
Stereo Vision Based Navigation of a Six-Legged

Walking Robot in Unknown Rough Terrain

Annett Stelzer, Heiko Hirschmüller, Martin Görner

Abstract

This paper presents a visual navigation algorithm for the six-legged
walking robot DLR Crawler in rough terrain. The algorithm is based
on stereo images from which depth images are computed using the Semi-
Global Matching (SGM) method. Further, a visual odometry is calculated
along with an error measure. Pose estimates are obtained by fusing iner-
tial data with relative leg odometry and visual odometry measurements
using an indirect information filter. The visual odometry error measure
is used in the filtering process to put lower weights on erroneous visual
odometry data, hence, improving the robustness of pose estimation. From
the estimated poses and the depth images, a dense digital terrain map is
created by applying the locus method. The traversability of the terrain
is estimated by a plane fitting approach and paths are planned using a
D* Lite planner taking the traversability of the terrain and the current
motion capabilities of the robot into account. Motion commands and the
traversability measures of the upcoming terrain are sent to the walking
layer of the robot so that it can choose an appropriate gait for the terrain.
Experimental results show the accuracy of the navigation algorithm and
its robustness against visual disturbances.

1 Introduction

Research on autonomous robots has gained more and more importance over the
past years. Following the recent natural disasters and nuclear threats, the pub-
lic desire for autonomous robots to support humans has grown significantly. In
applications such as search and rescue and planetary exploration mobile robots
would be valuable to prevent humans from being exposed to danger. In such
applications, robots have to deal with rugged terrain, steep slopes and changing
substrates. Under these conditions, walking robots are expected to show supe-
rior performance to wheel driven ones. Their advantages are, no need for paths
of continuous contact with the ground, the ability to step over or on obstacles
as well as to climb various rock formations. However, walking robots suffer
from limited payloads, which prevents them from carrying heavy instruments.
Thus, using a heterogeneous team of robots seems to be a promising solution.
Such a team could consist of large wheeled robots for supply and long distance
transport, aerial robots for overviewing the terrain and a team of highly mo-
bile multi-legged robots for local search and exploration tasks. Before tackling
the problem of multi-robot cooperation, first the important challenges of robust
locomotion and robust autonomous navigation need to be solved.

1

We believe, that each robot in a team should be able to fulfill its task in-
dependent of the other team members. This implies that each robot carries all
necessary sensors to perceive its own state as well as its immediate environment.
If available, it should use information provided by other robots, such as map
parts or localization data, but it should not be reliant on it. Furthermore, it
should be independent of a priori maps and external infrastructure such as GPS,
but it should be able to benefit from such information when accessible. The in-
dependence of other team members is an important feature since the failure of
a single robot must not compromise successful task completion.

In this paper we will focus on multi-legged robots as rough terrain specialists
in a heterogeneous robot team. In our opinion a stereo camera is the appropri-
ate sensor for perceiving the environment. It is light weight, versatile as well as
passive and can be used for motion estimation and creating geometrical models
of the environment. Further, its data could in future enable cognitive processes
relevant to the task. Additionally, for the walking task itself, a legged robot
already embeds many proprioceptive sensors, such as joint angle sensors and
joint torque sensors. Besides delivering information about the internal state of
the robot, they are also a valuable source of information about the environment.
Thus, including foot force sensors and an inertial measurement unit (IMU), the
perception of a walking robot is mainly based on a combination of visual, iner-
tial and tactile information. Some of these sensors give redundant information
which can be combined to improve the data quality and which can also enhance
robustness against sensor failure.

We believe that a legged exploration robot should use a layered control
architecture [4] consisting of a walking layer, a navigation layer and a high-
level task planner. The walking layer is responsible for the basic tasks of stable
standing and walking, but also provides reflexes for non-flat terrain to overcome
obstacles within the walking height reactively. For this purpose, the walking
layer mainly uses the proprioceptive sensors. The task of the navigation layer is
to guide the robot along an optimal path to a goal point using visual information
of the environment. In order to gain the largest benefit from visual and tactile
data, both layers should be strongly coupled. On the one hand, the navigation
layer should provide high-level motion commands and information that helps the
walking layer to anticipate upcoming terrain. On the other hand, the walking
layer should send current motion information and tactile clues about the ground
to the navigation layer. Further, it should provide information about the current
motion capability of the robot. For example, if the robot is heavily loaded or
damaged, the navigation layer needs to react by adapting the path. On the top
level, a task planner needs to generate tasks in order to fulfill the mission goal
and to handle exceptions. For example, if the navigation layer reports that the
desired goal point cannot be reached, the task planner has to choose a different
goal point.

The objective of this paper is to present a visual navigation algorithm for
the six-legged walking robot DLR Crawler (ref. Fig. 1). This robot is a pro-
totypic study for future exploration robots. It serves as a test platform to gain
experience in walking and navigation as a step towards an autonomous walk-
ing robot in a heterogeneous team of robots. The DLR Crawler implements
a walking layer using different gait algorithms and reflexes which enable it to
overcome obstacles within its walking height reactively. The navigation algo-
rithm generates motion commands for the walking layer to lead the robot along

2

Figure 1: The DLR Crawler within the gravel testbed

a short and safe path to a goal point. It is designed for unstructured terrain
and does not depend on external infrastructure such as GPS, nor a priori maps
of the environment are required. Only measurements from an on-board IMU,
leg odometry and the stereo camera are used to autonomously find and follow a
path to given goal point coordinates. The main points this paper discusses are:

• Stereo visual odometry algorithm with error estimation

• Multisensor data fusion of inertial, leg odometry and visual odometry
measurements for robust pose estimation using an indirect information
filter

• Dense elevation mapping from stereo disparity images computed by Semi-
Global Matching (SGM)

• Estimation of the terrain traversability according to the motion abilities
of the robot

• Path planning considering the estimated terrain traversability and the
current state of the robot

• Experimental results showing the accuracy of the navigation algorithm as
well as its robustness against visual disturbances

The paper is organized as follows: Section 2 will provide a brief overview
on related work in visual navigation. Section 3 introduces the DLR Crawler,
describing the hardware as well as the implemented walking algorithms and
reflexes. In Section 4 an overview of the visual navigation system is given.
Section 5 describes the stereo image processing and the visual odometry cal-
culation. The sensor data fusion algorithm for pose estimation is presented in
Section 6. Section 7 deals with mapping rough terrain and Section 8 describes
the traversability estimation. Path planning and motion control are presented
in Sections 9 and 10. In Section 11 the on-line implementation of the naviga-
tion algorithm is explained briefly. Experimental results of the visual navigation
system are shown in Section 12. Finally, Section 13 concludes this paper.

3

2 Related Work

In literature, several papers address autonomous rough terrain navigation. One
of the first systems which was able to autonomously navigate on rough terrain
was the Autonomous Land Vehicle (ALV) developed at the Hughes Artificial
Intelligence Center in 1987 [8]. It used a laser scanner to build a navigation
map and marked areas which would cause invalid vehicle configurations as un-
traversable.

NASA’s Jet Propulsion Laboratory developed the Rocky rovers, which were
test platforms for mostly sensor based navigation algorithms [30, 27]. They were
prototypes for the Sojourner Mars rover, which arrived on Mars in 1997. Using
a camera and a laser striper, it was able to detect and avoid obstacles along
its way [31]. However, these systems only used a binary representation of the
environment consisting of obstacles and free space.

The RANGER navigation system [23] is able to estimate the difficulty of
traversable areas by computing the configuration a vehicle would have on certain
terrain points. This knowledge is then included into the path planning process.
Based on RANGER the Morphin algorithm [35] was developed. Using stereo
images, it estimates the traversability of regular sized terrain patches by fitting
a plane to the data. Morphin uses the traversability measures of these patches
to evaluate the safety of possible steering arcs for the rover. These arcs are
further evaluated on their use for reaching the specified goal point. The arc
with the highest total vote is then commanded to the rover.

Morphin provided a basis for the development of the navigation software of
the Mars exploration rovers Spirit and Opportunity. Visual odometry, wheel
encoder readings and IMU data are combined for position estimation [28]. The
automatic navigation mode uses the local path planner GESTALT [12]. By
fitting a plane to a local terrain patch, the traversability of that grid cell is
estimated and steering angles are commanded which lead the rover along a safe
path in the direction towards the goal point. Since GESTALT is a local path
planner an additional global Field D* planner was implemented [5].

Konolige et al. presented a stereo vision based outdoor navigation system
using IMU, GPS and visual odometry [25]. Visual odometry, wheel encoder
readings, IMU data and GPS are used for position estimation. A ground plane
is extracted from the stereo depth images and obstacles are detected by thresh-
olding the height above the ground plane. A modified gradient planner is used
to plan global paths.

The four-legged robot BigDog implements a gait control system and an au-
tonomy and perception system [38]. It uses proprioceptive force and position
sensors, as well as GPS, an IMU, a stereo camera and a LIDAR scanner for
navigation. Visual odometry, leg odometry and IMU data are used for pose
estimation. Obstacles are detected using LIDAR and stereo vision and a 2D
cost map is created. There is no traversability estimation of the terrain but cell
costs are computed from obstacles and distances to obstacles. Using the cost
map, paths are planned using an A* planner.

4

3 The DLR Crawler

The DLR Crawler is a prototypic, six-legged, actively compliant walking robot
that is based on the fingers of DLR Hand II. It is a study for future exploration
robots that is intended to be used as laboratory testbed for the development
of gait and navigation algorithms. Following, a brief overview of the hardware
and the control algorithm is given while a detailed description can be found in
[14] and [15].

3.1 Hardware

The DLR Crawler has a total mass of 3.5 kg and its feet span an area of
350 mm× 380 mm. Each of the six legs has four joints and three active degrees
of freedom. All joints are driven by permanent magnet synchronous motors
in combination with harmonic drive gears and a tooth belt transmission. The
Crawler hosts a variety of proprioceptive sensors. Within each joint these are,
a motor angle sensor, a link side joint angle sensor as well as a joint torque
sensor. Additionally, each foot hosts a 6 degrees of freedom (DOF) force-torque
sensor and the body implements an IMU. For the purpose of visual odome-
try and vision based navigation a stereo camera head is mounted. Since the
robot is a laboratory testbed, all control computation is done externally on a
QNX realtime PC while the navigation algorithm employs an external Linux
computer. This allows to quickly test different algorithms with varying compu-
tational complexity without caring about optimized implementation on specific
on-board hardware at this stage. Further, the robot has an external 24 V power
supply and on-board power distribution.

3.2 Walking Algorithms and Reflexes

Two different gait algorithms are implemented on the Crawler. They differ not
only in their capability but also in their computational complexity. The first gait
is a tripod for moderate terrain with an underlying fixed coordination pattern
requiring little computational power. The second gait is based on a biologically
inspired variable coordination and multiple reflexes. This gait is more complex
but allows to handle more challenging terrain and is even able to handle leg loss.

In order to autonomously and stably negotiate mid-size obstacles and holes
which are within the walking height of the Crawler, reactive behaviors are
needed. These are different reflexes that adjust the posture of the Crawler
or react to collisions during stepping motions.

The first reflex of the Crawler is the stretch reflex. The purpose of this
reflex is to enforce the ground contact during the power stroke of a leg. If after
a step the leg does not hit ground at the anticipated height or the leg looses
ground contact due to a rolling stone, the reflex gets activated and tries to find
contact by quickly extending the leg. It is triggered using torque thresholds of
the proximal and medial joints and is switched off if the leg achieves a certain
load or reaches some kinematic limit.

The second reflex is the elevator reflex that is triggered once a stepping leg
hits an obstacle. This reflex monitors all joint torques and gets activated after
some thresholds are passed. In this case it retracts and raises the leg in order
to surpass the obstacle.

5

The combination of these reflexes allows the Crawler to autonomously ne-
gotiate most obstacles within its walking height and to adapt to rough and
uneven terrain. The elevator reflex requires a flexible gait coordination since
its execution by a stepping leg causes extended power stroke phases in the sup-
porting legs. Thus, all reflexes together with the biologically inspired gait give
the Crawler the highest capability to master rough terrain. Nevertheless, the
use of the tripod pattern together with the stretch reflex is a good option for
easy terrain due to its achievable speed and low computational complexity.

4 Navigation Algorithm Overview

Autonomous navigation requires a robot to continuously estimate its current
position in the environment and to plan and follow a path to a predefined goal
point. An overview of the navigation algorithm for the DLR Crawler is shown
in Fig. 2. It uses the IMU, leg odometry and the stereo camera running visual
odometry for accurate and robust pose estimation. The estimated pose and the
depth images computed from the stereo data are used to build a 2.5D terrain
map. The traversability of the terrain is estimated from the map and a safe
and short path is planned to the goal point taking the motion capabilities of the
robot into account. Motion commands for following the path and the estimated
difficulty of the terrain are sent to the walking layer. The single blocks will be
described in detail in the following sections.

Stereo
Vision (5)

Pose (6)
Estimation

Mapping (7)

IMU

Walking Layer

Depth
Image

Travers. (8)
Estimation

Path (9)
Planning

Visual
Odometry

Leg
Odometry

Motion
Control (10)

Current Pose

Map

Travers. Map

Path

Motion Commands

Motion
Capability

Terrain
Difficulty

Figure 2: Overview of the navigation algorithm. Section numbers are given in
brackets.

5 Stereo Vision

The stereo camera head consists of two AVT Guppy F080B grayscale firewire
cameras. They contain a CCD chip with a resolution of 1032× 778 pixel. The
cameras are equipped with Theia wide angle lenses with a focal length of 1.3 mm.
That results in a horizontal opening angle of about 123◦. Sample images can
be found in section 12. The stereo baseline is about 50 mm.

6

The cameras are calibrated at full resolution and after that the images are
downscaled to 516× 389 pixel which is sufficient for this application and saves
computation time. The images are rectified by projecting both images onto a
common plane that has the same distance to both optical centers [18]. Recti-
fication enforces that the projection of any feature appears in the same image
row in both images. This saves processing time of the following steps.

5.1 Stereo Matching

Dense stereo matching is performed for computing depth images of the scenery
in front of the robot. A correlation based approach [20] is normally sufficient
for obstacle avoidance and navigation. However, it has been found that using
Semi-Global Matching (SGM) is more advantageous since it delivers denser
results with far fewer outliers [19]. Furthermore, SGM can also reconstruct thin
or small objects that are often undetected by correlation methods. For these
reasons, SGM has also been used in a real-time FPGA implementation for driver
assistance tasks [11].

SGM is based on the idea of pixel-wise matching, supported by a global
smoothness constraint. The resulting global cost function is minimized along 8
path directions that originate at the image border. Thus, 8 paths meet at every
pixel. They are combined by summing their costs and the disparity that min-
imizes the cost is chosen for each pixel separately. Occlusions and mismatches
are identified and invalidated by a left/right consistency check that inverses the
roles of both cameras and removes all disparities that differ. Census [39] has
been chosen as matching cost, due to its robustness against many radiometric
changes [22].

For real-time performance, an implementation on the GPU has been used.
The original implementation [10] has been extended for supporting Census as
matching cost. The GPU implementation runs with 4 − 5 Hz on VGA sized
images (640× 480 pixel) with 128 pixel disparity range on a GeForce GTX 275.
The runtime depends linearly on the number of pixels and disparities. In this
application, on images with 516×389 pixel with 128 pixel disparity range, a rate
of about 6 Hz is achieved. A customized FPGA implementation which enables
on-board processing for the DLR Crawler is anticipated in future.

5.2 Visual Odometry

Visual odometry is the determination of the camera movement with respect to
the environment. Stereo camera methods permit computing all six degrees of
freedom (i.e. translation and rotation) in contrast to mono camera methods that
can only determine the direction, but not the scale of motion. Visual odometry
is independent of wheel or leg slip, but it assumes a (mostly) static environment.

Since the anticipated frame rate is rather low, large motions can occur be-
tween consecutive images, especially if the robot rotates, i.e. turns left or right.
Therefore, a method has been chosen that does not rely on feature tracking
[21, 18]. Fig. 3 shows an overview of the method.

Feature points in consecutive left camera images are selected by the Harris
corner detector [17]. A square patch around each corner is used as feature
descriptor. The descriptor is extracted from Rank transformed [39] left images
for making the comparison of descriptors with the sum of absolute differences

7

Dense disparity
image

Set of 2D/3DCorner detect.

Stereo matching

Calculation of 3D pos.
Set of 2D

points points
Initial correspondences

Outlier detection

Calculation of transformation

Rigid camera motion

Set of corresp.
3D points

from previous image
Set of 2D/3D points

Rect. left
image

Rect. right

image

Subset of consistent,
corresp. 3D points

Figure 3: Overview of the used stereo visual odometry method

(SAD) robust against radiometric changes. The Rank transformation is slightly
inferior to Census, but can be computed faster. It has been found that using
such a non-parametric transformation is also robust against small rotations
and perspective changes, since they are tolerant against outliers, in contrast
to classical correlation methods like normalized cross correlation. It should
be noted that using scale and rotation invariant features such as SIFT is not
beneficial, since rotation around the optical axis will be minimal as well as scale
differences. In contrast, using rotation and scale invariant descriptors can lead
to worse results due to less discriminative power.

All corners of one image are compared against the corners of the previous
image for finding initial correspondences. Thereafter, the corners of the previous
image are compared to the corners of the current image and only those corre-
spondences that agree in both directions are retained. All of the corresponding
feature points are reconstructed in 3D in their own camera coordinate system
using the depth image from stereo matching. It is assumed that there are many
wrong correspondences.

For finding these correspondence outliers, the static scene assumption is
used. If the scene is static, then the 3D distance of two points in the previous
camera coordinate system must be the same as the distance of the corresponding
points in the current camera coordinate system. For comparing distances, it is
very important to take stereo reconstruction errors into account. Let x1, y1, z1

and x2, y2, z2 be two reconstructed feature points in the same camera coordinate
system. The distance between both is obviously

L =

√
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2
. (1)

An assumed uncertainty of εp = 0.2 pixel in the image plane propagates into
an uncertainty in the length by

εL =
εp
Lft

√
z2

1 (A+B + C) + z2
2 (D + E + F), (2)

A = ((x1 − x2) (t− x1)− (y1 − y2) y1 − (z1 − z2) z1)
2
, (3)

B = ((x1 − x2)x1 + (y1 − y2) y1 + (z1 − z2) z1)
2
, (4)

C =
1

2
(t (y1 − y2))

2
, (5)

D = ((x1 − x2) (t− x2)− (y1 − y2) y2 − (z1 − z2) z2)
2
, (6)

8

E = ((x1 − x2)x2 + (y1 − y2) y2 + (z1 − z2) z2)
2
, (7)

F =
1

2
(t (y1 − y2))

2
, (8)

with f as focal length in pixel and t as baseline, i.e. distance between both
cameras. The length L1 can be considered equal to L2, if

|L1 − L2| ≤ 3
√
ε2
L1

+ ε2
L2
. (9)

If this constraint is violated, then at least one of the correspondences must
be wrong. Otherwise, one or both may be correct. It appears that finding the
largest subset of corresponding points that satisfies the constraint for all pairs, is
an NP problem. Therefore, not the largest, but just a large consistent subset is
determined. All combinations of corresponding pairs are compared and stored.
The consistent subset is constructed by starting with the point that is consistent
to the most other points. Further points are incrementally added, if they are
consistent with all points that are already in the consistent subset, by preferring
the points with the highest number of further consistencies. This process ends
if there are no more points that are consistent with all other points of the set.
This method is similar to a random sampling approach (RANSAC), as it finds
a large outlier free subset by assembling it bottom-up from a small consistent
subset. However, in contrast to RANSAC, the method is deterministic as no
form of randomization is used. It should be noted that there are other methods
for finding a large outlier free set of correspondences, that could also be used
[2, 32]. However, the method described above has proven to be well suited for
this application because it is robust and has low computational costs.

The rigid motion is determined as the rotation and translation between
corresponding reconstructed points. It is computed in closed form by singular
value decomposition as shown by Haralick et al. [16]. A treatment for the special
case with planar point sets is shown by Arun et al. [1]. With this initial result,
Chauvenet’s criterion is used to identify and eliminate all correspondences, with
unexpected high errors.

The rigid motion is parametrized as x =
(
tx ty tz n1 n2 n3

)T
,

with t as translation vector, n as rotation axis and α = |n| as rotation angle,
with 0 ≤ α ≤ π. With the initial motion, corresponding points can be recon-

structed and the reprojection error vector y =
(
p′1x − p1x . . . p′ny − pny

)T
computed as the difference between feature point locations pi in the image and
the corresponding projected locations p′i of their reconstructions. Alternatively,
the error vector can be computed using the ellipsoid error model [29], which
is a very good approximation, but faster to compute and therefore preferred.
The function to be minimized (e.g. by Levenberg-Marquardt) is y = f (x) with
y0 = f (x0) as solution with the lowest reprojection error.

5.3 Visual Odometry Error Estimation

The original publication of the visual odometry method [21, 18] has been ex-
tended by estimating the motion error as well. This error depends not only on
the number, but also on the distribution of feature points in the image. About
εp = 0.5 pixel is a typical error in feature point localization (i.e. in the error
vector y), assuming that the correspondences are outlier free. The propagation

9

of this error into the parameters x results in the parameter error εx. For com-
puting this error, the function f (x) must be inverted. Since it is not invertible
in closed form (otherwise a non-linear optimization would not be needed), a
linearization is computed at x0 as approximation,

y = f (x) ≈ J0 (x− x0) + y0, (10)

with J0 as Jacobian matrix at the solution x0. The Levenberg-Marquardt
optimization computes the Jacobian matrix internally, which may be reused, or
it can be computed from scratch by numerical forward differentiation of f (x0).
For small values x−x0, the linearization is a good approximation of the original
function. This approximation can be inverted by x−x0 = J+

0 (y − y0), with J+
0

as pseudo inverse of the Jacobian, computed by singular value decomposition.
In this formulation, the error εp can be propagated individually, corresponding
to each element of y, by εix = J+

0 ε
i, with εi as null vector with only element i

set to εp. If independent errors are assumed, then the individually propagated
errors are simply the square root of the sum of squares according to the rules
of error propagation. This is effectively the same as multiplying the pixel error
with the L2 norm over the rows of the inverse Jacobian, i.e.

εxk = εp
∣∣J+

0k

∣∣ , (11)

with εxk as k-th element of the error vector εx and J+
0k as the k-th row of J+

0 .
It is important to understand that the estimation of the visual odometry error
εx implicitly includes all sources of errors due to bad conditioned scenes with
weak texture or low contrast, like low number of correspondences, feature points
that are clustered in an image area, etc. Therefore, it is a very good value for
judging the quality of visual odometry for fusion with other ego-motion sensors.

To get an estimate of the absolute motion error, all relative error estimates
εx have to be propagated. The motion x =

(
t n

)
from one image to the next

can be written as rotation matrix R (n), that is computed from the angle-axis
notation n, and a translation vector t, such that a point P j+1 in the (j + 1)-th
camera coordinate system is transformed into the previous camera coordinate
system by P j = R (n)P j+1 + t. The absolute motion (i.e. relative to the first
camera coordinate system) is then computed as

nj+1 = R−1 (R (nj)R (n)) ,

tj+1 = R (nj) t+ tj , (12)

with R−1 as the function that computes the angle-axis parameters from the
given rotation matrix. To obtain the absolute motion error εxj+1

corresponding
to the (j+1)-th camera position, the absolute motion error εxj

is combined with
the relative motion error εx by adding each of the six elements of both error
vectors individually to the corresponding elements of xj and x. Using (12), this
results in 12 (erroneous) estimates x′j+1 of the absolute motion from which the
unbiased absolute motion xj+1 is subtracted. The parameter difference between
rotations n and n′ in angle-axis form is computed as

∆n =

{
n− n′ nTn′ ≥ 0,

min
(
n− n′, n |n|−2π

|n| − n
′
)

otherwise,
(13)

10

for considering the discontinuity of the angle-axis notation. It is important to
note that the parameter difference of the rotation is not equal to the difference
rotation. It is only used for specifying the error in the corresponding parameters.
According to the rules of error propagation, the 12 individual differences/error
vectors are combined by component wise computing the square root of the sum
of the 12 squared elements. This leads to the error vector εxj+1

, that corresponds
to xj+1. In the whole discussion, covariances were ignored by always assuming
independent errors for reasons of simplicity.

The absolute motion error estimate is used for another extension of the orig-
inal work, which optionally computes the rigid motion not only to the previous
image, but independently to all images of a set of previous images. The motion
estimate with the minimum absolute motion error estimate is taken as result.
For saving computation time, the set contains only a limited, small number of
previous images. After computing the motion, the current image replaces either
an image to which the motion could not be calculated (i.e. which is too old) or
the one with the highest overall motion error estimate. With this strategy, so-
lutions with lower overall motion error estimates are preferred and motion drift
is minimized. The computation time is minimized by storing the 3D locations
and rank signatures of the images as intermediate results, instead of the images
themselves. Thus, the most expensive steps only need to be done once.

We found that this strategy makes visual odometry very robust and reduces
drift, especially in situations with slow motion in comparison to the frame rate,
e.g. the drift will be zero, if the system does not move. However, we do not
utilize this option in the current work, because it would make motion fusion
much more complicated as the visual odometry is computed to different images
in the past. Instead, we only used incremental visual odometry, which calculates
motion always to the previous image.

6 Pose Estimation

In this section, the multisensor data fusion algorithm as already presented in [7]
is explained which uses an indirect information filter for fusing inertial measure-
ments of the IMU with relative translation and rotation measurements from the
3D visual odometry and 3D leg odometry of the Crawler. Sensor data fusion
is used to achieve more accurate and robust pose estimates than obtained by
using motion measurements of a single sensor.

6.1 Motion Sensors

In addition to the stereo camera running visual odometry as described in the
previous section, the DLR Crawler uses an XSens IMU and leg odometry as
motion sensors.

The XSens IMU is based on MEMS inertial sensors and consists of three ac-
celerometers and three gyroscopes measuring the accelerations in x, y, z direction
and the angular velocities around the three axis, respectively. 3D magnetometer
data is also available but in the current work only calibrated accelerometer and
gyroscope measurements are used at a rate of 120 Hz. The full scale accelera-
tions and rates of turn are 50 m/s2 and 1200 deg/s, respectively. Accelerometer
noise is 0.008 m/s2 and gyroscope noise is 0.006 rad/s. Since the accelerome-

11

ters also sense the gravity, absolute roll and pitch angles can be derived. By
integrating the accelerations and angular velocities, the velocity, position and
orientation of the IMU can be computed. However, since the accelerometer and
gyroscope measurements are biased, the errors in position and orientation will
grow unbounded due to the integration. For this reason, the IMU needs to be
corrected by other sensors with less drift to give good position estimates. The
advantage of the IMU is that it only depends on the present gravity and apart
from that is independent of environmental conditions.

Using the leg joint angle and joint torque measurements, a 6 DOF odometry
of the DLR Crawler is computed. It estimates relative pose changes of the
robot based on matching point clouds, which are represented by the positions
of the supporting feet. The algorithm assumes rigidity of the configurations,
which implies a no slip condition for the feet. Hence, the quality of the relative
leg odometry measurements depends on the ground conditions. Since the basic
odometry is subject to strong drift of the pitch and roll angles, the joint torque
sensors are used to compute an estimate of the earth gravity direction which
allows to stabilize the absolute roll and pitch angles using an error state Kalman
filter.

For optimally combining the measurements of all available motion sensors,
a multisensor data fusion filter was developed. Since the IMU sends data at
the highest rate and is independent of environmental conditions, it was chosen
to be the main sensor for pose estimation. The IMU is aided by relative visual
odometry and relative leg odometry measurements. Leg odometry and visual
odometry can be considered as complementary because usually rough terrain,
where leg odometry is prone to slip, has good texture and allows accurate visual
odometry measurements, and vice versa.

6.2 Filter Choice For Multisensor Data Fusion

For multisensor data fusion, usually, probabilistic estimators such as the Kalman
filter or its inverse formulation, the information filter, are used. In this applica-
tion, an indirect feedback information filter is used. The information filter has
the advantage that fusing measurements of multiple sensors at the same time
can be achieved very easily. The indirect or error state form works on an error
state vector which contains the errors of the actual state rather than the state
variables themselves. The advantage is that no model of the usually nonlinear
robot dynamics is required but the filter is based on linear equations describing
the error propagation in the inertial system. The feedback formulation means
that the estimated error is fed back into the IMU navigation equations to correct
the current position, velocity and orientation estimates. For this, the estimated
error states are kept small and small angle approximations in the filter equa-
tions are possible. That also means that the error state can be predicted as
zero for each new filter step. Furthermore, the indirect filter formulation allows
the filter to be run at a lower frequency than the inertial navigation equations.
For a more detailed discussion of the different filter formulations the reader is
referred to Roumeliotis et al. [34].

The information filter is numerically equivalent to the Kalman filter but has
inverse complexity properties. In particular, while the prediction step of the
Kalman filter is computationally simple and the update step is complex, the
information filter equations yield a complex prediction step and a computation-

12

ally cheap update step. For transforming the indirect Kalman filter into the
information form, the information matrix Y and the error information vector
∆y are defined as

Y = P−1 and ∆y = Y ·∆x, (14)

where P is the estimation covariance matrix and ∆x is the error state vector.
Transforming the Kalman filter equations such that Y and ∆y are estimated
results in the prediction step

Y −t = (AtY
−1
t−1A

T
t +Qp

t)
−1 (15)

∆y−t = Y −t (AtY
−1
t−1∆yt−1), (16)

where At is the state transition matrix and Qp
t is the process noise matrix. In

the feedback form, the prediction (16) can be simplified to ∆y−t = 0 because it
is assumed that the error is corrected after each filter step. The update step of
the information filter becomes

Y t = HT
t (Qm

t)−1Ht + Y −t (17)

∆yt = HT
t (Qm

t)−1zt + ∆y−t , (18)

where Ht is the measurement matrix and Qm
t is the measurement noise matrix.

In the indirect formulation, the measurement vector zt is the difference between
the IMU measurements and the measurements of an aiding sensor. The update
step can be written as

Y t = It + Y −t , with It = HT
t (Qm

t)−1Ht, (19)

∆yt = it + ∆y−t , with it = HT
t (Qm

t)−1zt. (20)

The term It is the amount of information in the measurement and it is the
contribution of the measurement zt to the state vector [9]. If there are several
measurements zk,t at a timestep t we get

It =

n∑
k=1

HT
k,t(Q

m
k,t)
−1Hk,t =

n∑
k=1

Ik,t (21)

it =

n∑
k=1

HT
k,t(Q

m
k,t)
−1zk,t =

n∑
k=1

ik,t. (22)

The simplicity of the update stage of the information filter originates from the
fact, that the measurements of the single sensors are conditionally independent.
Hence, the information form of the Kalman filter has computational advantages
for multisensor data fusion. The routines for computing Ik,t and ik,t for each
measurement are independent of each other and independent of Y −t and ∆y−t
and can run in parallel and on distributed systems. The disadvantage is, that
a matrix inversion is required to obtain the error state vector ∆xt from the
information vector ∆yt. However, the more external sensors are used, the higher
the benefit of using the information filter.

13

6.3 State Vector and State Transition Model

For implementing the information filter we chose to use a state vector consisting
of 15 variables: The position p (3), the velocity v (3), the orientation Euler
angles ϕ (3), the bias of the gyroscopes bg (3) and the bias of the accelerometers
ba (3). In the indirect formulation the error state vector

∆x = (∆p,∆v,∆ϕ,∆bg,∆ba)T (23)

is used. The position p and velocity v variables are given in world coordinates
with the origin located at the IMU origin at the beginning of the data fusion
process. The Euler angles ϕ are the angles of the rotation matrix that turns
a point from the IMU coordinate system to the world coordinate system. The
bias values bg and ba are given in IMU coordinates.

The use of Euler angles for representing the orientation of the robot is valid in
this application, because configurations which cause the Euler angle gimbal lock
problem (such as 90◦ pitch) will not be reached by the robot. Euler angles have
been chosen because they provide an intuitive representation of orientation. For
applications where gimbal lock can occur representations such as rotation vector
or quaternions should be used. However, in the error state vector, the orientation
error ∆ϕ always contains small Euler angles, which are, thus, equivalent to the
components of a rotation vector. This can easily be shown by applying small
angle approximation when computing a rotation matrix from Euler angles and
from a rotation vector.

The discrete time error state propagation originates from the inertial error
dynamics [37] as

∆x−t = At ·∆xt−1 (24)

At = I−


0 −I 0 0 0
0 0 R−t b(at − b

−
a,t)×c 0 R−t

0 0 0 R−t 0
0 0 0 0 0
0 0 0 0 0

∆t (25)

bo×c =

 0 −oz oy
oz 0 −ox
−oy ox 0

 , (26)

where I is the identity matrix (not to confuse with the information amount
It), at = (atx, aty, atz)

T is the acceleration measured by the IMU, b−a,t is the

predicted accelerometer bias, R−t is the propagated rotation from the IMU
coordinate system into the world coordinate system and ∆t is the time difference
between t− 1 and t.

6.4 The Multisensor Data Fusion Process

An overview of one time step of the data fusion process is given in Fig. 4.
First, the accelerations at and angular velocities ωt measured by the IMU are
fed into a strapdown algorithm. Considering the state vector xt−1 from the
previous filter step, this algorithm integrates the IMU measurements to velocity
v−t , position p−t and orientation Euler angles ϕ−t . These values are the predicted

14

IMU





































1,

1,

1

1

1

1

ta

tg

t

t

t

t

b

b

v

p

x 

Strapdown

tta ,










































1,,

1,,

tata

tgtg

t

t

t

t

bb

bb

v

p

x 


ttt vp ,,































ta

tg

t

t

t

t

b

b

v

p

x

,

,



Indirect
Information

Filter

Aiding
Sensors

-
+

State

Vector

Predicted

State Vector

Measure-

ments

Estimated Error

State Vector

Corrected

State Vector

























ta

tg

t

t

t

t

b

b

v

p

x

,

,



Figure 4: Overview of the multisensor data fusion process

state variables. The bias values b−a,t and b−g,t are predicted to be equal to the
bias values of the last filter step. Every time one or more measurements of the
aiding sensors are available, the indirect information filter is run and gives an
estimated error state vector ∆xt. This error state vector is then subtracted from
the predicted state vector x−t to feedback the error. The result is the corrected
state vector xt. If no measurements of the aiding sensors are available, the
error state vector is zero and the corrected state will be the predicted state.
The strapdown block and the information filter block are described in more
detail in the following sections.

6.4.1 The Strapdown Algorithm

The accelerations and angular velocities of the IMU are measured in the IMU
coordinate system. Since the IMU moves, the accelerations have to be trans-
formed into the world coordinate system before integrating them. For this, the
rotation matrix Rt, which turns a vector from the IMU coordinate system into
the world coordinate frame, has to be computed.

The rotation matrix can be propagated using the gyroscope measurements
ωt. Assuming a high sampling rate (∆t is small), the propagation of the rotation
matrix can be performed as follows [3]:

R−t = Rt−1R∆,t (27)

R∆,t = I +
sin |φt|
|φt|

bφt×c+
1− cos |φt|
|φt|2

bφt×c2 (28)

|φt| =
√
φ2
x,t + φ2

y,t + φ2
z,t (29)

φt = (ωt − b−g,t)∆t. (30)

R−t is the propagated rotation matrix, which is computed from the rotation
matrix Rt−1 of the last time step and a differential rotation R∆,t. The variable
φt is the rotation vector.

15

Knowing the rotation matrix, the IMU velocity v−t and position p−t can
be computed. The acceleration measurements at have to be compensated for
bias b−a,t, transformed into the world frame using R−t and the gravity vector

g = (0, 0,−9.80665)T must be compensated:

v−t = vt−1 + (R−t (at − b−a,t) + g)∆t (31)

p−t = pt−1 + vt−1∆t+ 1
2 (R−t (at − b−a,t) + g)∆t2. (32)

6.4.2 The Indirect Information Filter

Within the indirect information filter relative and absolute measurements are
used to compute the estimated error state vector. While absolute measurements
only depend on the current state of the system, relative measurements contain a
difference between the current system state and a previous state. Since Kalman
filter theory assumes that a measurement only depends on the current state of
the system, relative measurements have to be treated in a special way. When
this fact is ignored, the data fusion filter might also give good results at the first
glance. However, viewed more closely, the resulting estimated variances are not
feasible: For example, when fusing an IMU with only relative position measure-
ments, one would expect that the estimated position variance grows with time,
because summing up relative position measurements results in a drifting posi-
tion estimate. However, if the relative character of the position measurements is
ignored, the resulting position variances are estimated small and constant over
time. This can cause serious problems when using another position sensor such
as GPS, which gives absolute but noisy position measurements. These measure-
ments will not influence the estimated position to the expected extent because
the position estimate after fusing only the relative measurements is overcon-
fident. Even if no absolute measurement was available for a longer time and
position drift is significant, the estimated position variance would be small.

To avoid this problem, the state vector and covariance matrix have to be
augmented to also contain the previous state which is part of the relative mea-
surement. This approach was described by Roumeliotis et al. [33] and termed
“Stochastic Cloning”. This method introduces the correlations between the
current and the previous state and hence allows to estimate a correct covari-
ance matrix, with growing variances over time if only relative measurements are
available.

To keep the augmented covariance matrix small, we chose to only clone the
covariances associated to the states pt and ϕt, because only relative position
and rotation measurements are used. At each time t = tStart when at least one
relative measurement starts, the covariance matrix is augmented as follows:

x̌t =

[
pt
ϕt

]
P̌ t = Cov(x̌t, x̌t) (33)

P aug
t =

[
P̌ tStart Cov(x̌tStart ,xt)

Cov(xt, x̌tStart) P t

]
, (34)

where Cov(xt, x̌tStart
) is the covariance between the states at time t and the

cloned states at tStart. Since the covariance P̌ tStart must not change during
prediction of the filter, the system matrix Aaug

t and the process noise matrix

16

Qp,aug
t become

Aaug
t = blkdiag [I,At] (35)

Qp,aug
t = blkdiag [0,Qp

t] , (36)

where blkdiag [U ,V] stands for a block diagonal matrix with the matricesU ,V
on its main diagonal.

Since in the information filter the inverse covariance is used, it must be en-
sured that in the prediction step (15) Aaug

t P aug
t (Aaug

t)T +Qp,aug
t is invertible.

For that reason, if two different relative measurements start at the same time,
cloning is applied only once to keep the covariance matrix full rank. If measure-
ments start at different times, the covariances between the different previous
states also have to be cloned correctly. At the end of each relative measure-
ment, the corresponding covariances are deleted from the augmented covariance
matrix because they are not needed any longer after the relative measurement
was processed. However, in this application, usually a relative measurement
starts at the same time the previous measurement ends. Thus, after deleting a
previous state, the current state is cloned for augmenting the covariance matrix
again. In this application, relative measurements from visual odometry and
leg odometry are usually taken at different rates. Thus, the augmented state
vector usually contains two different previous positions and orientations, each
corresponding to the starting time of a relative measurement.

Strapdown

ta IF Absolute
Roll, Pitch

IMU

Prediction





 aug
t

aug
t

y

Ytt

ttp

..

..

0

0



Visual
Odometry

Leg
Odometry

IF Relative
Rot., Transl.

IF Relative
Rot., Transl.

aug
t

aug
t

aug
t

aug
t

aug
t

aug
t

aug
t

aug
t

aug
t

yYx

iyy

IYY













1

Update

aug
tEuler

aug
tEuler

I

i

,

,

aug
tVO

aug
tVO

I

i

,

,

aug
tLO

aug
tLO

I

i

,

,

VOrel

VOrel

T

R

,

,

LOrel

LOrel

T

R

,

,

+

+

+

aug
t

aug
t

I

i

0

)(1,1

1











aug
t

augp
t

Taug
t

aug
t

aug
t

aug
t

y

QAYAY































ta

tg

t

t

t

t

b

b

v

p

x

,

,



Estimated Error

State Vector

Multisensor Indirect Information Filter

Figure 5: Overview of the multisensor data fusion information filter

The data flow within the indirect information filter for multisensor data fu-
sion is shown in Fig. 5. First, the augmented information matrix is predicted.
Then, for each available sensor measurement k at time step t the values for iaug

k,t

and Iaug
k,t are computed using the differences between the strapdown algorithm

results and the sensor measurements. Then, all available information amounts
Iaug
k,t and information contributions iaug

k,t are summed up and the update equa-
tions are performed. In the end, the resulting information vector is transformed
into an error state vector from which the cloned states are deleted. These steps
are described in more detail in the following sections.

17

Prediction Using the state transition matrix Aaug
t as given in (25) and (35),

the information matrix Y aug−
t is predicted using (16). The prediction of the

information vector simply becomes ∆yaug−
t = 0 because in the indirect feedback

information filter the error is corrected after each filter step.

Absolute Roll and Pitch Angle Measurements Since the accelerometers
of the IMU sense the gravity, which is known in size and direction with respect
to the world frame, it is possible to determine the absolute roll and pitch angles
γabs and βabs of the acceleration measurement a = [ax, ay, az]

T as follows:

γabs = atan2(ay, az), (37)

βabs = atan2(−ax, ay sin γabs + az cos γabs). (38)

From the absolute roll and pitch angles, an absolute rotation matrix Rabs can
be computed using

Rabs =

cβcα sγsβcα− cγsα cγsβcα+ sγsα
cβsα sγsβsα+ cγcα cγsβsα− sγcα
−sβ sγcβ cγcβ


sϕ = sinϕabs cϕ = cosϕabs (39)

For this, the yaw angle αabs is set to be equal to the yaw angle of the propa-
gated rotation matrixR−t because it cannot be determined from the acceleration
measurements.

The absolute roll and pitch angles obtained from the acceleration measure-
ments contain a high level of noise. The noise is caused by additional accelera-
tions that occur when the robot moves. Hence, the absolute noisy angles must
be fused with low-noise angular measurements. The propagated rotation matrix
R−t as computed in (27)-(30) contains the roll and pitch angles from integrating
the gyroscope measurements. These angles do not suffer from high noise but
from a drift caused by integrating the sensor values. By fusing Rabs and R−t ,
the roll and pitch Euler angles can be determined quite accurately without drift
and high noise. The difference rotation matrix between the propagated rotation
R−t and the absolute rotation Rabs is computed as

Rdiff = R−t ·R
T
abs. (40)

Using the equations

α = atan2(R(2,1),R(1,1))

β = atan2(−R(3,1),R(2,1) sinα+R(1,1) cosα)

γ = atan2(R(1,3) sinα−R(2,3) cosα,

−R(1,2) sinα+R(2,2) cosα) (41)

to extract Euler angles from the elements R(i,j) of a rotation matrix, the angle
differences γdiff and βdiff can be computed from Rdiff which give the measure-
ment vector zEuler,t:

zEuler,t =

[
γdiff

βdiff

]
(42)

18

The measurement matrix HEuler,t which projects the state vector xt onto
the measurement vector zEuler,t is

HEuler,t =
[
02×6 I2×2 02×7

]
(43)

For the augmented state vector, the measurement matrix has to be augmented
with zeros to

Haug
Euler,t =

[
0 HEuler,t

]
, (44)

because the measurement does not depend on any previous states but is ab-
solute. The measurement noise matrix Qm

Euler,t contains the variances of the
absolute roll and pitch angle measurements and can be found by filter tuning.

Knowing zEuler,t,H
aug
Euler,t,Q

m
Euler,t the information contribution iaug

Euler,t and

the information amount Iaug
Euler,t are computed using (19)-(20).

Using absolute angles obtained by accelerometer data as measurements for
the data fusion filter violates Kalman filter theory which assumes that mea-
surement noise and process noise are uncorrelated. Hence, the filter result is
suboptimal. However, the suboptimal filter result is still better than not using
absolute roll and pitch angle measurements for limiting the drift of the orienta-
tion estimates.

Relative Translation and Rotation Measurements The relative motion
measurements have to be fused with the relative rotations and translations
computed by the strapdown algorithm within the same time period. Visual
odometry as well as leg odometry provide relative position and orientation mea-
surements between two consecutive images or robot poses, respectively. Visual
odometry and leg odometry are fused in the same way as relative translation
and rotation measurements. Thus, they will both be referred to as “odometry
sensor” and not be distinguished in the next paragraphs.

A relative measurement has two timestamps tstart and tend at the beginning
and the end of the relative measurement. Furthermore, for fusing relative ro-
tations and translations, all values must be represented in the same coordinate
system. That means, the relative measurements of all sensors have to be trans-
formed into relative measurements in the IMU coordinate frame in order to be
fused with IMU measurements. That also means, that the transformations be-
tween the different sensor coordinate frames must be known, either by design
or by calibration.

The differences between the relative motion given by the strapdown algo-
rithm in the time interval from tstart to tend and the relative motion measured
by the odometry sensor give the measurement vector zrel,t. In order to compute

the difference between two relative rotations RI
rel measured by the IMU and

RS
rel measured by an odometry sensor, an absolute rotation matrix has to be

computed. To preserve the relative character of the measurements, both relative
rotations have to be multiplied with the same absolute rotation matrix Rtstart

to get pseudo-absolute rotation measurements. This absolute rotation matrix
Rtstart should be the best estimate of the rotation from the IMU into the world
frame at time step tstart:

RI
tend

= RtstartR
I
rel, RS

tend
= RtstartR

S
rel. (45)

19

Now the rotational difference matrix can be computed as

Rdiff = RI
tend
· (RS

tend
)T . (46)

The measurement vector zrel,t contains the differences pdiff between the two
relative translations and the angle differences ϕdiff computed from Rdiff using
(41):

zrel,t = [pdiff,ϕdiff]
T
. (47)

The augmented measurement matrix Haug
rel,t which projects the augmented

state vector ∆xaug
t onto the measurement vector zrel,t is

Haug
rel,t =

[
−Hrel,tStart Hrel,t

]
. (48)

Hrel,t =

[
I3×3 03×3 03×3 03×6

03×3 03×3 I3×3 03×6

]
. (49)

In the measurement matrix Haug
rel,t the relative character of the measurements

must be represented. This is achieved by the matrix Hrel,tStart which contains
an identity matrix in the columns corresponding to the location of the cloned
covariance of time tStart and zeros everywhere else.

The measurement noise matrix Qm
rel,t is computed from the standard devi-

ations of the relative position and rotation measurements. For leg odometry,
the measurements errors depend on how much the feet of the robot slip on
the ground. On homogeneous ground the amount of slippage can be assumed
constant and found by filter tuning. Using visual odometry, assuming constant
standard deviations for the relative motion measurements is not appropriate for
environments with changing light or texture conditions. Thus, the estimated
errors of each visual odometry measurement (ref. Sec. 5.3) are transformed
into the IMU coordinate system using error propagation and then fed into the
measurement noise matrix.

Knowing zrel,t,H
aug
rel,t,Q

m
rel,t the information contribution iaug

rel,t and the in-

formation amount Iaug
rel,t are computed using (19)-(20).

Update At every time step, iaug
k,t and Iaug

k,t of each available sensor measure-
ment are computed. In the final step of the multisensor information filter, these
values are summed and used to update the predicted information vector and
information matrix using (19)-(20). Finally, the resulting information vector
∆yaug

t is transformed into an error state vector ∆xaug
t . From ∆xaug

t , ∆xt is
extracted, which contains the estimated errors of the single robot states. By
inverting the resulting information matrix Y aug

t , the covariance matrix P aug
t

can computed if required and P t can be extracted.

6.4.3 Error State Feedback

To correct the position, velocity and bias values of the predicted state vector
x−t , the corresponding error estimates from the error state vector ∆xt are sub-
tracted. For feeding back the estimated rotation angle error ∆ϕt, a rotation
matrix Rcorr has to be computed from ∆ϕt using

Rcorr = I + b∆ϕt×c (50)

20

and correction is performed as

Rt = RT
corr ·R

−
t . (51)

From Rt the corrected Euler angles can be extracted via (41).

6.5 Filter Initialization

In the beginning of the data fusion process the robot is motionless in its starting
position. This phase can be used for filter initialization.

From the very first IMU measurement, the starting orientation Rt0 with
respect to the gravity vector is estimated from the acceleration measurements
at0 as shown in (37)-(38). Furthermore, the bias estimates ba,t0 and bg,t0 are
initialized using the starting orientation, the known gravity vector g and the
gyroscope measurements ωt0 . Good starting values for the sensor biases are

ba,t0 = at0 +RT
t0 · g (52)

bg,t0 = ωt0 . (53)

From the following IMU measurements, the estimates of the bias values and the
starting orientation can be refined exploiting the fact that the robot does not
move. Hence, position, velocity and orientation measurements with the value
of zero and small noise matrices are fed into the information filter. As a result
the bias value estimation stabilizes. Furthermore, the absolute roll and pitch
angle measurements from the accelerations are fused with the orientation mea-
surements from the gyroscopes as described in section 6.4.2. The initialization
phase is finished when the change in the bias estimates drops below a thresh-
old. This process usually takes a few seconds. Once the information filter is
initialized, the robot can start moving and visual odometry and leg odometry
measurements are used.

6.6 Filter Results

Results of using the multisensor data fusion filter for position estimation com-
pared to using only visual or leg odometry are shown in Fig. 6. In this experi-
ment, the Crawler was steered manually along a rectangular path in a testbed
filled with gravel. An external infrared tracking system provided ground truth
trajectories. Fig. 6(a) shows the test setup with the robot in its starting pose
and the approximate steered path. Fig. 6(b) shows the ground truth trajectory
measured by the tracking system, the fusion result and the different odometry
trajectories which were obtained by summing the relative measurements of the
respective sensors. The trajectory computed using only the IMU measurements
is not shown here because its enormous drift leads to an error of more than 100 m
after 60 s runtime. The visual odometry trajectory is quite accurate apart from
a small drift of the yaw angle. The leg odometry trajectory shows that yaw an-
gles are overestimated because of slip in the gravel (ref. Fig. 6(d)). The fusion
trajectory is very close to the ground truth path. Fig. 6(c) shows plots of the
z-coordinates. While visual odometry and leg odometry drift due to roll and
pitch angle errors, the estimated z-coordinate of the fusion result remains close
to the ground truth curve because of absolute roll and pitch angle measurements
from the accelerometers. Fig. 6(e) shows the standard deviations of the position

21

estimates computed from the estimation covariance matrix. As can be seen, the
standard deviations grow with time since no absolute position measurements
are available. The detailed plot in this figure illustrates the influence of the
relative measurements on the covariance: Visual odometry measurements usu-
ally have lower uncertainty than leg odometry measurements and, thus, reduce
the estimation covariance more than the leg odometry measurements. However,
during turning in the corners of the testbed, the errors of the visual odometry
measurements are higher. The reason for that is the texture of the testbed walls
which is worse than the texture of the gravel. Hence, the covariances increase
stronger during these periods. A more detailed overview of the filter perfor-
mance including experimental results under poor visual conditions are given in
[7].

7 Mapping

A digital terrain model (DTM), which is incrementally built from the depth
images computed by SGM, was chosen as internal map. The DTM represents
the environment as a regular grid and each grid cell stores a single height value.
Although this model cannot be used to represent multiple height values per grid
cell, it is sufficient for many applications where overhangs are rare, such as plan-
etary surface exploration. DTMs need only little storage space in comparison
to full 3D models and path planning algorithms can be applied easily.

Mapping is performed in two steps. First, a local DTM is created from a
single depth image. After that, the local DTM is attached to the global DTM.

The traditional method for creating a local DTM from a range measure-
ment such as a depth image is the reconstruction of the 3D coordinates P c =
(P cx , P

c
y , P

c
z) in the camera coordinate frame c from the image points pilx, p

i
ly, p

i
d

in the image coordinate frame i using

P cx =
t · pilx
pid

=
t · pilx

pilx − pirx
(54)

P cy =
t · pily
pid

=
t · (pily + piry)

2 · (pilx − pirx)
(55)

P cz =
t · f
pid

=
t · f

pilx − pirx
(56)

with f as focal length in pixels and t as stereo baseline. The resulting point
cloud is then projected onto the grid. This approach was presented in [6].
Although the stereo disparity image is dense, this approach can result in sparse
maps because the optical axis of the camera is usually not perpendicular to the
surface but the surface is viewed at a certain angle.

The locus method [26] is an efficient way to create dense height maps with
arbitrary resolution from range images. It finds the elevation z at a point
(ux, uy) of a reference plane by computing the intersection of the terrain with
a vertical line at (ux, uy). The projection of the vertical line on the image is
called locus. The intersection point with the terrain is computed in image space
rather than Cartesian space. For each cell in the DTM a vector representing a

22

(a) Test setup and steered trajectory

−0.4−0.200.20.40.60.811.21.41.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x [m]

Tracking

Leg Odometry

Visual Odometry

Fusion

y [m]

Start

(b) Recorded trajectories

0 20 40 60 80 100 120 140 160 180

−0.15

−0.1

−0.05

0

0.05

0.1

time [s]

P
os

iti
on

 z
 [m

]

Tracking
Leg Odometry
Visual Odometry
Fusion

(c) z-coordinates

0 20 40 60 80 100 120 140 160 180
−400

−300

−200

−100

0

time [s]

Y
aw

 a
ng

le
 [d

eg
re

es
]

Tracking
Leg Odometry
Visual Odometry
Fusion

(d) Yaw angles

(e) Standard deviations computed from the estimation
covariance matrix

Figure 6: Test run for filter performance evaluation

vertical line l is computed as

l = (u,v) =
(

[ux, uy, uz]
T
, [vx, vy, vz]

T
)
, (57)

where u is a point and v is a unit directional vector. Each point r on the line

23

is then represented by

r = u+ λv. (58)

For a vertical line in world coordinates the values of u and v become

u = [ux, uy, 0]
T

(59)

v = [0, 0, 1]
T
. (60)

Using the rotation matrix Rw
c which turns a point from the camera coordinate

frame c to the world coordinate frame w and the translation tw from the world
coordinate frame to the camera coordinate frame, this line can be transformed
into camera coordinates:

lc = (u,v) =
(
(Rw

c)T (u− tw), (Rw
c)Tv

)
. (61)

By projecting lc onto the disparity image, a generalized locus is obtained. The
intersection of the locus with the disparity profile gives the elevation of the grid
cell at (ux, uy). The projections ri = (rilx, r

i
ly, r

i
d)
T of all points rc of line lc

onto the image also form a line li with

rid =
f · t
rcz

(62)

rilx =
rid · rcx
t

=
f · rcx
rcz

(63)

rily =
rid · rcy
t

=
f · rcy
rcz

. (64)

The intersection of li with the disparity profile of the image has to be computed.
Due to the orientation of the camera with respect to the world coordinate sys-
tem, it is beneficial to parameterize the locus line by the image row coordinate
rily, because a vertical line in world coordinates will most likely run through all
rows in the image, but will only appear in few columns. Hence, line equations
for the column rilx = f(rily) = axr

i
ly +nx and disparity rid = f(rily) = adr

i
ly +nd

can be created by transforming two distant points rc1 and rc2 on lc into image
coordinates (rilx1, r

i
ly1, r

i
d1) and (rilx2, r

i
ly2, r

i
d2) and determining the line equation

parameters slope a and offset n for disparity (index d) and column (index x).

ax =
rilx1 − rilx2

rily1 − rily2

nx = rilx1 − ax · rily1 (65)

ad =
rid1 − rid2

rily1 − rily2

nd = rid1 − ad · rily1 (66)

The first step for finding the intersection is to search two sample points
(rilx1, r

i
ly1, r

i
d1) and (rilx2, r

i
ly2, r

i
d2) on the line which fulfil the condition

rid1 < pid(r
i
lx1, r

i
ly1) (67)

rid2 > pid(r
i
lx2, r

i
ly2). (68)

For doing so, the first sample point is searched for by starting at the bottom
row of the image; searching for the second sample point starts at the top row.

24

For each row, the disparity and column values can be computed using the line
equations above.

After finding those two sample points, binary search can be applied between
these points to find the intersection riilx, r

i
ily, r

i
id with riid = pid(r

i
ilx, r

i
ily). It

should be noted that there are image pixels which do not have a valid disparity
value. If the search reaches such a pixel, the search terminates and a linear
search is performed between the current interval boundaries. If the search in-
terval cannot be reduced any further and the disparity difference between the
boundary values pid(r

i
lx1, r

i
ly1) and pid(r

i
lx2, r

i
ly2) is within a certain threshold

(range shadows), the intersection is found and calculated as

riilx =
rilx1 + rilx2

2
(69)

riily =
rily1 + rily2

2
(70)

riid =
rid1 + rid2

2
(71)

If multiple intersection points are found by the linear search, only the inter-
section with the highest elevation is considered. From the intersection point, the
elevation value can be calculated using the reconstruction formulas in (54)-(56).

Fig. 7 shows the top views on local maps created by the traditional approach
and by the locus method with colors indicating the elevations. As can be seen,
the locus method gives denser terrain maps with less artifacts.

(a) Traditional approach (b) Locus method

Figure 7: Comparison of a local map created by the traditional and the locus
method

Since in stereo vision the error of reconstructing the distance of an object
point grows quadratically with the distance of that point from the camera,
the size of the local map was limited to 1 m. That prevents erroneous range
measurements from being inserted into the terrain map.

Each local DTM from a depth image is attached to the global DTM using the
estimated robot pose at the time of image acquisition. Existing height values
are overwritten by newer values. This approach is prone to errors from pose
estimation, which can cause artifacts in the DTM. However, these errors remain

25

small for small scale maps and can be considered in the traversability estimation
process by taking the time into account when the height value was inserted into
the global map.

8 Traversability Estimation

Based on the global terrain model, the traversability of the cells is assessed
as presented in [6]. Each cell is assigned a danger value d (d ∈ {[0, 1],∞})
describing the terrain difficulty. A cell is traversable if the robot is not exposed
to critical terrain hazards irrespective of its orientation given its center is located
in that cell. Thus, the robot can be treated as a point in further computations.
A danger value of d = 0 stands for completely flat, smooth terrain, which can be
traversed by the robot most easily. Higher danger values are assigned to areas
which are harder to pass. A value of d = 1 describes terrain which is just barely
traversable for the robot. Untraversable regions are assigned d =∞. Unknown
areas are assumed to be traversable but are assigned a high danger value of
d = 1.

There are three potential hazards: steep slopes, high terrain roughness and
high steps. Each of these criteria must be estimated from the DTM. If one of
the hazard criteria exceeds the corresponding critical value, the cell is marked
as untraversable. The critical values scrit, rcrit and hcrit are the maximum slope,
roughness and step height which the robot can traverse without tipping over or
getting stuck. For traversable cells the danger value is computed from the three
types of hazards as

d = α1
s

scrit
+ α2

r

rcrit
+ α3

h

hcrit
, (72)

where α1, α2 and α3 are weight parameters which sum up to 1.
Similar to the traversability estimation in GESTALT [12], the slope s of a

cell is calculated by fitting a plane in a circular region around the cell with
a diameter corresponding to the maximum diameter of the robot. The angle
between the plane normal and the z-axis of the global coordinate frame gives
the slope inclination s. The terrain roughness r is calculated as the standard
deviation of the terrain height values from the computed plane in the circular
region around the cell.

The step height h is computed in two steps. First, local height differences
within a square window of several (e.g. 11× 11) grid cells are computed for all
cells in the circular region. If the maximum height difference between any cell
in that window and the center cell of the window is greater than the critical
step height hcrit and the slope between the corresponding two terrain points is
higher than the critical slope scrit, the maximum height difference is stored as
the temporary step height of the central cell of the window. Second, the step
height of the central cell of the circular region is computed as

h = min(hmax, hmax ·
nst
ncrit

), (73)

where hmax is the maximum temporary step height in the circular region, nst
is the number of cells in the circular region whose temporary step heights are
higher than the critical step height and ncrit is the valid number of cells (e.g. 50)

26

(a) DTM (b) Danger Value

(c) Slope (d) Roughness (e) Step Height

Figure 8: Danger value computation from the criteria slope, roughness and
step height (scrit = 20◦, rcrit = 30 mm, hcrit = 50 mm, α1 = 0.5, α2 = 0.25,
α3 = 0.25)

with a temporary step height higher than the critical step height. This method
for calculating the step height also detects small steep slopes as steps and is
robust to missing terrain information.

Fig. 8 illustrates the computation of the danger value from the three cri-
teria. It shows that the step height is well suited for detecting whether a cell
is traversable or not, but it provides little information about the difficulty of
the traversable cells. By contrast, the slope and roughness criteria can fail to
detect untraversable cells but are better suited for estimating the difficulty of
traversable cells.

The terrain traversability is reestimated every time a new local map is added
to the global map. It is not necessary to recompute danger values for the
complete global map. Only the cells within the area of the new local map
surrounded by a border of the size of the robot have to be reestimated.

As mentioned above, artifacts can be present in the DTM, which must not
be detected as terrain hazards (ref. Fig. 9). For this reason, only height values
which were detected within a certain range ∆f of frame numbers are consid-
ered in the traversability estimation process. When reestimating the danger
of a cell that was detected impassable in the previous estimation step, height
values of a greater frame range ∆f ′ > ∆f are considered in comparison to
reestimating a previously traversable cell. Practical tests showed that taking
only height values within ∆f into account often causes untraversable cells to
be detected as traversable cells because nearby hazards are not covered by the
images. Thus, also considering older height values within ∆f ′ for reestimating
the traversability of previously untraversable cells gives more realistic results.

The traversability of a cell is only computed if a sufficient number of height
values is present in the circular rover-sized region around the cell. In addition
to the danger value, a certainty value is calculated as the percentage of available
height values in the circular region. This value is later required to decide whether
the active exploration of an area is necessary.

The described traversability estimation approach depends on many param-
eters such as the size of the robot, the critical step height, roughness and slope
values and the weight of the three criteria for calculating a danger value. These

27

Figure 9: Traversability estimation of a DTM with artifacts caused by errors
in position estimation: By considering only height values with frame numbers
within ∆f = 20 for passable and ∆f ′ = 200 for impassable cells artifacts are
not detected as hazards.

parameters allow to adapt the traversability estimation process to different types
of robots. In addition to the DLR Crawler, we successfully use this method for
generating traversability maps for different wheel-driven robots and for finding
flat footholds for a biped walking robot. However, while some of the parameters
are known from the design of the robot, others have to be found empirically in
practical tests. Here, in future, a learning approach could be implemented so
that each robot can learn suitable parameter values by itself.

9 Path Planning

Based on the traversability map, the robot can plan a path to the goal point.
Since the robot does not have an a priori map of the environment, its knowledge
about the terrain changes over time. The path planner must be able to adapt
the path to changes in the map in an efficient way. Thus, a path planner of the
D* family was chosen. D* developed by Stentz [36] is the dynamic version of
the A* graph based path planning algorithm. These search algorithms find the
minimum cost path to a goal vertex in a graph by first searching those vertexes
which most likely appear to lead to the goal. In contrast to A* planners, D* is
able to modify previous search results locally and, thus, is more efficient when
dynamic replanning is required. For the present navigation system a D* Lite
[24] path planner was used, which is simpler and more efficient than the classic
D* algorithms.

To apply the D* Lite planner to the grid map, the map has to be consid-
ered as a graph. The grid cells are the vertexes of the graph and edges connect
vertexes which correspond to adjacent cells in the grid map. As for the A* al-
gorithm, a cost function and a heuristic distance function must be implemented
for the D* Lite path planner. However, D* Lite plans a path in opposite direc-
tion from the goal vertex G to the start vertex S. The cost function c(N,N ′)
describes the cost for moving from vertex N to its neighbor N ′. The heuristic
distance function h(N,S) is an estimate of the costs remaining to reach the start
vertex from the current vertex N . The formulation of the cost function defines
the optimality of a path. Often, a path is optimal if it is the shortest path to the
goal. In the present work, not only the path length but also the traversability

28

(a) β = 3 (b) β = 10

Figure 10: Paths planned with different values of β.

of the path cells should be taken into account. Thus, the cost function for going
from vertex N to its neighbor N ′ is

c(N,N ′) =
√

(Nx −N ′x)2 + (Ny −N ′y)2 + β · d(N ′). (74)

The first term describes the distance between the vertexes and the second term
denotes the danger value of the destination vertex weighted by β > 1. The
bigger the value of β is chosen the longer paths are accepted if they go through
safer cells (ref. Fig. 10). The costs of going to an untraversable cell are ∞.

The heuristic distance function is important for the efficiency of the planner.
For the planner to be optimal it must fulfill the monotony condition

h(N,S) ≤ c(N,N ′) + h(N ′, S). (75)

That implies that h(N,S) must not overestimate the true costs h∗(N,S) of
going from N to S along the shortest path. Since the minimum danger value of
a cell is 0, the heuristic distance function must be

h(N,S) =
√

(Nx − Sx)2 + (Ny − Sy)2, (76)

which is the direct distance from N to S. Due to the triangle inequality, this
function also fulfills the monotony condition. This use of D* Lite for visual
navigation has been presented in [6].

In the beginning, the robot does not have any information about its environ-
ment. It plans an initial path, which is the direct path to the goal. As the robot
follows this path, it collects information about the environment. If assumptions
about the traversability of the path cells are proven wrong by new data, the
path is replanned from the current cell of the robot.

From the definition of the cost function follows approximately that paths
are planned which are β times longer than the shortest path, if their average
danger value is less than 1

β of the danger of the shortest path. That means, that
only the relation between path length and path safety is considered but not the
absolute danger value of a path. However, if the robot is carrying a heavy load
or if its hardware is damaged, the path planner must adapt the path to the
changed motion abilities of the robot. To avoid reassessing the traversability of
the whole terrain map, a danger value threshold 0 ≤ dmax ≤ 1 can be set in
the path planner. If the danger value of a cell is higher than dmax, the costs
of moving to that cell are set to ∞. Thus, the safety of the planned path is

29

improved. Currently, the danger value threshold is set by the operator, but in
future, the robot should be able to set the threshold according to its estimated
motion capabilities. For this, the robot will have to learn which maximum
danger value corresponds to its current motion capabilities. Furthermore, the
value for β should also be learned by the robot instead of being set to a fixed
value by the operator. The use of the danger value threshold was shown in [13].

10 Motion Control

Path following is achieved by a simple proportional controller which sends the
motion commands “move forward”, “turn left” and “turn right” as well as the
maximum danger value of the upcoming path cells to the walking layer. Thus,
in easy, smooth terrain the robot can use the simple and fast tripod gait, and in
rough and more difficult terrain the gait can be switched to the computationally
more expensive biologically inspired gait with elevator reflexes for overcoming
higher obstacles.

Depending on the horizontal opening angle of the stereo camera, it might be
possible that the robot is not able to perceive enough information about the up-
coming terrain to calculate the traversability with high certainty. Furthermore,
the path could lead into a region that is currently outside the view of the robot
but could be perceived if the robot would turn. In these cases, actively exploring
the environment of the path is necessary. For this, the motion controller can
command exploration turns as presented in [6] to the robot. An exploration
turn is necessary, if the certainty value of a path cell which is in range of the
cameras is lower than 1. During an exploration turn the robot turns over an
angular range of 2ε so that the cameras cover the rover-sized circular region
around the path cell being explored. Since a certainty value of 1 is hard to
reach in practice, a set of rules about when exploration turns are permitted has
been established:

Between two exploration turns

• the distance between the path cell to be explored and the previously ex-
plored path cell must be at least l

and one of the following conditions must hold:

• The robot must have passed a distance of at least l.

• The path cells to be explored in two subsequent exploration turns must
be at an angle of at least ε given the current robot position is the pivot
point.

• The path must have been replanned.

These rules are necessary to avoid that the robot repeats exploration turns
because the certainty value does not reach 1. When the camera is mounted on
a pan unit, the exploration turns can be performed by turning only the camera
instead of turning the whole robot. For the hardware used in the practical tests
the values were chosen to be ε = π/8 and l = 0.2 m.

The navigation algorithm terminates successfully when the robot reaches the
specified goal point according to its estimated position. Since the robot cannot

30

reach the goal point exactly, a tolerance area must be defined. The size of the
tolerance area depends on the map resolution and the distance the robot travels
within one position estimation step. In the present work, the tolerance area is
a circle with a radius of 20 mm. As soon as the estimated position of the robot
is inside that tolerance circle around the goal point, a stop command is sent to
the walking layer and the robot stops.

11 On-line Implementation

Except for depth image computation for which a GPU implementation is used,
the methods presented above have been implemented in C/C++ on a Linux
2.6 GHz computer. The navigation algorithm consists of several threads. Each
sensor runs in a separate thread writing timestamped data into a buffer. IMU
data is buffered at 120 Hz, leg odometry data at 10 Hz and visual odometry
measurements at about 6 Hz. The pose estimator thread collects data from
all sensors and fuses them according to their timestamps. The resulting pose
estimate is stored in another buffer. The mapping thread receives a timestamped
depth image from the stereo camera and retrieves the matching pose from the
pose estimator thread. From these, the traversability map is computed. The
mapping thread runs at a rate of about 1 Hz. The path planner and motion
controller also run in separate threads. They retrieve the current pose estimate
and calculate paths and motion commands, respectively. The motion controller
sends motion commands to the walking layer at a rate of about 10 Hz.

12 Experimental Results

Figure 11: Test setup

For evaluating the performance of the navigation algorithm, an indoor test
environment was created as shown in Fig. 11. A gentle slope led into a testbed
filled with gravel. Large stones were used as untraversable obstacles. Most of
the gravel area is easy to pass for the robot. Fig. 12 shows sample images of

31

Figure 12: Sample images as viewed by the wide angle camera of the Crawler

the testbed as viewed by the stereo camera of the Crawler (ref. section 5). In a
smaller region, the terrain difficulty was increased so that this area could only be
passed using the biologically inspired gait with the stretch and elevator reflexes.
An external tracking system was used for tracking a target body mounted on
the Crawler, which provided ground truth pose measurements in comparison to
the pose estimated by the robot. The goal coordinates (x = 2.8 m, y = 0.3 m)
were given relative to the starting position of the robot.

Figure 13: Traversability map and trajectories. B: switch to biologically inspired
gait. T: switch to tripod gait

In a first experiment, the robot should reach the goal point autonomously
without any external disturbances or limitations in its motion capabilities. The
resulting traversability map, the trajectory obtained by the tracking system and
the trajectory estimated by the robot are shown in Fig. 13. The map has a
resolution of 20 mm per grid cell. The colors indicate the traversability of the
cells. Red cells are untraversable, green cells are easily traversable and from
green to orange the difficulty of traversing a cell increases. As can be seen, the
big stones and the testbed walls were detected to be untraversable obstacles.
The method for estimating the terrain traversability labels a cell as traversable
only if the robot is safe when its center is located on that cell. Thus, a region of
half of the robot diameter around each obstacle is also marked as untraversable.
This allows the path planner to neglect the size of the robot but to only plan a
path for the center of the robot. Furthermore, the traversability of the slope and
the rough terrain region was estimated to be more difficult than the flat gravel
areas. Hence, the robot switched to the biologically inspired gait for crossing
these areas and switched back to the tripod gait as soon as it entered easier

32

terrain.

0 0.5 1 1.5 2 2.5
−0.1

0

0.1

0.2

0.3

0.4

x [m]

y
[m

]

Tracking

Leg Odometry

Visual Odometry

Fusion

Goal Point

Start

(a) Recorded trajectories

0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

0.15

0.2

0.25

Position z

z
[m

]

time [s]

Tracking

Leg Odometry

Visual Odometry

Fusion

Switch to
biolog. gait

Switch to
tripod gait

Switch to
biolog. gait

Switch to
tripod gait

(b) z-coordinates

0 20 40 60 80 100 120 140 160 180 200
−50

−40

−30

−20

−10

0

10

20

30

40

50
Angles Yaw

time [s]

ya
w

 a
ng

le
s

[d
eg

re
es

]

Tracking

Leg Odometry

Visual Odometry

Fusion

(c) Yaw angles

Figure 14: Test run: No limitations in motion abilities

Fig. 14 compares the trajectories measured by visual odometry and leg
odometry with the true trajectory given by the tracking system and the esti-
mated trajectory obtained by fusing all motion measurements. The trajectory
estimated by sensor data fusion is close to the visual odometry trajectory be-
cause the error of visual odometry was estimated to be very low. However, both
visual odometry and leg odometry suffer from a drift in the z-coordinate as well
as yaw angle errors. Due to absolute roll and pitch angle measurements, the
error in the z-coordinate of the fusion trajectory is small. The yaw angle error
cannot be corrected sufficiently since no absolute yaw angle measurements are
available. The yaw angle plot also shows the explorations turns that were per-
formed to gather more information about the upcoming terrain. When the robot
stopped, its estimated position was x = 2.80 m, y = 0.33 m and z = 0.12 m. This
position is outside the given tolerance region of 20 mm because of several rea-
sons. First, there is a small time delay between the acquisition of the position
measurements and the computation of the robot pose. Second, using the tripod
gait, the robot cannot stop immediately but has to finish the current step first.
The true position of the robot at the goal point was x = 2.75 m, y = 0.24 m
and z = 0.09 m. This gives an endpoint error of 11.2 cm or 3.7% in relation to
a path length of about 3 m. This error is mainly caused by the deviation of the
yaw angle.

The second test run was used to demonstrate the robustness of the navigation

33

Figure 15: Traversability map after inducing visual odometry errors

algorithm against visual disturbances. While the robot was walking through the
test environment, its cameras were covered several times using a sheet of paper.
All other test conditions remained equal to the previous run. Fig. 16 shows
the resulting trajectories. The visual odometry trajectory (ref. Fig. 16(a))
has large errors caused by covering the cameras. The leg odometry trajectory
also deviates from the true path due to slip. The path estimated by fusing
all motion measurements is very accurate. The visual disturbances did not
affect the fusion result since visual odometry errors were estimated to be very
high during these time steps and, thus, these erroneous measurements were
given a very low weight in the data fusion process. This can also be seen in
Fig. 16(d), because the estimated standard deviation of the position estimate
increases strongly during these periods. The resulting traversability map does
not show any artifacts or obvious errors (ref. Fig. 15). At the goal point, the
robot estimated to be at x = 2.81 m, y = 0.30 m and z = 0.08 m, while its true
position was x = 2.78 m, y = 0.26 m and z = 0.09 m. The overall endpoint error
is 4.8 cm.

In another test run, it was simulated that the Crawler picked up a heavy
load at one point of its path and had to continue to the goal point with limited
motion capabilities. Fig. 17(a) shows the resulting traversability map. The
robot starts moving towards the goal point as in all previous test runs. After
passing the slope, the danger value threshold dmax was set to a low value of 0.15
to simulate that the robot is carrying a heavy load. As a result, the Crawler
avoided the difficult area of the testbed and chose the longer but safer path to
the goal point. The endpoint error of the estimated position at the goal point
was 7.7 cm.

13 Conclusion

In this paper, a stereo vision based navigation algorithm for a six-legged walking
robot in unknown rough terrain has been presented. From stereo images depth
images are computed using the robust and accurate SGM method. A visual
odometry was implemented and visual odometry errors are estimated along
with the relative motion measurements. For achieving accurate and robust
pose estimates of the robot, IMU data is fused with visual odometry and leg
odometry using an indirect information filter. In parallel, a dense 2.5D terrain

34

0 0.5 1 1.5 2 2.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x [m]

y
[m

]

Tracking

Leg Odometry

Visual Odometry

Fusion

Goal Point

Visual Odometry Errors

Start

(a) Recorded trajectories

0 50 100 150 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

Position z

time [s]

z
[m

]

Tracking

Leg Odometry

Visual Odometry

Fusion

Visual Odometry Errors

(b) z-coordinates

0 50 100 150 200

−80

−60

−40

−20

0

20

40

Angles Yaw

time [s]

ya
w

 a
ng

le
 [d

eg
re

es
]

Tracking

Leg Odometry

Visual Odometry

Fusion

Visual Odometry Errors

(c) Yaw angles

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

time [s]

es
tim

at
ed

 s
ta

nd
ar

d
de

vi
at

io
n

[m
]

σ
x

σ
y

σ
z

Visual Odometry Errors

(d) Standard deviations computed from the estima-
tion covariance matrix

Figure 16: Test run: Visual odometry errors induced

map is created from the disparity images and the pose estimates. A plane fitting
approach is used to estimate the traversability of the terrain in order to plan safe
and short paths. A D* Lite path planner was implemented with a cost function
that takes the terrain traversability into account and is able to adapt paths to
changed motion capabilities of the robot. Motion commands are generated and
sent to the walking layer along with the estimated traversability of the upcoming
path cells.

As the experimental results show, the navigation algorithm works well in
small scale environments. Fusing inertial, visual odometry and leg odometry

35

(a) Traversability map. X: limitation of motion capa-
bilities

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
[m

]

Tracking

Leg Odometry

Visual Odometry

Fusion

Goal Point

Start

(b) Recorded trajectories

0 50 100 150 200 250 300 350 400

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Position z

time [s]

z
[m

]

Tracking

Leg Odometry

Visual Odometry

Fusion

(c) z-coordinates

Figure 17: Test run: Limitations in motion abilities

data and using the computed visual odometry errors results in robust pose esti-
mates that allow navigation under bad visual conditions. Using SGM as stereo
method allows to create dense accurate depth images in weakly textured areas.
As a result, no artifacts are present in the height maps and the traversabil-
ity of the terrain can be estimated accurately. The robot is able to exploit the
traversability information by choosing the appropriate gait as a step towards vi-
sion induced terrain anticipation. Thus, we presented first steps towards robust,
multisensor based pose estimation and terrain perception which is essential for
a rough terrain specialist in a heterogeneous robotic team.

In future we want to achieve a much closer coupling of visual and tactile
information. For example, in case of very bad lighting conditions the robot
should switch to a tactile exploration mode and feel its way in order to proceed.
For this purpose the map should allow assigning confidence values to the cell
heights according to the accuracy of the information source, being tactile or
visual. These confidence values should also be considered in the traversability
estimation process. In addition to the geometric ground properties, tactile and
texture information should be used to classify the substrate which is a valu-

36

able information for other team members and could influence the traversability
estimation. Furthermore, the robot should be able to assess the traversabil-
ity of distant regions by learning the visual appearance of nearby terrain with
known geometrical properties. Visual terrain anticipation has to be further im-
proved such that step height, step length and leg compliance of the robot can
be adapted according to the upcoming region.

14 Acknowledgments

We would like to thank Martin Stelzer for supporting us in the on-line imple-
mentation of the navigation algorithm. This research received no specific grant
from any funding agency in the public, commercial, or not-for-profit sectors.

References

[1] K. S. Arun, T. S. Hunag, and S. D. Blostein. Least-squares fitting of
two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698–700, September 1987.

[2] T. Bailey, E.M. Nebot, J.K. Rosenblatt, and H.F. Durrant-Whyte. Data
association for mobile robot navigation: a graph theoretic approach. In
Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE Interna-
tional Conference on, volume 3, pages 2512–2517, 2000.

[3] J. Bortz. A New Mathematical Formulation for Strapdown Inertial Naviga-
tion. IEEE Transactions on Aerospace Electronic Systems, 7:61–66, 1971.

[4] R. Brooks. A robust layered control system for a mobile robot. IEEE
journal of robotics and automation, 2(1):14–23, 1986.

[5] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz. Global Path Planning
on Board the Mars Exploration Rovers. Aerospace Conference, 2007 IEEE,
pages 1–11, March 2007.

[6] A. Chilian and H. Hirschmüller. Stereo Camera Based Navigation of Mobile
Robots on Rough Terrain. In IROS, International Conference on Intelligent
Robots and Systems, pages 4571–4576, 2009.

[7] A. Chilian, H. Hirschmüller, and M. Görner. Multisensor Data Fusion for
Robust Pose Estimation of a Six-Legged Walking Robot. In Proceedings of
the IEEE International Conference on Intelligent Robotic Systems (IROS)
2011, pages 2497–2504, 2011.

[8] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser, J. Rosen-
blatt, D. Tseng, and V. Wong. Autonomous cross-country navigation with
the ALV. International Conference on Robotics and Automation, 1988.
Proceedings., 1988 IEEE, 2:718–726, April 1988.

[9] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte. The aid-
ing of a low-cost strapdown inertial measurement unit using vehicle model
constraints for land vehicle applications. IEEE Transactions on Robotics
and Automation, 17(5):731–747, 2002.

37

[10] I. Ernst and H. Hirschmüller. Mutual information based semi-global stereo
matching on the gpu. In International Symposium on Visual Computing
(ISVC08), volume LNCS 5358, Part 1, pages 228–239, Las Vegas, NV,
USA, December 2008.

[11] S. Gehrig, F. Eberli, and T. Meyer. A real-time low-power stereo vision
engine using semi-global matching. In International Conference on Com-
puter Vision Systems (ICVS), volume LNCS 5815, pages 134–143, Liege,
Belgium, October 2009.

[12] S. B. Goldberg, M. W. Maimone, and L. Matthies. Stereo vision and
rover navigation software for planetary exploration. Aerospace Conference
Proceedings, 2002. IEEE, 5:2025–2036, March 2002.

[13] M. Görner, A. Chilian, and H. Hirschmüller. Towards an Autonomous
Walking Robot for Planetary Surfaces. In Proceedings of the 10th Inter-
national Symposium on Artificial Intelligence, Robotics and Automation in
Space (i-SAIRAS), September 2010.

[14] M. Görner, T. Wimböck, A. Baumann, M. Fuchs, T. Bahls, M. Grebenstein,
C. Borst, J. Butterfass, and G. Hirzinger. The DLR-Crawler: A Testbed for
Actively Compliant Hexapod Walking Based on the Fingers of DLR-Hand
II. In IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems, pages 1525 – 1531, September 2008.

[15] M. Görner, T. Wimböck, and G. Hirzinger. The DLR Crawler: Evaluation
of Gaits and Control of an Actively Compliant Six-Legged Walking Robot.
Industrial Robot: An International Journal, 36(4):344–351, 2009.

[16] R. Haralick, H. Joo, C.-N. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim.
Pose estimation from corresponding point data. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 19(6):1426–1446, November-December 1989.

[17] C. Harris and M. Stephens. A combined corner and edge detector. In
Proceedings of the 4th Alvey Vision Conference, pages 147–151, 1988.

[18] H. Hirschmüller. Stereo Vision Based Mapping and Immediate Virtual
Walkthroughs. PhD thesis, School of Computing, De Montfort University,
Leicester, UK, June 2003.

[19] H. Hirschmüller. Stereo processing by semi-global matching and mutual
information. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 30(2):328–341, February 2008.

[20] H. Hirschmüller, P. R. Innocent, and J. M. Garibaldi. Real-time correlation-
based stereo vision with reduced border errors. International Journal of
Computer Vision, 47(1/2/3):229–246, April-June 2002.

[21] H. Hirschmüller, P.R. Innocent, and J.M. Garibaldi. Fast, unconstrained
camera motion estimation from stereo without tracking and robust statis-
tics. In Proceedings of the 7th International Conference on Control, Au-
tomation, Robotics and Vision, pages 1099–1104, December 2002.

38

[22] H. Hirschmüller and D. Scharstein. Evaluation of stereo matching costs
on images with radiometric differences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(9):1582–1599, September 2009.

[23] A. Kelly. An Intelligent Predictive Control Approach to the High-Speed
Cross-Country Autonomous Navigation Problem. PhD thesis, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA, September 1995.

[24] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation
in unknown terrain. In Proceedings of the International Conference on
Robotics and Automation, pages 968–975, 2002.

[25] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and B. Gerkey.
Outdoor mapping and navigation using stereo vision. In Proc. of Intl. Symp.
on Experimental Robotics (ISER), 2007.

[26] IS Kweon and T. Kanade. High-resolution terrain map from multiple sensor
data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 278–292, 1992.

[27] S. L. Laubach, J. Burdick, and L. Matthies. An autonomous path planner
implemented on the Rocky7 prototype microrover. In IEEE Conference on
Robotics and Automation, pages 292–297, 1998.

[28] M. Maimone, Y. Cheng, and L. Matthies. Two years of visual odometry
on the mars exploration rovers. Journal of Field Robotics, 24(3):169–186,
2007.

[29] L. Matthies and S. A. Shafer. Error modeling in stereo navigation. IEEE
Journal on Robotics and Automation, 3(3):239–248, June 1987.

[30] D. P. Miller, R. S. Desai, E. Gat, R. Ivlev, and J. Loch. Reactive navigation
through rough terrain: experimental results. In Proceedings of the 1992
National Conference on Artificial Intelligence, pages 823–828, 1992.

[31] A. H. Mishkin, J. C. Morrison, T. T. Nguyen, H. W. Stone, B. K. Cooper,
and B. H. Wilcox. Experiences with operations and autonomy of the Mars
Pathfinder Microrover. Aerospace Conference Proceedings, 1998. IEEE,
2:337–351, March 1998.

[32] J. Neira and J.D. Tardos. Data association in stochastic mapping using the
joint compatibility test. Robotics and Automation, IEEE Transactions on,
17(6):890–897, dec 2001.

[33] S.I. Roumeliotis and J.W. Burdick. Stochastic cloning: A generalized
framework for processing relative state measurements. In Proceedings of
the IEEE International Conference on Robotics and Automation, 2002, vol-
ume 2, pages 1788–1795, 2002.

[34] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Circumventing dynamic
modeling: Evaluation of the error-state kalman filter applied to mobile
robot localization. In Proceedings of the 1999 IEEE International Confer-
ence on Robotics and Automation, volume 2, pages 1656–1663, 1999.

39

[35] R. Simmons, L. Henriksen, L. Chrisman, and G. Whelan. Obstacle avoid-
ance and safeguarding for a lunar rover. In Proc. AlAA Forum on Advanced
Developments in Space Robotics, Madison WI, 1998.

[36] A. Stentz. Optimal and efficient path planning for partially-known environ-
ments. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 3310–3317, 1994.

[37] J.F. Vasconcelos, P. Oliveira, and C. Silvestre. Inertial Navigation System
Aided by GPS and Selective Frequency Contents of Vector Measurements.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference
(GNC2005), San Francisco, USA, August 2005.

[38] D. Wooden, M. Malchano, K. Blankespoor, A. Howard, A. Rizzi, and
M. Raibert. Autonomous Navigation for BigDog. In Proc. of the IEEE
International Conference on Robotics and Automation, May 2010.

[39] R. Zabih and J. Woodfill. Non-parametric local transforms for comput-
ing visual correspondance. In Proceedings of the European Conference of
Computer Vision, pages 151–158, Stockholm, Sweden, May 1994.

40

