138 research outputs found

    Intrinsic and synaptic membrane properties of neurons in the thalamic reticular nucleus

    Get PDF
    Tableau d’honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2004-2005Le noyau rĂ©ticulaire thalamique (RE) est une structure qui engendre des fuseaux, une oscillation bioĂ©lectrique de marque pendant les stades prĂ©coces du sommeil. De multiples propriĂ©tĂ©s neuronales, intrinsĂšques et synaptiques, sont impliquĂ©es dans la gĂ©nĂ©ration, la propagation, le maintien et la terminaison des ondes en fuseaux. D’un autre cĂŽtĂ©, ce rythme constitue un Ă©tat spĂ©cial de l’activitĂ© du rĂ©seau qui est gĂ©nĂ©rĂ© par le rĂ©seau lui-mĂȘme et affecte les propriĂ©tĂ©s cellulaires du noyau RE. Cette Ă©tude se concentre sur ces sujets: comment les propriĂ©tĂ©s cellulaires et les propriĂ©tĂ©s du rĂ©seau sont inter-reliĂ©es et interagissent pour engendrer les ondes fuseaux dans les neurones du RE et leurs cibles, les neurones thalamocorticaux. La prĂ©sente thĂšse fournit de nouvelles Ă©vidences montrant le rĂŽle fondamental jouĂ© par les neurones du noyau RE dans la genĂšse des ondes en fuseaux, dĂ» aux synapses chimiques Ă©tablies par ces neurones. La propagation et la synchronisation de l’activitĂ© sont modulĂ©es par les synapses Ă©lectriques entre les neurones rĂ©ticulaires thalamiques, mais aussi par les composantes dĂ©polarisantes secondaires des rĂ©ponses synaptiques Ă©voquĂ©es par le cortex. De plus, la forme gĂ©nĂ©rale et la terminaison des oscillations thalamiques sont probablement contrĂŽlĂ©es en grande partie par les neurones du RE, lesquels expriment une conductance intrinsĂšque leurs procurant une membrane avec un comportement bistable. Finalement, les oscillations thalamiques en fuseaux sont aussi capables de moduler les propriĂ©tĂ©s membranaires et l’activitĂ© des neurones individuels du RE.The thalamic reticular nucleus (RE) is a key structure related to spindles, a hallmark bioelectrical oscillation during early stages of sleep. Multiple neuronal properties, both intrinsic and synaptic, are implicated in the generation, propagation, maintenance and termination of spindle waves. On the other hand, this rhythm constitutes a special state of network activity, which is generated within, and affects single-cell properties of the RE nucleus. This study is focused on these topics: how cellular and network properties are interrelated and interact to generate spindle waves in the pacemaking RE neurons and their targets, thalamocortical neurons. The present thesis provides new evidence showing the fundamental role played by the RE nucleus in the generation of spindle waves, due to chemical synapses established by its neurons. The propagation and synchronization of activity is modulated by electrical synapses between thalamic reticular neurons, but also by the secondary depolarizing component of cortically-evoked synaptic responses. Additionally, the general shaping and probably the termination of thalamic oscillations could be controlled to a great extent by RE neurons, which express an intrinsic conductance endowing them with membrane bistable behaviour. Finally, thalamic spindle oscillations are also able to modulate the membrane properties and activities of individual RE neurons

    Incessant transitions between active and silent states in cortico-thalamic circuits and altered neuronal excitability lead to epilepsy

    Get PDF
    La ligne directrice de nos expĂ©riences a Ă©tĂ© l'hypothĂšse que l'apparition et/ou la persistance des fluctuations de longue durĂ©e entre les Ă©tats silencieux et actifs dans les rĂ©seaux nĂ©ocorticaux et une excitabilitĂ© neuronale modifiĂ©e sont les facteurs principaux de l'Ă©pileptogenĂšse, menant aux crises d’épilepsie avec expression comportementale. Nous avons testĂ© cette hypothĂšse dans deux modĂšles expĂ©rimentaux diffĂ©rents. La dĂ©affĂ©rentation corticale chronique a essayĂ© de rĂ©pliquer la dĂ©affĂ©rentation physiologique du neocortex observĂ©e pendant le sommeil Ă  ondes lentes. Dans ces conditions, caractĂ©risĂ©es par une diminution de la pression synaptique et par une incidence augmentĂ©e de pĂ©riodes silencieuses dans le systĂšme cortico-thalamique, le processus de plasticitĂ© homĂ©ostatique augmente l’excitabilitĂ© neuronale. Par consĂ©quent, le cortex a oscillĂ© entre des pĂ©riodes actives et silencieuses et, Ă©galement, a dĂ©veloppĂ© des activitĂ©s hyper-synchrones, s'Ă©tendant de l’hyperexcitabilitĂ© cellulaire Ă  l'Ă©pileptogenĂšse focale et Ă  des crises Ă©pileptiques gĂ©nĂ©ralisĂ©es. Le modĂšle de stimulation sous-liminale chronique (« kindling ») du cortex cĂ©rĂ©bral a Ă©tĂ© employĂ© afin d'imposer au rĂ©seau cortical une charge synaptique supĂ©rieure Ă  celle existante pendant les Ă©tats actifs naturels - Ă©tat de veille ou sommeil paradoxal (REM). Dans ces conditions un mĂ©canisme diffĂ©rent de plasticitĂ© qui s’est exprimĂ© dans le systĂšme thalamo-corticale a imposĂ© pour des longues pĂ©riodes de temps des oscillations continuelles entre les Ă©poques actives et silencieuses, que nous avons appelĂ©es des activitĂ©s paroxysmiques persistantes. IndĂ©pendamment du mĂ©canisme sous-jacent de l'Ă©pileptogenĂšse les crises d’épilepsie ont montrĂ© certaines caractĂ©ristiques similaires : une altĂ©ration dans l’excitabilitĂ© neuronale mise en Ă©vidence par une incidence accrue des dĂ©charges neuronales de type bouffĂ©e, une tendance constante vers la gĂ©nĂ©ralisation, une propagation de plus en plus rapide, une synchronie augmentĂ©e au cours du temps, et une modulation par les Ă©tats de vigilance (facilitation pendant le sommeil Ă  ondes lentes et barrage pendant le sommeil REM). Les Ă©tats silencieux, hyper-polarisĂ©s, de neurones corticaux favorisent l'apparition des bouffĂ©es de potentiels d’action en rĂ©ponse aux Ă©vĂ©nements synaptiques, et l'influence post-synaptique d'une bouffĂ©e de potentiels d’action est beaucoup plus importante par rapport Ă  l’impacte d’un seul potentiel d’action. Nous avons Ă©galement apportĂ© des Ă©vidences que les neurones nĂ©ocorticaux de type FRB sont capables Ă  rĂ©pondre avec des bouffĂ©es de potentiels d’action pendant les phases hyper-polarisĂ©es de l'oscillation lente, propriĂ©tĂ© qui peut jouer un rĂŽle trĂšs important dans l’analyse de l’information dans le cerveau normal et dans l'Ă©pileptogenĂšse. Finalement, nous avons rapportĂ© un troisiĂšme mĂ©canisme de plasticitĂ© dans les rĂ©seaux corticaux aprĂšs les crises d’épilepsie - une diminution d’amplitude des potentiels post-synaptiques excitatrices Ă©voquĂ©es par la stimulation corticale aprĂšs les crises - qui peut ĂȘtre un des facteurs responsables des dĂ©ficits comportementaux observĂ©s chez les patients Ă©pileptiques. Nous concluons que la transition incessante entre des Ă©tats actifs et silencieux dans les circuits cortico-thalamiques induits par disfacilitation (sommeil Ă  ondes lentes), dĂ©affĂ©rentation corticale (Ă©pisodes ictales Ă  4-Hz) ou par une stimulation sous-liminale chronique (activitĂ©s paroxysmiques persistantes) crĂ©e des circonstances favorables pour le dĂ©veloppement de l'Ă©pileptogenĂšse. En plus, l'augmentation de l’incidence des bouffĂ©es de potentiels d’actions induisant une excitation post-synaptique anormalement forte, change l'Ă©quilibre entre l'excitation et l'inhibition vers une supra-excitation menant a l’apparition des crises d’épilepsie.The guiding line in our experiments was the hypothesis that the occurrence and / or the persistence of long-lasting fluctuations between silent and active states in the neocortical networks, together with a modified neuronal excitability are the key factors of epileptogenesis, leading to behavioral seizures. We addressed this hypothesis in two different experimental models. The chronic cortical deafferentation replicated the physiological deafferentation of the neocortex observed during slow-wave sleep (SWS). Under these conditions of decreased synaptic input and increased incidence of silent periods in the corticothalamic system the process of homeostatic plasticity up-regulated cortical cellular and network mechanisms and leaded to an increased excitability. Therefore, the deafferented cortex was able to oscillate between active and silent epochs for long periods of time and, furthermore, to develop highly synchronized activities, ranging from cellular hyperexcitability to focal epileptogenesis and generalized seizures. The kindling model was used in order to impose to the cortical network a synaptic drive superior to the one naturally occurring during the active states - wake or rapid eye movements (REM) sleep. Under these conditions a different plasticity mechanism occurring in the thalamo-cortical system imposed long-lasting oscillatory pattern between active and silent epochs, which we called outlasting activities. Independently of the mechanism of epileptogenesis seizures showed some analogous characteristics: alteration of the neuronal firing pattern with increased bursts probability, a constant tendency toward generalization, faster propagation and increased synchrony over the time, and modulation by the state of vigilance (overt during SWS and completely abolished during REM sleep). Silent, hyperpolarized, states of cortical neurons favor the induction of burst firing in response to depolarizing inputs, and the postsynaptic influence of a burst is much stronger as compared to a single spike. Furthermore, we brought evidences that a particular type of neocortical neurons - fast rhythmic bursting (FRB) class - is capable to consistently respond with bursts during the hyperpolarized phase of the slow oscillation, fact that may play a very important role in both normal brain processing and in epileptogenesis. Finally, we reported a third plastic mechanism in the cortical network following seizures - a decreasing amplitude of cortically evoked excitatory post-synaptic potentials (EPSP) following seizures - which may be one of the factors responsible for the behavioral deficits observed in patients with epilepsy. We conclude that incessant transitions between active and silent states in cortico-thalamic circuits induced either by disfacilitation (sleep), cortical deafferentation (4-Hz ictal episodes) and by kindling (outlasting activities) create favorable circumstances for epileptogenesis. The increase in burst-firing, which further induce abnormally strong postsynaptic excitation, shifts the balance of excitation and inhibition toward overexcitation leading to the onset of seizures

    Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels.

    Get PDF
    STUDY OBJECTIVES: Low-threshold voltage-gated T-type Ca(2+) channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). METHODS: We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. RESULTS: CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca(2+) currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10-15 Hz), which was accompanied by an increase in the ÎŽ band (1-4 Hz). CONCLUSIONS: Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms

    Brain State Dependent Activity in the Lateral Geniculate Nucleus

    Get PDF
    Brain state dependent thalamocortical (TC) activity plays and important role in sensory coding, oscillations and cognition. The lateral geniculate nucleus (LGN) relays visual information to the cortex, but the state dependent spontaneous and visually evoked activity of LGN neurons in awake behaving animals remains controversial. In awake head-restrained mice, using a combination of pupillometry, extracellular and intracellular recordings from morphologically and physiologically identified LGN neurons we show that TC neurons and putative local interneurons are inversely related to arousal forming two complementary coalitions with TC cells being positively correlates with wakefulness, while local interneuron activity is negatively correlated. Additionally, the orientation tuning of visually evoked thalamic cell responses is altered during various brain states. Intracellular recordings indicated that the membrane potential of LGN TC neurons was tightly correlated to fluctuations in pupil size. Inactivating the corticothalamic feedback by GABAA agonist muscimol applied on the dural surface significantly diminishes the correlation between brain states and thalamic neuronal activity. Additional investigations show that by photostimulating GABAergic axons (expressing Channelrhodopsin-2 in a Cre-dependent manner) that project from the lateral hypothalamus (LH) to the dorsal raphe nucleus (DRN), neurons in the DRN increase their action potential output, presumably through disinhibition. Taken together our results show that LGN neuronal membrane potential and action potential output are dynamically linked to arousal dependent brain states in awake mice and this fact might have important functional implications

    Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

    Get PDF
    Tableau d’honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2012-2013.Le sommeil est connu pour rĂ©guler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amĂ©lioration de la consolidation de la mĂ©moire. Le sommeil Ă  ondes lentes, en particulier, est considĂ©rĂ© ĂȘtre critique pour ces deux processus. Cependant, leurs mĂ©canismes physiologiques sont inconnus. Aussi, la marque Ă©lectrophysiologique distinctive du sommeil Ă  ondes lentes est la prĂ©sence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des pĂ©riodes d’activitĂ©s synaptiques intenses pendant lesquelles les neurones corticaux sont dĂ©polarisĂ©s et dĂ©chargent plusieurs potentiels d’action et des pĂ©riodes silencieuses pendant lesquelles aucune dĂ©charge ne survient, les neurones corticaux sont hyperpolarisĂ©s et trĂšs peu d’activitĂ©s synaptiques sont observĂ©es. Tout d'abord, afin de mieux comprendre les Ă©tudes prĂ©sentĂ©es dans ce manuscrit, une introduction gĂ©nĂ©rale couvrant l'architecture du systĂšme thalamocortical et ses fonctions est prĂ©sentĂ©e. Celle-ci comprend une description des Ă©tats de vigilance, suivie d'une description des rythmes prĂ©sents dans le systĂšme thalamocortical au cours du sommeil Ă  ondes lentes, puis par une description des diffĂ©rents mĂ©canismes de plasticitĂ© synaptique, et enfin, deux hypothĂšses sur la façon dont le sommeil peut affecter la consolidation de la mĂ©moire sont prĂ©sentĂ©es. Puis, trois Ă©tudes sont prĂ©sentĂ©es et ont Ă©tĂ© conçues pour caractĂ©riser les propriĂ©tĂ©s de l'oscillation lente du sommeil Ă  ondes lentes. Dans la premiĂšre Ă©tude (chapitre II), nous avons montrĂ© que les pĂ©riodes d'activitĂ© (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'Ă  12 mm de distance. Nous avons montrĂ© que l'activitĂ© Ă©tait initiĂ©e en un point focal et se propageait rapidement Ă  des sites corticaux voisins. Étonnamment, le dĂ©clenchement des Ă©tats silencieux Ă©tait encore plus synchronisĂ© que le dĂ©clenchement des Ă©tats actifs. L'hypothĂšse de travail pour la deuxiĂšme Ă©tude (chapitre III) Ă©tait que les Ă©tats actifs sont gĂ©nĂ©rĂ©s par une sommation de relĂąches spontanĂ©es de mĂ©diateurs. Utilisant diffĂ©rents enregistrements Ă  la fois chez des animaux anesthĂ©siĂ©s et chez d’autres non-anesthĂ©siĂ©s, nous avons montrĂ© qu’aucune dĂ©charge neuronale ne se produit dans le nĂ©ocortex pendant les Ă©tats silencieux du sommeil Ă  ondes lentes, mais certaines activitĂ©s synaptiques peuvent ii ĂȘtre observĂ©es avant le dĂ©but des Ă©tats actifs, ce qui Ă©tait en accord avec notre hypothĂšse. Nous avons Ă©galement montrĂ© que les neurones de la couche V Ă©taient les premiers Ă  entrer dans l’état actif pour la majoritĂ© des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules Ă©tant Ă©quipĂ©es du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons Ă©galement montrĂ© que le sommeil Ă  ondes lentes et l’anesthĂ©sie Ă  la kĂ©tamine-xylazine prĂ©sentent de nombreuses similitudes. Ayant utilisĂ© une combinaison d'enregistrements chez des animaux anesthĂ©siĂ©s Ă  la kĂ©tamine-xylazine et chez des animaux non-anesthĂ©siĂ©s, et parce que l'anesthĂ©sie Ă  la kĂ©tamine-xylazine est largement utilisĂ©e comme un modĂšle de sommeil Ă  ondes lentes, nous avons effectuĂ© des mesures quantitatives des diffĂ©rences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvĂ© que l'oscillation lente Ă©tait beaucoup plus rythmique sous anesthĂ©sie et elle Ă©tait aussi plus cohĂ©rente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthĂ©sie, les ondes lentes avaient Ă©galement une amplitude plus grande et une durĂ©e plus longue par rapport au sommeil Ă  ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma Ă©taient Ă©galement affectĂ©es par l'anesthĂ©sie. Dans l'Ă©tude suivante (Chapitre V), nous avons investiguĂ© le rĂŽle du sommeil Ă  ondes lentes dans la formation de la plasticitĂ© Ă  long terme dans le systĂšme thalamocortical. À l’aide de stimulations prĂ©-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque mĂ©dial) chez des animaux non-anesthĂ©siĂ©s, nous avons montrĂ© que le potentiel Ă©voquĂ© enregistrĂ© dans le cortex somatosensoriel Ă©tait augmentĂ© dans une pĂ©riode d’éveil suivant un Ă©pisode de sommeil Ă  ondes lentes par rapport Ă  l’épisode d’éveil prĂ©cĂ©dent et cette augmentation Ă©tait de longue durĂ©e. Nous avons Ă©galement montrĂ© que le sommeil paradoxal ne jouait pas un rĂŽle important dans cette augmentation d'amplitude des rĂ©ponses Ă©voquĂ©es. À l’aide d'enregistrements in vitro en mode cellule-entiĂšre, nous avons caractĂ©risĂ© le mĂ©canisme derriĂšre cette augmentation et ce mĂ©canisme est compatible avec la forme classique de potentiation Ă  long terme, car il nĂ©cessitait une activation Ă  la fois les rĂ©cepteurs NMDA et des rĂ©cepteurs AMPA, ainsi que la prĂ©sence de calcium dans le neurone post-synaptique. iii La derniĂšre Ă©tude incluse dans cette thĂšse (chapitre VI) a Ă©tĂ© conçue pour caractĂ©riser un possible mĂ©canisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractĂ©risĂ©es par la prĂ©sence de potentiels d’action calcique Ă  seuil bas et le calcium joue un rĂŽle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expĂ©rimentales, nous avons vĂ©rifiĂ© l'hypothĂšse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montrĂ© que les canaux calciques responsables des potentiels d’action calciques Ă©taient localisĂ©s aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique Ă  seuil bas spontanĂ© ou provoquĂ©, ce qui Ă©tait suffisant pour nuire Ă  la transmission synaptique. Nous concluons que l'oscillation lente est initiĂ©e en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, mĂȘme pour des cellules sĂ©parĂ©es par jusqu'Ă  12 mm de distance. Les Ă©tats actifs de cette oscillation proviennent d’une sommation de relĂąches spontanĂ©es de neuromĂ©diateurs (indĂ©pendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est gĂ©nĂ©rĂ© plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expĂ©riences (kĂ©tamine-xylazine et sommeil Ă  ondes lentes) ont montrĂ© plusieurs propriĂ©tĂ©s similaires, mais aussi quelques diffĂ©rences quantitatives. Nous concluons Ă©galement que l'oscillation lente joue un rĂŽle essentiel dans l'induction de plasticitĂ© Ă  long terme qui contribue trĂšs probablement Ă  la consolidation de la mĂ©moire. Les ondes fuseaux, un autre type d’ondes prĂ©sentes pendant le sommeil Ă  ondes lentes, contribuent au blocage thalamique de l'information sensorielle.Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information

    Pathophysiological mechanisms of absence epilepsy: a computational modelling study

    Get PDF
    A typical absence is a non-convulsive epileptic seizure that is a sole symptom of childhood absence epilepsy (CAE). It is characterised by a generalised hyper-synchronous activity (2.5-5 Hz) of neurons in the thalamocortical network that manifests as a spike and slow-wave discharge (SWD) in the electroencephalogram. Although CAE is not a benign form of epilepsy, its physiological basis is not well understood. In an attempt to make progress regarding the mechanism of SWDs, I built a large-scale computational model of the thalamocortical network that replicated key cellular and network electric oscillatory behaviours. Model simulation indicated that there are multiple pathological pathways leading to SWDs. They fell into three categories depending on their network-level effects. Moreover, all SWDs had the same physiological mechanism of generation irrespective of their underlying pathology. They were initiated by an increase in NRT cell bursting prior to the SWD onset. SWDs critically depended on the T-type Ca2+ current (IT) mediated firing in NRT and higher-order thalamocortical relay cells (TCHO), as well as GABAB synaptic receptor-mediated IPSPs in TCHO cells. On the other hand, first-order thalamocortical cells were inhibited during SWDs and did not actively participate in their generation. These cells, however, could promote or disrupt SWD generation if they were hyperpolarised or depolarised, respectively. Importantly, only a minority of active TC cells with a small proportion of them bursting were necessary to ensure the SWD generation. In terms of their relationship to other brain rhythms, simulated SWDs were a product of NRT sleep spindle (6.5-14 Hz) and cortical ÎŽ (1-4 Hz) pacemakers and had their oscillation frequency settle between the preferred oscillation frequencies of the two pacemakers with the actual value depending on the cortical bursting intensity. These modelling results are discussed in terms of their implications for understanding CAE and its future research and treatment

    Pathophysiological mechanisms of absence epilepsy: a computational modelling study

    Get PDF
    A typical absence is a non-convulsive epileptic seizure that is a sole symptom of childhood absence epilepsy (CAE). It is characterised by a generalised hyper-synchronous activity (2.5-5 Hz) of neurons in the thalamocortical network that manifests as a spike and slow-wave discharge (SWD) in the electroencephalogram. Although CAE is not a benign form of epilepsy, its physiological basis is not well understood. In an attempt to make progress regarding the mechanism of SWDs, I built a large-scale computational model of the thalamocortical network that replicated key cellular and network electric oscillatory behaviours. Model simulation indicated that there are multiple pathological pathways leading to SWDs. They fell into three categories depending on their network-level effects. Moreover, all SWDs had the same physiological mechanism of generation irrespective of their underlying pathology. They were initiated by an increase in NRT cell bursting prior to the SWD onset. SWDs critically depended on the T-type Ca2+ current (IT) mediated firing in NRT and higher-order thalamocortical relay cells (TCHO), as well as GABAB synaptic receptor-mediated IPSPs in TCHO cells. On the other hand, first-order thalamocortical cells were inhibited during SWDs and did not actively participate in their generation. These cells, however, could promote or disrupt SWD generation if they were hyperpolarised or depolarised, respectively. Importantly, only a minority of active TC cells with a small proportion of them bursting were necessary to ensure the SWD generation. In terms of their relationship to other brain rhythms, simulated SWDs were a product of NRT sleep spindle (6.5-14 Hz) and cortical ÎŽ (1-4 Hz) pacemakers and had their oscillation frequency settle between the preferred oscillation frequencies of the two pacemakers with the actual value depending on the cortical bursting intensity. These modelling results are discussed in terms of their implications for understanding CAE and its future research and treatment

    Sleep Spindles: Where They Come From, What They Do.

    Get PDF
    Sleep spindles are extensively studied electroencephalographic rhythms that recur periodically during non-rapid eye movement sleep and that are associated with rhythmic discharges of neurons throughout the thalamocortical system. Their occurrence thus constrains many aspects of the communication between thalamus and cortex, ranging from sensory transmission, to cortical plasticity and learning, to development and disease. I review these functional aspects in conjunction with novel findings on the cellular and molecular makeup of spindle-pacemaking circuits. A highlight in the search of roles for sleep spindles is the repeated finding that spindles correlate with memory consolidation in humans and animals. By illustrating that spindles are at the forefront understanding on how the brain might benefit from sleep rhythms, I hope to stimulate further experimentation

    A mathematical model of sleep-wake cycles: the role of hypocretin/orexin in homeostatic regulation and thalamic synchronization

    Get PDF
    Sleep is vital to our health and well-being. Yet, we do not have answers to such fundamental questions as “why do we sleep?” and “what are the mechanisms of sleep regulation?”. Better understanding of these issues can open new perspectives not only in basic neurophysiology but also in different pathological conditions that are going along with sleep disorders and/or disturbances of sleep, e.g. in mental or neurological diseases. A generally accepted concept that explains regulation of sleep was proposed in 1982 by Alexander Borb®ely. It postulates that sleep-wake transitions result from the interaction between a circadian and a homeostatic sleep processes. The circadian process is ascribed to a “genetic clock” in the neurons of the suprachiasmatic nucleus of the hypothalamus. The mechanisms of the homeostatic process are still unclear. In this study a novel concept of hypocretin (orexin) - based control of sleep homeostasis is presented. The neuropeptide hypocretin is a synaptic co-transmitter of neurons in the lateral hypothalamus. It was discovered in 1998 independently by two different groups, therefore, obtaining two names, hypocretin and orexin. This neuropeptide is required to maintain wakefulness. Dysfunction in the hypocretin system leads to the sleep disorder narcolepsy, which, among other symptoms, is characterized by severe disturbances of sleep-wake cycles with sudden sleep-attacks in the wake period and interruptions of the sleep phase. On the other hand injection of hypocretin promotes wakefulness and improves the performance of sleep deprived subjects. The major proposals of the present study are the following: 1) the homeostatic regulation of sleep depends on the dynamics of a neuropeptide hypocretin; 2) ongoing impulse generation of the hypocretin neurons during wakefulness is sustained by reciprocal excitatory connections with other neurons, including local glutamate interneurons; 3) the transition to a silent state (sleep) is going along with an activity-dependent weakening of the hypocretin synaptic efficacy; 4) during the silent state (sleep) synaptic efficacy recovers and firing (wakefulness) can be reinstalled due to the circadian or other input. This concept is realized in a mathematical model of sleep-wake cycles which is built up on a physiology-based, although simplified Hodgkin-Huxley-type approach. In the proposed model a hypocretin neuron is reciprocally connected with a local interneuron via excitatory glutamate synapses. The hypocretin neuron additionally releases the neuropeptide hypocretin as co-transmitter. Besides of the local glutamate interneurons hypocretin neuron excites two gap junction coupled thalamic neurons. The functionally relevant changes are introduced via activity-dependent alterations of the synaptic efficacy of hypocretin. It is decreasing with each action potential generated by the hypocretin neuron. This effect is superimposed by a slow, continuous recovery process. The decreasing synaptic efficacy during the active wake state introduces an increasing sleep pressure. Ist dissipation during the silent sleep state results from the synaptic recovery. The model data demonstrate that the proposed mechanisms can account for typical alterations of homeostatic changes in sleep and wake states, including the effects of an alarm clock, napping and sleep deprivation. In combination with a circadian input, the model mimics the experimentally demonstrated transitions between different activity states of hypothalamic and thalamic neurons. In agreement with sleep-wake cycles, the activity of hypothalamic neurons changes from silence to firing, and the activity of thalamic neurons changes from synchronized bursting to unsynchronized single-spike discharges. These simulation results support the proposed concept of state-dependent alterations of hypocretin effects as an important homeostatic process in sleep-wake regulation, although additional mechanisms may be involved
    • 

    corecore