable in case of unforeseen events, passengers can use to plan for

using services, and crew can use to operate services.

To construct such a schedule, detailed calculations of train running times between specified

timing points on the network, e.g. scheduled stops and junctions, are made based on the

characteristics of railway infrastructure and rolling stock. Recovery times and margin times

also need to be added on to train running times to cope with driving variations and minor

delay incidents to make the timetables “robust” [33].

Even though timetables are planned in meticulous detail and produced in a time consuming

process, in cases of unexpectedly long delays, they may not fully utilise the capacity. It is

conceivable that in a delay situation, e.g. longer than expected dwell times, the time mar-

gins put in place to account for relatively small deviations from the timetable are not able to

absorb the delays and therefore the whole planned schedule could be jeopardised, resulting

in poor performance as the deviations propagate in the network and effect other services

[34].

In such cases, producing a new schedule in real-time has been found to improve perfor-

mance [4]. This process is referred to as re-scheduling, as a new schedule is produced

because the nominal timetable (the schedule) can not assure optimal performance anymore.

Railway re-scheduling approaches apply mathematical models that describe railway oper-

ations at various levels of detail, to anticipate potential train conflicts and compute control

actions that minimise specific objective functions. Possible control actions can be varying

the passing times of trains at specific locations or the order of trains at stations and shared

sections of track, as well as changing their routes within certain areas.



2.2. Real-time railway re-scheduling 43

In this thesis, different types of delays are distinguished according to the following defini-

tions:

• Primary delays arise from deviations from normal operation traffic, e.g. longer than

expected dwell times,

• Consecutive delays are ones caused to other trains from the primary delays, and

• Total delays are the sum of all primary and consecutive delays.

A growing literature is available on real-time railway re-scheduling [18, 17, 16] which has

shown the effectiveness and benefits of using such tools in some particular circumstances;

the state of the art in re-scheduling approaches is therefore reviewed in the remainder of

this section.

2.2.1 Rule-based systems

To deal effectively with potentially disruptive deviations from the timetable in real-time,

railway operators examine actions taken to successfully deal with certain conditions and

process them into rules or decision support systems for re-scheduling.

Hyoudou et al. [35] developed an ‘expert system’ for Shinkansen train dispatching in Japan.

The system has a problem solving architecture which is designed to emulate the problem

solving processes of a dispatcher on the computer for generating a practical re-scheduling

plan for disturbed railway traffic within a short time.

Fay [36] developed a rule based decision support system based on experts’ knowledge in

fuzzy rules of the ‘IF-THEN’ type. In this system, possible effects of different dispatching

decisions are evaluated in parallel with simulation runs of the decisions based on a number

of criteria. Similarly, Cheng et al. [37] developed a system based on fuzzy rules of the

‘IF-THEN’ type, with the rules established based on interviews of dispatchers.

In the United Kingdom, a system called the Automatic Route Setting (ARS) system has

been widely used as a decision support system to aid dispatchers decision making. Kuhn
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[38] described the ARS system, in which trains routes are automatically selected based

on a set of predefined rules. ARS is implemented for single junctions and considers the

relationship between the first trains from each approach to the junction.

2.2.2 Simulation-based approaches

Given that train movements based on traffic control systems, passenger movements, and

the dispatching process of a railway system can be modeled, a robust simulation system

can forecast the future state of railway operations [39]. This forecast can then be used to

resolve possible conflicts on the railway network and hence used for re-scheduling.

Quan et al. [40] developed a simulation model to find deadlock-free schedules that min-

imise the travel time of trains, while abiding by the speed limits at each point on each route,

and maintaining adequate headways between trains.

Weston et al. [41], similarly, developed a simulation model that, using detailed modelling

of operations, would minimise the sum of the deviations from the scheduled arrival time

and the number of missed passenger connections by repeatedly simulating forward in time

and choosing the decision with the lowest value with respect to the objective function; this

is tested against a relatively small control region. They note that, the method can be used to

simulate over a larger region, however, the exponential growth in the number of decisions

associated with a larger regions could overwhelm their framework.

Tomii et al. [42] use simulation models to minimise passenger’s dissatisfaction. This is

formulated as a constraint optimisation problem and a meta-heuristic is developed to solve

this problem based on simulations. Extending this work, Kanai et al. [43] develop an

algorithm that minimises passengers’ dissatisfaction. The algorithm is a combination of

simulation and optimisation. The simulation part consists of a train traffic simulator and

a passenger flow simulator which work in parallel. The train traffic simulator forecasts

future train diagrams considering the dynamic interaction between trains and passengers.

The passenger flow simulator traces behaviour of all passengers and calculates how many

passengers alight and board at each station. Passengers’ dissatisfaction is also estimated
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from the results of the passenger flow simulation. A tabu search algorithm is then use to

optimise the objective function.

Luethi et al. [44] proposed a method that reduces buffer times without impacting schedule

reliability, by anticipating delays in simulations and applying their method. They note close

following of plans by trains to be a factor in improving performance.

2.2.3 Mathematical models

Mathematical models for real-time traffic control include those focusing on energy-efficient

train running by means of trajectory optimisation [45, 46, 47] and train re-scheduling for

reordering, retiming and/or rerouting of trains to optimise specific performance objectives

[48, 6].

Varying levels of detail can be used to model the railway infrastructure, we can distinguish

between microscopic [49] or macroscopic models [50]. The former considers detailed

information on tracks, switches, signals, block sections (for which at most one train at a

time is allowed) and the signalling and safety system. The latter instead depict event times

associated to stations (i.e. departures and arrivals) and other points on the network.

The most widely reported mathematical methods for re-scheduling are based on Mixed-

Integer Linear Programming (MILP) and Alternative-Graph representation which are dis-

cussed in the remainder of this section. Other methods such as stochastic programming, not

strictly related to these categories are also discussed.

2.2.3.1 Stochastic methods

Among the few that have investigated and tested RTM methods in stochastic environments,

Meng and Zhou [51] employed a macroscopic stochastic programming model to account

for the stochastic nature of railway traffic to solve a single-track train dispatching prob-

lem under uncertain running times and capacity loss durations. The objective function

adopted for this work was to minimise weighted combination of penalties for earliness and
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lateness of trains. Quaglietta et al. [52] also tested a re-scheduling approach, formulated

using Alternative Graphs (discussed later in this section), under uncertainty by employing

a Monte-Carlo scheme.

2.2.3.2 MILP approaches

Adenso-Diaz et al. [53] formulated the real-time timetable and rolling stock re-scheduling

problem in cases of large delays of one or more trains as a MILP, which are a variant

on linear programming where a problem may be defined as the problem of optimising a

linear function subject to linear constraints and some of the variables are integers, while

other variables can be non-integers. Because the problem is hard to solve using available

MILP solvers, a heuristic was developed to produce feasible solutions that approximately

maximise the number of passengers transported within the planning period. The model was

implemented in practice and resulting performance was reported to be satisfactory.

Törnquist and Persson [6] also formulated the rescheduling problem as a MILP model

which considers reordering and rerouting of trains with the objective of minimising train

delays; Törnquist [54] extends this work by presenting a heuristic approach to solve the

same problem, and reports good solutions that are produced fast. Building on these works,

Josyula et al. [55] represent the solution space of the re-scheduling problem as a binary tree

and developed a sequential heuristic algorithm to tackle the problem.

Other instances of MILP formulation for rescheduling were formulated by Pellegrini et al.

[56, 57] with the objective of minimising consecutive delays. They report: because integer

programming problems are hard to solve in many cases, the computation time of problems

increase dramatically with the size of the system.

Indeed, solving the re-scheduling problem using MILP has been found to be NP-hard

[58, 59, 60], and therefore normally heuristics are developed to solve the problem based on

MILP.

Corman et al. [61] use MILP to solve the re-scheduling problem by also taking into account

minimisation of passengers’ discomfort therefore integrating train scheduling and delay
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management into one. This microscopic delay management (MDM) problem is modeled

as a MILP that can be solved to optimality by commercial solvers for small-size instances.

Three heuristic procedures are developed, based on decomposing the problem into a train

scheduling problem and a passenger routing problem.

2.2.3.3 Alternative-Graph approaches

The other widely reported approach for re-scheduling is based on the Alternative-Graph

(AG) representation. AG is a discrete optimisation tool which can be used to model re-

scheduling problems with no-wait and no-store constraints which can be applied to job

shops, formulated by Mascis and Pacciarelli [62]. Several works are reported in the litera-

ture using the AG model; among them D’Ariano et al. [63] proposed a branch-and-bound

algorithm for re-scheduling trains in real-time, where block sections are characterised as

machines and trains characterised as jobs in the formulation, therefore providing a mi-

croscopic view of the railway network under consideration. This formulation allows an

efficient presentation of a railway network safety constraints (i.e. at any time, only one train

occupies a block section).

Building on their previous work D’Ariano et al. [64] adopted a blocking time model to

evaluate the feasibility of headways between consecutive trains, and train speed profiles are

updated considering preceding signal aspects. Mazzarello and Ottaviani [65] similarly use

the AG formulation to produce a conflict-free schedule for trains; they also compute train

speed profiles to deliver the produced schedules to minimise train energy consumption. AG

is also used to formulate the macroscopic model of railway re-scheduling by Kecman et al.

[66].

Mannino and Mascis [19] developed an exact branch-and-bound algorithm for re-

scheduling. The objective is to minimise the deviations of the actual schedule from the

original plan together with a measure of the costs due to violating regularity (i.e. varying

headways between consecutive departures). The results were compared to those obtained

by human dispatchers and is reported to have improved punctuality and regularity by up to
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8%.

Corman et al. [67, 68] extended the work of D’Ariano et al. [63] to include local re-routing

of trains with the objective of minimising the maximum consecutive delay. Corman et al.

[69, 70] extended their work by introducing a controller that co-ordinates multiple local

areas to control large networks. For a limited number of areas, their framework is reported

to perform well, but as the planning horizon is extended and the number of local areas is

increased, good solutions could not be guaranteed.

Most of the approaches in the literature are designed as centralised systems to be imple-

mented as open loop control. In open loop rescheduling the control measures are computed

and implemented once and for all without monitoring of effects and responses, hence, as-

suming a perfect knowledge of future traffic states. This implies measuring only once the

traffic status with the assumption that there will be no discrepancy between predicted and

actual traffic conditions over time [71].

Distributed railway traffic management has also been described in the literature; Strotmann

[72] presented a two-level approach for rescheduling trains between multiple areas. The

lower level makes optimal solution in each local area while the upper level checks the

feasibility and consistency of solutions in the neighbouring areas. A coordinator graph is

used in such a way that any infeasible solution would result in additional constraints to the

lower level solver.

Corman et al. [70] also developed ideas to solve independent and distributed re-scheduling

with co-ordination between the distributed areas, and compared distributed and centralised

approaches. They reported that the distributed system is computationally faster than the

centralised system, and better performance in terms of the consecutive delays, especially

for significant traffic disturbances, was achieved by the distributed system.

Corman and Quaglietta [73] Investigated closed loop control of traffic using the re-

scheduling approaches described in this Section, where an open loop approach was com-

pared with (i) repeated open loop, and (ii) closed loop (repeated open loop with knowledge

of past events).
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2.2.3.4 Other approaches

Brown et al. [74] applied both Simulated Annealing (SA) and Genetic Algorithm (GA)

to determine train routes and train paths over a freight rail network, and found Simulated

Annealing to perform better, but require higher computational effort.

Real-time implementation of GA for railway re-scheduling is introduced by Ho and Yeung

[7], where a junction controller assigns a right-of-way sequence, with the objective of min-

imising the total delay and minimising the search time. Ho and Yeung [75] improve their

work by investigating Tabu Search and SA for the same problem.

Ho et al. [5] developed and tested a traffic controller for railway junctions using dynamic

programming (DP). Their method included approximations in the traffic flow model and

optimisation process to improve computational speed. They reported that for isolated con-

flicts, where no new train enters during the rescheduling period, the controller produced a

schedule with near optimal cost. In cases where new trains are expected to enter the con-

trol area at uncertain times, a probabilistic method was used which was found to achieve

improvements of under 10% compared to First-Come-First-Served (FCFS). For a single

converging junction, it was reported that the FCFS approach achieved results that were quite

close to those of the optimal schedule when trains have the same speed characteristics.

Šemrov et al. [76] introduced a train re-scheduling method based on a reinforcement learn-

ing method, namely Q-learning. The evaluation of the approach is performed on simulations

carried out on a practical railway network with bi-directional running. In this work the ob-

jective was to minimise the total delay, though the authors note that the objective function

can be easily changed. The empirical results show that Q-learning leads to re-scheduling

solutions that were at least equivalent and often superior to those of FCFS and random walk

(i.e. selecting actions randomly).

Yin et al. [77] formulated a metro re-scheduling problem using a stochastic programming

model that jointly optimises the delay experienced by passengers, their traveling time and

train energy consumption. An algorithm based on approximate dynamic programming
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(ADP) is then developed to solve the problem. To evaluate the algorithm, numerical ex-

periments were implemented on a small simulated metro line and a practical instance of

Beijing Metro to demonstrate the performance of the proposed approaches. They reported

that the ADP approach reduced the passengers’ delay by around 10%-30% compared with

a commonly used heuristic method (i.e. if a train is delayed by 3 minutes at a station, the

following trains are delayed by 3 minutes). They also reported that their computational

time for generating a near-optimal solution by the ADP method was about 1-2 minutes.

Chen et al. [78] proposed an improved Differential Evolution algorithm for solving train

re-scheduling problems in junction areas in the event of disturbances. The algorithm is

reported to result in good performance.

Hirai et al. [79] proposed an algorithm for re-scheduling using a pattern processing system

which surveys the train timetable and finds an appropriate running pattern that can be used

by trains to prepare plans. Testing their method for heavy traffic disruption, caused by an

incident requiring a train suspension for more than an hour, it is reported that the algorithm

produced a re-scheduling plan suitable for practical use.

Kersbergen et al. [80] proposed a distributed model predictive control method to solve

the re-scheduling problem for national railway networks. The method is evaluated using a

model of the Dutch railway network. A method to split the entire network into subproblems

is also developed, and the approach is evaluated using horizons of 30 to 75 minutes. The

computational time to find optimal solutions for the entire network using long horizons is

reported to be significant.

Very few industrial prototypes of these systems have been implemented [21, 19, 20]. It

is difficult to evaluate, quantitatively, the benefits of re-scheduling systems in practice, as

the improvements depend on the conditions encountered during experiments. A complete

sensitivity analysis, to draw quantitative and general conclusions, of these systems is still

lacking.
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2.3 Practicality of ADP for re-scheduling

Railway re-scheduling is a resource planning and control problem. Problems sharing sim-

ilarities to railway re-scheduling have been tackled using a variety of different techniques

[81].

In recent decades, much attention has been paid to approximate dynamic programming

(ADP), a variant of dynamic programming which uses approximation to evaluate control

decisions, to solve these problem classes due to its effectiveness in practical applications

[8]. Although relevant studies in railway related ADP research has been few and far in be-

tween [77, 82, 83] other problems tackled using ADP are similar to railway re-scheduling.

Among the many streams of research into ADP, literature on traffic, scheduling and logistics

problems are the most relevant to the present work.

Among them is the work by Cai et al. [9, 84], who investigate the application of ADP to

road traffic signal control, aiming to develop a self-sufficient adaptive controller for online

operation. In this work a parameterised linear approximation was employed for the approx-

imation of the value function, that are updated progressively by adjusting the functional

parameters in real-time. Two learning techniques were used in this work: temporal-

difference (TD) learning and perturbation learning. The TD method updates the parameters

by minimising the difference between current estimation and actual observation of state

values. Whereas, perturbation learning sends a perturbing signal to the system state and

estimates the gradients of the approximate function based on this perturbation. Despite of

the different learning methods, the effects on performance were reported to be similar, and

no statistical difference was found in their numerical experiments. The experiments from

this work suggests that ADP with linear approximation worked well and therefore no more

elaborate approximation methods were employed.

Similarly Yin et al. [85] used ADP to solve the traffic signal control problem, however as

for the learning technique, the recursive least-squares temporal-difference (LSTD) learning

was employed. Good performance of the ADP algorithms were reported in both of these

works.
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Another use of LSTD learning is by Davis et al. [86] who developed an ADP algorithm with

linear approximation for solving a defensive, asset-based variant of the dynamic weapon-

target assignment problem. In this work, it is reported that the ADP algorithm achieved an

8% to 22% mean optimality gap when compared to the globally optimal policy.

As for application of ADP in transportation in general, Powell et al. [87] report a unified

framework for use of ADP in transportation and logistics. The stated aim of this work is to

present ADP as a viable approach to stochastic optimisation problems arising in the fields

of transportation and logistics.

Literature on ADP for scheduling problems is rich, with variety of ADP approaches being

deployed to tackle these problems. Among the works, Papadaki and Powell [88] consider

the problem of approximating optimal strategies for the batch service of customers at a

service station with customers stochastically arriving at the station incurring a waiting cost

and a service cost.

Schmid [89] uses ADP to solve a dynamic ambulance dispatching and relocation problem.

Using observed data, it is reported that ADP provides better quality solutions compared to

policies that are currently in use. The average response time of ambulances were reported

to have been reduced by roughly 12%.

Li and Womer [90] investigated the use of ADP for project re-scheduling problems with

resource constraints and stochastic task durations. In their approach an ADP algorithm is

built upon integration of the look-back (lookup table) and look-ahead (approximation of the

value function in DP) policies.

One of the earliest uses of TD learning for job-shop scheduling is that of Zhang and Diet-

terich [91] who developed a repair-based scheduler that starts with a critical-path schedule

and incrementally repairs constraint violations.

Also, Ramı́rez-Hernández and Fernandez [92] present the application of an ADP algorithm

to the problem of job releasing and sequencing of a benchmark re-entrant manufacturing

line (RML). The approach is based on the SARSA(λ ) algorithm with linear approxima-

tion architecture, whose parameters are updated through a gradient-descent approach. The
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objective of this algorithm is to minimise inventory costs and maximise throughput. It is

reported that a statistical match in performance between the optimal and the approximated

policies obtained through ADP was observed through simulation.

Medury and Madanat [93] applied an ADP approach to planning and scheduling of the

activities of an infrastructure management. They included making decisions on financial

allocation of resources for activities, and the scheduling of the activities over a planning

horizon of years. Given the complexity and the levels of uncertainty involved in this, a

linear approximation architecture with TD learning was employed and they reported that

ADP provided better results compared to commonly used approaches.

Van Roy et al. [94] presented an application of ADP to the optimisation of retailer inventory

systems. The specific case under discussion in this work involves a model with thirty-three

state variables, hence the encouragement to use ADP to solve this problem. A linear

approximation function was employed with a variation of TD learning. The approach is

reported to have outperformed well-accepted heuristics in retailer inventory management.

Other related ADP used to solve logistics problems include Katanyukul et al. [95] who

investigated the application of ADP to an inventory problem. In this study a learning-based

ADP method is compared with two simulation-based ADP methods: Rollout, and Hindsight

Optimisation.

Using perturbation learning, Papadaki and Powell [96] developed an ADP approach for

a batch dispatch problem in which times of arrivals are stochastic. They compared both

linear and non-linear approximation functions, and reported the non-linear approximation

to produce better solutions compared to linear approximation as iterations go on, however,

it is noted that for large-scale problems they are very difficult to implement.

Schütz and Kolisch [97] considers the problem of capacity allocation with sequential deliv-

ery of service with stochastic service times. To tackle this problem a heuristic simulation-

based ADP was employed based on the λ -SMART algorithm. Instead of solving the

Bellman’s equation for all states in each iteration, the λ -SMART algorithm proceeds along

a simulated trajectory and only processes one state per iteration. Each time a state is visited
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the optimal decision is made by solving the corresponding Bellman’s equation based on the

current estimate of the value function and the one-step cost. A comparison of the heuristic

ADP and an optimal DP algorithm using deterministic service times shows the policies

produce to be almost identical in average profit.

Papageorgiou et al. [98] introduces an ADP framework for generating solutions to a class

of maritime inventory routing problem (MIRP) with a long planning horizon. It is re-

ported that ADP is capable of producing better solutions compared to other well established

approaches in MIRP that mostly use commercial MILP solvers. Their research uses a

separable piecewise linear continuous function approximation for the value function.

2.4 Summary and discussion

Train movements are restricted to one degree of freedom and trains only follow the direction

of rails. To eliminate the danger posed from colliding trains, railway control systems are

employed to ensure safe operations for passengers and railway operators. It is not practical,

especially in high-speed operations, to solely rely on reaction of train drivers to stop trains

once an obstacle on the track, e.g. a slow moving train downstream, has been sighted, as the

braking distance for trains often exceeds the sighting distance of train drivers. Therefore,

control systems are put in place to inform train drivers of downstream traffic well in advance

of required stopping points.

Railway traffic control is currently based on fixed block colour light signalling, where all

tracks are divided into a series of fixed blocks. The principles of fixed block signalling are:

to preclude concurrent presence of two trains in any block, and ensure the distance separat-

ing a train from the next one downstream is always greater than the full braking distance

required for the rear train to stop safely. Under these principles trains are protected against

colliding with one another and hence ensure safe operations. As the principles are enforced

by controlling the colour of fixed signals, drivers can only react to instructions once a sig-

nal is sighted. The implication is, the under-utilisation of available capacity. This places
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conflicting requirements upon the control system: those of safety and those of operational

capacity.

In recent years, with advances in information and communications technology (ICT), rail-

way undertakings have been investigating modern control systems to improve the conflict-

ing requirements of the control system. Notable among these new systems is the European

Train Control System (ETCS). Under ETCS-Level 2 and Level 3, by continuous wireless

communication with the traffic control centre, a train does not wait until it approaches a

signal or a balise (beacons that are placed strategically on the rail network and transmit data

to trains as they pass over them) to get a new movement authority; it can receive them by

radio at any time that sufficient blocks are cleared ahead of the train. The in-cab Driver

Machine Interface will then display the movement authority beyond what may otherwise

be observed from the signals, and when appropriate authorise operation at higher speeds.

The aim of these new control systems is to take advantage of new technologies to improve

capacity utilisation while at the same time ensuring safe operations at all time.

Envisioned railway control systems, such as ETCS, once in place and operational, present

an opportunity in further improving capacity utilisation without the need of building new

railway infrastructure. As complete information on all trains’ real-time speeds and positions

are transmitted to a control centre, approaches have been developed, in anticipation, to op-

timise railway traffic by considering current status of all trains and anticipating downstream

traffic states. These approaches, referred to as real-time railway re-scheduling, have been

widely studied in recent years, and conceptually demonstrated to be beneficial in terms of

performance. Main benefits arise when deviations from the timetable cannot be recovered

within the available time margins, and therefore a new schedule is computed that is more

appropriate for the prevailing traffic state of the rail network.

Railway re-scheduling is a complex problem and as the size of the problem at hand increases

so does the computational time required to solve for appropriate solutions. The quality of

solutions and the size of the problem in re-scheduling have a direct impact on the com-

putational time of the approaches presented in the literature, i.e. higher quality solutions
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and larger problems increase the required computational effort. Furthermore, a full-scale

evaluation and sensitivity study of re-scheduling approaches, with the possibility to draw

quantitative and general conclusions about configuration and parameter setting is still miss-

ing, as the quantitative improvement of traffic performance due to these systems is difficult

to evaluate.

One promising method in the field of optimisation and control that has attracted much at-

tention in the recent decades is approximate dynamic programming (ADP) due to its effec-

tiveness in tackling stochastic applications where the state and action spaces are large. This

approach depends on an approximation to the value function of dynamic programming after

optimisation from a specified state, and by using this approximation, the ADP avoids exten-

sive explicit evaluation of performance and so reduces the computational burden substan-

tially. The ADP is based on an algorithmic strategy that uses the result of each optimisation

to update the current approximation of future performance. Through this updating, the ADP

can adapt its optimisation in response to changes in the operating environment.

Given the robustness of ADP in tackling complex resource planning and control problems,

as is presented in the literature, it is desirable to develop a re-scheduling framework based

on ADP, to achieve real-time railway traffic control reliably and in a timely manner that

meets the practical computational requirements of railway operations closely.



Chapter 3

Approximate Dynamic Programming

“Philosophy is written in that great book which ever lies before our eyes,

I mean the universe. But we cannot understand it if we do not first learn the

language and grasp the symbols, in which it is written.” - Galileo Galilei

Even though dynamic programming (DP) provides exact solutions for optimisation over

time, it suffers from the curses of dimensionality. This refers to the computational demand

involved in calculations of DP which are exponential to the size of each of the state space,

information space and decision space. A consequence of this is that the amount of computa-

tion required increases with time into the future whilst the relevance to immediate decisions

decreases because of accumulated uncertainty.

In this chapter, we outline how approximate dynamic programming (ADP) reduces this

computational burden while learning from online information constantly to adapt to the

operating environment and so improve its decisions. Under the concept of reinforcement

learning, specific techniques of learning are discussed, which form the basis of the adaptive

ADP framework developed in this thesis.

3.1 Dynamic programming

DP deals with problems where decisions are made in stages, and the outcome of each de-

cision can be anticipated to some extent before the next decision is made. One key aspect
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of such problems is that decisions cannot be viewed in isolation and decisions made for the

current state of the system may affect future states. DP is based on Bellman’s Principle of

Optimality, which states that:

“An optimal policy [sequence of decisions] has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision” [11].

This asserts that an optimal policy has sub-policies that are optimal for their stages; there-

fore, replacement of a suboptimal decision with an optimal decision would improve the

original sequence of decisions. To capture this, the DP technique evaluates decisions based

on the sum of the present cost and the anticipated future cost, assuming optimal decision

making for subsequent stages.

3.1.1 DP formulation and solution methods

Let s ∈ S be a vector of state variables of the system, u ∈U the decision variable, and g(.)

the one step cost function. Given an initial state s0, a sequence of decisions πt made up of

decisions u ∈U at step t, and future-discount factors αt (t ≥ 0), a dynamic programme over

horizon of T steps is

min
ut ∈ U

Ev

{
T

∑
t=0

αt g(st ,ut ,st+1) | s0

}
. (3.1)

A convenient form defined by

αt = e(−tθ), (3.2)

and θ is a discount rate for cost incurred in the future per step, st+1 is the next state resulting

from implementing ut at step t

st+1 = f (st ,ut ,vt),



3.1. Dynamic programming 59

f (.) represents the state transition function, vt represents random information at stage t, and

Ev (E from this point on) is the expectation over this random information.

The optimal performance J at a single step t of the solution can be represented by solving

Bellman’s recursive equation [11]:

J(st) = min
ut ∈ U

E {g(st ,ut ,st+1)+αt+1J(st+1(ut))} . (3.3)

The backward dynamic programming procedure addresses this by starting from the final

time T , assuming the optimal value function J(sT ) is known, and solving equation (3.3)

recursively working backward to the initial state s0 to obtain the sequence of decisions

which would lead to the optimal solution and the associated estimate of performance.

To guarantee that an optimal policy for the whole problem is found when state s0 is reached

using backward DP, the problem should possess the Markovian property. Given that P is a

matrix of transition probabilities, a process is said to have the Markovian property if

P{st+1 = x | s0, s1, ... , st} = P{st+1 = x | st} ,

for t = 0, 1, ... , and every sequence s, x, s0, s1, ... , st−1. This implies that knowledge

of the current state of the system conveys all the information about its previous behaviour

necessary for determining the optimal policy henceforth.

Bellman’s equation can be used to describe deterministic and stochastic problems. A de-

terministic DP requires the transition function to the next state st+1 of the problem to be

completely determined by the current state st and the current decision ut . In such a case, the

Bellman equation for the problem is described as

J(st) = min
ut ∈ U

{g(st ,ut ,st+1)+αt+1J(st+1(ut))} , (3.4)

whereas the transition function to the next state st+1 of a stochastic problem, cannot be

fully determined by the current state st and the current decision ut . Such a problem can be
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formulated as a Markov Decision Process, where the Bellman equation can be reorganised

for a stochastic problem as

J(st) = min
ut ∈ U

{
∑

st+1 ∈ S
p(st+1|st ,ut)

[
g(st ,ut ,st+1)+αt+1J(st+1(ut))

]}
, (3.5)

where p(st+1|st ,ut) is the probability of getting to state st+1 by taking decision ut in state

st .

DP can formulate problems with finite and infinite horizons. A problem formulated in DP

is said to have a finite horizon if the value function J(.) accumulates over a finite number

of steps; whereas a problem is said to have an infinite horizon if value function J(.) accu-

mulates indefinitely. This can be expressed in equation (3.1) by the choice of T .

By considering railway traffic as a finite horizon problem it is possible to define the final

value function J(sT ) as the overall performance of the finite steps; on the other hand defin-

ing the final value function for an infinite horizon operation is not easily done. Fortunately,

the infinite horizon problem leads to steady-state in Markov process. At steady-state, the

state transition probabilities become time-invariant, and the value of J(.) converges. This

allows for derivation of analytical solutions to our control problem which can be tackled

by iteration algorithms. There are two common iteration algorithms: policy iteration and

value iteration.

3.1.1.1 Policy iteration

Policy iteration terminates in finite iterations even for infinite horizon problems. This it-

eration algorithm essentially finds the value of specific policies, by starting from an ini-

tial policy π0 (a sequence of decisions u) and generating a sequence of new policies

π1, π2, π3, ..., πm. Policy iteration has two steps; i) policy evaluation, and ii) policy im-

provement. Let s′ represent the next state, policy evaluation is

Jπ(s) = ∑
s′ ∈ S

p(s′|s,u)
[
g(s,u,s′)+αJ(s′(u))

]
, (3.6)
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Input: P,α
Set m = 0 and select πm ← random(U),
while Policy is not stable: do

for each s ∈ S: do
Evaluate policy using (3.6),

end
for each s ∈ S: do

Improve policy using:
πm+1(s) = arg min

u ∈ U

{
∑s′ ∈ S p(s′|s,u)

[
g(s,u,s′)+αJ(s′(u))

]}
,

end
if πm = πm+1 : then

Policy is stable: Stop.
else

m← m+1,
πm← πm+1,

end
end

Algorithm 1: Policy iteration.

and for policy improvement we find the decision that minimises equation (3.6). Algorithm

1 presents the policy iteration procedure. The proof of the convergence of policy iteration

can be found in Section 2.2.3 of [99].

3.1.1.2 Value iteration

Value iteration is perhaps the simplest algorithm in DP and is widely used to solve many

different problems in a wide range of topics; it is also the principal method for calculating

the optimal value function J∗. Generally, the method requires an infinite number of itera-

tions to converge to J∗, however, in some circumstances the method can terminate finitely.

Because value iteration requires an infinite number of iterations to obtain the exact value

function J∗, a termination criterion is required in this algorithm. Algorithm 2 summarises

value iteration procedure.

Value iteration is similar to the backward dynamic programming algorithm; instead of start-

ing from the last stage T and working backward to 0, an iteration counter is used that starts

at 0 and increases until the convergence criterion is satisfied. The proof of convergence for

value iteration can be found in Section 3.10.2 of [12].
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Input: P,α
Set J0(s) = 0 ∀s ∈ S, set termination criterion κ , set m = 1,
while ∆ > κ: do

∆← 0,
for each s ∈ S: do

Jm(s)← min
u ∈ U

∑s′∈S p(s′|s,u)
[
g(s,u,s′)+α ′J(s′(u))

]
,

∆ = max (∆, ‖ Jm(s)− Jm−1(s) ‖)
if ∆ < κ: then

Stop.
else

Continue,
end

end
m ← m+1

end
Output policy, such that:

π(s) = arg min
u ∈ U

{
∑

s′ ∈ S
p(s′|s,u)

[
g(s,u,s′)+αJ(s′(u))

]}
.

Algorithm 2: Value iteration algorithm for infinite horizon optimisation.

3.1.2 Curses of dimensionality

Although equation (3.3) characterises an elegant way of representing an optimisation prob-

lem, it can be computationally expensive and therefore is not always practical for opera-

tional use. The reason for this is the need to consider the entire state space to evaluate the

optimal decision at each step, and the computational intensity grows exponentially with ad-

ditional states in the space. This intensity in computational demand is caused by the three

curses of dimensionality [12]:

1. State space: If the state variable st = (st1 ,st2 , ... ,stI ) has I dimensions, and if st can

take on S possible values, then there may exist up to SI different states.

2. Decision space: The decision vector ut = (ut1 ,ut2 , ... ,utK ) might have K dimensions.

If ut can take on U decisions, then there may exist up to UK decisions.

3. Outcome space: The random information variable vt = (vt1 ,vt2 , ... ,vtW ) might have

W dimensions. If vt can take on O outcomes, then there may exist up to OW outcomes.
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Recursively solving the Bellman equation requires that at each step t, for each combination

of state, decision and outcome, a value function J be calculated to make an optimal decision.

Therefore, the computational demand would increase exponentially with as many as:

SI×UK×OW .

This requirement means to calculate all value functions, we have to loop over three nested

loops with the first one looping over all states, and the last loop looping over all outcomes.

This clearly is not practical where state and decision spaces are large and stochastic, and

cannot be solved efficiently using the direct approaches presented in section 3.1.1.

Deployment of DP for real-time control is especially onerous. For one, considering the en-

tire state space to the end of the planning period at every step may not be efficient, as plans

for future decisions might need to be adjusted in light of emergence of new information,

and decisions planned in the ‘tail’ period may never be implemented.

Furthermore, complete information on future states may not be available owing to the

stochastic nature of the control environment. Although the opportunity will often arise to

revise these decisions as their time approaches, calculating them in the first place generates

a heavy computation burden.

To adopt DP for real-time control applications, one must look to reduce the dimensionality

of the control problem and look to approximate future performance where possible. In the

next section we discuss how this may be done by trading off solution quality for lower

memory and computation requirements.

3.2 Fundamentals of ADP

Section 3.1.1 presented how to solve optimisation problems of the form of equation (3.1)

min
πt ∈ U

E

{
T

∑
t=0

αt g(st ,ut ,st+1) | s0

}
,
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by recursively calculating equation (3.3)

J(st) = min
ut ∈ U

E {g(st ,ut ,st+1)+αt+1J(st+1(ut))} .

From this point on we will use equations (3.1) and (3.3) to formulate our solution methods,

which encompass all requirements necessary to formulate our railway traffic management

problem.

Based on the presentation in section 3.1.2, we showed that equation (3.1) can be computa-

tionally expensive and intractable even for small problems. Furthermore, it is evident that

for many applications where the state and decision spaces are large, even the optimality

equation (3.3) can itself be computationally expensive and intractable.

To address the difficulties associated with DP, the approximate dynamic programme (ADP)

approach to decision-making has been developed. ADP works forward in time and employs

a greedy approach to make decisions using available information in an exhaustive search

for decisions in the short-term future and an approximation to the value function J(.) after

that.

This approach, as is set out in the remainder of this section, is intended to tackle problems

that have large state, decision and information spaces, but also to tackle problems where

a model of the system does not exist or is too complex to formulate effectively. In the

remainder of this chapter we will look at solutions to all of these problems, though the main

focus of this investigation is to develop ADP for railway traffic management for which a

model of the system can be reasonably formulated and as such ADP for ‘large problems’ is

the main focus of this thesis.

ADP is an exciting and still emerging method to solve difficult optimisation problems, and

it offers a large range of solution approaches to choose from. In this investigation we focus

on model-based approaches which use reinforcement learning as part of the solution, there

are however other similar approaches based on ADP. Which of the approaches is preferred

is a question that can only be answered by applying a range of different approaches to a
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problem and comparing the results. For instance, Cai et al. [9], tried two different ADP

approaches and reported similar performance and no statistically significant difference in

performance in a traffic signal control application.

In the remainder of this section we look at the fundamentals of ADP and the idea underlying

this approach to show how ADP can tackle the three curses of dimensionality in DP.

3.2.1 Making decisions approximately

The most computationally inefficient part of backward DP is to compute the value function

J(.) in equation (3.3) for all steps from the final stage backward to the current stage. This

procedure is therefore the prime candidate to be eliminated to improve computational effi-

ciency of DP. However, there still is a need to somehow measure the long term performance,

so to achieve this J(.) can be approximated. Let Ĵ (s) be an approximation of the optimal

value function, then

J(s)≈ Ĵ (s),

where Ĵ (s) is an approximation of long term performance resulting from visiting state s.

Adopting this in Bellman’s equation results in

J̃ (st) = min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt+1Ĵ (st+1(ut))
}
, (3.7)

Where we refer to J̃ (st) as an observation of value function at state st . Making decisions

using this framework is then to solve

ut = arg min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt+1Ĵ (st+1(ut))
}
. (3.8)

which is referred to as a greedy strategy because of the implicit exhaustive search over

decisions ate stage t.
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This is the first step for the transition from DP to ADP, and is where the approximate in

ADP comes from. This is a structural change to how problems are viewed. Instead of hav-

ing to compute what the exact value function is, which in the case of backward DP requires

calculation of all J from the final stage to the current stage, we adopt the approximation Ĵ

for the value function.

This of course introduces errors in calculations, which needs to be addressed. The challenge

of ADP is to produce an effective approximation, which we apply by iterative improvement.

Because approximations only need to be as good as is required to solve the problem at hand

“sufficiently”, however it is difficult to decide on ad-hoc estimations of Ĵ that results in

sufficient system performance. It is possible to assume or compute, then store in a table all

approximate value functions Ĵ that result from taking decision u in state s, but this can’t

be efficient when the state space is large and in many cases may not be sufficiently close

to the optimal value function J to result in appropriate decisions. Therefore, ADP adopts

a systematic approach to refine the approximate value function Ĵ , which is presented in

section 3.2.4.

3.2.2 Stepping forward in time

For now assuming a well defined approximate value function Ĵ is available for the current

state st , it is possible to find the decision ut that minimises the Bellman’s equation (3.3),

which is given by equation (3.8). Being able to make a decision for the current state whilst

accounting for all possible future decisions, eliminates the need to consider all stages to find

the value function, and therefore stepping back in time can be avoided. Hence, ADP steps

forward in time to move into the next stage st+1, receive information from the system and

repeats this process progressing forward in time.

In cases where the environment is stochastic, the expected value of near-future decision cost

Ev(g(s,u,s′(s,u))) (the one-step cost from this point on) in equation (3.3) may be evaluated

using a Monte Carlo scheme.

Monte Carlo scheme or Monte Carlo simulation is a sampling approach which samples from
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the distribution of the random value to estimate the expected outcome of a process, where

larger sample sizes produce better evaluations. Therefore, this process generates a sample

path for the system. As for the approximate value function Ĵ , in this thesis we assume that

the transitions are determined by s, u and v. In the case of probabilistic transitions, Ĵ should

be evaluated by taking into account the one-step transition according to

∑
st+1∈S

p(st+1|st ,ut)
[
αt+1Ĵ (st+1(ut))

]
. (3.9)

By stepping forward in time, all the steps required to compute the value function J in equa-

tion (3.3), which informs us of the long term performance based on the current state, can be

avoided.

This is precisely how ADP improves computational efficiency significantly compared to

DP. Instead of visiting all states, ADP focuses on the near-future for which information is

more reliable and decisions imminent, and avoids calculations that require unnecessarily

fine information and lie beyond the near-future.

Because ADP works forward in time, it requires an approximate value function Ĵ for states

which may be encountered in future, some of which might not have been visited before. As

was discussed in the previous section, a table representation of all Ĵ may not be sufficient

if a new state is visited. This brings us to functional approximation which is discussed in

the next section.

3.2.3 Linear function approximation

A common approach to approximate the value function and coping with large state spaces

is to use a separable linear approximation of the form

Ĵ (s, r) = rT. φ(s), (3.10)

where r ∈ IRM is a vector of parameters of the approximation function, and φ : S→ IRM is

a features extraction function (or basis function) defined on the state space S that maps the
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state to a feature vector for which r is the associated weight vector and M is the number

of features used. The purpose is to represent the contribution of each feature to the value

function, and hence, approximate the value function by inspecting the state.

Some practitioners, avoid approximating the value function Ĵ using the same features for

different decisions [14]. Therefore it is common to distinguish between value functions

resulting from different decisions from the same state by defining slots in the feature vector

for each decision and populating the slots in the vector by 0 if the decision is not going to

be evaluated: assuming the decision space U has only two possible decisions that can be

chosen, i.e. u1 and u2, and only two features are extracted from state s, i.e. φ1 and φ2, then

the features are defined as

φ(s) =

φ1

φ2

 , φ(s, u1) =



φ1

φ2

0

0


, φ(s, u2) =



0

0

φ1

φ2


, (3.11)

which distinguishes between the two possible decisions. This is especially useful when the

decisions result in the same short term performance but may result in different long-term

performance. In this investigation, in cases where features do not distinguish between deci-

sions, equation (3.11) is used to represent feature vectors; otherwise, the said representation

is not used.

For problems that are too complex to be solved analytically, functional approximations can

be used to approximate the value function by representing it in a lower dimensional space

using M� |S| parameters. A particular convenient form of this is linear:

J(r)≈ Ĵ(r) =



− φT(s1) −

− φT(s2) −
...

− φT(s|S|) −


×



r1

r2

...

rM


≡Φ|S|×M IRM×1. (3.12)
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By now the computational efficiency of ADP to solve intractable DP problems has become

evident and now we turn to methods of improving the approximations by updating r, which

gives ADP its adaptive character.

3.2.4 Learning from experience

The use of features φ from states in the approximate the value function means that changes

in the states can be tracked based on decisions taken at each state. An opportunity to im-

prove an approximation arises after each optimisation, when it is possible to compare the

approximate value function and the observed value function.

Given that a functional approximation is employed, then it is possible to update the vector

of functional parameters r by finding the solution to

r∗ = arg min
r ∈ IRM

‖ J∗− Ĵ (r) ‖, (3.13)

where J∗ is the newly optimised value function. Therefore, estimation of the value function

is achieved by using equation (3.13) recursively to update the parameter vector r. This is

termed ‘learning’ in ADP community and lies at the heart of any ADP approach. Indeed,

Tsitsiklis and Van Roy [15] proved that for linear function approximation this approxima-

tion process for the parameters converges to the unique optimal parameter vector r∗.

As more states arise and are optimised, experience can be accumulated to improve approx-

imations over time. In the present case of railway traffic management in particular, and

traffic management in general, learning can therefore adapt the parameters r according to

prevailing traffic conditions on the network and calculate decisions accordingly. As we

will see by the end of this chapter, this adds an adaptivity to the controller so that it can be

regulated to react to changes in traffic with varying degrees of sensitivity.

There are several different methods for updating the parameter vector r, many of which

use Machine Learning techniques to calculate adjustments ∆r to r that would minimise

equation (3.13), which are usually moderated using
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rt+1 = rt +ηt∆rt , (3.14)

where ηt ∈ (0, 1] (t ≥ 1) is a decreasing sequence of moderating factors that satisfy the

following conditions for convergence:

∞

∑
t=0

ηt = ∞,
∞

∑
t=0

ηt
2 < ∞. (3.15)

Among the machine learning techniques, Reinforcement Learning techniques have received

considerable attention in the literature and have been adopted successfully to ADP ap-

proaches of adaptive traffic management.

Temporal-Difference Learning introduced by Sutton [100], a reinforcement learning tech-

nique, is of particular interest in this thesis as it forms the basis of the learning mechanisms

developed for the application of railway traffic management. Reinforcement learning and

temporal-difference learning are presented in sections 3.3 and 3.4 respectively.

3.2.5 An ADP algorithm

All the steps presented in sections 3.2.1 to 3.2.4, describe one single decision and transi-

tion forward to the next state. Running through these steps iteratively is intended to yield

improvement in terms of decision-making. This is implemented by solving equation (3.13)

and adopting adjustments to r using equation (3.14) to adjust the value function approxi-

mation with the intention of improving it and so to make better decisions in the future.

An ADP algorithm is presented in Algorithm 3 [12]. This differs from backward DP in that

it progress forward in time considering all possible decisions and the states that result from

them rather than evaluating all states by working backward from the final stage.

Using ADP allows for achieving sequential decision-making in real-time, and given the

reduced computational effort, there is opportunity for revisiting decisions already planned

if the environment changes. Furthermore, learning from experience plays a balancing act

between the immediate performance and that of the long-term.
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Step 1. Initialisation:

Initialise parameter vector r0, initiate learning rate η0 (where required);

Set t = 0, choose the horizon T stages to be calculated explicitly;

Step 2. Receive current state s:

Set t = t +1;

Step 3. Produce decisions and update Ĵ :

for each t ∈ T : do
Find the optimal decision u∗t using

u∗t = arg min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt Ĵ (st+1(st ,ut),rt)
}
,

Calculate new observation J̃ (st) using

J̃ (st) = E
{

g(st ,u∗t ,st+1)+αt Ĵ (st+1(st ,ut),rt)
}
,

Update approximation based on experience by

rt+1 = rt + ηt
[
arg min

r ∈ IRM
‖ J̃ (st)− Ĵ (st ,r) ‖− rt

]
,

end

Step 4. Implement decision:

Implement decisions π∗t , ie. [u∗t , · · · ,u∗T ], and transition to sT ;

Return to step 2.
Algorithm 3: An ADP algorithm.

3.3 Reinforcement learning

In many practical applications the behaviour of the environment may not be modelled ex-

actly due to the complexity of the system. In such cases, Reinforcement Learning (RL)
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Figure 3.1: The agent-environment interaction in reinforcement learning in the case of railway traf-
fic management.

can be employed to mimic an intelligent beings approach to learning the dynamics of the

environment. Learning from interaction is the foundation of RL, where an agent (a system

that is learning from a control process) interacts with the environment on each step, using

an available decision and then observes the cost incurred from that decision. The idea is

to discover which decisions yield the least cost by trying many decisions randomly and

observing their outcomes.

In the case of railway traffic control, RL would choose scheduling decision ut and observe

cost incurred at the next state st+1 from ut taken at state st ; ie. g(st ,ut). This is shown in

Figure 3.1.

RL procedure requires the agent to estimate the relationship between costs and states by

observing the environment and incrementally updating its estimation of outcomes. To do

so RL pairs decisions ut and states st and stores an expected cost for this pair, ie. Ĵ (.). The

observed cost is then used to incrementally update the cost associated with the decision-

state pairs, which is a similar procedure as (3.13).

It is clear that RL involves significant abstraction of any problem, and it is only applicable

to goal-driven problems that can interact with the environment in someway, eg. actual

interactions with the environment until the agent learns the optimal policy or simulation

based interaction which can be setup to represent a practical environment. Therefore, RL

states that any control problem can be simplified to three fundamental signals:
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• Decisions: The choices made by the agent (controller);

• States: The basis on which the choices are made; and

• Values (reward or cost): The objective by which performance is measured.

Not all control problems can be represented using the above signals, though many problems

can be, including the present railway traffic management problem. How decisions and

states are represented can influence RL performance, and studies into such representational

choices remain an active area of RL research [14].

In the present investigation the way in which decisions and states are represented is decided

explicitly rather than by an automatic representation procedure. The focus of this investi-

gation is on application of ADP and RL principles for learning and how to make sequential

decisions rather than effects of different decisions and states representation.

The value signal allows for formal representation of the goal of the problem. RL agent min-

imises the total amount of cost it receives from the environment. This means minimising

the long term cost is the objective, rather than just the immediate cost. All RL techniques

consider representing the long term cost as best as is possible in sufficient computational

time.

Figure 3.2: Bellman equation solvers separated based on availability of a model of the system, and
use of approximation.
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Therefore, the cost itself should represent the goal of the agent rather than knowledge on

how to achieve the goal. It is the aim of RL to allow for the agent to explore different

possibilities to achieve the goal and the agent should not be restricted in how to achieve this

goal, unless practical realities dictate constraints which should be represented. For example,

the goal of an agent in learning how to play chess is to win a match rather than achieving

sub-goals of taking the most opponent’s pieces out of play. If sub-goals are costed then RL

might focus on achieving the sub-goals as oppose to winning the match.

RL relies on the Markov property, described in the preceding sections, to represent de-

cisions and costs as functions of the current state. This is important in RL as it implies

that the best policy for choosing decisions as a function of a state is similar to choosing

decisions as a function of complete history of all state transitions. If an environment has the

Markov property, then using the one-step dynamics of the system allows for calculation of

the next state and the expected cost associated with this transition. By using this principle

iteratively, it is possible to estimate future expected costs from the knowledge of the current

state which is equivalent to using the complete history up to the current time. It is clear

that Markov states provide the best possible basis for choosing decisions and so RL utilises

the Markov property to the full and, similar to ADP, RL tasks that satisfy this property are

called Markov decision processes (MDPs).

It is evident that RL shares many fundamental ideas with ADP. Figure 3.2 distinguishes

between different methods presented in this thesis to solve the Bellman equation. The

remainder of this chapter describes RL methods that appear in the literature and shows how

they can be viewed as ADP techniques.

3.3.1 Q-learning and SARSA

Similar to ADP, almost all RL algorithms are based on an estimation of the value function

- which we denote as J - to inform of the outcome of choosing an decision in a particular

state, where outcome here is defined in terms of the expected long term cost. The long term

costs are dependent on a series of decisions and therefore the value function is defined with
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respect to a policy. Recall that a policy π , is a mapping from each state s ∈ S, and decision

u ∈U , to the probability p(s,u) of taking decision u when in state s. Therefore, the value of

state s under a policy π , is the expected cost of starting in state s and following π thereafter

to the end of horizon T :

Jπ(st) = E

{
T

∑
i=t

αt−i g(st+i,ut+i)

}
, (3.16)

where g, as before, is the one-step cost.

Similarly, the value of taking decision u in state s under a policy π can be defined as:

Qπ(st ,ut) = E

{
T

∑
i=t

αt−i g(st+i,ut+i)

}
, (3.17)

where Qπ is the decision-value function for policy π . This function in RL community is

referred to as the Q-function. The aim of RL is to minimise the Q-function over the long-

term horizon.

Q-Learning is one of the oldest RL algorithms which was introduced in 1992 [101], and is

named after the variable Q(s,u). Given the definition of a Q-function in equation (3.17),

Q-Learning chooses decision u at time t using

ut = arg min
ut ∈ U

Q(st ,u). (3.18)

Note that to find ut according to equation (3.18) and using an approximated Q-function, it is

not necessary to compute an expectation or calculate the Q-value of being in a downstream

state. This is a similar greedy approach to ADP’s equation (3.8)

ut = arg min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt+1Ĵ (st+1(ut))
}
,
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however the difference here is that Q-learning does not compute the expected one-step cost

g. This eliminates the necessity of providing a model to the system and hence, Q-learning

can be used to make decisions for complex systems that can not easily be modelled.

Once a decision u is implemented, a one-step cost g can be observed, and used to calculate

an updated value of being in state st and taking decision ut using

Q̃ (st ,ut) = g(st ,ut ,st+1)+αt+1 min
ut+1∈U

Q(st+1,u), (3.19)

where Q̃ (st ,ut) is an observation of the Q-function based on a single interaction and can be

used to update the Q-value by

Q+(st ,ut)← (1− γt)Q−(st ,ut) + γtQ̃ (st ,ut), (3.20)

where Q+ and Q− are the updated and current Q-functions respectively, and γ is a step-size

between 0 and 1.

Similar to ADP, if there exist a large state-decision space then the Q-function can be repre-

sented as a parameterised function, as in equation (3.10):

Q(s,u,r) = rT. φ(s,u), (3.21)

and one can adjust the parameters r to better match the observed costs iteratively over time.

The resulting algorithm is called Q-learning and is shown in Algorithm 4 [101].

The δ in Algorithm 4 [101], is the error between an estimate of the Q-function based on a

single interaction, Q̃ , and the current estimate of the Q-function. This error is referred to as

the temporal-difference (TD) error, which we will explore in more detail in the next section

and will form the basis of the learning mechanism adopted here for ADP.

Algorithm 4 may diverge when function approximation is employed [13], as is the case

in our representation of the framework. This stems from the fact that the policy used for

sampling, is not the same as the policy used for learning. However, matching these two
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policies will lead to a convergent on-line method called SARSA introduced by Rummery

and Niranjan [102]; this name refers to state-action-reward-state-action sequence which is

the procedure for SARSA and is shown in Algorithm 5 [102].

Initialisation:

Initialise parameter vector r0 and learning rate η0;

Receive current state s0 and policy π .

while time left do
Send ut ← π(st),

Receive cost g and next state st+1,

Q̃ (st ,ut ,rt) = g(st ,ut ,st+1)+αt+1 min
ut+1∈U

Q(st+1,u,rt),

δt = Q̃ (st ,ut ,rt)−Q(st ,ut ,rt),

rt+1 = rt +ηtδtφ(s,u),

t = t +1.

end
Algorithm 4: Q-Learning.

Initialisation:

Initialise parameter vector r0 and learning rate η0;

Receive current state s0 and policy π .

while time left do
Send ut ← π(st),

Receive cost g and next state st+1,

ut+1← π(st+1)

Q̃ (st ,ut ,rt) = g(st ,ut ,st+1)+αt+1Q(st+1,ut+1,rt),

δt = Q̃ (st ,ut ,rt)−Q(st ,ut ,rt),

rt+1 = rt +ηtδtφ(s,u),

t = t +1.

end
Algorithm 5: SARSA.
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In SARSA, Q̃ is calculated based on Q(st+1,π(st+1),rt), rather than min
ut+1∈U

Q(st+1,u,rt),

which makes both the sampling and learning policies identical. Therefore, the agent learns

from the same policy used for generating the trajectory. This is termed on-policy learning

as opposed to off-policy learning in Q-Learning.

3.3.2 Actor-critic methods

In RL implementation, Q-learning and SARSA can be directed to visit all state-decision

pairs infinitely often, by using an ε-greedy policy that choices plans greedily most of the

time and at other times (with small probability ε) choices randomly from amongst all the

actions available, whereas, actor-critic (AC) algorithms are based on the simultaneous on-

line estimation of the parameters of two structures, called the actor and the critic. In this

structure the policy-selection is represented as a separate entity, referred to as the actor and

is implemented as the Gibbs softmax distribution [13] which maps states to decisions in a

probabilistic manner:

π
actor(s,u) =

exp(ρ(s,u)
τ

)

∑a exp(ρ(s,a)
τ

)
, (3.22)

where ρ(s,u) is the preference of taking decision u in state s, and τ ∈ IR+ can be used

to shift between greedy with respect to Q values (large τ) and random decision selection

(τ = 0). Therefore, πactor(s) returns the decision u with probability πactor(s,u).

The critic on the other hand is a conventional RL update rule for Q, that ”criticises” the

agent for the observed TD error. Therefore, the critic is concerned with the prediction

problem, whereas the actor addresses the control problem. The AC algorithm solves these

problems simultaneously to find an appropriate policy, as in policy iteration.

In applications where large state-decision spaces exist, ρ(s,u) can be represented using a

linear function approximation as
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ρ(s,u,ω) = ω
T. ψ(s,u) , (3.23)

where ω ∈ IRM is a column vector with each entry a parameter of the approximation func-

tion similar to r, and ψ : S→ IRM is a features extraction function similar to φ , defined on

the state space S and so maps the state to a feature vector for which ω is the associated

weight vector and M is the number of features used. It is noted that ψ and φ can be different

and ψ(s,u) is constructed similar to φ(s,u) presented in equation (3.11).

There are various ways of updating the actor [103]. Algorithm 6 [103] presents this frame-

work based on the template introduced by Bhatnagar et al. [103].

Initialisation:

Initialise parameter vectors r0 and ω0, and learning rate η0;

Receive current state s0 and decision u0← πactor(s0).

while time left do
Send ut ← πactor(st),

Receive cost g and next state st+1,

ut+1← πactor(st+1),

Q̃ (st ,ut ,rt) = g(st ,ut ,st+1)+αt+1Q(st+1,ut+1,rt),

δt = Q̃ (st ,ut ,rt)−Q(st ,ut ,rt),

Critic update used for Q(r): rt+1 = rt +ηtδtφ(s,u),

Actor update used for ψ(ω): ωt+1 = ωt +ηtδtψ(s,u),

t = t +1.

end
Algorithm 6: Actor-Critic.

3.4 Temporal-difference learning

Temporal-difference (TD) learning is a widely used form of reinforcement learning [104].

TD methods can be used to learn directly from experience without a model of the environ-



3.4. Temporal-difference learning 80

ment’s dynamic, and updates to the estimates are made without needing a final outcome.

A simple method to update the long term estimate of cost Ĵ is to observe the accumulated

actual cost of all decisions to the end of horizon T , and update the estimation based on this

experience by

Ĵ (st) ← Ĵ (st)+ γt

[ T

∑
i=t

αt g(si,ui,si+1)− Ĵ (st)

]
. (3.24)

However, TD learning, first introduced by Sutton [100], uses experience more immediately

to improve future estimates. TD compares current estimates of the long term cost Ĵ (st ,rt)

with an observation of the one-step cost of transition g(st ,ut ,st+1) plus a discounted future

value Ĵ (st+1,rt) in the environment to produce an error in estimation called a temporal-

difference error δ . This is calculated as

δt = g(st ,ut ,st+1)+αt Ĵ (st+1,rt)− Ĵ (st ,rt), (3.25)

where δ is used to update the current estimate of Ĵ after every step. In the simplest form of

TD, Ĵ is updated by

Ĵ (st) ← Ĵ (st)+ γtδt . (3.26)

Hence, this form of TD updates approximations as soon as information becomes available

which is a more immediate form of learning compared to equation (3.24).

In the case of linear function approximation of equation (3.10)

Ĵ (s, r) = rT. φ(s),

TD learning can be used to update the vector of the functional parameters r . We define a

projection operator Π as

ΠJ = arg min
Ĵ ∈{rT. Φ|r∈IRM}

‖ J− Ĵ ‖ , (3.27)
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where J is the optimal performance, and ‖ . . .‖ can be defined by letting

‖J‖ = 〈 J,J 〉1/2,

where 〈., .〉 is the inner product. The approximation function Ĵ (., r) for all possible actions

can be seen as an orthogonal projection of J on
{

rT. Φ|r ∈ IRM} with respect to inner

product 〈., .〉 . Therefore, ΠJ is an approximation to J, given the fixed sets of Φ. Van

Roy [105] proved (in Theorems 3.9, 3.10, 3.11) that ΠJ is the solution to the least-squares

problem

r∗ = arg min
r

∑
s∈S

[
J(s)− Ĵ (s,r)

]2
. (3.28)

Therefore, to update the approximation using TD learning is to perform a gradient decent

to update the vector of functional parameters r such that equation (3.28) is solved. r can

then be updated after a sequence of observations of size M, where adjustments ∆r to r are

adopted

r← r+
M

∑
i=1

∆ri. (3.29)

One of the main attractions of TD is that learning does not wait until the end of the state

sequence to update the approximation, instead, TD represents the complete TD-error δ as a

sum of changes in approximation

δ = J− Ĵ t =
M

∑
i=t

ηi(Ĵ i+1− Ĵ i) where Ĵ M
def
= J. (3.30)

Following from equation (3.30), to update r incrementally we expand equation (3.29) as

r← r+
M

∑
t=1

ηt(J− Ĵ t)∇r Ĵ t = r+
M

∑
t=1

ηt

M

∑
i=t

(Ĵ i+1− Ĵ i)∇r Ĵ t ,

= r+
M

∑
i=1

ηt

i

∑
t=1

(Ĵ i+1− Ĵ i)∇r Ĵ t ,

= r+
M

∑
t=1

ηt(Ĵ t+1− Ĵ t)
t

∑
i=1

∇r Ĵ i.

(3.31)
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Therefore, the incremental adjustment ∆rt to rt is

∆rt = ηt(Ĵ t+1− Ĵ t)
t

∑
i=1

∇r Ĵ i. (3.32)

∆rt depends on a pair of successive approximations and on the sum of all past values of

∇r Ĵ t .

3.4.1 TD(λ )

In order to assign greater weight to more recent approximations, TD can be generalised by

employing an exponential weighting factor λ ∈ [0, 1] in TD as

∆rt = ηt(Ĵ t+1− Ĵ t)
t

∑
i=1

λ
t−i

∇r Ĵ i. (3.33)

This generalised representation is referred to as TD(λ ). Note that for λ = 1, TD is equiva-

lent to equation (3.32), referred to as TD(1), where effects on all approximations are taken

into account, which is different to when λ = 0 or TD(0) where ∆r is determined only by its

effects on the approximation with the most recent observation

∆rt = ηt(Ĵ t+1− Ĵ t) ∇r Ĵ t . (3.34)

In the case of the linear function approximation, TD(λ ) for updating of functional parame-

ters can be expressed as

rt+1 = rt +ηtdtzt , (3.35)

where dt is the difference in one-step approximation

dt = Ĵ t+1− Ĵ t , (3.36)



3.4. Temporal-difference learning 83

and zt is

zt =
t

∑
i=1

λ
t−i

φ(si). (3.37)

Algorithm 7 [15] presents the generalised TD(λ ) procedure. The generalised convergence

theory of TD(λ ) has been presented by Tsitsiklis and Van Roy [15] for discounted ADP

with linear function approximation.

Initialisation:

Get parameter vector rt and learning rate ηt ;

Choose λ and set zt = φ(st).

for each step t: do
Calculate successive approximations Ĵ (st) and Ĵ (st+1) using

Ĵ (s, rt) = rTt . φ(s),

Calculate the difference in approximation

dt = Ĵ (st+1)− Ĵ (st) = rTt .(φ(st+1)−φ(st)),

Update parameter vector r using

rt+1← rt +ηtdtzt ,

Update z using

zt+1← λ zt +αtφ(st+1),

t = t +1.

end
Algorithm 7: TD(λ ).
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Even though TD(λ ) is computationally efficient and easy to implement, it does not always

converge [15] and has been found to be prone to policy oscillation and overshooting man-

ifested as fluctuating values of r [106, 107], resulting in poor performance. There are also

concerns regarding the choice of control parameter η which has to be selected by testing

different parameters, and as such this selection is more of an art form.

3.4.2 Least-squares TD learning

To improve the efficiency of TD(λ ), particularly with regards to extracting information from

experience data, least-squares TD (LSTD) learning was introduced by Bradtke and Barto

[108]. After each observation, LSTD solves for parameters r according to the sum of TD

errors for all observed data. Recall from equation (3.29) that the functional parameters are

the accumulation of all TD updates

r← r+
t

∑
i=0

∆ri,

therefore, the functional parameters r can be found directly from ∑
t
i=0 ∆ri. Adopting a

linear function approximation as in equation (3.10), and let µ(r) be the sum of all TD

updates

µ(r) =
t

∑
i=0

∆ri. (3.38)

Furthermore, let φ(s) = φ and g(st ,ut ,st+1) = gt . Using the δ definition from equation

(3.25) and equation (3.10), µ(r) can be rearranged as

µ(r) =
t

∑
i=0

φiδi =
t

∑
i=0

φi(gi +αrT. φi+1− rT. φi),

=
t

∑
i=0

(φigi − φi(φi−αi+1φi+1)
T. r),

=
t

∑
i=0

φigi−
t

∑
i=0

φi(φi−αi+1φi+1)
T. r.

(3.39)
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It can be seen that equation (3.39) has the form

µ(r) = bt −Atr,

and given that LSTD chooses r such that the sum of TD updates is zero, we solve for the

new parameters using

rt+1 = A−1
t bt . (3.40)

Initialisation:

Initialise r0 arbitrarily;

Choose initial state s0 and set A0 = 0 , b0 = 0.

for each step t: do
Receive one-step cost gt and next state st+1,

Update b

bt ← bt−1 +φ(st)gt ,

Calculate difference in φ

dt = φ(st)−αt+1φ(st+1)

Update A

At ← At−1 +φ(st)dT
t ,

Calculate new parameters r

rt+1 = A−1
t bt ,

t = t +1.

end
Algorithm 8: Least-squares TD learning.
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To implement LSTD for real-time control, we incorporate each observed cost and state

transition into matrix A and vector b, then solve for a new parameter vector r. It should

be noted that once A and b are updated, the experience can be overlooked without losing

information.

By incorporating all temporal updates, LSTD fully exploits the observed data from the start

of the optimisation process.

In general, LSTD uses past information more fully than does TD(λ ), but due to the re-

quirement of inverting a matrix in equation (3.40), it is more demanding computationally.

LSTD has no requirement for control parameters η , thus reducing the chances of poor

performance arising from an unfortunate choice of control parameters. Algorithm 8 [108]

presents a generalised LSTD learning framework.

Similar to TD(λ ), LSTD can be adopted to assign greater weight to more recent approxi-

mations using an exponential weighting factor λ , which is referred to as LSTD(λ ) [109].

3.5 Newton-based TD learning

Recall from Section 3.4 that TD learning is concerned with minimising the temporal-

difference error δ

δt = g(st ,ut ,st+1)+αt Ĵ (st+1,rt)− Ĵ (st ,rt),

by iteratively solving the least-squares problem

r∗ = arg min
r

∑
s∈S

[
J(s)− Ĵ (s,r)

]2
.

A different method for finding adjustments ∆r to r, compared to the previous sections, is to

use the Newton’s method to find the root of δ in the variable r, i.e. δ (r) = 0.

Using Newton’s method, given some point xk, we may estimate the root of function f (x),
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by constructing the tangent to the curve of f (x) at xk and noting where that linear function

is zero. Clearly for Newton’s method to be defined we need f (x) to be differentiable, other-

wise the tangent may not exist. For a single variable function, starting from an initial point

x0 we can construct the linear approximation of f (x) in the neighbourhood of

x0 : f (x0 +h) ≈ f (x0)+ f ′(x0)h,

and solve the arising linear equation

f (x0)+ f ′(x0)h = 0.

Thus, we arrive at recurrent method

xk+1 = xk− f ′(xk)
−1 f (xk). (3.41)

To extend the Newton’s method to n variables, the iteration for min
x

f (x) becomes

xk+1 = xk−H(xk)
−1 f ′(xk), (3.42)

where H is the Hessian matrix of f (x).

Now, as with the standard TD literature by adopting the quadratic error measure

et(r) = δt(r)2, (3.43)

a Newton-based TD learning calculates the M parameter values that would minimise equa-

tion (3.43) when aggregated over past steps by solving after each observation

min
r

Et(r) =
t

∑
i=0

βi et−i(r), (3.44)
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for some positive discounting factors βi(0 ≤ i ≤ t) that are non-increasing in i . By de-

creasing rapidly with i, these discounting factors can be used to weight recent discrepancies

more heavily with the effect that the objective function will emphasise the corresponding

operating conditions. Since the minimum of equation (3.44) is the global minimum, we

can look for the the points where ∇E(r) = 0, and therefore, the Newton-based solution to

equation (3.44) can be used to calculate adjustments ∆r to r that would minimise the current

aggregated discrepancy as:

∆rt = arg min
∆r

E(rt +∆r). (3.45)

For the solution to equation (3.45) to be well-defined, βM−1 > 0 so that there are at least as

many contributions ei(r) to the minimand as M , the number of parameters in r .

In the case that additionally βM = 0 and the stationarity conditions for minimality of the

solution are mutually independent, there will be a unique solution of equation (3.45) to

equation (3.44).

In the case βM−1 = 0, there will be a continuum of solutions. In such cases, adjusting to

rt+1 = rt +∆rt has been found to be prone to policy oscillation and overshooting manifested

as fluctuating values of r, and consequently, when using only current observations (i.e.

β1 = 0), adjustments can be moderated similar to TD(λ ) using equation (3.14)

rt+1 = rt +ηt∆rt ,

where ηt satisfies the conditions for convergence of equation (3.15)

∞

∑
t=0

ηt = ∞,
∞

∑
t=0

ηt
2 < ∞.

In this approach, use of rapidly decreasing discounting factors βi(0≤ i≤ t) that emphasise

recent discrepancies will lead to greater adaptiveness of the ADP optimisation of equa-
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tion(3.7)

J̃ (st ,rt) = min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt+1Ĵ (st+1(ut),rt)
}
,

to current operating conditions. Similarly, greater values of ηt allow for greater adjustment

to the parameters r so can lead to more rapid adaptation of the system but expose it to

stochastic fluctuations, whilst lesser values of ηt confer greater stability on the values of

parameters r .

From equation (3.42), for the cases where βM−1 > 0, the following Newton-based adjust-

ment can be applied once after each optimisation:

∆rt =−

(
t

∑
j=0

β j ∇δt− j(rt) ∇δt− j(rt)
T

)−1 t

∑
i=0

βi δt−i(rt)∇δt−i(rt) , (3.46)

using the δ definition from equation (3.25) and equation (3.10)

δt = g(st ,ut ,st+1)+αt+1rTt .φ(st+1)− rTt .φ(st). (3.47)

The optimisation from equation (3.44) is then quadratic in r and is solved exactly, where it

can be calculated, by equation (3.46) which becomes

∆rt =−H−1
t

t

∑
i=0

βi δt−i(rt)ϕt−i , (3.48)

where

Ht =
t

∑
j=0

β j ϕt− jϕ
T
t− j, and ϕk = αt+1φ(st+1)−φ(st).

The initial value r can be an arbitrary vector, or calculated according to a period of training

using historical data.

Certain special cases of TD learning arise according to the specification of βi that are wor-

thy of note. We consider these in turn.



3.5. Newton-based TD learning 90

Initialisation:

Initialise r0 arbitrarily and η0;

Choose initial state s0 and set the Hessian matrix H0 = 0 .

for each step t: do
Receive one-step cost gt and next state st+1,

ϕt = αt+1φ(st+1)−φ(st),

if t < M−1 : then
Update H using

Ht = Ht−1 + ϕtϕ
T
t ,

else
Update H,

Calculate the temporal-difference δt

δt = g(st ,ut ,st+1)+αt+1Ĵ (st+1,rt)− Ĵ (st ,rt),

Update r

rt+1 = rt − ηt

(
H−1

t δt(rt)ϕt

)
,

end

t = t +1.

end
Algorithm 9: One-step Newton-based TD learning.

3.5.1 One-step Newton TD learning

For one-step Newton TD learning, β1 = 0 in equation (3.48). In this case, only the cur-

rent discrepancy δt is considered in calculating ∆rt . This will lead to degenerate solutions

whenever M > 1 because the matrix ∇2
r δt of second derivatives will be singular and hence
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non-invertible: there will be a continuum of solutions r to δt(r) = 0 that will minimise δ 2
t

to 0. In such cases, a suitable direction ∆rt can be furnished by the gradient as

−∇rδt =−(αt+1φt+1−φt),

with modification factor ηt calculated either to achieve δt(rt−ηt∇rδt) = 0 or some propor-

tion of this. This can be solved using the accumulated estimate Ht of the Hessian matrix H

in a single Newton step:

∆rt =−H−1
t δt(rt)ϕt where Ht =

1
t

t

∑
j=0

ϕt− jϕ
T
t− j . (3.49)

3.5.2 Newton LSTD learning

Recall from Section 3.4.2, after each observation, LSTD solves for parameters r by minimis-

ing the sum of squares of all temporal differences δi(0≤ i≤ t) since the start of operation.

In this case, where βi =
1
t , the objective

Et(r) =
1
t

t

∑
i=0

δ
2
t−i(r) , (3.50)

of equation (3.44) is quadratic in r and when t ≥M− 1 can be solved in a single Newton

step. At this solution,

∇rEt(rt) = 0 (t ≥M−1) . (3.51)

Thus for t ≥M the solution to the minimisation of equation (3.44) is achieved by the single

Newton step specified by equation (3.48). But from equation (3.50)

Et(r) =
( t−1

t

)
Et−1(r) +

1
t

δ
2
t (r) (t ≥M). (3.52)

Therefore ∆rt is

∆rt =
−1
t

H−1
t δt(rt)ϕt (t ≥M), (3.53)
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where

Ht =
t

∑
j=0

1
t

ϕt− jϕ
T
t− j .

Initialisation:

Initialise r0 arbitrarily;

Choose initial state s0 and set the Hessian matrix H0 = 0 .

for each step t: do
Receive one-step cost gt and next state st+1,

ϕt = αt+1φ(st+1)−φ(st),

if t < M−1 : then
Update H using

Ht = Ht−1 +
1
t

ϕtϕ
T
t ,

else
Update H,

Calculate the temporal-difference δt

δt = g(st ,ut ,st+1)+αt+1Ĵ (st+1,rt)− Ĵ (st ,rt),

Update r

rt+1 = rt −
1
t

(
H−1

t δt(rt)ϕt

)
,

end

t = t +1.

end
Algorithm 10: Newton-based LSTD learning.

.
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This is a proportion (1/t) of the one-step TD change given in equation (3.49), so with

diminishing influence of subsequent discrepancies δt as t increases.

3.5.3 Exponentially weighted Newton TD learning

In the case where βi+1 = γβi (0≤ i≤ t)(0≤ γ ≤ a), γ can be used to attach reduced weight

to discrepancies in the past, which were assessed using earlier estimates of the parameters

r and so will be less reliable. The case of one-step TD learning can be represented by γ = 0

and that of LSTD by γ = 1.

When γ ∈ (0,1), the objective of the ADP optimisation of equation (3.7)

J̃ (st ,rt) = min
ut ∈ U

E
{

g(st ,ut ,st+1)+αt+1Ĵ (st+1(ut),rt)
}
,

is equivalent to the exponentially weighted moving average Et(r) of the squared discrepan-

cies:

Et(r) = (1− γ)
t

∑
j=0

γδ
2
t− j(r) . (3.54)

The resulting optimisation of equation (3.44) is again quadratic in r and when t ≥ M− 1

can be solved in a single Newton step.

An analysis corresponding to that for LSTD can be applied here because

Et(r) = γEt−1(r) + (1− γ)δ 2
t (r) (t ≥M). (3.55)

Thus, the update to the parameters r at step t is the constant proportion (1− γ) of the one-

step TD change of equation (3.49)

∆rt =−(1− γ)H−1
t δt(rt)ϕt where Ht =

t

∑
j=0

β jϕt− jϕ
T
t− j . (3.56)
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3.6 Summary and discussion

Dynamic programming (DP) provides an elegant way of expressing sequential decision

making problems, by breaking them down into smaller sub-problems that can be solved

more effectively. Even though DP is a powerful method, it may become computation-

ally intractable because it requires looping over the entire space, decision and information

spaces to calculate the value function which is the long term cost resulting from making a

decision; this is referred to as DP’s curses of dimensionality, and renders DP undesirable for

real-time (or low-latency) applications. Beyond this, the requisite information in th future

will not wholly be available to inform decisions.

To address these difficulties with DP, the approximate dynamic programme (ADP) approach

to decision-making has been developed. This approach works forward in time and employs

a greedy approach to make decisions using available information in an exhaustive search

with explicit evaluation in the short-term together with an approximation to the value func-

tion after that. This means that the ADP does not compute the value function explicitly,

and so avoids the need to solve the Bellman’s equation for each state at each future step.

Therefore, we reduce the future extent of the state space considered by replacing the true

value function with an approximation, normally constructed using a parameterised function

approximator, and do not represent future decisions explicitly. This has the effect to make

the computational requirement polynomial to the number of state variables, rather than be-

ing exponential to the size of state space.

To improve approximations, reinforcement learning (RL) methods can be utilised to learn

from experience, similar to the process of learning in intelligent beings. Learning from in-

teraction is the foundation of RL, where an agent interacts with the environment on each

step, using an available decision and then observes the cost incurred from that decision.

The idea is to discover which decisions yield the least cost (or most reward) by trying many

decisions randomly and observing their outcomes.

RL can also be used to tackle problems where a model of the environment may not be cap-

tured analytically due to the complexity of the system. In this chapter, popular RL methods,
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Q-learning, SARSA and the actor-critic algorithms were presented which can be used to

solve problems without a model of the environment. In the present case of railway traffic

management, given that a model of the environment is available, the focus is on RL as a

learning method for ADP.

A widely used RL method is temporal-difference (TD) learning and it is central to many

RL and ADP implementations. TD is a powerful learning method which updates the value

function at each step, by comparing the estimation of the long term cost and the actual ob-

served value of the long term cost, to construct a TD-error. The idea is to minimise this

error iteratively as more experience is accumulated over time.

Specific TD learning methods, TD(λ ) and LSTD, perform a gradient decent on the TD-

error with respect to the approximation parameters to minimise the error in approximation.

Another method is to use the Newton’s method to find the root of the TD-error with respect

to the approximation parameters, which we refer to as Newton-based TD learning. Out of

these, TD(λ ) is the most computationally efficient, however, it is found in some cases to be

prone to overshooting and policy oscillation which result in fluctuations in approximation

and therefore poor performance. Therefore, TD(λ ) requires assignment of control parame-

ters which require prior tuning for implementation.

Newton-based TD learning and LSTD learning are computationally more demanding, ex-

cept in cases were low dimension approximation functions are used. However, they do not

require control parameters, reducing the chances of poor performance arising from a poor

choice of values. They also use past information more fully than does TD(λ ). It is easier to

control adjustments to the approximation function in Newton-based TD compared to LSTD,

therefore, Newton-based TD may provide more control on the adaptivity of ADP.

There are many learning methods that are not presented in this chapter but can be adopted

and utilised in ADP. The choice of learning is always domain-specific. In some cases the

computational time is of paramount importance, in others more accurate approximations

are needed with less regard to the computational time. In this thesis, the primary objective

is to control railway traffic at isolated critical locations (e.g. at junction) in a timely manner;
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even though DP is not practical to solve this problem in real-time, pure RL methods such

as SARSA, though capable of tackling complex problems, may also not be as appropriate as

ADP because the model of the system can be used to better inform decision making.

In the next chapter, we describe the dynamics of railway traffic management, and develop

the present system based ADP and discuss practical requirements for real-time operations.



Chapter 4

Adaptive Railway Traffic Control

“A small body of determined spirits fired by an unquenchable faith in their

mission can alter the course of history.” - Mahatma Gandhi

Current and planned railway control systems and railway traffic management (RTM) proce-

dures were reviewed in Chapter 2, and Chapter 3 presented the fundamentals of approximate

dynamic programming (ADP) and reinforcement learning (RL). In this Chapter, the appli-

cation of ADP for railway traffic control is presented, therefore bringing together Chapters

2 and 3. At first, the state-space of the RTM formulation as used for optimisation in this

thesis is discussed, then the procedure that solves our RTM problem using ADP by employ-

ing the techniques derived in Chapter 3 is set out. Thus, the control method proposed here

can adapt according to prevailing traffic conditions on the railway network and calculate

decisions accordingly. Moreover, system architecture of the adaptive railway traffic con-

troller (ARTC) is explained by presenting the data flow in the system and the requirements

associated with them. Finally, the realisation of ARTC in computer simulations is discussed

towards the end of this Chapter. All systems described here are implemented in Python

programming language.
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4.1 Control framework

The primary objective of this thesis is to develop a method to control railway traffic in real-

time and optimise capacity utilisation in events of deviation of operation from the timetable.

To this end, re-ordering or re-timing of trains at critical points such as junctions, crossings

and merges present opportunities in terms of recovering deviations from the timetable or

avoiding further deviations. Other possible actions to optimise capacity include re-routing

of trains, and platforming at stations.

In this Section, we focus first on representing the re-scheduling problem of re-ordering (or

sequencing) at critical points using an event-based traffic model, similar to the one used in

the work of Ho et al. [5], and formulate this as a dynamic programme; then we adopt ADP

with the Newton-based TD learning methods of the previous Chapter to build an adaptive

framework for railway traffic control, and discuss how this framework can be readily ex-

tended to include actions such as re-routing and platforming.

4.1.1 Dynamic programming formulae

As was described in Chapter 2, deviations from the timetable may result in further pertur-

bations on the rail network as delays propagate to other trains, mostly due to signalling

constraints put in place to ensure safe operations. Therefore, minor deviations magnify and

result in services not arriving at critical locations, where the right of way is not exclusive to

one direction of traffic, at the scheduled time.

One significant critical point on railway networks are junctions where traffic from more than

one direction merges. The sequencing of trains at a railway junction is therefore, a schedule

that includes a sequence of right-of-way assignments which optimises the junction capacity

according to a specific objective. Thus, traffic control at a railway junction can be regarded

as a multistage decision-making process.

In such a process, the state-space of the problem can be represented as stages, characterised

by the number of trains remaining in the system awaiting sequence assignment, and passage
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Figure 4.1: DP representation of the state-space for nine trains.

of one train through the junction is considered as transition from one stage to the next. Fig-

ure 4.1 illustrates the state-space for nine trains for a sequencing problem at a single railway

junction where stages depend on the number of trains present in the system.

According to Figure 4.1, control actions are assignment of right-of-way to one of the con-

verging routes, and different control actions result in different speeds and positions of the

remaining trains. It follows that the states are defined not only by the number of trains, but

also by their associated speeds and locations, so that presence of the same combination of

trains in a stage of Figure 4.1, does not necessarily represent the same state.

Excluding the initial stage, the system should undergo as many stages in the future as the

number of trains currently in the control area. The number of possible states in each stage

expand rapidly until an intermediate stage is reached, after which the number of possible

states decrease. Dynamic programming can be used to solve exactly for the optimal deci-

sion for each stage.

Therefore, the optimal solution to Figure 4.1 is a sequence of rights-of-ways for each stage
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that minimises a desired objective function from stage t to stage T . Recalling definitions

from Chapter 3, the dynamic programme is then to solve

min
π ∈ U

E

{
T

∑
i=0

αi g(st+i,ut+i) | s0

}
, (4.1)

and the optimal performance J starting from state st at step t can be calculated by solving

Bellman’s recursive equation

J(st) = min
u ∈ U

E {g(st ,u)+αt+1J(st+1(u))} . (4.2)

Here, the one-step cost g represents the cost of transitioning from state st to st+1 by choosing

action ut . The exact form of ‘cost’ can be selected according to requirements of practitioners

and their definitions of delays. For instance the objective can be to minimise the schedule 8

cost incurred by Network Rail, the infrastructure manager in Great Britain, which compen-

sates train operators for unplanned service disruption caused by infrastructure asset failures.

The choice of objective function is discussed in more detail in Chapter 5, where variants of

delay are minimised.

Figure 4.1 illustrates the extent of stages that g is required to be calculated over, and it is

evident that as the number of trains grows, the computational effort needed to calculate

J(st) for all s ∈ S renders the problem progressively larger. As RTM is a real-time system,

even consideration of few trains could be impractically time consuming.

4.1.2 Adaptive control with TD learning

The essence of ADP is to focus computational effort on the short term where the informa-

tion is more reliable and decisions imminent by replacing the long term performance with

an approximation.

To adopt the state-space representation of Figure 4.1 for ADP, we follow a short planning

horizon T which is evaluated explicitly, and follow an approximation for evaluation of per-
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Figure 4.2: Representation of the state-space in ADP with a horizon of three trains i.e. T = 3.

formance after the planning horizon T . Figure 4.2 illustrates what this means in terms of

decision making for a horizon of three trains.

Comparison of Figures 4.1 and 4.2 reveal the true extent of computational efficiency of

ADP for RTM. Whereas, in Figures 4.1, most stages up to the final one need to be evalu-

ated explicitly to compare candidate decisions, in Figure 4.2 only the first few stages are

evaluated explicitly (regulated by the choice of T ) and performance by the later stages is

approximated, resulting in savings in computational effort. Figure 4.2 also illustrates the

importance of good approximations, as ARTC relies on them to calculate decisions that are

appropriate for long-term performance.

The availability of real-time data and the stochastic nature of railway operations are a few

potential barriers to accurate anticipation of future traffic which in turn would effect the

quality of decisions produced by the RTM system. In this study it is assumed that sufficient

real-time data are available in railway systems for the near future to facilitate effective an-

ticipation of future traffic, and also other data are available that describe the probability of

events occurring in operations, e.g. distributions for dwell times at stations.

As new data emerge in real-time, the quality of traffic anticipation will improve, and ac-

cording to TD learning, as more traffic outcomes of various decisions (or state-action pairs)
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are observed the approximations are expected to improve as well. Therefore, a rolling hori-

zon approach is adopted in this framework, where only the first part of decisions (i.e. the

decision for the next stage) is implemented and ARTC re-calculates a new sequence of de-

cisions for the next time horizon T . Figure 4.3 presents the implementation of the rolling

horizon approach with a horizon of T stages within the present ADP framework.

Figure 4.3: Control policy for adaptive railway traffic control with rolling horizon implementation.

To achieve real-time sequence control of trains at junctions, the general representation of

ADP presented in Chapter 3 is therefore applied to control railway traffic, by considering

decisions ut at stage t over horizon of T stages to be considered explicitly. The resulting

interpretation of Bellman’s equation is then

J̃ (st) = min
π ∈ U

E

{[
T

∑
i=0

αig(st+i,ut+i)

]
+αT+1Ĵ (st+T+1,rt)

}
. (4.3)

A sequence of decisions π∗t , consisting of a sequence of decisions i.e. (ut ,ut+1, ...,uT ), is

therefore calculated by solving

π
∗
t = arg min

π ∈ U
E

{[
T

∑
i=0

αig(st+i,ut+i)

]
+αT+1Ĵ (st+T+1,rt)

}
, (4.4)
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where each stage cost g(si,ui,si+1) represents a form of ‘cost’ measurement incurred by all

trains under consideration within the control area.

In the present case of railway traffic control, the state st is a combination of traffic state and

control state at stage t, and the controls π specify the sequence of mutually incompatible

trains at relevant places in the control area. As was discussed, only the first of the calculated

decisions (i.e. u∗t ∈ π∗t ) is implemented before incrementing t and recalculating equation

(4.4) at the next stage.

In this framework, a linear form for the approximation function Ĵ (s,r) is employed, and a

temporal difference δt at stage t is defined by

δt =

[
T

∑
i=0

αig(st+i,ut+i)

]
+αT+1Ĵ (st+T+1,rt)− Ĵ (st ,rt). (4.5)

The procedures for Newton-based TD learning to calculate adjustments ∆rt to rt , are then

as described in Algorithms 9 and 10 of Chapter 3.

As was discussed in Section 4.1.1, system states are defined not only by the number of

trains, but also by their associated speeds and locations. Therefore, each decision in Figure

4.2 may result in a different set of extracted state features φ and therefore a different struc-

ture for the value function approximation Ĵ . This means a different Ĵ when different trains

remain in the control area after implementation of π∗t , but also, in states after the blue train

and the green train leave the control area in Figure 4.2. Furthermore, different decisions

u could have a different effect on speed and position of the same train and for instance

the two states after the green train leaves the control area in Figure 4.2 may also result

in different Ĵ as different states can be expected to lead to different Ĵ values. According

to this, the extracted features φ play a central part in the approximation function and the

learning framework is sensitive to the choice of features, as are all reinforcement learning

methods.
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4.2 System architecture

Up to now, this thesis has focused primarily on developing a methodology based on ADP

and RL to address RTM. This methodology is envisaged for real-time operations and would

require low-latency communication with other railway systems to produce revised schedule

for trains. Therefore, the adaptive framework described in this Chapter is a system that

requires integration with other systems to realise its purpose.

This Section describes the system architecture of the adaptive railway traffic controller for-

mulated in the previous Section. Different components developed to realise the controller

are described in this Section as well as requirements to allow the system to function as

intended.

The aim of a traffic management system (TMS) is to anticipate conflicts resulting from

deviations from the timetable and alleviate delays by managing arrival/departure times at

conflict points or through re-routing of trains, if such action is possible and permitted.

These adjustments can then be communicated to trains via the line-side colour light sig-

nalling system or via on-board Driver Machine Interface (DMI) in the form of an updated

speed profile or change in the Limit of Movement Authority. In the re-scheduling literature,

these functions form different parts of the RTM system and are referred to as conflict antic-

ipation, conflict resolution and plan coordination respectively.

The real-time RTM system will ideally solve for a conflict free schedule for all trains in a

designated control area, that maximises the capacity utilisation of the network under con-

sideration. The plans need to be compatible with operational requirements of the railway

network and must respect railway safety constraints. This should be done using real-time

data from all trains and with consideration of knock-on effect of the schedules on other

trains and traffic that will be affected downstream.

In the present adaptive framework, as is required for calculation of the one-step cost g in

equation (4.4), there is need for anticipation of the near-future. This overlaps with the con-

flict anticipation function of the RTM system, the difference being more frequent calling of

this function in ARTC. Furthermore, plan coordination requires feasibility check of the new
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schedules to inform trains of their planned arrival and departure times at signals, stations

and the conflict points. To perform traffic anticipation and plan coordination, a high fidelity

microscopic railway simulator is developed for this research, which is described in Section

4.2.2.

Given the definitions of the adaptive procedure set out in Section 4.1.2, the framework is

designed as an event-based system where entry of a train into a designated area and passage

of a train through the conflict point would trigger optimisation of further trains sequences

at the conflict point. The planned sequence is then coordinated using the traffic simulator to

derive detailed timings on the entry of every block section in the control area. This detailed

plan may also be beneficial for other envisaged optimisation systems such as trajectory

optimisation for efficient energy usage.

The resulting ARTC could be implemented either as a decision support tool for signallers

or as a fully automated system in charge of making scheduling decisions within a railway

network. In either of these implementation scenarios, the fundamental requirements and

Figure 4.4: RTM with ADP system architecture for re-scheduling support.
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dependencies of ARTC to operate remain the same, be it with different safety integrity level

specifications. In both options, ARTC requires good quality real-time dynamic data (data

that change over time) for all trains as well as other static data (data that do not change over

time).

Figure 4.4 presents ARTC system architecture as a decision support system and Figure

4.5 presents ARTC system architecture for automated traffic control. The main difference

between these implementation scenarios is human intervention in carrying out suggested

optimised plans. One area where human intervention needs to be considered, as opposed to

ARTC, is the signaller workload. If the traffic management system (TMS) is implemented

as a decision support tool, then there are limitations to how many changes a signaller can

make to signalling plans without being overworked, which could increase the propensity

to mistakes and potential benefits not realised. Driver behaviour may also play a part in

realising benefits from ARTC, as plans may need to be altered if a train is not travelling as

was anticipated.

From a system point of view, there are no additional requirements to those of conventional

Figure 4.5: RTM with ADP system architecture for automated traffic control.
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signalling system, though sensors are required on-board trains to report accurate speed and

position information; this functionality is already met by planned ETCS levels.

Real-time traffic optimisation will only be possible with the help of emerging communi-

cation and speed/positioning systems. However, there are issues associated with the use

of such systems. All sensors, including on-board position sensors, are prone to errors that

affect the confidence in their measurements, and even failure. The aim of locating an ob-

ject, in any application, is to know its position accurately. When speed and location sensors

are used in the railway sector, the accuracy and the degree of confidence of the provided

position are the main concerns. Also, there are communication delays associated with the

use of railway communication systems. For instance, the time taken for data to be collected

by a train and sent to a railway control centre can take up between 2 to 7 seconds alone; and

the communication between a control centre and the train can take up to 8-9 seconds [110].

This means by the time data is collected by a train, sent to the control centre, and new train

control decisions are sent back to trains, the trains would have travelled forward by some

distance: at speeds of 225 km/h, this could be as much as 1 km.

In this thesis it is assumed that sufficient and good quality real-time data are available by

railway systems for the near future as to facilitate effective anticipation of future traffic, e.g.

good quality arrival times into the control area, and other data are available that describe

the probability of events occurring in operations, e.g. distributions for dwell times at sta-

tions. Furthermore, it is assumed that no latency is experienced by the system to receive

data, calculate plans and deliver optimised sequences to the signaling system, i.e. no com-

munication and computation delays. The effect of these idealised assumptions will be to

provide a bound on the limits of performance that could be achieved by systems of this kind.

4.2.1 Real-time control procedure

As was noted briefly in the previous section, ARTC requires static and dynamic data, for

the control area only, to perform traffic optimisation. Static or off-line data are those that

will not vary at any time during the planned train operations and include:
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• Infrastructure data: the infrastructure consists of a set of available block sections

with associated signals. For each block section the occupancy status, length, gradi-

ent, speed limitations, directions and maximum speeds are required. Furthermore,

locations of junctions, stations and level crossings need to be specified.

• Train characteristics: the specific technical characteristics of the rolling stock (power,

train length and mass) are required.

• Signalling system: signalling system type (e.g. conventional multiple-aspect or

ETCS), signalling aspects, route release and switching times are included in this data.

• Timetable: the timetable contains a list of arrival and departure times (time windows

of minimum/maximum arrival/departure times) for a set of relevant points in the net-

work, including all the station platform tracks visited by each train, and a list of routes

for each service. Other station related data are included here, e.g. distributions for

dwell times at stations.

The acceleration and braking rates are to be calculated on the basis of traction force and

scheduled maximum speeds. It is assumed that the driver behaviour is known in advance.

Figure 4.6: ARTC real-time control procedure.
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Furthermore, the weather condition, the train load (number of passengers) and weight are

assumed to be known in advance.

Dynamic data are data that change in the course of train operations and need to be updated

and transmitted to the optimiser in real-time or dynamically. They include:

• Current speed of each train within the control area.

• Current position of each train within the control area.

• Arrival times of each train at key points within the control area: entry into the control

area, at conflict points, at stations, and at exits from the control area.

In real-time implementation of ARTC, based on these data, ARTC anticipates conflicts by

simulating forward in time to detect potential deviations from the timetable or mutually

incompatible requests by different trains for the same resources. If a conflict is anticipated,

ARTC then triggers ADP algorithm to generate a set of feasible actions, with the help of a

feasibility check module and the microscopic simulator, and evaluates each of the possible

actions by performing explicit short-term delay (cost) evaluation and long-term delay ap-

proximation with the help of reinforcement learning (RL). The ADP then chooses the best

performing action from the feasible action space, which is then reported as the optimised

traffic control plan.

If Newton-based LSTD is deployed, the RL module needs to be trained before implemen-

tation can begin (this is not the case for Newton-based TD learning). This training can

be done off-line, using historical data and the simulator, to arrive at robust RL parameters

using methods discussed in the previous Chapter. An RL update module will carry on

improving and updating RL parameters during real-time implementation.

4.2.2 Microscopic traffic simulation

Railway traffic simulation is a viable, efficient and accurate method of evaluating train

movement in small railway networks. Simulation has been used for railway traffic research



4.2. System architecture 110

[111, 112, 24, 113] and for industrial use, with commercial products such as RailSys [114]

used for various purposes such as timetabling.

ARTC requires detailed microscopic traffic simulation to evaluate train movements inside

the control area, therefore, a railway traffic simulator has been developed and implemented

for this study in the Python programming language. The purpose of this is to facilitate

explicit evaluation of cost g in the short-term in equation (4.4). Development of this micro-

scopic simulator is to address three points:

i) Devise all feasible sequence permutations for the junction, to avoid resource incom-

patibility arising from unacceptable train plans,

ii) To calculate the short-term traffic state of the control area under consideration, in-

cluding train entry and exit times for individual block sections, and,

iii) To evaluate performance of the ADP framework under different delay scenarios.

This simulator employs Lomonossoff’s equation [115] to represent train movements inside

each block section for the specified infrastructure by taking into consideration all the dy-

namic and static data described earlier in this Section.

Train movement is influenced by its tractive force, its mass and the resistance forces due to

external factors such as air resistance [116]. Lomonossoff’s equation is based on Newton’s

second law and is given as

ρmat = Ftr(t)−Fb(t)−FR(vt)+Fgrad , (4.6)

where ρ is the rotating mass correction factor (set to 1.04 in this thesis), m is mass of the

train, at is acceleration at time t, Ftr(t) is the tractive force, Fb(t) is the retardation force,

FR(vt) is the resistance force and is dependent on instantaneous speed vt according to Davis’

equation

FR(vt) = A+Bvt +Cv2
t , (4.7)
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where A, B and C are constants, dependent on the control state (e.g. motoring), and Fgrad is

the force due to gradient, defined as

Fgrad = mtotal agravity sin(ξ ), (4.8)

where mtotal is the tare mass plus passenger mass, agravity is acceleration due to gravity,

and ξ is the slope angle. A train travelling uphill experiences negative Fgrad and positive

when travelling downhill. Furthermore, FR(vt) can be derived from a look-up table based

on current speed vt , instead of calculated using Davis’ equation (4.7).

Using data specified in the previous Section and train movement relationships presented in

this Section, microscopic simulation of railway traffic can be utilised to evaluate different

traffic scenarios in detail. The microscopic simulator developed in this thesis simulates

train movements by taking into account all safety constraints imposed by conventional two,

three and four aspect railway signalling systems by using train characteristics (e.g. avail-

able tractive force), signalling system (eg. block lengths and signal aspects), interlocking

constraints, and station stops.

At the heart of this microscopic traffic simulator is the calculation of continuous braking

curves, which are calculated to stop trains at the end of each block section and station, and

for transitions into lower speed limits. Braking curves calculated for scheduled station stops

and entry into lower speed limit zones are always respected, though ones to stop trains at the

end of blocks are only enforced if the next block is occupied as indicated by the signalling

system. Thus, all safety and operational requirements are respected, and infrastructure data

and the movement of trains is represented in detail. The temporal resolution adopted here

for this simulator is 0.1 second.

4.3 Realisation of the adaptive framework

Subject to the formulations and assumptions presented in this Chapter, the adaptive railway

traffic control using ADP with integrated reinforcement learning (RL) is summarised in
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Algorithm 11. In this algorithm, the embedded simulator is used to determine the complete

feasible solution space at each stage by computing all sequence permutations, and ignoring

sequences that cannot be realised in practice, e.g. on plain track a leading train from a

stream cannot be overtaken by a following train. The complete feasible solution space is

then used by the ADP framework to generate optimised solutions, where the simulator is

again used to simulate forward the optimiser’s decisions and check whether these can be

realised according to the signaling system and other railway operational constraints.

The ADP framework computes entry sequence decision u∗t at the conflict point, and by sim-

ulating interactions between all trains based on the decisions, the simulator computes exit

times from the control area which are used to calculate individual train delays and hence the

one-step cost g(.) for steps 1 to T . Therefore, the optimiser is informed of the short-term

performance beyond the conflict point. The long-term approximation Ĵ (.) is then used to

estimate trains performance (i.e. total consecutive delay of all trains beyond T ) also at the

exit from the control area for trains that are planned to enter the system in the future. Thus,

decisions are made from a combination of short-term and long-term performance estimates,

one explicitly calculated and the other approximated.

Recall that in this thesis, it is supposed that sufficient real-time data are available for railway

systems to anticipate future arrival times into the control area, and other data are available

that describe the probability of events occurring in operations, e.g. distributions for dwell

times at stations. Furthermore, it is supposed that the latency of the system to receive data,

calculate plans and deliver optimised sequences to the signaling system is short, i.e. the

communication and computation delays are small so that control decisions can be calcu-

lated and implemented promptly.

The ADP procedure adopted can therefore be summarised as follow: the movement of the

next T trains is represented explicitly, features φ based on the train times in the control area

are extracted, and the optimal decision u∗t are then calculated using (4.4). This requires

evaluation of performance for u∗t , which is then used to update approximation function by

comparing the approximation Ĵ (st ,rt) to the optimised performance J̃ (.). The framework
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then implements the first part of the calculated plan, i.e. u∗1 or the first train to be given

movement authority into the junction, and consider the next T trains, i.e. t + 1 to T + 1.

The framework then iterates through all remaining trains to produce the complete sequence

of trains.

Step 1. Initialisation:

Choose an initial state s0, Initialise parameter vector r0,

Choose the horizon T stages to be calculated explicitly, Set t = 0,

Initiate learning rate η0 (where required).

while trains remain in the control area awaiting decisions: do
Step 2. Receive current traffic state s:

2.1 Set t = t +1,

2.2 Extract features φ (st) from state st .

Step 3. Evaluate control decisions u:

3.1 Find the optimal sequence of decisions π∗t using equation (4.4).

Step 4. Update approximation function J̃ (.):

4.1 Calculate new observation J̃ (st) using equation (4.3),

4.2 Calculate current approximation Ĵ (st ,rt) using equation (3.10),

4.3 Calculate the T stage temporal difference δt at the current stage t using

equation (4.5),

4.4 TD learning: Update parameter vector rt to rt+1 = rt +ηt∆rt , where ∆rt is

calculated according to the TD learning strategy adopted i.e. Algorithm 9 or

10.

Step 5. Implement decision:

5.1 Implement π∗1 , and update the state from st to st+1(st ,ut),

5.2 Return to step 2.

end
Algorithm 11: Adaptive railway traffic control using ADP.
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Initial values for the RL parameters r of equation (3.10) can be estimated off-line dur-

ing a period of training using a combination of simulation and historical data. In real-time

(on-line) implementation of Algorithm 11, a conflict anticipation module can be added

where the microscopic simulator simulates forward in time using reliable estimated times

of arrivals (ETAs) into the control area. This means ARTC will only be utilised if there

are deviations from the timetable, otherwise run as is planned in the timetable. Notwith-

standing this, producing plans in cases where all trains are running as scheduled may help

with better RL parameters, helping to achieve better approximations Ĵ (st ,rt) of long-term

performance.

The framework presented here therefore uses data generated by trains to learn the under-

lying process of railway traffic in real-time to optimise signalling decisions. Few in the

growing and rich literature available on RTM consider data-based approaches to solve this

complex optimisation. As such, the contribution of this thesis to railway traffic management

is therefore presented in Algorithm 11 (ADP adopted to work for RTM), Algorithm 9 and

10 (learning approaches that are different to RL literature and have been developed and

tested for RTM).

4.4 Summary and discussion

As trains deviate from their scheduled timetable, they affect other services also following

trains at points where the right of way is not exclusive to one direction of traffic, and minor

deviations can magnify and propagate through the railway network. This can result in poor

performance. DP can be used to model this as a sequential optimisation problem, though,

solving Bellman’s equation to derive optimised control plans in real-time is not practical.

By using ADP to replace the optimal value function with an approximation, the computa-

tional effort required to solve the problem becomes appropriate from a practical point of

view.

To solve RTM using ADP, the state-space of the problem is represented as stages, charac-
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terised by the number of trains remaining in the control area awaiting sequence assignment,

and the passage of one train through the conflict point is considered as transition from

one stage to the next. In this formulation, by breaking down each decision (assignment

of right-of-way to one train over others) into stages, ADP focuses computational effort on

explicit evaluation of the next T trains where the associated real-time data is more reliable

and decisions imminent and replaces the long term performance with an approximation.

This approximation is then improved as time goes on using reinforcement learning (RL)

techniques discussed in the previous Chapter.

Assuming the objective function is defined as a delay estimate, then the T -step explicit

performance evaluation can be calculated using a purpose-specific microscopic simulation

of the short term. This can be used to estimate delays to the next T trains awaiting right-of-

way assignment under each feasible decision, and the long term evaluation is approximated

using Ĵ to represent delays of all other trains after the T th train under optimised control

following on from the state of the system after train T is served using the decision under

consideration.

To help depict how ADP can be adopted for RTM, the sequencing of trains was used to

explain how this process can be formulated. This does not mean that the adaptive controller

developed in this Chapter can only be used for sequencing of trains at junctions. Similar

formulation can be used to capture the characteristics of the problem for considerations

such as re-routing and/or re-platforming. Given an appropriate choice of feature vector

for the learning algorithms that effectively characterises the state and at the same time

distinguishes among the decisions, the fundamentals of the framework presented here will

stand. This would require the framework to evaluate explicitly the one-step cost g for a

decision-space that includes re-routing and/or re-platforming of trains. This system can

then be implemented either as a decision support tool to signallers or as a fully automated

TMS.

ARTC relies on good quality real-time data from the railway network to optimise schedul-

ing decisions. It is expected this will be provided by the envisaged ETCS-type signalling
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systems. Real-time data from these digital systems’ positioning sensors could be communi-

cated via train-borne communication systems to provide good quality data in a short period

of time and integrated with TMS. The commitment to implement ETCS-type signalling

systems in Europe and similar systems around the world provides good opportunities for

successful implementation of TMS in practice as the majority of the physical equipment

required to provide real-time data to TMS algorithms are planned to be installed on many

railways around the world. Systems such as ARTC can exploit the data transmitted for

signalling purposes and provide re-scheduled plans to signallers or directly to the ETCS

system.

High quality railway traffic simulators are important for effective TMS. As well as anticipat-

ing conflicts on the railway network they can be used to derive the feasible decision-space

from the current state of traffic. Additionally for ARTC, they are employed to evaluate the

short-term cost of feasible decisions and also used to train the RL component of ADP. It

is likely that with future increases in processing power, simulations can evaluate large and

complex railway networks accurately and in timely manners, therefore the methodology

presented in this thesis is likely to become even more computationally efficient in the future.

The main distinguishing factor of the present ADP framework is its ability to exploit real-

time data to facilitate optimised asset operations on railway networks. The framework

presented in this Chapter uses data generated by trains to learn the processes underlying

railway traffic in real-time to optimise signalling decisions. It does not guarantee optimality

of solutions and trades off practicality over optimality. Little of the literature available on

RTM considers data-based approaches to solve this complex optimisation.

Therefore, the present ADP framework is a systematic and self-tuning approach which

considers the consequence of control decisions downstream of the conflict point in a timely

manner and is suited for practical implementation. It automatically adapts parameters r

to the objective function and the prevailing traffic on the rail network, allowing for better

usage of real-time data generated by trains.



Chapter 5

Numerical Experiments

“Truth is ever to be found in simplicity, and not in the multiplicity and

confusion of things.” - Isaac Newton

To evaluate our adaptive railway traffic control (ARTC) approach using the Newton-based

TD learning techniques, infrastructure and operational data for a section of Great Britain’s

railway was used to conduct numerical experiments. In this Chapter, we first introduce the

case study network in Section 5.1 and discuss challenges and significance of the considered

network in terms of mainline operations. Then, we set out our method for perturbing the

timetable and present the environment in which our experiments are conducted. Finally in

Sections 5.2 to 5.5, our results of employing ADP for railway traffic control are presented

and discussed. In the remainder of this Chapter we refer to our ADP approaches solely

according to their learning techniques i.e. one-step TD and LSTD.

5.1 Case study

Part of the East Coast Main Line (ECML) in the UK is used as an example that represents

a high capacity main-line. The section of network used for our case study is located on

the southern part of the ECML between Stevenage and London, runs for approximately 70

kilometres, and includes 32 stations. Figure 5.1 is a schematic of the considered network

which is electrified along its whole length at 25 kV AC and runs on conventional 4-aspect
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signalling.

Two points have been identified on this network which are critical in terms of traffic flow.

• Digswell junction: The area in the vicinity of Welwyn North station;

• Finsbury Park area: The area in the vicinity of Alexandra Palace station leading to-

wards a major station: Finsbury Park.

These are junctions where services with different rolling stock characteristics and stopping

patterns interact. Such junctions are known to present major risks to the maximal capacity

utilisation of networks and at the same time present the most significant opportunities for

effective regulation of traffic.

Figure 5.1: Schematic of the southbound, southern section of the East Coast Main Line. Different
colours of track present particular services, with varying train mechanical capabilities,
stopping patterns and train operators.
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5.1.1 Challenges and significance of ECML

The ECML consists of four tracks, one fast and one slow in each direction, for most of

its length. The infrastructure around the village of Digswell is an exception where four

tracks narrow to two tracks over the Welwyn Viaduct, located between Welwyn North and

Welwyn Garden City stations, which carries trains over River Mimram, and through two

tunnels north of Welwyn North station. It is on this part of the network that High-Speed

Intercity services (ECML HST) and commuter services (ECML commuter) with frequent

stops must negotiate usage of the same tracks through Welwyn Viaduct. The problem of

conflicting requests for usage of tracks is exacerbated by commuter trains with planned

stops at Welwyn North station, which block the line while dwelling at this station.

Welwyn Viaduct is an historic structure that was opened in the mid-19th century and there-

fore by law cannot be altered or demolished, as it is a Grade II listed building. This makes

replacement of this known bottleneck expensive, time consuming and practically impossi-

ble for the infrastructure manager. It is therefore a prime target for implementation of such

tools as envisaged in this thesis, and so is ideal for our numerical experiments.

The Hertford Line or Hertford-Loop, is a branch of the ECML where commuter trains run

between Stevenage and Moorgate stations, stopping at local stations such as Hertford North

among others to/from London. The line is around 40 km long, and rejoins the ECML north

of Alexandra Palace station. This is where frequently stopping Hertford-Loop commuter

trains interact with ECML commuter trains.

Efficient management of railway traffic in these two areas is of paramount importance to

the ECML, as they represent two of the major critical points on the rail link connecting the

eastern side of Great Britain, from London and the South East of England to Scotland.

In the first instance, we only consider controlling the traffic at Digswell junction in Sec-

tions 5.2 to 5.4 to conduct preliminary tests using the ADP framework and also test ADP’s

effectiveness in stochastic railway environment; then, we consider distributed deployment

of ADP at Digswell junction and in the Finsbury Park area in Section 5.5.

In this thesis, we simulate the 2018 timetable for a weekday between 7:00 am and 10:45 am.
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Figure 5.2: Infrastructure layout of the Digswell junction and the surrounding stations.

Northbound and southbound services do not interact in our timetable, so can be controlled

independently.

Therefore, for experiments on Digswell junction only (Sections 5.2 to 5.4), we focus on

sequencing trains at the bottleneck in Figure 5.2 for southbound services which includes, 25

ECML HST and 6 ECML commuter services with frequent stops, that run from Stevenage

towards Hatfield.

For the distributed deployment experiments of Section 5.5, we focus on southbound services

from Stevenage station into London, in total 42 services. This consists of 25 ECML HST

services and 6 ECML commuter services with frequent stops on the mainline of ECML and

11 Hertford-Loop commuter services on the Hertford-Loop and into London. Hence, in all

experiments the morning peak period on ECML towards London is considered.

5.1.2 Perturbing the timetable

We perturb our timetable by delaying all trains that dwell at Stevenage Station. This in-

cludes all ECML and Hertford-Loop commuter services, as well as some ECML HST ser-

vices. More than half of the trains are perturbed by sampling from a Weibull distribution

with shape parameter 1.8 and scale parameter 8, producing mean delays of 7.1 seconds

(Figure 5.3 [52]). The individual delays can then be scaled with random factors to generate

different traffic scenarios. As for the trains that do not stop at Stevenage, some may be

delayed due to delayed services dwelling at Stevenage.

The railway operating environment has substantial stochastic elements, so to assess our

framework, in Sections 5.3 and 5.4 using the Digswell junction, we evaluate each traffic
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Figure 5.3: Probability distributions of delays at Stevenage Station without scale factors.

scenario in stochastic environment with Monte-Carlo simulation with 30 combinations of i)

dwell times per station, and ii) running times per block section that, are generated by ran-

dom draws from associated probability distributions. In the absence of empirical dwell time

and sectional running time distributions for our test case, we have assumed the following:

• Station delays: The Digswell case study network includes five stations; of these,

all except Stevenage Station are minor stations at which a relatively small number

of services have planned stops. The dwell times for minor stations are generated

from a Weibull distribution with 2.56, 20, 24 as shape, scale and shift parameters

respectively. This distribution is reported by Quaglietta et al. [52] for dwell times

at minor stations in the Netherlands and is presented in Figure 5.4.a . The minimum

dwell time at a minor station on ECML test case network is 30 seconds. If a sample

returns a dwell time less than the minimum dwell time, then 30 seconds is used;

taking this into account, our mean dwell time at a minor station is 41.8 seconds.

• Section running time delays: Train drivers vary in their driving behaviour. Factors

affecting this include their route knowledge and the present weather conditions. Al-

though this variation in behaviour may affect short term predictions of traffic state, it

is difficult to find a unified probability distribution that represents this. In our study,
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Figure 5.4: Probability distributions of (a) dwell times at minor stations, and (b) the proportion of
the maximum acceleration used by a driver on a block section.

we use a Beta distribution with shape parameters α and β as 5 and 1.5 respectively,

shown in Figure 5.4.b , to represent the proportion of the maximum train acceleration

that is used by a driver in a block section. Similar to delays at minor stations, we set a

minimum acceptable proportion as 0.65; therefore, the mean proportion of maximum

acceleration used on a single block section in our study is 0.79. The purpose of this

is to introduce additional stochasticity and so to test the effectiveness of this ADP

formulation.

In this study, the First-Come-First-Served (FCFS) heuristic provides a baseline for com-

parison of performance. No estimate for the globally optimal performance is considered

because the computational complexity of RTM makes this impractical. All of the control

methods were evaluated using realised dwell times and sectional running times, whilst the

ADP approaches did not use future dwell and running times to calculate control decisions.

5.1.3 ADP control parameters

An issue in using one-step TD learning is the choice of moderating step size η in up-

dating the parameters rt . A common approach in stochastic approximation is to use a

stage-varying rate: we adopted constant value for η of 0.1 and 1 in the experiments of this
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Table 5.1: Average consecutive delays (s) by various discount rates.

θ 0.05 0.1 0.11 0.12 0.13 0.14
One-step TD 14.425 14.434 14.437 14.434 14.435 14.420
LSTD 14.441 14.433 14.442 14.446 14.445 14.449

θ 0.15 0.16 0.17 0.18 0.19 0.2
One-step TD 14.417 14.443 14.435 14.438 14.453 14.443
LSTD 14.418 14.417 14.438 14.432 14.435 14.439

Chapter, so corresponding to the exponentially weighted variant. The discount factors α

for use in equations (3.7) and (3.8) were calculated as αt = e(−tθ). Table 5.1 presents

performance of various discount rates. It can be seen that θ at 0.15 results in good perfor-

mance for both one-step TD and LSTD, and therefore in this Chapter all experiments are

conducted with the discount rate set at θ = 0.15 (i.e. a discount of 15% for each successive

train).

The computational time for TD and LSTD are similar. This depends on the choice of T

in equation (4.4) to compute the explicit part of the cost function g(.). Computation of

g(.) was found to be the most burdensome part of the present ADP framework, where we

evaluate train movements individually. This choice is delicate, as larger values of T result

in better performance, however they come at the cost of computational efficiency espe-

cially in the case of implementation in stochastic environment; this is presented in Table

5.2 for stochastc and deterministic implementations. In the remainder of this thesis, for

experiments in stochastic environment we set T = 3, and for experiments in deterministic

Table 5.2: Average consecutive delays (s) and computational time of various choices T .

T One-step TD LSTD Time per stochastic / deterministic decision (s)

2 15.80 15.79 0.73 / 0.06
3 13.87 13.87 1.10 / 0.11
4 13.77 13.76 2.86 / 0.23
5 13.73 13.73 6.03 / 0.44
6 13.75 13.75 11.78 / 0.74
7 13.75 13.73 20.63 / 1.47
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environment we set T = 4.

All numerical experiments were conducted by computer simulation, implemented in Python

3.4 running under Windows 10 on a PC configured with Intel Core i7- 4790 CPU and 32

GB RAM.

5.2 Objective functions for ARTC

We considered three objective functions to evaluate the cost during a single stage g in

equation (4.4) based on conversations with railway operations professionals: 1) Minimising

total consecutive delays, 2) minimising total delays, and 3) minimising total running times

inside the control area:

Objective 1 = ∑
t
[Ct ]+ , (5.1)

Objective 2 = ∑
t

Le
t + ∑

t
Ct , (5.2)

Objective 3 = ∑
t

Rt + ∑
t
[Ct ]+ , (5.3)

where Ct is the accumulated consecutive delay inside the control area per stage, Le
t is delay

on entry to the control area, and Rt is the scheduled running time inside the control area.

These objective functions were chosen as they are not too complex as to divert the focus of

this study and at the same time important enough to be considered reasonable choices.

For the Digswell control area of Figure 5.2 and simulating deterministically, we randomly

generated 60,000 individual train delays (2000 morning peaks) using the distibution of Fig-

ure 5.3 [52] resulting in a mean entry delay of 9 minutes 56 seconds at Stevenage Station.

Result indicates that the ADP approach achieves superior performance compared to FCFS

using all objective functions, though performance varies among the objective functions. Ta-

ble 5.3 presents comparison of performance based on delays on the exit of the Digswell

control area for each of the objective functions using LSTD learning, and hence provides a

combined view of performance.
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Figure 5.5: Average (a) consecutive delay, (b) total delay, and (c) train running times inside the
control area, per scenario comparing performance of ADP with LSTD learning under
different objective functions.
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It is apparent that Objective 2 does not perform well: the performance under ADP with

this objective is worse than with the others, even in terms of its own measure. Noticeably,

Objective 1 and Objective 3 both perform better in terms of Objective 2’s primary objective

i.e. minimising total delays.

Figure 5.5.a presents mean consecutive delays for each simulated morning peak (each delay

scenarios). It is evident from this graph that Objective 1 performs the best in all percentiles

shown on the graph. Objective 2 has more variation after the 90th percentile compared

to others. The maximum for Objective 2 is higher than the maximum for FCFS. Figure

5.5.b presents mean delays for each delay scenarios. Improvements in total delays are small

compared to FCFS. The reason for this is the limited opportunity for bringing trains back

to their planned schedules; all objective functions improve total delays with Objective 3

performing the best. Figure 5.5.c presents train running times for all trains. All objectives

perform favourably compared to FCFS in this measure up to the 90th percentile. Higher

maximums in Figure 5.5.c for our objectives indicate trains that were held at the junction to

allow other trains through. This action is beneficial as is evident from the improved overall

performance.

Considering findings of Figure 5.5, it is evident that performance of the ADP approach is

sensitive to the choice of objective function and unsuitable choice can result in poor perfor-

mance. It is shown that, in the case of railway rescheduling, an objective function may be

outperformed by others in terms of its primary objective. In the remainder of this thesis,

to evaluate ADP in detail, we use Objective 1 in Sections 5.3 and 5.4, and Objective 3 in

Section 5.5.

5.3 Feature selection for ARTC

There are numerous possibilities for the features φ in equation (3.10) that are extracted from

the state st at each stage t . Although many features that represent the state and can be ex-

tracted could be used for approximation of the value function J(.), not all combinations will
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Table 5.3: Comparison of objective functions against all performance measures.

Mean
consecutive delay (s) -

Obj.1

Mean total
delay (s) -

Obj.2

Mean running
time (s) -

Obj.3

FCFS 5.17 547.00 285.11
ADP-Obj.1 2.08 543.04 281.06
ADP-Obj.2 3.21 543.48 281.51
ADP-Obj.3 2.44 542.60 280.61

necessarily benefit performance. The choice is important as it may affect both effectiveness

and computational efficiency of the ADP frameworks.

To investigate effects of this choice of features φ on performance, stochastic traffic scenar-

ios were simulated for Digswell control area with mean initial delay for all trains, measured

just downstream of Stevenage Station, as 15 minutes 2 seconds. Combinations of features

were then tested for LSTD learning under identical conditions to compare performance. We

extracted and tested all 15 combinations of the four features:

a) Remaining scheduled running time of trains in the control area,

b) Train delays as measured just after Stevenage Station,

c) The time difference between services at the conflict point according to the current

plan, and

d) The service headways according to the current plan.

Figure 5.6 presents performance of all fifteen combinations of these features together with a

controller that used none. The measure of performance is the mean consecutive delay of all

trains when they reach Hatfield Station. For reference, the FCFS performance for the traffic

scenario was 20.48 seconds (not shown on the graph because it is substantially greater than

all of the LSTD values). Most combinations of features perform similarly to or worse than

none at all that corresponds to a T step greedy heuristic without any approximation function,

i.e. Ĵ = 0, however, the three combinations {a, c}, {a, b, c} and {a, b, d} did improve
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Figure 5.6: Performance of various feature combinations (multiple coincident values are indicated
by number).

performance. Of these, the combination {a, b, d} produced the absolute best performance

with a mean of 13.78 seconds per train followed closely by combinations {a, c} and {a, b,

c} that both produced means of 13.79 seconds per train compared with the 14.25 seconds

per train for the controller that used no features. The combination {a, c} is adopted for use

because it performs nearly as well as the best combination but uses one fewer feature. The

worst performing combination was {b, c, d}with 15.4 seconds per train. In all combinations

that included both c and d, poor performance was observed.

More combinations of features resulted in worse performance than using none at all, which

shows the importance of appropriate feature selection for ADP with RL. In the remainder of

this Chapter, we investigate in detail the performance of the ADP frameworks using the {a,

c} features, therefore we extract scheduled running time of remaining trains in the control

area (φ1 = a) and the time difference between services at the conflict point according to the

current plan (φ2 = c) for the approximate value function Ĵ (.).
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5.4 ARTC and the stochastic railway environment

To evaluate ADP’s performance under uncertainty, two traffic scenarios were considered

for Digswell control area using Objective 1 (i.e. minimising total consecutive delays). For

each, in total 30,000 random train delays were generated from the Weibull distribution of

Figure 5.3 [52] for Stevenage Station, equating to 2,000 morning peaks. The delays are then

scaled by random factors to create mean initial delay, for all trains as measured just after

Stevenage Station, as 4 minutes 37 seconds for Traffic Scenario A, and 14 minutes 58 sec-

onds for Traffic Scenario B. To put these into perspective, mean timetable headway between

all services on the shared section of Figure 5.2 is 4 minutes and 39 seconds. Accordingly,

we aim to investigate ADP performance during moderate perturbations with traffic scenario

A, and instances with more substantial perturbations using traffic scenario B.

In this Section we adopt all of the adjustment ∆r for LSTD (i.e. ηt = 1) and, to compare

traffic scenarios A and B we only adopt a tenth of the adjustment ∆r for TD (i.e. ηt = 0.1).

Towards the end of this Section, adopting all adjustments ∆r is also considered for TD.

5.4.1 Performance analysis in stochastic environment

Table 5.4 presents comparison of performance among FCFS, one-step TD and LSTD ac-

cording to three measures of performance for each of traffic scenarios A and B. LSTD and

one-step TD achieve almost the same performance, meaning the controls produced using

the two learning methods are similar (i.e. they computed the same sequences in almost

all cases). This need not mean they calculate the same approximations; indeed, the mean

Table 5.4: Comparison of performance in stochastic environment of Digswell control area for traffic
scenarios A and B (seconds per train).

Traffic Scenario A Traffic Scenario B
FCFS TD LSTD FCFS TD LSTD

Mean consecutive delay 19.35 14.0 14.0 21.33 15.21 15.22
Mean train running time 296.19 290.83 290.83 298.83 292.69 292.68
Mean total delay 295.21 289.85 289.85 918.93 912.80 912.79
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Table 5.5: Percentiles of consecutive delays in stochastic environment of Digswell control area for
traffic scenarios A and B (seconds per train).

Traffic Scenario A Traffic Scenario B
Percentile FCFS TD LSTD FCFS TD LSTD

75th 24.91 17.48 17.47 29.27 19.45 19.45
90th 46.32 28.91 29.02 50.52 30.82 30.81

absolute error in approximation of value function Ĵ in one-step TD was 63.8 for scenario

A and 68.3 for scenario B, whereas for LSTD it was slightly greater at 64.5 for scenario A

and 71.2 for scenario B. In both cases however, the approximations favoured similar control

decisions. The ADP reduced mean consecutive delays by around 28%, mean running times

by around 2% and mean total delays by around 1%.

As the primary measure for our objective function, mean consecutive delays reveal how

one-step TD and LSTD contributed towards their principal goal. One interesting obser-

vation is the similarity of the mean consecutive delays in traffic scenarios A and B. It

seems that initial delays do not influence strongly the consecutive delays incurred inside the

control area; this can also be observed in Figure 5.7, which present boxplots for the mean

consecutive delays.

The main improvements in the high values of delay in Figure 5.7 can be seen in the 75th

and the 90th percentiles which are shown in Table 5.5. It is evident that the two learning

techniques are similarly effective in reducing consecutive delays compared to FCFS whilst

of the two, LSTD performs marginally better. This is also reinforced when a t-test was

completed on the data concluding a t-value of 15.13 meaning a big difference between the

results of TD / LSTD compared to FCFS.

As an indication of the rate of track occupancy within the test network, we study the run-

ning times of individual trains inside the control area. Figure 5.8 presents boxplots for

train running times in traffic scenarios A and B. As with the consecutive delays, both TD

and LSTD improve running times substantially in the 75th percentile of Figure 5.8, as is

shown in Table 5.6. Unlike the mean consecutive delays, there is a long tail in TD and
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Figure 5.7: Boxplot of mean consecutive delay by scenario for (a) traffic scenario A, and (b) traffic
scenario B.

LSTD individual train running times of Figure 5.8 with substantially greater high extremes.

These arise from trains that are further delayed in the control area for the sake of gains in

the principal objective of network performance. However, these actions may be especially

unfavorable to certain train services so the objective could be developed further to achieve

more equitable solutions.

Once more, in Figure 5.8, similar performance can be seen in the two traffic scenarios even

though the initial delays differ. The similarities in consecutive delays and running times for

both traffic scenarios suggests more attention needs to be given to train headways resulting

from initial delays rather than the initial delays themselves. This can also be hypothesised
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Figure 5.8: Boxplot of individual train running times inside the control area for (a) traffic scenario
A, and (b) traffic scenario B.

Table 5.6: 75th percentiles of train running times in stochastic environment of Digswell control area
for traffic scenarios A and B (seconds per train).

Traffic Scenario A Traffic Scenario B
FCFS TD LSTD FCFS TD LSTD

281.92 253.31 253.31 281.69 251.24 251.25

from performances in Figure 5.6 .

The improvements in total delays in Table 5.4 are relatively small. Because of the ways

that railways operate, most of the initial delays may not be recoverable and indeed this is

not included in the present objective. It should be noted that the improvements in mean

consecutive delays, running times and total delays are similar in both traffic scenarios.
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Table 5.7: Mean and standard deviation of parameters for TD with ηt of 0.1 and 1 for traffic scenario
A.

Mean Standard Deviation
Parameters ηt : 0.1 1 0.1 1

r(1) 0.063 0.072 0.021 0.060
r(2) -0.057 -0.067 0.025 0.072

Comparisons of Figure 5.8 shows that in ADP, on occasion, a few trains are delayed sub-

stantially with the intention to achieve low average delay during the remainder of that run.

5.4.2 Comparison of learning methods

Figure 5.9 presents evolution of the parameters r under each of the TD and LSTD learning

strategies in the two traffic scenarios. The parameters approach similar values notwith-

standing the different mean entry delays. TD learning behaves similarly in both traffic

scenarios, whilst LSTD parameters stabilise on larger values in scenario A compared to

the more heavily delayed scenario B. Part of the reason for this behaviour may be that in

traffic scenario A the time difference between services at the conflict point according to

the current plan (φ2) are smaller and more stable compared to traffic scenario B. In the

presence of substantial perturbations to trains, greater values of φ2 are extracted from the

current state. Recalling that LSTD learning solves for parameters r by minimising the sum

of squares of all temporal difference errors since the start of operation, it is perhaps not

surprising that r values stabilise on smaller values for scenario B compared to scenario A.

Also, for the same reason, LSTD becomes more stable as time goes on compared to TD

learning which puts more emphasis on recent observation.

Depending on the values adopted for the modification parameters ηt , TD may be more

adaptive than LSTD, and as shown in Figure 5.10, TD achieves smaller errors than does

LSTD which suggest that TD tends to approximate the value function more accurately. The

reason is that states are sequentially connected, so a good fit of Ĵ at time t is likely to lead
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Figure 5.9: Evolution and comparison of learning parameters for TD ηt of 0.1 and LSTD learnings
for, (a) traffic scenario A, and (b) traffic scenario B.

to a good estimate at time t +1. Furthermore, one-step TD reacts to short-term changes in

traffic on the network, whereas LSTD stays stable and approximates according to what has
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been observed from the start of the operations.

Furthermore, Figure 5.10 shows that TD with ηt = 1 achieves even smaller errors as it

adopts all adjustments to r after every observation which means it reacts to changes in

traffic more strongly than it does with ηt = 0.1; this however comes at a cost of reduced

Figure 5.10: Root Mean Square Error of TD with ηt of 0.1 and 1, as well as LSTD learning for
traffic scenario A.

Figure 5.11: Evolution and comparison of learning parameters for TD with ηt of 0.1 and 1 for traffic
scenario A.
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stability in the parameters as is clear in Figure 5.11. It has to be noted that TD with ηt = 0.1

and ηt = 1 achieved similar performance. Because LSTD has no modification parameter

to be tuned, the stabilisation in the parameters for LSTD is achieved automatically. There

may be a better specification for the modification parameters ηt than a constant which could

contribute to improved performance.

The results and the small difference between approximation and learning values presented

in this Section show that both ADP approaches seem to perform well in railway traffic man-

agement in stochastic environment with similar potential for benefits in terms of operational

performance.

5.5 Distributed ARTC

The aim of this Section is to investigate the effectiveness of ADP in tackling railway re-

scheduling for large and dynamic networks. Given that the goal of the RTM system is to

achieve network optimisation in a timely manner, the ADP framework is deployed in a real-

istic simulation environment in a distributed setup across the southern section of the ECML,

to control known critical areas of the network and evaluate network-wide performance.

5.5.1 Evaluation framework for distributed control

Having identified two areas as areas with significant opportunities for traffic optimisation,

the framework is implemented to control the vicinity of: 1) Digswell, and 2) Finsbury areas

(red shaded boxes A and B respectively in Figure 5.12), therefore representing a distributed

control setup.

A microscopic railway traffic simulator called BRaVE (Birmingham Railway Virtual Envi-

ronment), developed at the University of Birmingham, is used to simulate the movement of

trains and the operations of the interlocking and signalling across ECML; this is different to

the microscopic simulator embedded in the ADP framework. An Application Programming

Interface (API) mechanism enables external software to control the scheduling of trains
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Figure 5.12: Schematic of the study network, with red boxes indicating, A: Digswell control area,
and B: Finsbury control area.

within the pre-defined control areas of the simulator. The API mechanism communicates

XML format messages containing outgoing traffic state and incoming optimised sequence

instructions for junctions in the specified control areas (i.e. Digswell and Finsbury control

areas). These messages are relayed over a UDP server connection.

The ADP controller interfaces with the simulator via the UDP connection and communi-

cates XML format messages. During a simulation run, traffic state messages are period-

ically sent to the ADP controller, which monitors the state of the network and optionally

sends back optimised sequencing instructions; in this Section, traffic states are sent to the

controller regularly every 5 minutes and also every time trains enter the control area. On

receipt of these instructions that are returned to the simulator which implements them. This
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Table 5.8: Mean running times (seconds) separated by control areas and service groupings.

Mean running times in seconds
Digswell Finsbury

Service groups FCFS ADP FCFS ADP

All services 324.59 322.44 853.04 850.81
ECML HST 230.31 223.85 - -
ECML Commuter 607.42 618.21 354.12 342.08
Hertford-Loop Commuter - - 1125.17 1128.3

process continues until the simulation ends at a pre-specified time.

We perturb the traffic, similar to the previous Section, by delaying all trains that dwell at

Stevenage station. This includes all ECML and Hertford-Loop commuter services, as well

as some ECML HST services. In total over 60% of trains are perturbed by an amount

that is sampled from the Weibull distribution of Figure 5.3 [52]. These delays were then

scaled with randomly selected factors ranging from 5 to 40. As for the trains that do not

stop at Stevenage, some may be delayed due to following services that are delayed while

at Stevenage. Once trains leave Stevenage, running times and subsequent dwelling periods

are treated deterministically.

For the evaluation of this Section, Objective 3 of equation (5.3) is used, therefore, we focus

on train running times inside the control area and on station delays as a measure of perfor-

mance in the network as a whole.

5.5.2 Results for distributed control

In total 28,000 individual train delays were generated for Stevenage Station, equating to

1000 distinct morning peak periods, which produced a mean added delay of 2 minutes and

41 seconds on dwell times at Stevenage station. Therefore, the aim of this Section is to

investigate effects of ARTC on normal operations across a large network.

Table 5.8 presents a comparison of performance between FCFS and ADP inside the con-

trol areas according to mean service running times. As well as overall performance, this

table shows running times by service groupings of the timetable. It can be observed that
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Figure 5.13: Running times of services inside Digswell control areas separated by service group-
ings; (a) ECML HST, and (b) ECML commuter services; star signs indicate mean
values.

the mean running time of all trains has reduced, by 2.12 seconds for Digswell control area

and 2.23 seconds for Finsbury control area. Given that the mean running time for Digswell

and Finsbury, at full speed and with no conflicts, are 305.39 and 842.41 seconds respec-

tively, the improvements represent 11% and 21% reduction in mean added running times

for Digswell and Finsbury control areas, respectively. This directly equates to maximising

track occupancies within the control areas compared to FCFS, and also reduction in con-

secutive delays, indirectly.

To further analyse the effects of optimisation on the performance of services, we disag-
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Figure 5.14: Running times of services inside Finsbury control areas separated by service group-
ings; (a) ECML commuter services, and (b) Hertford-Loop commuter services; star
signs indicate mean values.

gregate the running times according to service groupings. When comparing running times

inside Digswell control area in Figure 5.13.a and Figure 5.13.b and also in Table 5.8 ,

it is clear that ECML HST services benefit from the rescheduling, whereas ECML com-

muter services are disadvantaged. This trend is again repeated within Finsbury control area

(Figures 5.14.a and 5.14.b) where ECML commuter trains benefit from optimisation and

Hertford-Loop commuter trains do not.

By inspecting the sectional running times of the service groupings, it is evident that the ben-

eficiary service groups require a shorter running time to traverse the control areas. As the

control framework attempts to minimise the total running times of all trains, it is no surprise
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Table 5.9: Like by like mean delays that exceed X seconds.

Delays greater than (s):
Major stations (No of trains) X: 0 60 180 300

London King’s Cross (31)
FCFS 16.6 200.8 293.6 389.9
ADP 15.1 180.0 248.7 287.5

Moorgate (11)
FCFS 6.3 157.1 311.0 466.2
ADP 7.4 178.3 325.4 514.4

Finsbury Park (21)
FCFS 55.9 198.5 345.9 414.4
ADP 55.1 194.8 312.4 343.7

that the overall effect of rescheduling when taking into account all trains, means that faster

trains are favoured in the optimised control plans. In the case of Digswell control area, the

controller produces plans that reduce running times of 25 ECML HST trains by an average

of 6.46 seconds by increasing the running times of 6 ECML commuter trains by an average

of 10.79 seconds. Similarly, for Finsbury control area, 6 ECML commuter trains achieve

average improvements of 12.04 seconds while 11 Hertford-Loop commuter trains see an

increase of 3.13 seconds in terms of their mean running times inside the control area. Table

5.9 presents comparison of mean delays for all services between FCFS and ADP at major

stations within our study network. London King’s Cross station is the terminus of all ECML

trains, Moorgate is the terminus for all Hertford-Loop trains, and Finsbury Park station is

where all ECML commuter trains and most ECML HST services stop (15 services in the

present case). The mean delays have been categorised by taking the mean value of delays of

over 0, 1, 3 and 5 minutes. UK rail industry separates delays using a similar technique for

different purposes. For instance, services arriving at their terminus station within 1 minute

of their scheduled arrival times are monitored for the ‘right time performance’ measure;

the government-regulated public performance measure (PPM) calculates the percentage of

trains which arrive at their terminating station within 5 minutes of their scheduled arrival

time [117]. Mean delays in Table 5.9 are calculated for the subset of trains that experience

delays > X minutes under either FCFS or ADP, or both.

The trend observed in mean running times within control areas can also be observed in
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Table 5.9, where services that benefited from the re-scheduling (or the choice of objective

function) have carried those improvements to their downstream planned station stops. As

the threshold for considered delays increases, so does the difference in mean delays between

FCFS and ADP. In the case of London King’s Cross station, the difference between mean

delays for delays over 0, 1, 3 and 5 minutes show improvements in favour of ADP of 9.6%,

10.4%, 15.3% and 26.3% respectively when compared to FCFS. The effect is reversed in

the case of Moorgate where ADP results in delay increases of 15.0%, 11.91%, 4.4% and

9.4% for delays over 0, 1, 3 and 5 minutes respectively when compared to FCFS.

From the mean values, it may appear that delays have been pushed elsewhere in the net-

work. However, given the number of trains terminating at London King’s Cross (31 trains)

and Moorgate (11 trains), it is clear that overall improvements have been achieved by ap-

plying ADP on this network.

Figure 5.15: Comparison of individual delays of over 1 minute between FCFS and ADP for all trains
stopping at stations inside or downstream of the control areas; numbers in brackets
indicate total number of scheduled stops per simulation at the station, and + signs
indicate mean values.



5.5. Distributed ARTC 143

Figure 5.16: Evolution of LSTD functional parameters r for different control areas.

Figure 5.15 presents all arrival delays of over 1 minute for all stations within or down-

stream of the control areas. This shows effects at other stations within the network. The

overall trend indicates more efficient operations in terms of time spent traversing the tracks

in the control area (short term) which in turn translates into a reduction in delays at terminal

stations (long term). This is evident in the service delays of Figure 5.15 which shows an

increase in station delays in the vicinity of the control areas where slower trains from the

control areas dwell, though this is reversed when all service delays are measured at terminal

stations.

Figure 5.16 presents the evolution of functional parameters r for LSTD for Digswell and

Finsbury control areas. Recalling that LSTD learning solves for these parameters by min-

imising the sum of squares of all temporal difference errors since the start of operation,

similar to the previous Section, the r values stabilise early on and after around 1500 learn-

ing opportunities. The values for the functional parameters stabalise on different values

for our control areas. This suggests that convergence of values is unique for the choice of
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control area, timetable and other operational factors.

5.6 Summary and discussion

Having conducted numerical experiments using infrastructure and operational data for the

East Coast Main Line (ECML), it is evident that ADP is capable of tackling the railway

traffic management problem effectively and in a timely manner.

In Section 5.2, it was shown that the ADP approach is sensitive to the choice of objective

function and unsuitable choice can result in poor performance. It was shown that, in the

case of railway re-scheduling, objective functions may be outperformed by others in terms

of their primary objective. Minimising consecutive delay was found to be the most effective

in minimising consecutive delays, and minimising total sectional running times was found

to be the most effective in minimising total delays of all trains in the control area.

Results of the numerical tests presented in Section 5.3 show that features must be se-

lected carefully, as some combinations of them do not improve performance compared to a

‘greedy’ approach in which the criterion for optimisation focuses exclusively on short-term

performance.

In Section 5.4, two traffic scenarios were used to simulate the stochastic railway environ-

ment, each equating to 2,000 morning peaks, to represent moderate and severe perturbations

to trains running on the test network. As the primary measure, the objective function of

mean consecutive delays was reduced by around 28% using the ADP framework. We

also found that the parameters in TD and LSTD approach similar values with different

mean train entry delays with the selected features. To approximate the value function,

TD achieves smaller errors compared to LSTD in both traffic scenarios, and errors were

smaller for both TD and LSTD in the traffic scenario with moderate perturbations com-

pared to severe perturbations. We also found that adopting all adjustments to parameters r

in one-step TD achieved better approximations, although this comes at the cost of reduced

stability in the parameter estimates. The detailed evaluation of the cost during a single stage

represented by g(.) in equation (4.4) was found to be the most computationally expensive
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part of the present ADP framework. While testing ADP in deterministic environment, com-

putational times of 0.11 second per stage on average were achieved when T = 3, compared

with 1.1 seconds per stage on average in stochastic environment when T = 3 due to the 30

simulations with draws from the distributions for each evaluation of expected performance

according to equation (3.7).

To have a fully stochastic framework, this kind of railway traffic control could be formu-

lated as a Markov decision process, given that all transition probabilities are known. Such

a treatment would be comparable with application of the learning approaches described in

this thesis. Therefore, the present ADP framework can be readily extended to include this

capability.

In Section 5.5, the framework was deployed in a realistic simulation environment in a dis-

tributed setup across a large and dynamic network and controlled known critical areas of

the ECML network and evaluated network-wide performance in deterministic simulations.

Given that the penalty system for delayed trains in the UK is mainly concerned with delays

at large or terminal station, the focus of this Section was analysis on the major stations

within the study network. We found improvements in service delays at the largest station

within the study network (London King’s Cross) which was the terminal station for most

of the timetable’s services, where delays where improved by around 10-26% according to

different rail industry performance measurements. This reduction in delays at the largest

station directly related to increases of around 10-15% in delays at a less congested terminal

station (Moorgate). Nevertheless, the overall performance was improved by around 6-15%

according to different performance measurements, when delays of all trains at their terminal

stations were considered . It is also worth noting that over the 3 hours and 45 minutes period

of our delay scenarios, the controller has regained more than a minute of track occupancy

time on average within Digswell control area. Given that the mean timetable running time

of an ECML HST in this control area is around 3 and a half minutes, it may be worth

investigating whether implementing a re-scheduler like the one presented in this thesis can

facilitate addition of one more HST service in the ECML timetable per day.
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As for the ADP performance in Section 5.5, the functional parameters r were observed to

become stable after one thousand learning opportunities; in practice they could be calcu-

lated according to a period of training using historical data then implemented. Minimising

total running times of services has resulted in improved performance on our study network,

and further research is required to test and compare other more complex objective functions

for ADP and on other networks of similar or higher complexity.

As an adaptive ADP approach for Railway Traffic Management (RTM), this study has

focused on isolated junctions. The objective of RTM is to achieve good network-wide

performance, so the ability of ADP to co-ordinate network traffic is an interesting topic

for further research. The challenge here would be to represent traffic state of adjacent

control areas effectively and hence extract appropriate features to use in the approximate

performance function of the local ADP.



Chapter 6

Conclusions

“Oh threats of Hell and hopes of Paradise! One thing at least is certain - this life flies; one

thing is certain and the rest is lies.” - Omar Khayyam

6.1 Research summary

Given the increase in the volume of traffic on railway networks, and the advent of the “digi-

tal age”, railway undertakings around the world are investing in intelligent railway systems

that would manage operations in real-time, and so improve utilisation of the existing infras-

tructure to deliver a greater level of service to costumers. The research undertaken for this

thesis contributes to this endeavour.

This thesis presents an investigation into an adaptive railway traffic controller for real-time

operations that applies approximate dynamic programming (ADP) and reinforcement learn-

ing (RL). By assessing requirements and opportunities, the controller aims to limit train de-

lays by advantageously controlling the sequencing of trains at critical locations in a timely

manner.

Few previous authors have investigated methods that are appropriate for use in stochastic

environments and use data generated by trains to learn the underlying process of railway

traffic in real-time. Most approaches suffer from high computational complexity, which

makes them inefficient or difficult to adopt for practical operation. This thesis has therefore

developed an ADP framework to reduce the computational burden which in turn confers
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flexibility in control in a stochastic environment that has been tested using a Monte-Carlo

scheme.

The problem is formulated as a dynamic program and ADP is used to approximate the op-

timised value function, and RL techniques to update the approximation. This algorithmic

framework reduces the number of states to be evaluated substantially, which leads to a cor-

responding reduction in the computational burden.

In this investigation, the variants of temporal difference (TD) and least-squares temporal

difference (LSTD) learning techniques have been explored. Because number of features

employed is sufficiently small, the parameters of the linear approximation function can be

updated using a closed-form expression based on Newton’s method. This avoids the widely

used methods of TD learning based on gradient descent that have been found to lead to

policy oscillation and overshooting.

The strongest advantages of Newton’s method over gradient descent methods, relevant to

the application of ADP, are:

• rapid convergence, and

• performance is not dependent on the choice of control parameters.

On the other hand, the main disadvantage is the computational cost of forming and inverting

the Hessian matrix to solve each Newton step. However, this is only an issue for problems

that require the use of large feature vectors and even then a possible alternative can be of-

fered by a family of algorithms called quasi-Newton methods. These methods require less

computational effort to form the search direction, but they share some of the principal ad-

vantages of Newton methods, such as the rapid convergence.

The present research has shown that features of the approximation function must be se-

lected carefully, as some possible combinations do not improve performance compared to a

‘greedy’ approach in which the criterion for optimisation focuses exclusively on short-term

performance. Therefore, appropriate feature engineering needs to be conducted to success-

fully configure ADP with integrated RL.
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The evaluations to test ADP performance in stochastic environment reported in this thesis

were based on two traffic scenarios, each equating to 2,000 morning peaks, and represent

moderate and severe perturbations to trains running on the test network. As the primary

measure, the objective function of mean consecutive delays was reduced by around 28%

using the ADP framework by comparison with conventional first-come first-served (FCFS)

control. The even greater proportionate reduction in the higher percentile points of the

distribution of consecutive delays shows that the ADP framework reduces longer delays ef-

fectively, helping to improve regulation of train services.

Testing the ADP framework in a realistic simulation environment in a distributed setup

across a large and dynamic network by controlling known critical areas of the network was

also evaluated with particular emphasis on the network-wide performance. Given that the

current penalty system for delayed trains in the UK is mainly concerned with delays at

large or terminal stations, the focus of analysis was on the major stations within the study

network. Improvements were found in service delays at the largest station within the study

network (London King’s Cross) which was the terminal station for most of the timetable ser-

vices, where delays were improved by around 10-26% according to different rail industry

performance measurements. This reduction in delays at the largest station directly related

to increases of around 10-15% in delays at a less congested terminal station (Moorgate).

Nevertheless, the overall performance was improved by around 6-15% according to dif-

ferent performance measurements, when delays of all trains at their terminal stations were

considered.

Comparison between the Newton-based TD and LSTD approaches for estimation of param-

eters in the value approximation function, similar values between these approaches were

found, though the values estimated by one-step TD fluctuated from moment to moment

whilst those estimated by LSTD necessarily stabilised because they are calculated using all

earlier results with equal weighting. The TD estimates can be stabilised to some degree

by adopting a weighting with exponential decay, so focusing on the most recent calcu-

lations. The error in approximating the value function using TD is smaller compared to
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LSTD in both traffic scenarios, and errors were smaller for both TD and LSTD in the traffic

scenario with moderate perturbations compared to severe perturbations. It was also found

that adopting all adjustments to parameters of the approximation function in one-step TD

achieved better approximations, although at the cost of reduced stability in the parameter

estimates.

The detailed calculation of the cost during a single stage was found to be the most computa-

tionally expensive part of the present ADP framework. While testing ADP in a determinis-

tic environment a computational times of 0.07 second per stage on average for a lookahead

horizon of T = 3 trains was achieved, compared with 1.1 seconds per stage on average in

stochastic environment due to the 30 simulations with draws from the distributions for each

evaluation of expected performance. This contrasts with the computational time required

for FCFS, which was 0.016 second per stage in the experiments.

6.2 Future work

Over the 3 hours and 45 minutes period of the delay scenarios in Chapter 5, the controller

regained more than a minute of track occupancy time on average within the control area.

Given that the mean timetable running time of an ECML HST in the control area is around

3 and a half minutes, it may be worth investigating whether implementing a re-scheduler

same as the one presented in this thesis can facilitate addition of one more HST service in

the ECML timetable per day.

The adaptive ADP approach of this thesis has focused on traffic management of isolated

conflict points (i.e. junctions, crossings and merges). The objective of railway traffic man-

agement (RTM) is to achieve improved network-wide performance, so the ability of ADP

to co-ordinate traffic of a number of control areas is an interesting topic for further research.

The challenge would be to represent traffic state of adjacent control areas effectively and

hence extract appropriate features to use in the approximate performance function of the

local ADP. It may be necessary to use a nonlinear function approximation, such as Artificial

Neural Networks similar to the ADP framework in [118], to configure ADP for network-
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wide co-ordination of traffic.

Configuring ADP with linear function approximation to control and co-ordinate a large

number of control areas may require use of large feature vectors. A concern associated with

this would be the computational effort required to invert the Hessian matrix of the Newton-

based TD learnings discussed in this thesis. Therefore, the application of quasi-Newton

methods, which are computationally efficient, could be investigated in future works.

In this investigation, it is shown that ADP improves operational performance when applied

in a distributed configuration and it would be interesting to investigate how co-ordination

improves on performance relative to the findings of this thesis.

The stochastic approach in this thesis employs a Monte-Carlo scheme to deal with the

uncertainty of railway operations. To have a fully stochastic framework, the railway traffic

control approach of this thesis could be formulated as a Markov decision process, given

that all transition probabilities are known. Such a treatment would be comparable with

application of the learning approaches described in this thesis. Therefore, the present ADP

framework can be readily extended to include this capability.

Even though Monte-Carlo simulation is an effective method to make decisions in noisy

environments, as was discussed in the previous Section, it significantly adds to the com-

putational time required to compute control decisions. A good direction of research could

include exploration of methods to improve on this aspect of the ADP approach presented in

this thesis.

The main distinguishing factor of the present ADP framework is its ability to exploit real-

time data to facilitate optimised asset operations on railway networks. The framework

presented in this thesis uses data generated by trains to learn the processes underlying rail-

way traffic in real-time to optimise signalling decisions. It does not guarantee optimality

of solutions and trades off practicality over optimality. Little of the literature available on

RTM considers data-based approaches to solve this complex optimisation. Further research

in data-based techniques to build on the findings of this thesis would establish their appli-

cability to traffic management of large railway networks.
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The ADP framework presented in this thesis is a systematic and self-tuning approach which

achieves superior performance compared to FCFS by considering the consequence of de-

cisions in a timely manner and therefore is better suited for practical implementation. It

automatically adapts parameters r to the objective function and the prevailing traffic on the

rail network, allowing for better usage of real-time data generated by trains. Our investiga-

tion shows the potential of such approaches, which need to be further explored to realise a

future where intelligent transport systems aid integrated and seamless transport.

Given the recent successes of reinforcement learning in the field of computer science

[119, 120], demonstrating the capability of RL to control complex problems, and the find-

ings of this thesis, investigation of a model-free RL approach to control railway traffic is

warranted. A model-free RL approach would eliminate the need for a Monte-Carlo scheme

in RTM and potentially result in a even more efficient approach as the one developed in this

thesis.

Even though the ADP formulations presented can theoretically also consider moving block

operations under, for instance, ETCS level 3, the evaluations of this thesis only include fixed

block operations. Assessment of the present formulations under moving block signalling

could be considered in future works.

Finally, the ADP approach of the present thesis has focused on optimising capacity utili-

sation by means of controlling order of trains at conflict points. Addition of other consid-

erations such as passenger flows at stations and trajectory optimisation of the trains under

consideration would potentially improve the findings of this investigation even further.
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Appendix A

Multivariate Newton’s method

For x ∈ dom f , a Newton step ∆xnt (for f , at x) is defined as the vector

∆xnt =−∇
2 f (x)−1

∇ f (x), (A.1)

and the Hessian matrix H, of a twice continuously differentiable function f at a point x =

(x1, · · · ,xn), is the matrix of second partial derivatives

H(x) = ∇
2 f (x) =



∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xn

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2
· · · ∂ 2 f

∂x2∂xn

...
...

. . .
...

∂ 2 f
∂xn∂x1

∂ 2 f
∂xn∂x2

· · · ∂ 2 f
∂x2

n


. (A.2)

To derive the multivariate Newton’s method, take the second-order Taylor expansion around

a point xk

f (x)≈ f (xk)+∇ f (xk)
T (x− xk)+

1
2
(x− xk)

T H(xk)(x− xk). (A.3)

This is a convex quadratic function of (x− xk), and is minimised when (x− xk) = ∆xnt .

Thus, the Newton step ∆xnt is what should be added to the point x to minimise the second-

order approximation of f at x.

Supposing that H(xk) is positive definite, the unique point that minimises the quadratic form
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on the right hand side is therefore

x = xk−H(xk)
−1

∇ f (xk). (A.4)



Appendix B

List of symbols

s is the vector of state variables

S is the state space

u is the decision variable

U is the decision space

g(.) is the one step cost function

t is the single step

α is the future-discount factor

θ is the discount rate

f (.) is the state transition function

v is random information

E is the expectation over random information

J∗ is the optimal performance

P is the matrix of transition probabilities

T is the time horizon

π is the policy or the sequence of decisions u

J̃ is an observation of the optimal value function

Ĵ is the approximation of the optimal value function

r is the vector of parameters of the approximation function

φ(.) is the features extraction function
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r∗ is the unique optimal parameter vector

∆r is the adjustments to r

Qπ is the decision-value function for policy π

ρ(s,u) is the preference of taking decision u in state s

τ regularises decision making

ω is a vector of parameters of an approximation function

ψ is a features extraction function

Π is the projection operator

〈., .〉 is the inner product operator

δ is the TD-error

βi(0≤ i≤ t) is the positive discounting factors that are non-increasing in i

e is an error term

η regularises adjustments to r

H is the Hessian matrix

γ regularises past information

ϕ is the vector of step changes in φ
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