3,461 research outputs found

    GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests

    Get PDF
    Autonomous navigation of unmanned vehicles in forests is a challenging task. In such environments, due to the canopies of the trees, information from Global Navigation Satellite Systems (GNSS) can be degraded or even unavailable. Also, because of the large number of obstacles, a previous detailed map of the environment is not practical. In this paper, we solve the complete navigation problem of an aerial robot in a sparse forest, where there is enough space for the flight and the GNSS signals can be sporadically detected. For localization, we propose a state estimator that merges information from GNSS, Attitude and Heading Reference Systems (AHRS), and odometry based on Light Detection and Ranging (LiDAR) sensors. In our LiDAR-based odometry solution, the trunks of the trees are used in a feature-based scan matching algorithm to estimate the relative movement of the vehicle. Our method employs a robust adaptive fusion algorithm based on the unscented Kalman filter. For motion control, we adopt a strategy that integrates a vector field, used to impose the main direction of the movement for the robot, with an optimal probabilistic planner, which is responsible for obstacle avoidance. Experiments with a quadrotor equipped with a planar LiDAR in an actual forest environment is used to illustrate the effectiveness of our approach

    Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain

    Get PDF
    In this paper we presents a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the semi- global matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing iner- tial data with relative leg odometry and visual odometry measurements using an indirect information filter. The visual odometry error measure is used in the filtering process to put lower weights on erroneous visual odometry data, hence, improving the robustness of pose estimation. From the estimated poses and the depth images, a dense digital terrain map is created by applying the locus method. The traversability of the terrain is estimated by a plane fitting approach and paths are planned using a D* Lite planner taking the traversability of the terrain and the current motion capabilities of the robot into account. Motion commands and the traversability measures of the upcoming terrain are sent to the walking layer of the robot so that it can choose an appropriate gait for the terrain. Experimental results show the accuracy of the navigation algorithm and its robustness against visual disturbances

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    On-Manifold Preintegration for Real-Time Visual-Inertial Odometry

    Get PDF
    Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time, this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a \emph{preintegration theory} that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the \emph{maximum a posteriori} state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a \emph{structureless} model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular \VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.Comment: 20 pages, 24 figures, accepted for publication in IEEE Transactions on Robotics (TRO) 201

    A ROBUST AND MODULAR MULTI-SENSOR FUSION APPROACH APPLIED TO MAV NAVIGATION

    Get PDF
    Abstract — It has been long known that fusing information from multiple sensors for robot navigation results in increased robustness and accuracy. However, accurate calibration of the sensor ensemble prior to deployment in the field as well as coping with sensor outages, different measurement rates and delays, render multi-sensor fusion a challenge. As a result, most often, systems do not exploit all the sensor information available in exchange for simplicity. For example, on a mission requiring transition of the robot from indoors to outdoors, it is the norm to ignore the Global Positioning System (GPS) signals which become freely available once outdoors and instead, rely only on sensor feeds (e.g., vision and laser) continuously available throughout the mission. Naturally, this comes at the expense of robustness and accuracy in real deployment. This paper presents a generic framework, dubbed Multi-Sensor-Fusion Extended Kalman Filter (MSF-EKF), able to process delayed, relative and absolute measurements from a theoretically unlimited number of different sensors and sensor types, allowing self-calibration of the sensor-suite. The modularity of MSF-EKF allows seamless handling of additional/lost sensor signals online during operation while employing an state buffering scheme augmented with Iterated EKF (IEKF) updates to allow for efficient re-linearization of the propagation to get near optimal linearlization points for both absolute and relative state updates. We demonstrate our approach in outdoor navigation experiments using a Micro Aerial Vehicle (MAV) equipped with a GPS receiver as well as visual, inertial, and pressure sensors. I

    Inferring diffusion in single live cells at the single molecule level

    Get PDF
    The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single molecule and single cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence (TIRF) with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared to competing single molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level due to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles, however, this generally requires more data points than is typical for single FP tracks due to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes (BARD) to discriminate multiple complex modes probabilistically. It is a computational approach which biologists can use to understand single molecule features in live cells.Comment: combined ms (1-37 pages, 8 figures) and SI (38-55, 3 figures
    corecore