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3. INTRODUCTION 

3.1. Historical background 

Various states of vigilance, such as waking and sleep states, have been recognized in ancient 

cultures, being present in the Upanishads. After the rather confusing humoral theories of 

Aristotle, Lucretius exposes at length the Epicurean doctrine on sleep and on dreams (De rerum 

natura) explaining what happens during wakefulness and what is the reason why a prolonged 

waking state results in sleep. Several centuries needed to pass before scientists could realize 

and empirically confirm that sleep is yet another function of the brain (and the lack thereof), 

which can be measured as electrical signals by an electrode. The first electrical recording of 

brain activity was performed on animals by Richard Caton revealing its modulation by 

anesthesia and sensory responses (Haas, 2003). The term “electroencephalography” (EEG) was 

coined by Hans Berger, who recorded human brain waves in 1924 and consequently publishing 

his findings in 1929 citing Caton’s valuable contribution to the field (Berger, 1929). 

Importantly, Berger noted that the activity patterns in the awake human brain differ in amplitude 

and frequency, depend on the behavioral state of the subjects, and classified them as alpha and 

beta waves occurring by closing and opening one’s eyes, respectively (Berger, 1929). 

Throughout the following decades, another field emerged in parallel with recording the summed 

activity of neuronal populations, namely, registering the sub- and suprathreshold electrical 

activity of individual neurons in various brain regions driven by the pioneering work carried 

out by Hodgkin and Huxley revealing the ionic mechanisms of the action potential in giant 

squid axons (Hodgkin & Huxley, 1939). Developments in the field brought the patch clamp 

method to life in the later decades, achieving high-fidelity registration of ionic currents through 

the neuronal membrane while also making high-end pharmacological experiments feasible. 

Methods of our days not only include recording individual neuronal activity in isolated brain 

slices but also whole-cell recording in vivo in either anesthetized or even awake animals. One 

of the most striking findings was published by Matteo Carandini’s group, where whole-cell 

patch-clamp recordings of synaptic conductances revealed a surprising decrease in synaptic 

inhibition during anesthesia compared to wakefulness resulting in fewer visually-evoked spikes 

and briefer evoked responses during waking (Haider, et al., 2013). This leads to a more 

significant notion in terms of functional implication: the awake mammalian brain exhibits 
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higher spatial specificity to visual stimulation, since the ratio between the elicited response of 

center and surround stimuli is higher during wakefulness than under anesthesia (Fig. 1) This 

elevated inhibition during wakefulness reveals a regime of sensory processing that cannot be 

observed during anesthesia or sleep, where more balanced excitation and inhibition are evoked 

from large regions of space and persist long after the stimulus has disappeared. Enhanced 

inhibition in the awake cortex is ideally poised to extinguish any spatial or temporal spread of 

feedforward activity elicited by a sensory input. Accordingly, during wakefulness, a brisk and 

highly selective impulse response to spatially localized visual stimuli was observed (Haider, et 

al., 2013). 

Brain states can fluctuate on various timescales and can profoundly influence neural and 

behavioral responses. Detailed observation of rapid state fluctuations can significantly account 

for variability and allow for a more accurate exploration of the neural mechanisms of behavior 

at all levels, from sensory coding to decision making and motor responses (McGinley, et al., 

2015). This is most obvious when comparing spontaneous neuronal activity or responses to 

sensory stimuli between states of sleep and wakefulness (Livingstone & Hubel, 1981; 

Massimini, et al., 2005), but recently, the prominent influence of spontaneous variations within 

the waking state on both cortical neuronal responses and perceptual abilities has been 

documented in both humans (Fox & Raichle, 2007) and rodents (McGinley, et al., 2015). The 

latter study found coincident results and provides a thorough analysis of sensory information 

processing in cortical cells. Neocortical membrane potential has a signature of optimal sensory 

processing, a “sweet spot” corresponding to the highest level of selectivity specifically in mid-

alert wakefulness. This was tested in mice performing an auditory detection task, resulting in 

Figure 1. Responses in awake mice were more selective 

across visual space. A: Comparison of center and surround 

stimuli during wakefulness and under anesthesia. B: 

Quantified spatial selectivity of membrane potential and 

evoked spikes. (Haider, et al., 2013) 
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significantly lower performance both in relaxed and hyper-aroused states compared to mid-alert 

epochs, as indexed by pupil diameter (McGinley, et al., 2015). This phenomenon can be 

represented by an inverted U-shaped curve, a graph already invented and named “Yerkes-

Dodson curve“ after two psychologists, who studied cognitive performances of humans during 

various states of vigilance also indexed by pupil diameter, and found comparable results 

(Yerkes & Dodson, 1908). In the sections below, I would like to discuss in detail the various 

structures and features of the delicate systems that allow the mammalian brain to carry out these 

functions. 

3.2. Role of the lateral geniculate nucleus 

In my dissertation, I would like to focus on the thalamus, and in particular, the lateral geniculate 

nucleus (LGN). Anatomically, the thalamus is a nuclear complex located in the diencephalon 

and comprising of four parts (the hypothalamus, the epithalamus, the ventral thalamus, and the 

dorsal thalamus). Functionally, the thalamus is a relay center subserving both sensory and motor 

mechanisms. Thalamic nuclei (50–60 nuclei) project to one or a few well-defined cortical areas. 

Multiple cortical areas receive afferents from a single thalamic nucleus and send back 

information to different thalamic nuclei. The corticofugal projection provides positive feedback 

to the “correct” input, while at the same time suppressing irrelevant information (Herrero, et 

al., 2002). Sensory pathways (except the olfactory pathway) are relayed by specific thalamic 

Figure 2. Functional and anatomical regions of the thalamus. Color coded regions of the thalamus (AD = 

anterodorsal; AM = anteromedial; AV = anteroventral; CMT = centromedial; IMD = intermediodorsal; LD = 

laterodorsal; LGN = lateral geniculate; MGN = medial geniculate; PO = posterior medial; PVT = paraventricular; 

REU = reuniens; RHO = rhomboideus; RTN = reticular thalamic; ZI = zona incerta). (Gent, et al., 2018) 
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nuclei that all project to specific corresponding cortical areas, and in turn, receive exclusive and 

specific inputs from cortical areas (layer 6) to which it projects. Some thalamic nuclei do not 

receive sensory inputs, but instead are part of either higher-order associative corticothalamic 

circuitry, the midline and intralaminar thalamus and the extra-thalamic GABAergic reticular 

shell (Fig. 2). These are implicated in sensory information (secondary) integration, arousal and 

attention and the genesis of sleep spindles, respectively, (Gent, et al., 2018) into which I will 

delve deeper later. 

3.2.1. Anatomy of the lateral geniculate nucleus 

The lateral geniculate nucleus (LGN) is the visual relay nucleus of the thalamus, which is 

known to primarily taking input from the retinal ganglion cells (retinothalamic pathway) and 

after local processing, it projects visual information to layer 4 of the primary visual cortex (V1) 

(visual thalamocortical pathway) (Covington & Al Khalili, 2021). The LGN is also the point of 

origin for the optic radiations (Meyer's loop, central bundle, and Baum’s loop) that project via 

the internal capsule to the primary visual cortex (V1), primarily synapsing onto spiny stellate 

neurons in layers 4C-alpha and 4C-beta. Analysis of LGN-dependent fMRI activity in non-V1 

extrastriate cortex suggests that the LGN also projects to regions further downstream in the 

visual pathway (e.g., V2-5) (Covington & Al Khalili, 2021). While the LGN receives 

substantial input from the retinal ganglion cells, it receives far greater innervation from higher-

order regions, such as modulatory feedback from layer 6 of V1 and the thalamic reticular 

nucleus (TRN) (Sherman & Guillery, 2002). It also receives varying degrees of modulatory 

activity from the raphe nuclei (serotonergic), (Yoshida, et al., 1984) pedunculopontine and 

laterodorsal tegmental nuclei (cholinergic) (Krueger & Disney, 2019), and locus coeruleus 

(noradrenergic) (Holdefer & Jacobs, 1994). The lateral geniculate nucleus also contains a 

distinct section between its dorsal and ventral regions known as the intergeniculate leaflet 

(IGL). The IGL projects to the suprachiasmatic nuclei of the hypothalamus via the 

geniculohypothalamic tract and to the pineal gland via the geniculopineal tract, implicating the 

LGN in the modulation of circadian/diurnal rhythms (Moore & Card, 1994). Historically, the 

lateral geniculate nucleus was highlighted for its role as little more than a signal repeater, 

however, subsequent research has suggested a more complex account of LGN function, 

including attentional modulation, temporal decorrelation, and binocular facilitation or 

suppression via monocular gain modulation (Covington & Al Khalili, 2021). Furthermore, 
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some research has suggested that a subpopulation of K cells in the LGN demonstrate selective 

sensitivity to stimulus orientation similar to V1 cells (Cheong, et al., 2013). 

The traditional functional and morphological classification groups LGN cells into three 

morphological classes and three physiological classes. While the functional and morphological 

correspondence is not trivial due to the relatively high variability in morphology, the cells more 

or less fall into the categories demonstrated by Fig 3 (Friedlander, et al., 1981). 

 

Based on physiological features, there are W-cells, X-cells, and Y-cells (not to be confused 

with X- and Y-type retinal ganglion cells) chiefly relying on functional aspects, such as 

response latency to optic chiasm stimulation, linearity of spatial summation, and responsiveness 

to fast-moving targets (Friedlander, et al., 1981). While it seems logical to imagine that all 

functional (and structural) differences between X- and Y-cells are limited to the retina, if at 

least some of the morphological differences described for geniculate X- and Y-cells represent 

Figure 3. Three major morphological 

classes of LGN cells. The class 1 cell 

has a large soma and thick, cruciate 

dendrites with occasional, simple 

spinelike appendages. The class 2 cell 

has an intermediate-sized soma and 

dendrites of medium thickness with 

clusters of grapelike appendages near 

dendritic branch points. Two examples 

of class 3 cells are shown. They have 

small somata and thin sinuous dendrites 

with complex, stalked appendages. 

(Friedlander, et al., 1981) 
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the basis of functional differences in geniculate circuitry, then differences between the X- and 

Y-cell pathways are reinforced in the lateral geniculate nucleus, however, it is not necessarily 

the case. It is fair to assume that a class 1 neuron would be a Y-cell, a neuron with any class 3 

features would be an X-cell, and a class 2 neuron could be identified either as an X- or Y-cell 

based on soma, dendrite, axon size, and the shape of the dendritic tree, and while most of these 

cells are relay cells (a.k.a. thalamocortical, or TC cells), a small portion of them do not project 

to the neocortex, but only have local postsynaptic targets, regardless of functional or 

morphological classification (Friedlander, et al., 1981). 

3.2.2. Physiology of the lateral geniculate nucleus 

The membrane potential of LGN cells has long known to be correlated with different brain 

states. During non-rapid eye movement (NREM) sleep the membrane potential is effectively 

hyperpolarized, and shows oscillatory activity with typical bursts, while the membrane potential 

becomes depolarized by 8–12 mV when the brain state is shifted to rapid eye movement (REM) 

sleep or to quiet wakefulness (Hirsch, et al., 1983). Not surprisingly, the average firing rate of 

LGN cells also increases during these transitions, which is caused by a tonic depolarization as 

suggested by Steriade (Steriade, 1978; Hirsch, et al., 1983). 

What inputs shape the spontaneous activity of LGN cells specifically? As previously 

mentioned, geniculate cells receive input from various mesopontine nuclei of diverse 

neurochemical nature (cholinergic, noradrenergic, or serotonergic) either directly or indirectly 

through other modulatory areas, such as the TRN or neocortical layer 6. However, describing 

all known neuromodulators regulating geniculate cell and thalamocortical system function 

seems tempting, it exceeds the scope of this thesis, therefore I will restrain myself from 

elaborating every neuromodulatory impact in detail, and only focus on primary circuit function, 

the effect of acetylcholine, and the influence of dorsal raphe nucleus (DRN) and lateral 

hypothalamus (LH) on brain states, i.e., the phenomena I experimented with. Strikingly, while 

the major excitatory glutamatergic input to TC neurons in the LGN is originating from the 

retina, and cortical modulation was, intuitively enough, thought be conveyed through local 

GABAergic interneurons, studies have shown that cortical axons make twice the number of 

synapses on relay cells (i.e., TC cells) than on interneurons. An observation of high incidence 

of cortical (58%) versus retinal (12%) synapses on relay cells, emphasize a preponderant 

excitatory cortical influence on these cells (Montero, 1991). Furthermore, activation of 

corticothalamic fibers results in a slow depolarization of thalamic relay cells through reduction 



12 

 

of a potassium current through the activation of metabotropic glutamate receptors (slow EPSP) 

(McCormick & von Krosigk, 1992). This slow depolarization blocks rebound burst firing and 

promotes single spike activity, thereby promoting a state of thalamic activity that is associated 

with enhanced sensory transmission and arousal (McCormick & von Krosigk, 1992). The 

temporally prolonged nature of the corticothalamic slow EPSP suggests that this potential is 

probably involved in behavioral state changes that occur on the time scale of seconds or longer, 

whereas the ionotropic receptor-mediated fast corticothalamic EPSPs may be more important 

for the more phasic activation of thalamic excitability (McCormick & von Krosigk, 1992). 

In terms of circuit physiology, the two types of thalamic inputs can also be classified as drivers 

and modulators. There are several characteristic features of drivers in the lateral geniculate 

nucleus that distinguish them from modulators. These characteristics include their fine 

structural appearance, their synaptic relationships, their degree of convergence on relay cells, 

their relatively small number relative to the modulators, their absence of connections to the 

thalamic reticular nucleus, their transmitter and receptor characteristics, and the nature of the 

cross-correlogram they produce when stimulated. Many of these properties are seen in all first 

order thalamic nuclei where the drivers can be identified. (Sherman & Guillery, 1998). There 

are two different functional states for thalamic nuclei. One involves the active, dynamic relay 

of driver activity to the cortex and characterizes the waking state. The other involves rhythmic, 

synchronized bursting of relay cells in which the relay cells no longer respond to driver inputs 

and are seen often during slow wave sleep (Sherman & Guillery, 1998). During this 

synchronized bursting, input from the thalamic reticular nucleus dominates relay cells, and 

excitatory postsynaptic potentials generated by driver inputs are insufficient to break the 

stranglehold of reticular inputs on thalamic relay cell responses, which is why effective thalamic 

relay functions are blocked during slow wave sleep. Note that the relay is disengaged not by 

silencing relay cells but, rather, by forcing these cells to burst rhythmically and independently 

of driver input. Thus, instead of silence, during slow wave sleep the neocortex receives 

synchronized, rhythmic excitatory bombardment from the thalamus. Silence alone would be 

ambiguous; the absence of a visual stimulus could not be distinguished from the absence of an 

effective relay of the stimulus. The rhythmic bursting, by signaling the “no-relay” alternative, 

avoids this ambiguity (Sherman & Guillery, 1998). Interestingly, cortical feedback mechanisms 

which regulate sensory information flow are not restricted to the thalamus but are also present 

in the olfactory bulb (OB). As it is long known, cortical regions underlying vision, audition, 

and somatosensation receive sensory information from the thalamus and also make 
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corticothalamic feedback projections that influence thalamic sensory processing. Thus, the 

cortex has the fundamental capacity to modulate the nature of its own input. In contrast to other 

sensory modalities, the olfactory system is unusual in that sensory information is initially 

processed in the olfactory bulb and conveyed directly (without a thalamic relay) to the olfactory 

cortex. Like the corticothalamic pathway, anatomical studies show that the axons of olfactory 

cortex pyramidal cells send abundant, long-range “centrifugal” projections back to the OB 

(Boyd, et al., 2012). 

Sleep-wake cycles and other, more delicate brain state fluctuations during spontaneous 

mammalian behavior are also heavily reliant on neuromodulators, such as acetylcholine (ACh). 

The most prominent cholinergic input from laterodorsal tegmental and pedunculopontine nuclei 

make synaptic contact with F2 boutons of intraglomerular interneurons, which contribute to 

feed-forward inhibition to relay cells (Dolabela de Lima, et al., 1985). In the LGN, ACh can 

cause at least three different responses: fast nicotinic excitation, slow muscarinic excitation, 

and muscarinic inhibition (McCormick & Prince, 1987 ). The fast depolarizing action of ACh 

in (feline) geniculate neurons appears to be mediated by an increase in membrane conductance 

due to activation of nicotinic receptors. The muscarinic hyperpolarization of LGN neurons is 

due to the activation of a potassium conductance, and the hyperpolarizing action of ACh is not 

only proficient at inhibiting ongoing single-spike activity, but also has the ability to remove 

inactivation of the low-threshold Ca2+ current and thereby increase the probability of the 

occurrence of burst discharges. ACh-induced slow depolarizations result from the suppression 

of up to three different types of potassium conductances and associated currents: a voltage-

dependent K+ conductance, a voltage-independent potassium conductance, and a calcium-

activated K+ conductance (McCormick & Prince, 1987 ). The slow depolarizing response is 

perhaps the most interesting for it may mediate tonic depolarizations of relay cells which are 

observed during waking and REM sleep (Hirsch, et al., 1983). The muscarinic slow 

depolarization is mediated by a decrease in a K+ current which is active at rest (McCormick, 

1993). Thalamic relay neurons exhibit two distinct firing modes: rhythmic burst firing during 

periods of drowsiness and slow wave sleep and single spike activity during waking and 

attentiveness. The muscarinic slow depolarization is effective in inhibiting rhythmic burst firing 

and promoting single spike activity by depolarizing the membrane potential the required 10-20 

mV (McCormick, 1993). But how are inhibitory postsynaptic potentials decreased by activation 

of cholinergic fibers? Although one might imagine presynaptic inhibition of transmitter release, 

the answer is rather simpler. Application of ACh to identified GABAergic interneurons in either 
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the TRN or within the dorsal LGN itself results in inhibition of action potential activity through 

an M2-receptor-mediated postsynaptic increase in K+ conductance. This inhibition of inhibition 

(disinhibition) results in an increase in excitability of TC neurons and increased responsiveness 

to EPSPs arriving from the retina or visual cortex (McCormick, 1993). 

3.3. Cellular function of the thalamocortical circuitry 

In the absence of sensory input the mammalian brain exhibits a wide array of structured, brain 

state dependent spontaneous activity as happens during sleep (Steriade, et al., 2001; Lőrincz, et 

al., 2015) and relaxed wakefulness (Lőrincz, et al., 2009b; Crochet & Petersen, 2006; Lőrincz 

& Adamantidis, 2017). Slow waves and spindles occur largely during slow-wave sleep, while 

gamma waves are present throughout brain states, but are most prominent in the alert and 

attentive animal. Thalamocortical (TC) cells show membrane potential bistability that accounts 

for oscillatory activity. Low voltage-activated T-type Ca2+ channels are important components 

of the large array of voltage-dependent membrane channels used by neurons to express different 

network dynamics (Crunelli, et al., 2004). The origin of the intrinsic bistability has been shown 

to involve an interaction between the steady-state (“window”) component of low threshold, T-

type Ca2+ current (IT) (Hughes, et al., 1999). The primary contribution of the low threshold, 

transient Ca2+ current to the subthreshold electrical activity of central neurons has long been 

considered to be the low-threshold Ca2+ potential (LTCP). In a small group (15%) of 

Figure 4. Ionic mechanisms of the slow (< 1 Hz) sleep oscillation in TC 

neurons. The presence of T-type Ca2+-channel enable the dynamic alternation 

of „Up” and „Down” states in the thalamo-cortical network that accounts for 

slow-wave sleep shown by EEG (Crunelli, et al., 2004). 



15 

 

thalamocortical (TC) neurons, however, IT is also responsible for an intrinsic bistability that 

manifests as: (i) input signal amplification, where responses to small current steps or synaptic 

potentials can be amplified in both the voltage and time domain when neurons are held in a 

membrane potential region centered around −60 mV, (ii) slow (0.1–1 Hz) oscillations appearing 

in NREM sleep with unusual plateau-like waveforms that differ substantially from conventional 

δ-oscillations, and (iii) in the absence of the hyperpolarization-activated inward current (Ih) 

membrane potential bistability, where two resting membrane potentials separated by up to 30 

mV can exist for the same values of DC current and can be “switched” between by appropriate 

voltage perturbations (Fig. 4). This transition from the Down to Up state occurs when a strong 

enough (but not too strong) excitatory volley, either spontaneous or driven, enters into a local 

cortical network whose refractory mechanism has recovered sufficiently from the occurrence 

of the last Up state. The subsequent activation of excitatory neurons results in an amplification 

that initiates even more excitatory neurons to discharge, in a positive feedback loop 

(McCormick, et al., 2015). Owing to the buildup of refractory mechanisms, the recurrent 

networks become less able to maintain activity, and the network eventually and suddenly fails, 

resulting in a rapid transition to the Down state (Steriade, et al., 1993b). In terms of function, 

there is a classical view that they typically exhibit two modes of firing: an aforementioned 

interplay between various ionic currents can generate spontaneous rhythmic burst firing, 

whereas tonic firing is characterized by depolarized states (Jahnsen & Llinas, 1984). 

Traditionally, the waking state has been associated with an “activated” EEG, meaning a 

suppression of slow (<4 Hz) rhythmic activity, and an increased prevalence, either in absolute 

or relative terms, of higher frequencies, particularly in the gamma-frequency range (30-80 Hz). 

Recent intracellular recordings in waking mice have complicated this view, suggesting that 

rhythmic activity at 3-5 Hz can occur in the neocortex of head-restrained and stationary mice. 

This oscillatory activity is strongly suppressed by movement, such as walking or whisking 

(McCormick, et al., 2015). Extracellular and intracellular recordings from thalamocortical 

neurons during EEG-synchronized sleep in naturally sleeping animals revealed that these cells 

generate repetitive burst discharges that ride on top of a slower depolarizing potential (Hirsch, 

et al., 1983). The transition from EEG-synchronized sleep to the waking or REM-sleep states 

occurred with the progressive depolarization of thalamocortical cells and the abolition of the 

slow depolarizing spike and its associated burst of fast action potentials (McCormick & Bal, 
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1997). These alterations in the firing mode of thalamic neurons are associated with dramatic 

changes in the neurons' responsiveness to peripheral stimuli. For example, during slow wave 

sleep sleep, there is a marked diminution of the responsiveness of LGN thalamic neurons to 

activation of their receptive fields (Livingstone & Hubel, 1981), presumably owing to the 

hyperpolarized state of these neurons, the interrupting effects of spontaneous thalamocortical 

rhythms, and the frequency limitations of the burst firing mode (McCormick & Bal, 1997). 

Activation of the low-threshold calcium current, IT, depolarizes the membrane toward threshold 

for a burst of Na+- and K+-dependent fast action potentials. The depolarization deactivates the 

portion of Ih that was active immediately before the Ca2+ spike. Repolarization of the membrane 

due to IT inactivation is followed by a hyperpolarizing overshoot, which is due to the reduced 

depolarizing effect of Ih. The hyperpolarization in turn de-inactivates IT and activates Ih, which 

depolarizes the membrane toward the threshold for another Ca2+ spike (McCormick & Pape, 

Figure 5. Three firing modes of thalamocortical neurons. In control conditions, 

thalamocortical (TC) neurons in the LGN exhibit 2 types of action potential output: tonic 

firing at depolarized membrane potentials and low-threshold Ca2+ potential (LTCP)–

mediated burst firing at hyperpolarized membrane potentials (Jahnsen & Llinas, 1984; 

Leresche, et al., 1991). When corticothalamic feedback is reinstated by 

pharmacologically activating mGluR1a receptors TC neurons are subject to a persistent 

depolarization. In addition, a subset of these cells exhibits high-threshold (HT) bursting 

in addition to single spike activity (Hughes & Crunelli, 2005). 
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1990). The kinetics of activation of IT are considerably faster than are the kinetics of 

inactivation, similar to the Na+ current underlying the generation of the more typical fast action 

potentials. Therefore, if the membrane potential is depolarized from a relatively hyperpolarized 

membrane potential (negative to −65 mV), then IT may first activate and then more slowly 

inactivate, generating a low-threshold Ca2+ spike. These Ca2+ spikes typically last on the order 

of 100–200 ms, and in turn bring the membrane potential positive to threshold (approximately 

−55 mV) for the generation of a burst of three to eight fast action potentials (Jahnsen & Llinas, 

1984). Intracellular recordings of TC neurons reveal that this firing behavior is generated by a 

novel form of burst firing, which occurs at relatively depolarized (>–55 mV) membrane 

potentials and which has been termed high-threshold (HT) bursting (Fig. 5) (Hughes, et al., 

2002). 

It is well-known that the membrane potential of LGN neurons is dependent on brain state 

(Hirsch, et al., 1983). A fundamental study carried out in cats indicates that the fast discharge 

of REM sleep is related to a tonic depolarization as previously suggested and not to an increase 

of the amplitude of individual EPSPs. The change of membrane potential toward a more 

polarized state as the animal shifted from quiet waking to NREM sleep and the similarity 

between the spontaneous large amplitude depolarizations of NREM sleep and those which 

resulted from intracellular injection of hyperpolarizing currents during drowsiness suggest that 

LGN relay neurons are subjected to a tonic hyperpolarization during the later stage of NREM 

sleep (Hirsch, et al., 1983). During wakefulness, the brain constantly fluctuates between 

transient states that differ in EEG wave components as well as in subthreshold potentials of 

individual neurons constituting an oscillatory network (Crochet & Petersen, 2006; Poulet & 

Petersen, 2008; Bennett, et al., 2013; Zagha, et al., 2013; McCormick, et al., 2015; McGinley, 

et al., 2015). Recent studies implicate that sensory performance also varies in accordance with 

these state transitions (Bennett, et al., 2013; Vinck, et al., 2015; Reimer, et al., 2014; Polack, et 

al., 2013). In addition, locomotion modulates sensory coding in the primary somatosensory 

(SS1) (Zagha, et al., 2013) and primary visual cortices (V1) (Polack, et al., 2013). As previously 

mentioned, a key brain area in both the transmission of visual information and the generation 

of the α rhythm is the LGN (Hughes, et al., 2004; Hughes & Crunelli, 2005). In this structure, 

a specialized subset (∼25%–30%) of TC neurons exhibit intrinsic rhythmic burst firing at α 

frequencies (HT bursting), which occurs coherently with naturally occurring α waves in vivo 

(Hughes, et al., 2004; Hughes & Crunelli, 2005) and which can be synchronized by gap 

junctions (GJs), i.e., electrical synapses, to form an α rhythm pacemaker unit (Lőrincz, et al., 
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2008). While the strong intrinsic rhythmicity of these cells is ideally suited to driving thalamic 

and cortical α oscillations, it is generally accepted that the faithful transmission of visual 

information from the retina to the neocortex is carried out by the conventional single spike or 

so-called relay-mode of firing that occurs in the remainder and overwhelming majority of LGN 

TC neurons (Llinás & Jahnsen, 1982). Naturally occurring α rhythms actively and discretely 

constrain the temporal dynamics of neurons that directly carry out the transmission, and 

influence the processing, of early-stage visual information (Lőrincz, et al., 2009b). 

In cortical areas state dependent neuronal activity is determined by both thalamic (Poulet, et al., 

2012) and neuromodulatory inputs (Constantinople & Bruno, 2011; Eggermann, et al., 2014; 

Reimer, et al., 2016). In the thalamus, thalamocortical and thalamic reticular neurons show state 

dependent membrane potential alterations leading to altered modes of rhythmic firing ranging 

from LTCP-mediated burst firing during NREM sleep (Hirsch, et al., 1983), tonic firing and 

HTB firing during active and quiet wakefulness, respectively (Hughes, et al., 2004; Lőrincz, et 

al., 2009b; Crunelli, et al., 2018). The near ubiquitous presence of low-threshold and high-

threshold spikes in TC and TRN neurons during low-vigilance states raises the question of why 

individual thalamic neurons are paradoxically engaged in the energetically expensive 

generation of rhythmic burst firing during periods of attentional and behavioral inactivity that 

are classically associated with energy preservation (Crunelli, et al., 2018). In the nearly 90 years 

since the first description of a physiologically relevant rhythm in the human EEG (Berger, 

1929), considerable effort has been directed towards gaining a deep understanding of the 

mechanisms and physiological importance of EEG waves. The complex picture that has 

emerged reveals that although the source of the EEG signals resides within the neocortical 

supragranular layers, the rhythm generators of different EEG waves are found within both the 

neocortex and thalamus (Crunelli, et al., 2018). Intrinsic and network generators exist in both 

the neocortex and the thalamus, which are capable of locally eliciting oscillations at alpha (8–

13 Hz), theta (4–7 Hz), spindle (7–14 Hz), slow (<1 Hz) and delta (0.5–4 Hz) frequency 

(summarized in Fig. 6). However, simply on the basis of the structurally widespread and 

functionally powerful reciprocal connections between the neocortex and thalamus, it would be 

unreasonable to argue that the alpha, theta, spindle, slow and delta rhythms recorded in the EEG 

during low-vigilance states solely and uniquely rely on the rhythm-generating processes of one 

of these brain regions without any contribution from the other. Indeed, in all studies where this 

question has been directly addressed under unrestrained fully behaving conditions, the EEG 

rhythms of low-vigilance states have been found to be either modulated, regulated or controlled 



19 

 

(to various degrees and in different properties) by the neocortex and/or thalamus (Crunelli, et 

al., 2018). Thus, as neocortical dynamics affect oscillations generated in the thalamus, so does 

thalamic activity influence neocortically generated waves, with these interactions facilitating 

and/or reinforcing the overall synchrony in large thalamic and cortical neuronal population. 

Notably, the extent of this rhythm-regulation function of thalamic low-vigilance state 

oscillations varies greatly among different EEG rhythms, ranging from the strong rhythm 

imposed on the neocortex by the thalamically generated sleep spindles to the more subtle 

thalamic modulation of slow oscillations recorded in the neocortex (Crunelli, et al., 2018). 

Additionally, infra-slow oscillation (ISO) is another noteworthy brain function with a 

periodicity of tens of seconds to a few minutes, alas, under-investigated feature of macroscopic 

brain activity (Lőrincz, et al., 2009a). Such oscillations were first observed in LFP recordings 

Figure 6. Summary of sleep-

wake states in the rodent brain. 

Filtering decomposition of 

LFP/EEG signals across sleep-

wake states in freely moving 

mice (Lőrincz & Adamantidis, 

2017). 
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from the rabbit neocortex but have since been observed in several other mammals and are 

readily detectable in full band EEG recordings from humans (Hughes, et al., 2011). ISOs are 

also a consistent and important feature of the fMRI BOLD signal during the resting state, or so-

called default mode, in humans and in anaesthetized nonhuman primates and rats (Vanhatalo, 

et al., 2004). The emerging functions of ISOs include a role in modulating gross neuronal 

excitability, being correlated with fluctuations in the amplitude of faster EEG oscillations in 

several well-defined frequency bands in the 1–80 Hz range, and in regulating behavioral 

performance (Lőrincz, et al., 2009a). Although the origins of ISOs are not well understood, 

recent EEG and imaging studies in humans support a key involvement of subcortical structures 

and, in particular, the thalamus (Vanhatalo, et al., 2004). In humans these oscillations identify 

highly specific functional anatomical networks (termed resting state networks), some of which 

are thought to involve a significant contribution from the thalamus (Lőrincz, et al., 2009a). 

These observations have several functional implications in terms of awake brain activity and is 

well studied in rodents. Slow synchronous fluctuations in EEG, local field potential, and 

membrane potential of L2/3 barrel cortex neurons are prominent during quiet wakefulness in 

relaxed head-restrained mice (Crochet & Petersen, 2006). During whisking, when the mouse is 

actively scanning its immediate environment, these slow membrane potential fluctuations are 

suppressed. Membrane potential variance is decreased, and the remaining membrane potential 

fluctuations become less correlated in nearby neurons (Fig. 7A) (Poulet, et al., 2012). The 

reduced membrane potential variance during whisking might help improve signal-to-noise 

ratios for sensory processing (Poulet & Petersen, 2008). The cortical state change during 

whisking is not affected by cutting the peripheral sensory nerves innervating the whisker 

follicle, suggesting that the active desynchronized cortical state is internally driven by the brain 

(Poulet & Petersen, 2008). The desynchronized cortical state in primary somatosensory cortex 

during whisking is correlated with an increased firing rate of thalamocortical cells, is blocked 

by pharmacological inactivation of the thalamus, and can be mimicked by optogenetic 

stimulation of the thalamus (Fig. 7B) (Poulet, et al., 2012). Thus, an increase in thalamic firing 

rate drives important aspects of the cortical state change during whisking (Poulet, et al., 2012). 



21 

 

Neuromodulatory inputs are also likely to play a significant role in generating some 

desynchronized brain states (Constantinople & Bruno, 2011; Petersen & Crochet, 2013). 

Brain state changes are sometimes coupled with overt movements such as whisking or 

locomotion and can also be predicted with high accuracy by changes in pupil diameter or muscle 

tone while animals are sitting quietly. Classically, slow wave sleep is characterized by a high 

density of cortical field potential power at 0.5–4 Hz, and reduced muscle tone, while waking is 

associated with a relative suppression of low frequency activity (usually termed “activation” or 

“desynchronization”), increased muscle tone, and behaviorally relevant eye movements (e.g. 

fixation, saccades, and smooth pursuit) (McGinley, et al., 2015). All together, these biomarkers 

for waking states predict changes in the capability of animals to represent and respond to 

Figure 7. Cortical neuron membrane potential correlates with brain states. (A) Simultaneous 

whole-cell patch-clamp recording of two L2/3 neurons from the barrel cortex of an awake 

mouse during quiet wakefulness and whisking behavior (green, whisker position; black and 

blue, membrane potentials). Right: slow, large Vm fluctuations were highly correlated in the 

two neurons during quiet wakefulness (black), whereas the fast, small-amplitude Vm 

fluctuations during whisking were less correlated (red) (Poulet & Petersen, 2008). (B) 

Optogenetic stimulation of somatosensory thalamus drives cortical desynchronization. Left: 

epifluorescence images showing the expression of ChR2-Venus in the somatosensory 

thalamus (top) and in thalamocortical axons projecting to the barrel cortex (bottom). Right: 

an example whole-cell recording in the barrel cortex of an awake mouse during quiet 

wakefulness before, during, and after optogenetic stimulation of the thalamus (blue shaded 

period) (Poulet, et al., 2012). 
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stimuli, and account for a significant fraction of the variability in spontaneous and stimulus-

driven activity and behavior (McGinley, et al., 2015). 

Over the last 50 years, waking brain state has been assessed in psychophysical experiments by 

monitoring the diameter of the pupil (Kahneman & Beatty, 1966). Human and animal studies 

have shown that changes in pupil diameter (after controlling for changes associated with 

luminance and depth accommodation) are correlated with arousal, attention, emotion, cognitive 

perception, “brain gain”, as well as heart rate and galvanic skin reflex, indicating a tight 

coupling between the state of the central and peripheral nervous systems (Kahneman & Beatty, 

1966) (McGinley, et al., 2015). Recently, intracellular membrane potential (Vm) and local field 

potential (LFP) recordings from cortical neurons collected simultaneously with pupil diameter 

in head-restrained, spontaneously locomoting or whisking mice revealed a marked relationship 

between pupil size, low frequency (2–10 Hz) fluctuations in membrane potential/LFP, and 

exploratory behaviors (whisking and locomotion) (McGinley, et al., 2015; Reimer, et al., 2014; 

Vinck, et al., 2015). Moreover, human intracranial and magnetoencephalographic (MEG) data 

show that retinal inputs are temporally aligned to a preferential alpha phase which are 

consistently preceded by saccadic eye movements (Staudigl, et al., 2017). Importantly, this 

coordination of saccades was related to successful memory encoding, suggesting a mechanistic 

role for alpha oscillations in coordinating the encoding of visual information. Furthermore, 

these data point to an active involvement of task-relevant brain areas in this coordination: MEG 

and intracranial data yielded the occipital cortex, the parahippocampal gyrus, and the 

retrosplenial cortex as sources of the coordination of saccades and alpha phase, which have 

been shown to support the encoding of visual scenes (Kravitz, et al., 2011). 

3.4. Population level mechanisms of state dependent thalamocortical rhythms 

The human electroencephalogram (EEG) expresses a range of distinctive waves, progressively 

increasing in amplitude and decreasing in frequency, the most prominent of which are the alpha 

rhythm, sleep spindles, delta waves and slow waves (Niedermeyer & Lopes Da Silva, 2004) 

(summarized in Figure 8). The emergence of these EEG rhythms is reliant upon finely tuned 

interactions between neocortical and thalamic neuronal assemblies, with strong modulation 
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from many subcortical regions, including the brainstem and hypothalamus (Herrera, et al., 

2016; Lőrincz & Adamantidis, 2017). 

Figure 8. Cellular thalamic counterparts of electroencephalogram rhythms of relaxed wakefulness and non-rapid 

eye movement sleep. Representative intracellular recordings from TC (middle column) and TRN (right column) 

neurons depicting the membrane potential changes occurring in these neurons during the respective EEG rhythms 

shown in the left column (N1–N3: NREM sleep stages). Sleep spindles can occur in isolation or following a 

K-complex. A K-complex in the EEG results from a single cycle of the slow (<1 Hz) oscillations. In the TC neuron 

column, pink boxes highlight alpha and delta oscillations nested in the UP and DOWN state, respectively, of slow 

(<1 Hz) oscillations in N3. In the TRN neuron column, pink boxes highlight spindle waves in the UP state and 

delta oscillations in the DOWN state, respectively, of slow (<1 Hz) oscillations in N3. TRN neurons do not express 

firing coherent with alpha and/or theta waves (wake state and N1). Action potentials in the traces depicted in the 

middle and right column have been truncated for clarity of illustration. (Crunelli, et al., 2018) 
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3.4.1. Delta rhythms (1–4 Hz) 

The isolated neocortex expresses delta oscillations due to certain pharmacological 

manipulations whereby the neuromodulatory tone is reinstated giving rise to powerful 

reciprocal excitation of layer 5 intrinsically bursting neurons (Carracedo, et al., 2013; Lőrincz, 

et al., 2015). Most TC neurons and NRT neurons, can exhibit a few cycles of delta oscillations 

in vivo, whereas persistent delta oscillations are observed in decorticated animals (Dossi, et al., 

1992; Timofeev & Steriade, 1996). In contrast to the neocortex, delta oscillations in thalamic 

neurons are generated by cell-intrinsic mechanisms, namely by the dynamic interaction of IT 

and Ih in TC neurons (McCormick & Pape, 1990; Leresche, et al., 1991) and Ca2+-activated K+ 

currents in TRN neurons forms the pacemaker mechanism that enables individual thalamic 

neurons to elicit LTS-bursts at delta frequency (Bal & McCormick, 1993). Presumably, the 

relative contribution of the neocortex and thalamus to EEG delta waves of natural sleep, the 

presence of delta frequency generators in both brain regions suggests that both the neocortex 

and thalamus have a role in producing this EEG rhythm (Crunelli, et al., 2018). 

3.4.2. Slow waves (<1 Hz) 

The most prominent EEG component of NREM sleep, hence the name “slow wave sleep” is 

used in synonymy with NREM sleep. Jointly with delta waves, EEG waves of stage 3 of NREM 

(N3) sleep contain slow (<1 Hz) waves as well. Slow waves reflect the rhythmic alternation of 

so-called depolarized Up and hyperpolarized Down states observed in almost all neocortical 

and thalamic neurons so far investigated in vivo and in vitro (Steriade, et al., 1993b; Steriade, 

et al., 1993a; Hughes, et al., 2002; Lőrincz, et al., 2015). Whereas both the neocortex and 

thalamus in isolation have different generators of slow oscillations the full expression of sleep 

slow waves in the EEG requires active thalamic participation (Lemieux, et al., 2014). While 

this activity is primarily generated by the interaction between synaptic excitation and inhibition 

in the neocortex (Lőrincz, et al., 2015), in TC neurons on the other hand, slow oscillations are 

generated by a cell-intrinsic mechanism that requires the cooperation between the leak 

K+ current, the T-type voltage gated calcium “window current” (ITwindow), the Ca2+-activated non-

selective cation current (ICAN) and the HCN current by hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels (Crunelli, et al., 2004) (Fig. 4). 
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3.4.3. Sleep spindles (7–14 Hz) 

Sleep spindles are global EEG waves of NREM stage N2 generated in the thalamus 

characterized by a typical waxing and waning temporal profile (Steriade, et al., 1985). These 

typical oscillations are generated by a mutual synaptic interaction between excitatory TC and 

inhibitory NRT neurons (Bal, et al., 1995; Bal, et al., 1995). Although the neocortex cannot 

generate sleep spindles in the absence of the thalamus as elimination of the thalamic input to 

the neocortex abolishes spindles in the EEG during natural sleep (Steriade, et al., 1985), the 

corticothalamic feedback to TC and NRT neurons provides essential contributions to some 

sleep spindle properties (Contreras, 1996). 

3.4.4. Alpha (8–13 Hz) and theta waves (4–7 Hz) 

Alpha waves were the first EEG rhythms to be recorded (Berger, 1929) and they are present in 

the EEG during relaxed inattentive wakefulness, that is, in the behavioral state that falls between 

fully attentive wakefulness and stage N1 of NREM sleep, and also during attentive perception 

(Crunelli, et al., 2018). Although, the mechanisms underlying the alpha waves of these two 

behavioral states might be different, I am going to focus on those occurring during inattentive 

wakefulness, because based on our experiences, the quiet wakefulness behavior of mice 

resembles this alpha oscillation. Theta waves that are present in the EEG of humans and higher 

mammals during stage N1 of NREM sleep have a similar mechanism of generation as alpha 

waves (Hughes, et al., 2004). Both waves are driven by a subset of gap junction-coupled TC 

neurons that generate high-threshold bursts (HTB) phase-locked to each cycle of the 

corresponding EEG rhythm (Hughes, et al., 2004) (Fig 5). HTBs in TC neurons entrain the 

firing of local thalamic interneurons and other non-HT-bursting TC neurons, giving rise to a 

thalamic output at alpha or theta frequency, depending on the behavioral state (Lőrincz, et al., 

2009b). From a functional perspective, inhibition of HTBs within a small (<1 mm3) area of 

lamina A of the dorsal LGN in freely moving cats markedly, selectively and reversibly 

decreases alpha waves in the surrounding thalamic territory and in the EEG recorded from the 

primary visual cortex by 90% and 75%, respectively (Lőrincz, et al., 2009b). A substantial body 

of evidence suggests that LGN α rhythms and related TC neuron firing require thalamic 

activation of muscarinic acetylcholine receptors (mAChRs) (Lőrincz, et al., 2008) and/or 

metabotropic glutamate receptor 1a (mGluR1a) (Hughes, et al., 2004). In vivo reverse 

microdialysis experiments confirmed a role for these receptors but also showed that LGN α 

rhythms are considerably more susceptible to blocking mAChRs than to antagonizing 
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mGluR1a, indicating that they are mainly reliant on a cholinergic drive (Lőrincz, et al., 2009b). 

Consistent with this, intracellular recordings of relay-mode LGN TC neurons, obtained in vitro 

during α rhythms that had been induced by reinstating the cholinergic drive with the nonspecific 

AChR agonist carbachol (Lőrincz, et al., 2008), revealed a pattern of action potential output 

almost identical to that observed in vivo (Lőrincz, et al., 2009b). 

So far, I have discussed the thalamus as sole generator of alpha and theta rhythms, but the 

existence of neocortical rhythm generators cannot be excluded, since many studies in vivo 

provide indirect support for a cortical involvement in classical EEG alpha waves (Lopes da 

Silva, et al., 1980; Lopes Da Silva & Storm Van Leeuwen, 1977; Bollimunta, et al., 2011; 

Halgren, et al., 2019). Thus, whereas the precise nature of neocortical alpha-generating 

networks is at present not clear, it is reasonable to suggest that the alpha and theta waves that 

characterize the EEG of relaxed, inattentive wakefulness and N1 NREM sleep, respectively, 

are strongly, though not exclusively, driven by the thalamic HTB-generating mechanism 

described above (Crunelli, et al., 2018). 

A good example of neocortical alpha-generation is “striate” visual alpha rhythm that manifests 

in local circuits of V1 following periods of slow gamma-frequency activity (Traub, et al., 2020). 

Recent findings revealed a number of similarities with the phenomenon as studied non-

invasively in human subjects: it required a prior period of excitatory (sensory) activity; it was 

time-limited, fading as time from this prior excitation increased; it was abolished on subsequent 

re-establishment of excitation (sensory input); it was sensitive to NMDA receptor blockade 

(Vlisides, et al., 2018); its primary generation mechanism appeared to be largely synaptic 

inhibition-independent (Lozano-Soldevilla, et al., 2014). Complex bursts from main branches 

of pyramid apical dendrites occur via voltage-operated calcium channel conductances, whereas 

bursts mediated by NMDA receptors are seen on finer dendritic processes (Nevian, et al., 2007). 

Both have a role in synaptic integration and together have been shown to powerfully influence 

sensory processing (Larkum, et al., 2009). Although non-synaptic dendritic bursting is apparent 

in L4 pyramidal neuron recordings, no involvement of individual voltage-operated calcium 

channel subtypes was observed to contribute to the alpha rhythm (Traub, et al., 2020). This may 

indicate the involvement of a complex admixture of channel subtypes or a dominant 

involvement of NMDA spikes. Both the bursts and the alpha rhythm were dependent on 

blockade of hyperpolarization-activated conductance Ih (Traub, et al., 2020). The latter intrinsic 

conductance state is essential for generating dendritic NMDA bursts, suggesting the change in 

dendritic electrogenesis essential for alpha-rhythm generation was almost entirely mediated by 
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NMDA receptor-dependent synaptic excitation, a factor that may also contribute to the strong 

local synchrony inherent in the LFP alpha-rhythm recordings (Traub, et al., 2020). By analyzing 

laminar profiles of LFP and multiunit activity (MUA) recorded with linear array multielectrodes 

from the visual cortex of behaving macaque monkeys a study found separate alpha current 

generators located in superficial, granular, and deep layers, respectively (Bollimunta, et al., 

2011). This study also confirmed that alpha oscillations in the lateral geniculate cohere with 

those in V1. During visual stimulation, alpha-range field potentials are strongly coupled with 

spiking throughout the cortical column but especially in supragranular layers (Dougherty, et al., 

2015). The strongest alpha-locked sink in deep layers below the layer 4C/5 border at the time 

of alpha troughs. At counter-phase (coincident with deep layer alpha peaks), the sign of the 

sinks and sources reversed so that a sink was present in the granular layer. The alpha-locked 

current source density patterns suggest endogenous activation of granular and infragranular 

compartments that alternates at a low frequency (∼7–14 Hz) (Dougherty, et al., 2015). 

Moreover, LFP and spike recordings from macaques performing a somatosensory 

discrimination task corroborated these findings as it has been demonstrated that the decrease of 

alpha power across sensorimotor cortices correlated with better discrimination performance 

(Haegens, et al., 2011). Furthermore, it has been shown that the alpha rhythm interacts with 

spike activity: firing rate goes up when alpha power goes down and the neuronal firing is 

strongly related to the phase of ongoing alpha oscillations (Haegens, et al., 2011). Despite the 

lack of classical alpha rhythms in rodents stereotyped 3–5 Hz Vm and LFP oscillations can be 

recorded (Einstein, et al., 2017) possessing several similarities with the alpha oscillations 

recorded in primates and felines (Senzai, et al., 2019).  
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3.5. Role of the lateral hypothalamus in brain states 

The hypothalamus, more specifically the lateral hypothalamus (LH), is known for its key 

function as a homeostatic regulator, and integrator of environmental stimuli and internal signals 

(Fonyó, 2011; Bonnavion, et al., 2016). As these are extremely widespread and diverse 

functions, the structure itself must necessarily be widely connected with a plethora of other 

brain structures (summarized in Figure 9). However fascinating the homeostatic and behavioral 

Figure 9. Long-range connectivity of the LHA as a substrate for complex behavior. Long-range anatomical inputs 

and outputs of the LHA reflect the engagement of multiple physiological systems to regulate fundamental 

behavioral programs. A, schematic of a parasagittal rodent brain illustrating major long-range inputs (green lines) 

to the LHA. B, similar schematic illustrating major long-range outputs (red lines) from the LHA. The following 

abbreviations are used: Arc, arcuate nucleus; BLA, basolateral amygdala; BNST, bed nucleus of the stria 

terminalis; CeA, central nucleus of the amygdala; DR, dorsal raphe; Fx, fornix; LC, locus coeruleus; LHA, lateral 

hypothalamic area; LHb, lateral habenula; LS, lateral septal nuclei; MRF, midbrain reticular formation; MT, 

mammillothalamic tract; NAc, nucleus accumbens; NTS, nucleus of the solitary tract; PAG, periaqueductal grey; 

PB, parabrachial nucleus; PFC, prefrontal cortex; PVN, paraventricular nucleus of the hypothalamus; PVT, 

paraventricular nucleus of the thalamus; RMg, nucleus raphe magnus; TMN, tuberomammillary nucleus; VTA, 

ventral tegmental area. (Bonnavion, et al., 2016) 
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implications of LH functioning might be, I would like to concentrate only on its projections to 

TRN and dorsal raphe nucleus (DRN). Not surprisingly, there have been studies that addressed 

its role in sleep-wake cycles and brain states (Herrera, et al., 2016; Hassani, et al., 2010). 

Although an indirect connection to the LGN, empirical evidence has shown that a subset of 

GABAergic lateral hypothalamus (LHGABA) cells sends monosynaptic connections to (also 

GABAergic) TRN cells, and that these cells exerted a strong GABAA-mediated inhibitory 

action on TRN cells during spontaneous NREM sleep-to-wake transitions (Herrera, et al., 

2016). Optogenetic activation of the LHGABA-TRN circuit promoted rapid wakefulness and 

cortical arousal selectively during NREM sleep and anesthetized states, respectively, as 

measured by a prominent change in thalamocortical oscillations (that is, sudden decrease of the 

amplitude of <4 Hz oscillations and burst-suppression mode, respectively) (Herrera, et al., 

2016). Strikingly, the stimulation of this subset of cells was faster than optogenetic activation 

of norepinephrine neurons from the locus coeruleus, and the LHGABA-TRN arousal circuit is 

specific to NREM sleep, as its activation during REM sleep did not result in any noticeable 

behavioral transitions (although, activation of norepinephrine-containing LC cells induce 

arousal both from NREM and REM sleep) (Herrera, et al., 2016). 

Although DRN is most often implicated in mood regulation, it is fair to assume that it also plays 

a role in sleep regulation, since the main pathophysiological mechanisms involving DRN, such 

as depression, is frequently accompanied by sleep disturbances (Lowry, et al., 2008). Also, 

various waking brain states beside sleep-wake cycles can be suspected to be influenced by the 

DRN, as its major neuromodulator serotonin rapidly influences sensory, motor, and cognitive 

functions (Lottem, et al., 2016; Miyazaki, et al., 2014). The findings which describe the 

relationship between DRN-projecting LH axons and sleep-wake transition is elaborated in 

detail in the Results section of this thesis. 

The Greek philosopher Heraclitus famously said, “No man ever steps in the same river twice, 

for it’s not the same river and he’s not the same man.” Likewise, neuroscientists are faced with 

ever-changing patterns of activity in the awake brain, many of which take the form of state 

changes. Luckily, detailed observation of these rapid state fluctuations can significantly account 

for variability and allow for a more accurate exploration of the neural mechanisms of behavior 

at all levels, from sensory coding, through decision making, to motor response. In this thesis, I 

would like to add my drop of detailed observations to the ocean of Neuroscience.  
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4. AIMS 

The state dependent activity of various cortical areas has been extensively studied but this 

phenomenon has been less explored in subcortical areas including the thalamus. Using a 

combination of extra- and intracellular recordings from identified thalamic neurons, 

optogenetics, pharmacological inactivation and pupillometry in awake head-restrained mice our 

specific aims were: 

I. To reveal whether and how the activity of neurons in the visual thalamus, i.e., 

the lateral geniculate nucleus differs between active and quiet wakefulness. 

II. To elucidate the underlying cellular and network mechanisms of this state 

dependent activity. 

III. To explore the functional implications of this brain state dependent activity, 

that is, how does it influence visual information processing? 

IV. To test the effects of local stimulation of GABAergic axons in the DRN 

originating in the LH in terms of brain states. 
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5. MATERIALS AND METHODS 

5.1. Surgical preparation 

Our experiments were conducted on 17 adult male or female C57BL/6 mice which were awake, 

drug-free and head-restrained throughout the recording sessions. Prior to surgical preparation, 

the animals were anaesthetized with Isoflurane (Forane®, Abbvie, USA; dose: 1 L/min 1-1.5% 

isoflurane and 99-98.5% O2) until surgical plane anesthesia was achieved, i.e., negative paw 

withdrawal reflex. During surgical preparation the skull of the animal was exposed by removing 

the skin overlying the cranium and a stainless-steel head post cemented over the frontal suture 

with dental pattern resin (GC America, USA). Craniotomy positions were marked with a 

permanent marker pen at the following stereotaxic coordinates (Paxinos and Franklin, 1997): 

AP: -1.9 mm; ML: 2.1 mm and DV: 1.9-3.3 mm (from dura) for LGN and AP: -4.45, ML: +1.2, 

DV: 2.9-3.1, at a 30° angle for DRN and AP: -2.9 mm; ML: 2.5 mm and DV: 0.3-0.6 mm For 

V1. At the end of the surgical procedure, the mice received 0.3 ml 1% Rimadyl (Pfizer, USA) 

intraperitoneally for postoperative analgesia and a 0.1 ml intramuscular injection of 

Gentamycin (source). 5 days after the surgical preparation the mice were handled gently each 

day in order to reduce excessive stress or anxiety during the recording sessions. On the day of 

the recording, craniotomy was performed at the previously marked stereotaxic positions under 

isoflurane anesthesia (Forane®, Abbvie, USA; dose: 1 L/min 1-1.5% isoflurane and 99-98.5% 

O2) and mineral oil was applied on the dural surface to prevent dehydration. Finally, mice were 

transferred to a recording setup where their head posts were fixed to a custom clamping 

apparatus and recording sessions started at least 30 minutes following awakening. 

5.2. In vivo electrophysiology and juxtacellular labeling 

Single-unit and local field potential (LFP) recordings were performed from the LGN and V1 

structures with either borosilicate glass micropipettes (Harvard Apparatus, USA) filled with 

0.5 M NaCl solution containing with 1.5% w/v Biocytin (Sigma Aldrich, USA) or Silicon 

probes (single shank, 32-channel, Neuronexus). In the LGN, high-impedance sharp electrodes 

(10-80 MΩ) were used, while recordings in V1 were performed using lower resistance 
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electrodes (3-5 MΩ). Intracellular recordings, using the current-clamp technique, were 

performed with standard wall glass microelectrodes filled with 1 M potassium acetate 

(impedance 30-50 MΩ). When advancing the electrode through the LGN, the voltage output 

(Vout) of the amplifier has regularly (every minute) been zeroed and the bridge continuously 

balanced throughout the recordings. At the end of the impalement, the Vout was read and the 

recorded Vm adjusted if necessary. Recorded neurons were included in the data set only if their 

resting membrane potential during the active period was more hyperpolarized than -45 mV and 

had overshooting action potentials. A motorized micromanipulator (Scientifica, UK) and an oil 

hydraulic micromanipulator (Narishige, Japan) were used for advancing the microelectrodes to 

the LGN and V1, respectively. The dorsoventral (DV) coordinates were 2200-3000 µm for the 

LGN and 300-800 µm for V1. The biological signals were pre-amplified with Axon HS-9A 

headstages (Molecular Devices, USA) and amplified with an Axoclamp 900A amplifier 

(Molecular Devices, USA) (gain: 50-100x) and filtered (0.1 Hz -200 Hz for LFP, 0.3-6 kHz for 

units, DC-6 kHz for intracellular recordings). The amplified signals were then digitized with a 

CED Power3 1401 AD converter (Cambridge Electronic Design, UK) at 30 kHz sampling rate 

and Spike2 software (Cambridge Electronic Design, UK) was used for data acquisition. 

To confirm the morphology and location of the recorded neurons as TC neurons in the LGN, 

we also performed juxtacellular labeling of LGN cells (n=7) by applying pulses of anodal 

current (1-3 nA, 500 ms, 50% duty cycle) for 2-5 minutes, which allowed Biocytin from the 

micropipette solution to enter the cells. At the end of the recording sessions, mice were 

overanesthetized, their brain removed and transferred to 4% paraformaldehyde (PFA) solution 

in 0.1 M phosphate buffer (PB) for overnight storage at 4°C. Next day, the brain was washed 

in standard PB solution and 50 µm slices containing the LGN were cut with a VT1000S 

vibratome (Leica, Germany). During the histological processing, the slices were cryoprotected 

with 10% and 20% sucrose solution, cells were opened with a freeze-thaw method and TBS-

Tween20 to be able to conjugate the Biocytin in labelled cells with Cy3-Streptavidin (Jackson 

ImmunoResearch, USA) as secondary antibody. After 2 hours of incubation with Cy3-

Streptavidin, the slices were mounted on glass microscope slides and covered with cover slips. 

A BX60 fluorescent microscope (Olympus, Japan) and a Surveyor software (Objective 

Imaging, UK) were used to visualize the labeled neurons. The identity of the labeled neurons 

was confirmed as LGN TC neurons according to the position of their somata and their 

somatodendritic morphology. 
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5.3. Local photostimulation of LH axons in the DRN 

For in vivo optogenetic activation of LH axons in the DRN, Vgat-IRES99 Cre mice (Vong, et 

al., 2011) were injected with 150 nl AAV1-CAGGS-FLEX-CHR2-td tomato-SV40 bilaterally 

into the LH. Following 2 weeks of postinfection DRN neurons were recorded in awake head 

restrained mice using a multi-site Silicone electrode (Neuronexus, 32 channel, linear) coupled 

to an optical fiber. 

5.4. Cortical inactivation with muscimol 

For inactivation of the V1, we microinjected muscimol, a GABAA receptor agonist (200 nL, 1 

mM), through a glass pipette (15 μm tip diameter) at coordinates 3.3 mm posterior; 2.3 mm 

lateral to Bregma at a depth of 0.5 mm from brain surface. The correlation of the LGN neuron 

baseline activity and pupil diameter was quantified and compared with control (n = 7 neurons). 

Saline injections (200 nl) into the V1 did not affect the correlation of LGN neuron baseline 

activity and pupil diameter (n = 5 neurons). 

5.5. Pupillometry and visual stimulation 

Pupillometry was conducted with an infrared camera (GenieTM, Teledyne Dalsa, Canada) 

operating at 50 fps focused on the ipsilateral eye of the animal illuminated with an infrared LED 

(850 nm, Marubeni, Japan). For the visual evoked responses, we placed a PC screen at a ~20 cm 

distance to the contralateral eye of the mouse displaying moving gratings of 8 different 

orientations in pseudorandom order. Each grating cycle ran as the following: first it appeared 

and remained still for 1 s, then drifted for another second in one of the 8 orientations and 

eventually disappeared so only the grey screen (50% luminance) was displayed for 4 s. 

Afterwards the cycle restarted with a different orientation. 
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5.6. Data analysis 

Data analysis was performed offline with custom-written MATLAB routines and ImageJ plug-

ins. Recordings during stages of natural sleep (as confirmed by cortical LFP analysis) have been 

excluded from data analysis. Pupillometry was carried out offline on recoded AVI files using a 

custom ImageJ plug-in. The plug-in extends the Snakuscules model (Thevenaz & Unser, 2008) 

for video files. The model is designed to find circular objects using a variational framework, by 

minimizing an energy function. The model consists of a circle and a ring on it such that their 

area is always the same. In other words, the radii of the inner and outer circle always have the 

same ratio. The energy function is simply the difference of the intensities covered by the ring 

and the circle, which is minimal when the circle fits a circular (bright) object, and the ring is in 

the background (dark). Initially, a rectangular region in the iris is manually selected for 

reference pixel intensities, which are then used to invert the image such that this region is dark 

and the pupil white. Afterwards, the user must provide the segmentation manually in the first 

frame of the video. Assuming that the change between two consecutive frames is small (due to 

the 50-fps camera used), the software uses the segmentation of the previous frame as an initial 

solution for the subsequent frame. The results are then written to a CSV file, including the frame 

index, pupil position, and radius. Black frames that are used for synchronization of the video 

files and electrophysiology are also detected and indicated in the result file. Segmentation is 

not performed in black frames.  

For comparing the FRs of thalamic neurons with respect to the pupil diameter, the upper and 

lower terciles of the pupil diameter distributions were used. LGN neurons were identified as 

TC or interneurons based on either their morphology (n = 7 TC neurons labeled), action 

potential duration (<0.35 ms for LGN interneurons, >0.35 ms for TC neurons, see Fig. 16 A), 

and action potential height ratio (Fig. 16 A, left). A burst in thalamic neurons was defined as a 

cluster of spikes consisting of minimum of two action potentials, a maximum interspike interval 

of 10 ms, and had to be separated from other bursts by more than 100 ms. Brain states were 

detected from the V1 LFP signal using a semi-automated level threshold method in Spike2 

(CED, UK). Quiet wakefulness (QW) states were defined as periods of at least 3 s with large 

amplitude (2×baseline) 3–6Hz voltage fluctuations. The timing of state changes was determined 

by detecting the peak of the first 3–6 Hz oscillation cycle for active wakefulness (AW) to QW 

transitions and of the last peak of the 3–6 Hz oscillation cycle for QW-to-AW transitions. 

Periods of dilated pupil correspond to the upper tercile and periods of constricted pupil to the 
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lower tercile of the pupil distribution for a given recording. For correlating pupil diameter and 

FRs, we used the random permutation test, in which two data points were randomly selected 

and paired up from the FR and pupil data points (i.e., one from each), and this was repeated 

1000 times, resulting in a (normal) distribution of random data pairs serving as null hypothesis, 

and two-tailed P-values were calculated. Pearson’s r calculated from the real (observed) 

FR/pupil diameter data was then compared to the random distribution, and r values falling out 

of 95% confidence intervals were considered statistically significant.  

Visual evoked responses were determined by comparing the firing rate during three periods of 

time: (1) 1 s before the appearance of the grating image, (2) 1 s during still image presentation 

and (3) 1 s of drifting grating. We used Wilcoxon rank-sum test to determine two p-values (P1 

and P2). P1 is from comparing the firing rates of (1) and (2), and P2 is from comparing (1) and 

(3). Significant evoked responses were determined when P2 was statistically significant 

(p<0.05) and P1 was not (p>0.05), thus excluding potentials evoked merely by illumination 

change of the PC screen. After compiling firing rate changes in all 8 different orientations, 

Orientation Selectivity Index (OSI) was calculated with the following formula: 

𝑂𝑆𝐼 =
𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 

where orthogonal orientation was calculated as the mean of preferred orientation + and – 90°. 

Several time frames were omitted from analysis when the mouse blinked, and the missing data 

points were replaced by linear interpolation. Pearson correlation coefficients (R) regarding 

spontaneous brain state dependent activity and statistical significance defined by random 

permutation test calculated using MATLAB. 
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6. RESULTS 

As most of the recent findings concerning the mechanisms and effects of brain states focus on 

neocortical areas, we aimed to address the aforementioned phenomena in the LGN of awake 

mice, which is known to be the thalamic relay nucleus involved in visual signal processing 

(Motokawa & Suzuki, 1966). 

Visual information reaches the V1 via the LGN (Murphy, et al., 1999). Consequently, the first 

level of integration on which visual information is processed takes place in the LGN and that is 

the very reason we endeavored to investigate the activity of TC cells in this nucleus. According 

to numerous previous studies, TC cells classically exhibit two modes of firing: (1) burst firing 

during states of hyperpolarized membrane potential states and (2) tonic firing mode when the 

membrane potential of TC cells is depolarized (Jahnsen & Llinas, 1984; Jahnsen & Llinas, 

1984; Hirsch, et al., 1983; McCormick & Bal, 1997; Hughes, et al., 2002; Hughes, et al., 2004; 

Lőrincz, et al., 2009b; Crunelli, et al., 2012). However, the novel view is that there is a third 

mode of firing: a subset of TC cells can generate burst activity at depolarized membrane 

potential states, called high-threshold (HT) bursts (Hughes, et al., 2002; Crunelli, et al., 2012). 

Our findings suggest that these firing patterns transiently alternate in relation to state transitions 

in awake, drug-free and spontaneously active brains of mice. Moreover, we wanted to explore 

the origin of this relationship by the inactivation of corticothalamic input to the LGN (Wilson, 

et al., 1984) using muscimol applied to the V1. 

We also addressed the brain state dependent performance alterations of the visual sensory 

pathway by eliciting orientation selective visual responses in the LGN during various states. 

While apparent visual responses were evoked in the LGN TC cells, we obtained a somewhat 

counterintuitive result, namely the orientation selectivity decreased during locomotion and alert 

wakefulness compared to stationary behavior and relaxed brain states. These findings might 

have important implications on thalamic visual sensory processing. 

Although sensory information processing and brain state dependency is mainly studied in the 

thalamocortical circuitry, several other subcortical areas are known to be involved global state 

transitions, e.g., from sleep to wake, including the LH and the DRN (Hassani, et al., 2010; 

Herrera, et al., 2016), thus we conducted in vivo experiments to explore the role of LH-DRN 

circuit in promoting wakefulness. 
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6.1. The spontaneous activity of LGN is correlated with arousal 

Extracellular and intracellular recordings of morphologically identified LGN neurons with 

simultaneous LFP in the V1 and pupillometry in awake head-restrained mice revealed the brain 

state-dependent activity of thalamic neurons in the LGN. The pupil diameter of awake mice 

Figure 10. The baseline firing of identified LGN neurons is brain state dependent. (A) Schematics of the 

experimental setup. (B) Coronal brain section shows the location (left) and morphology (right) of a neuron 

recorded and labeled in the LGN. (C) Examples of constricted and dilated pupils recorded by video camera. Note 

the arrows pointing to corresponding cortical states. (D) Example of simultaneous V1 LFP and unit recording from 

the LGN neuron shown in B in an awake head-restrained mouse. Spontaneous state transitions are color coded for 

clarity (AW: green; QW: gray). Averaged action potential waveform is shown on the right, calibration: 0.2 ms. 

(E) Mean FR changes between QW and AW for all identified LGN TC neurons (n=7). (F) Power spectrum of the 

QW and AW states for all the recordings from morphologically identified TC neurons (n=7) Note the peaks in 

power at theta (3-5 Hz) and alpha (8-13 Hz) frequencies. (G) Schematic state transition raster plot of the LGN 

neuron (top), V1 LFP (middle), and peri-event histogram (bottom); state transitions color coded as in D. Modified 

from Molnár et al 2021. 
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spontaneously fluctuated during the recordings, with states of quiet wakefulness (QW) 

associated with constricted pupil and periods of active wakefulness accompanied (AW) by pupil 

dilation. States of QW were characterized by large-amplitude slow V1 LFP fluctuations (mean 

peak-to-peak amplitude 0.77±0.2 mV, n = 98), and small pupil diameter, while periods of active 

wakefulness (AW) by small-amplitude fast fluctuations (mean peak-to-peak amplitude 

0.27±0.11 mV, n = 98) in the LFP recorded in V1 with prominent pupil dilation (Fig. 10 C and 

D). State transitions were accompanied by prominent changes in the activity of LGN neurons 

as well (Fig. 10 D). Consistently enough, QW to AW transitions led to an increase in firing 

(Fig. 10 D and E), and AW to QW transitions led to a decrease in firing (Fig. 10 D) in the 

majority of LGN neurons. These neurons were classified as TC neurons by either morphology 

(Fig. 10 B, n = 7) or electrophysiological properties (see details later). The increased firing rate 

Figure 11. The activity of a subset of LGN neurons appears to be the inverse of TC cells. (A) Schematic state 

transition raster plot of the LGN putative interneuron (top), V1 LFP (middle), and peri-event histogram (bottom).  

Spontaneous state transitions are color coded for clarity (AW: green; QW: gray). (B) Examples of constricted and 

dilated pupils recorded by video camera. Note the arrows pointing to corresponding cortical states. (C) Example 

of simultaneous V1 LFP and unit recording from a putative LGN interneuron in an awake head-restrained mouse. 

State transitions color coded as in A. Note the high baseline FR during QW. Averaged action potential waveform 

is shown on the right, calibration: 0.2 ms. Modified from Molnár et al 2021. 
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in the majority of LGN cells was associated with cortical desynchronization in V1 and pupil 

dilation (Fig. 10), while the marked drop in neuronal activity when pupil diameter decreased 

indicated relaxed wakefulness with synchronized activity in the neocortex and the replacement 

of high frequency brain waves with slower oscillations. Strikingly, a subset of LGN neurons 

characterized by high baseline FR (Fig. 11) also showed state transition-related changes of 

baseline activity. In this neuronal subset, QW to AW transitions led to a decrease in firing rate 

(Fig. 11 A and C), but AW to QW transitions resulted in an increase in firing (Fig. 11 A and 

C), leading to the suspicion of them being local interneurons. 

To further drill down in the mechanism of state dependent activity of LGN neurons, we 

quantified the correlation between neuronal firing rates (FR) and pupil diameter and found three 

functionally distinct groups of cells: non-modulated, positively correlated (regarded as TC 

neurons), negatively correlated (regarded as putative interneurons) cells. A smaller percentage 

Figure 12. LGN TC neurons are positively correlated with arousal. (A) FR of the LGN TC neuron (blue bars) 

increases when the simultaneously recorded pupil (orange line) is dilated but decreases when the pupil is 

constricted. (B1) Simultaneously recorded V1 LFP, thalamic LFP, and single units of the TC neuron shown in A 

shown on a faster time-base during a period of constricted pupil (marked in A as B1) corresponding to a state of 

QW. Note the presence of putative LTS-mediated bursts enlarged on the right (calibration: 50ms). (B2) V1 power 

spectrum, (B3) autocorrelation of the TC neuron shown in A. (C1) Simultaneously recorded V1, thalamic LFP, 

and single units of the TC neuron shown in A plotted on a faster timescale during a period of dilated pupil (marked 

on A as C1) corresponding to a state of AW. The average action potential waveform is shown on the right (time 

calibration: 0.5 ms). (C2) V1 power spectrum, (C3) autocorrelation of the TC neuron shown in A. Modified from 

Molnár et al 2021. 
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of neurons (n = 25/98, 26%) had a baseline activity that did not correlate with the pupil diameter 

(P > 0.05, random permutation test), while the majority did (n = 73/98, 74%). In most of the 

state-modulated neurons, FRs showed a statistically significant positive correlation with pupil 

diameter (57 of 73 significant cells P<0.05, random permutation test; mean Pearson’s r = 

0.411±0.025 Hz, Fig. 12). Both neuron groups were classified as TC neurons either 

morphologically (n = 7) or using physiological criteria, as follows. The duration of the action 

potentials was relatively large (positively modulated: 0.43±0.01 ms, non-modulated: 

0.48±0.02 ms) and homogeneous (the action potential durations were not significantly different 

in the two groups, P > 0.05, Wilcoxon rank-sum test) in both groups. Figure 12 illustrates an 

example morphologically identified LGN TC neuron showing a positive correlation with pupil 

diameter. Note that the periods of constricted pupil coincide with QW states and putative low-

threshold spike (LTS) mediated burst firing of the LGN TC neuron (Fig. 12 B1), whereas the 

periods of dilated pupil with AW states and high-frequency tonic action potential output (Fig. 

12 C1). Additionally, periods of pupil constriction correspond to QW states as the V1 LFP 

shows a clear peak in the 3–5 Hz band (Figs 12 B1 and B2) and the autocorrelation of the TC 

neuron low-frequency rhythmic burst firing (Fig. 12 B3). Conversely, periods of pupil dilation 

correspond to AW states as the V1 LFP shows no peak in the 3–5 Hz band (Fig. 12 C2) and the 

autocorrelation of the TC neuron reveals high-frequency tonic firing (Fig. 12 C3). 

Perhaps the most astounding finding was that we recorded a subset of neurons showing negative 

correlation to pupil diameter (16/98, 16% of all recorded cells, P<0.05, random permutation 

test; mean Pearson’s r =-0.4±0.045). The duration of the action potentials in these neurons was 

significantly narrower than in TC neurons (0.23±0.01 ms in negatively correlated neurons vs. 

0.44±0.01 in putative TC neurons, P<0.05, Wilcoxon rank-sum test), and the waveform of their 

action potential was more biphasic (height ratio: 0.41±0.02 in putative TC neurons, 0.73±0.04 

in negatively correlated neurons, P<0.05, Wilcoxon rank-sum test) (Figs 13 B1 and C1). These 

neurons were classified as putative LGN interneurons. Figure 13 illustrates an example putative 

LGN interneuron showing a negative correlation with pupil diameter. Note that during the 

periods of constricted pupil characteristic of QW states (Fig. 13 B1) this putative LGN 

interneuron is more active than during AW (Fig. 13 C1). Also note that the activity of the 

putative LGN interneuron consists of tonic action potential output during both QW (Fig. 13 B3) 

and AW (Fig. 13 C3). 
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6.2. The membrane potential of LGN TC neurons is correlated with brain 

states 

To elucidate the intracellular mechanisms underlying the state-dependent fluctuation of 

thalamic neurons, we performed intracellular recordings of LGN TC neurons (n=5) of awake 

mice while simultaneously monitoring the pupil diameter (n=4) and recorded the LFP and 

multi-unit activity (MUA) in V1 (Fig. 14). In all the neurons recorded, we found an apparent 

correlation between the membrane potential and pupil diameter (Fig. 14 B), such that periods 

of pupil constriction were associated with low baseline FRs (6.98±3.19 Hz), hyperpolarized 

Figure 13. A subset of LGN interneurons is negatively correlated to arousal. (A) FR of an example LGN 

interneuron (blue bars) decreases when the simultaneously recorded pupil (orange line) is dilated but increases 

when the pupil is constricted. (B1) Simultaneously recorded visual cortical, thalamic LFP, and single units of the 

LGN interneuron shown in A plotted on a faster time-base during a period of constricted pupil (marked in A as 

B1) corresponding to a state of QW. (B2) V1 power spectrum, (B3) autocorrelation of the putative LGN 

interneuron shown in A during 10 consecutive periods of constricted pupil. (C1) Simultaneously recorded V1, 

thalamic LFP, and single units of the putative LGN interneuron shown in A plotted on a faster time-base during a 

period of constricted pupil (marked in A as C1) corresponding to a state of AW. The average action potential 

waveform is shown in the right (blue, time calibration: 0.5 ms) with the average action potential of the TC neuron 

(red) from Figure 12 overlaid for comparison. Note the presence of a second neuron (smaller spikes) not correlated 

with the pupil diameter. (C2) V1 power spectrum, (C3) autocorrelation of the LGN interneuron shown in A during 

10 consecutive periods of dilated pupil. Modified from Molnár et al 2021.  
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membrane potentials (−63.0±2.3 mV) and burst firing in two of the neurons recorded (Fig. 14 A 

bottom right). Importantly, these bursts were recorded at a membrane potential inconsistent 

with LTS and more akin to HT burst (Lőrincz, et al., 2009b; Crunelli, et al., 2012; Crunelli, et 

al., 2018) (Fig. 14 G). In addition, the interspike interval of the first and second action potentials 

in LTS and HT bursts was different (LTS: 3.38±0.15 ms, HTB: 8.15±2.69 ms, P<0.001, 

Wilcoxon rank-sum test, Fig. 14 I) corroborating the idea that they represent high-threshold 

bursts (Hughes, et al., 2004; Lőrincz, et al., 2008; Lőrincz, et al., 2009b; Crunelli, et al., 2012). 

Periods of pupil dilation, on the other hand, were associated with high frequency (19.96±10.98 

Hz, Fig. 14 A) tonic action potential output and less hyperpolarized membrane potentials 

(−59.1±2.82 mV, Fig. 14 A left). When quantifying the correlation of the low-pass filtered 

membrane potential and pupil diameter, we found that the membrane potential of LGN TC 

neurons was lagging the changes in pupil diameter by approximately 5 s (Fig. 14 D). Large 

amplitude retinogeniculate EPSPs were not state dependent (mean EPSP rate QW: 

Figure 14. The membrane potential of LGN TC neurons is correlated with brain states. (A) Simultaneous 

pupillometry (top), cortical LFP (middle), and LGN Vm recording (bottom) during state transitions in an awake 

head-restrained mouse. Quiet wake (QW) and active wake (AW) states are indicated by red arrows and shown on 

a faster time-base below the Vm recording; top trace: V1 LFP, middle: V1 MUA, bottom: Vm. Note the large 

retinogeniculate EPSPs on the Vm recording (indicated by red arrow). (B) Slow rhythmic fluctuations in the pupil 

diameter are correlated with the Vm of this LGN neuron as apparent on the low-pass filtered Vm (Vm LP) overlaid 

on the pupillometry trace. (C) Normalized cross-correlation and (D) quantification of Vm delay in respect to pupil 

diameter. Mean FRs (E) and Vm (F) for the two brain states. (G) LTS and HT bursting are present in the same 

LGN TC neuron during QW states. During periods of relatively hyperpolarized membrane potentials (left), LTS-

mediated bursts accompany V1 LFP 3–6 Hz oscillations, but HT bursts are present at less hyperpolarized 

membrane potentials (right). (H) Overlaid LTS (black trace) and HT bursts (red trace) recorded from the neuron 

in (G). (I) Mean duration of the first ISI from LTS and HT bursts, color codes as in H; ISI: interspike interval. 

Modified from Molnár et al 2021. 
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17.75±3.88 Hz, AW: 19.35±4.36 Hz, P>0.05, Wilcoxon’s signed-rank test). Thus, the state-

dependent action potential output of thalamic neurons can be accounted for by slow changes in 

their neuronal membrane potential. 

6.3. Visually evoked responses of LGN TC cells 

Next, we asked whether the visual responses elicited in TC cells are state dependent. 31 of 98 

recorded LGN neurons (32%) were evaluated, as they elicited significant visual responses 

defined as statistically significant increase in firing rate compared to baseline activity 

(Wilcoxon rank-sum test, p>0.05). Analysis of the visual responses and calculating the 

orientation selectivity index (OSI) values revealed a slight alteration of orientation selectivity 

in a brain state dependent manner. Strikingly, we observed a counterintuitive change in 

orientation selectivity, namely in the states when the normalized pupil size was greater than 0.5 

Figure 15. Brain state dependent change of visual evoked 

responses. (A) LGN cell single unit activity in response to moving 

gratings of 8 different orientations. Black bar denotes 1 s when the 

visual stimulus appeared on the screen and red bar denotes 1 s 

when the stimulus started drifting. (B) Representative biocytin-

filled TC neuron in the LGN. (C) Polar plot showing the firing rate 

of shown LGN TC cell during epochs of dilated (pink) and 

constricted (blue) pupil sizes. 

A B 

C 
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(regarded as AW), more orientations evoked significant responses in TC cells (i.e. the OSI value 

decreased) than in the state when normalized pupil size was smaller than 0.5 (regarded as QW) 

(Fig. 15). 

6.4. Population-level analysis of LGN neurons 

Altogether, 73 of 98 (74.5% of all) recorded LGN cells showed statistically significant brain 

state modulation and 57 (78.1% of significant cells) of which were positively correlated with 

pupil diameter and only 16 neurons (21.9% of significant cells) were negatively correlated, 

while the rest of the cells (n=25; 25.5% of all) showed no significant correlation to brain states 

(i.e., pupil size) (Fig. 16). The recorded cells were classified into three functionally distinct 

Figure 16. Arousal-dependent activity in the LGN depends on neuronal identity. (A) Classification of neurons 

based on spike waveform parameters. Scatter plot of duration versus height ratios for recorded LGN units (red: 

neurons positively correlated with pupil diameter, gray: uncorrelated neurons, blue: neurons negatively correlated 

with pupil diameter). The histogram of the action potential durations is shown on the right. Putative LGN 

interneurons are seen for durations <0.35 ms and putative TC neurons for durations>0.35 ms. (B) Distribution of 

pupil diameter/FR correlations. Putative LGN interneurons were negatively correlated (left, blue bars) and TC 

neurons were either uncorrelated (middle, gray bars) or positively correlated (right, red bars). (C) Scatter plot 

showing that correlation tends to be inversely proportional to OSI. Red dots mark individual cells (n=31). Note 

that the lower right corner contains the most data points where correlation coefficient is high and OSI value is low.  

(D) Mean FRs of individual neurons during periods of constricted (Const) and dilated (Dil) pupil. Group averages 

are shown on the side of each group for the two states, color codes same as in A. Panels A, B and D modified from 

Molnár et al 2021. 
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groups by their FR output (Fig. 16 A left) and action potential (AP) characteristics (Figs. 16 A 

right). We found only 31 of 98 (32%) state modulated cell to be visually responsive, but 15 of 

them (48%) showed state dependent orientation selectivity change, that is, the cell had different 

preferred orientation in AW than in QW (each of the two states were evaluated with Wilcoxon 

rank-sum test; P<0.5). In addition, an apparent tendency indicates that a link might exist 

between correlation of spontaneous firing with pupil diameter and orientation selectivity of 

LGN cells, i.e., neurons with activity strongly correlated with brain states have lower OSI (Fig. 

16 C). These results might have important implications on brain state dependent visual sensory 

processing.  

6.5. Corticothalamic modulation is hindered by visual cortex inactivation 

As already shown, rhythmic synchronous EEG activities are correlated to LGN firing (Lőrincz, 

et al., 2009b), we reasoned that corticothalamic projections are, at least in part, responsible for 

regulating LGN activity, thus we monitored the effects of inactivating the cortical feedback 

from V1 to the LGN with muscimol microinjections (see Material and Methods for details) and 

Figure 17. V1 inactivation decreases the 

correlation of LGN neuron firing and pupil 

diameter. (A) Baseline activity of an example 

thalamic neuron and the simultaneously 

recorded pupil diameter before (control) and 

following V1 inactivation. Note the spontaneous 

fluctuations in pupil diameter and thalamic 

firing in both conditions. (B) Correlation 

between the pupil diameter and thalamic 

baseline activity before (Control) and following 

muscimol infusion in V1. (C) Firing rate of 

thalamic neurons before (Control) and following 

muscimol infusion in V1. Modified from Molnár 

et al 2021. 
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its effect on the arousal-dependent activity of LGN neurons. Figure 17 shows the baseline 

activity of an example thalamic neuron and the simultaneously recorded pupil diameter. In the 

control condition (Fig. 17 A, top), the FR and pupil diameter changes are relatively 

simultaneous but following V1 inactivation periods of dilated pupil are not always followed by 

an increase in FR and FR changes do not always coincide with a change in pupil diameter. To 

quantify the relationship between pupil diameter and thalamic baseline firing in the two 

conditions, we compared the FR of thalamic neurons and calculated he correlation between FR 

and pupil diameter before and following V1 inactivation. The FR of individual neurons before 

and after V1 inactivation varied considerably (Fig. 17 B) but did not reach statistical 

significance as a group (control: 7.93±1.69 Hz, V1 inactivation: 7.52±1.47 Hz, P>0.05, 

Wilcoxon’s signed-rank test, n = 9; Fig. 17 C). When comparing the correlation of thalamic 

single units and pupil diameter before and following V1 inactivation (Fig. 17 B and C), we 

found a significant decrease (control: 0.28±0.07, V1 inactivation: 0.13±0.06, P<0.05, 

Wilcoxon’s signed-rank test, n = 9), suggesting that corticothalamic input from V1 is at least 

partly responsible for the state-dependent activity in LGN TC neurons. 

6.6. Lateral hypothalamus axons inhibit GABAergic DRN neurons 

As the neuromodulatory tone has a profound role in shaping brain states, we explored the 

interaction between two other subcortical areas, the LH and the DRN, the latter of which is 

known to be the main source of serotonin in the brain. LH GABAergic neurons have been 

shown to influence brain states by inhibiting the GABAergic neurons of the thalamic reticular 

nucleus (Herrera, et al., 2016), but whether and how LH neurons affect neuromodulation in 

general and DRN neurons has not yet been tested. Data from the literature shows that serotonin 

exerts a primarily inhibitory action on thalamic nuclei through two mechanisms: direct 

postsynaptic action mediated by the 5-HT1A receptor and an indirect increase in IPSPs, 

apparently through the excitation of local GABAergic interneurons (Monckton & McCormick, 

2002). Interestingly, hyperpolarizing responses to serotonin were not observed in LGN 

thalamocortical cells and only rarely observed in the medial geniculate nucleus, instead in these 

nuclei, the application of serotonin often elicited a small depolarization and increase in apparent 

input conductance (Monckton & McCormick, 2002), which had been shown previously to result 

from an enhancement of the hyperpolarization-activated cation current Ih (McCormick & Pape, 

1990). To test for functional connections from LHGABA projections to DRN neurons in 
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particular, we recorded extracellular single unit activity from DRN neurons of awake, head-

restrained VGAT-cre mice infected with AAV1-CAGGS-336 FLEX-CHR2-tdTOM-SV40 in 

the LH while photo-stimulating ChR2-expressing LHGABA axons in the DRN (5 light pulses of 

10 ms at 20 Hz, 5 mW; Fig. 18). Comparison of the activity of DRN neurons recorded in the 

presence and absence of LHGABA axonal photostimulation (5 light flashes of 10 ms at 20 Hz, 5 

mW) confirmed the suppressive effect in a subset of DRN neurons (2/23, 9%), while the activity 

of the remaining neurons was increased (21/23, 91%). The overall activity of DRN neurons was 

slowly (~200 ms), but persistently (~1 sec) increased (baseline firing: 7.67±6.87 Hz, baseline 

firing after photostimulation: 10.98±8.920 Hz, n=12, p < 0.001, Wilcoxon’s signed rank test, 

Fig. 18B). 

 

  

Figure 18. Effects of LH axonal photostimulation in the DRN. (A) PSTH of all recorded DRN neurons (n=23) 

aligned on the photostimulation of LH GABAergic axons in the DRN. Light gray: individual cells, black line: 

mean PSTH of all recorded neurons. Red dotted line: baseline firing rate. (B) Mean firing rate during control and 

photostimulated epochs, lines: individual neurons, black circle: control, red circle: photostimulated mean firing 

rate of all neurons. (C) Scatter plot of control and photostimulated mean firing rate of all DRN neurons. Dotted 

line: diagonal, red line: linear fit. 



48 

 

7. DISCUSSION 

While cortical function in general and visual cortical activity in particular are well known to be 

modulated by the level of arousal in awake animals (McGinley, et al., 2015; Vinck, et al., 2015), 

the arousal-dependent activity of reciprocally connected visual thalamus is more controversial. 

In my dissertation, whilst exploring the answer to the questions stated in Aims, I found in awake 

behaving mice, that 1) the baseline LGN neuronal activity correlates with arousal during the 

awake state; 2) the polarity of this correlation is cell type specific, with LGN TC neurons being 

positively, and putative LGN interneurons negatively correlated with arousal; 3) this state-

dependent activity at least partly originates from cortical feedback; 4) visual sensory processing 

is somewhat altered in different brain states; and 5) LHGABA projections profoundly influence 

the activity of most DRN neurons leading to arousal from NREM, but not REM sleep (Gazea, 

et al., 2021). LGN activity has long been known to differ during wakefulness compared to sleep 

(Hirsch, et al., 1983), during alert and inattentive states (Bezdudnaya, et al., 2006), with a subset 

of bursting LGN TC neurons playing an important role in generating, while putative LGN 

interneurons in providing tonic firing TC neurons with temporally precise phasic inhibition 

during individual cycles of the alpha rhythm (Lőrincz, et al., 2009b). Previous results suggested 

that LGN spontaneous and visually evoked FRs are not different between immobile and running 

mice (Aydın, et al., 2018), whereas V1 activity was markedly different between the two states 

(Niell & Stryker, 2010). This controversy might arise from differences in the definition of brain 

states: whereas locomotion is only associated with alert wakefulness, both quiet and alert 

wakefulness can occur during immobility (Vinck, et al., 2015). Pupil diameter is an excellent 

proxy for a general neuromodulatory tone and brain states (Reimer, et al., 2016), and its 

combination with V1 LFP level of synchronization as used in the present study provides a more 

accurate state definition. Thus, the precise definition of brain states based on both V1 LFPs and 

pupillometry enabled us to reveal the state dependent activity in the majority of LGN neurons. 

Our results reveal an arousal-dependent spontaneous activity in the majority of LGN neurons 

of awake behaving animals. Notably, the polarity of the correlation between neuronal activity 

and arousal, quantified by monitoring the pupil diameter, depends on neuronal identity within 

the LGN. Specifically, whereas TC neurons, the dominant cell type in the LGN, tend to increase 

their activity during AW (desynchronized V1 LFP and dilated pupil), putative LGN 

interneurons, which are key for intimately controlling the timing of TC neuron firing in awake 
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animals (Lőrincz, et al., 2009b), behave in an opposite manner showing decreased activity 

during AW and increased activity during QW (synchronized V1 LFP and constricted pupil). 

Taken together, the increase in firing in most TC neurons during AW is accompanied by a 

decrease in inhibition derived from local interneurons (Lőrincz, et al., 2009b). This may have 

implications for both the spontaneous activity of LGN TC neurons and their sensory coding. 

Although several studies found that alterations of sensory information processing in the 

neocortex strongly correlate with state transitions, we were able to extend this correlation to the 

thalamocortical cells in the LGN. Additionally, our findings suggest that the visual evoked 

activity exhibited by TC cells can also be altered by state transitions in such way that while the 

pupil dilates, the orientation selectivity of TC neurons decreases. This seemingly 

counterintuitive phenomenon might be explained by the Yerkes-Dodson curve (Yerkes & 

Dodson, 1908) but the evidence for this requires rigorous experiments with longer epochs of 

all brain states and better segmentation thereof. Furthermore, the decrease in firing in putative 

LGN interneurons during AW does not necessarily mean that the net inhibition in TC neurons 

is decreased as some thalamic reticular neurons, the sources of a much larger inhibitory 

conductance (Bal, et al., 1995), are known to fire at much higher rates during AW (Halassa, et 

al., 2014). 

What mechanisms are responsible for the differential arousal-dependent activity of LGN TC 

and interneurons? Our intracellular recordings in TC neurons reveal that during AW states the 

membrane potential of LGN TC neurons is less hyperpolarized than during QW, providing an 

explanation for the increases in FR during AW in LGN TC neurons. The firing mode of these 

neurons also changed from tonic to burst firing in the QW state, and in some cases, these bursts 

were characterized by a membrane potential polarization and interspike interval inconsistent 

with LTS-mediated burst firing, suggesting that they are high-threshold bursts similar to the 

ones recorded in the LGN of behaving cats (Hughes, et al., 2004; Lőrincz, et al., 2009b) and 

the somatosensory thalamus of lightly anesthetized mice (Crunelli, et al., 2012). Some of our 

extracellular recordings during QW clearly show LTS-mediated bursts (Fig. 12 B1), suggesting 

that high-threshold bursting is a property of a subset of LGN TC neurons as it was described in 

the cat LGN (Hughes, et al., 2004; Lőrincz, et al., 2009b; Lőrincz, et al., 2008). Importantly, 

we revealed a tight correlation between TC neuron membrane potential and pupil diameter, 

suggesting that the arousal-dependent membrane potential might originate from differential 

neuromodulation during AW and QW states. In line with this hypothesis, our findings suggest 

that local GABA release evoked by optogenetic activation of LHGABA axons in the DRN 
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suppresses the activity of DRNGABA neurons. This promotes wakefulness and occurs through a 

direct synaptic inhibition of DRNGABA neurons mediated by GABAA receptors and leads to a 

prominent suppression of firing in DRNGABA neurons in vivo (Gazea, et al., 2021). In our work, 

we showed that many DRN neurons slowly but persistently increase their activity upon 

photostimulation of LHGABA axons in the DRN, presumably through the disinhibition of the 

local GABAergic neurons mentioned above. 

Although multiple other brain sources could contribute to the modulation of LGN activity, the 

most prominent is likely to be corticothalamic fibers (Wilson, et al., 1984). Indeed, upon V1 

inactivation, we found a prominent suppression of the arousal dependency of LGN TC neurons, 

suggesting that corticothalamic feedback is at least partly responsible for this phenomenon. 

Another important source of thalamic neuromodulation derives from the brainstem cholinergic 

nuclei (Varela & Sherman, 2007). If ACh is indeed involved in this arousal dependent 

modulation of thalamic neurons it could explain the differential arousal related behavior 

revealed here in TC neurons and interneurons, respectively. This is because whereas TC 

neurons are depolarized (McCormick & von Krosigk, 1992; Lőrincz, et al., 2008) LGN 

interneurons are hyperpolarized by ACh (McCormick & Pape, 1988). Thus, an increase in 

cholinergic tone during AW could explain both the increased TC neuron and decreased LGN 

interneuron firing. Neurons in the brainstem cholinergic nuclei show pronounced arousal 

dependent activity (Steriade, et al., 1990) making them a good candidate for mediating these 

effects. Taken together, our results show that the membrane potential and action potential 

output of LGN neurons are dynamically linked to arousal-dependent brain states in awake mice, 

although the functional implications of this phenomenon should be revealed by future studies. 
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8. CONCLUSIONS 

In this thesis, substantial work has been done to explore the mechanism of visual information 

processing along with spontaneous activity of the mammalian brain. We focused primarily, but 

not exclusively, on brain function without artificial manipulation of its subnetworks, that is, we 

sought to answer questions like what the brain does, rather than what the brain can do. The 

latter question deals with problems that tend to happen only in highly controlled circumstances, 

seldom occur during the natural course of life. Instead, seeking to understand the phenomena 

happening in “real life” allows us to gain insights on more intricate aspects that almost everyone 

experiences in their daily activities, and provides basis for improving daily lives of ordinary 

people. Surely, studying diseases of the central nervous system has more clear-cut and 

imminent positive feedback on people’s lives, but that is only one side of the coin. To deeply 

understand the inner workings our brains, we need more basis for comparing and contrasting 

pathological processes with physiological phenomena. Our work exemplifies this attitude and 

elucidates the default function of the visual system by providing evidence on brain state 

dependency of LGN neurons, and revealing the complexity of neuronal populations, thus 

stepping closer to the comprehensive description of how the visual system works as a network. 

Local GABAergic interneurons effectively shape network function in many, if not all, cortical 

and lower order subnetworks, and indirectly contribute to the concerted actions manifested in 

natural mammalian behavior. These brain state dependent mechanisms allow all mammalians 

(and probably other species too) to focus only on relevant environmental stimuli (i.e., increasing 

signal-to-noise ratio) while also conserving energy by reducing alertness in times where it is 

not needed. This evolutionary notion is in line with our findings, namely that the fluctuation of 

active and quiet awake states influences visual sensory processing by fine tuning the sensitivity 

to different environmental clues. Of course, this phenomenon has already been revealed by 

excellent scientist in the awake neocortex of mammals, but our work extended the scope of this 

mechanism to the visual thalamus, corroborating the idea that sensory processing occurs even 

at earlier stages of information flow. Not surprisingly, the neocortex exerts key regulatory 

action on this earlier stage, as we managed to point out, and this fact can be used as a 

counterargument for subcortical information processing, that is, neuronal regulation that 

happens below the cortex is also the working of the cortex if we inspect it as a whole network, 

however, we also know that subcortical sources of neuromodulatory chemicals have profound 
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effects on neocortical function (thus on downstream structures as well). The DRN, for example, 

is such a source, and as we explored the mechanisms thereof, we elucidated an intricate mutual 

connection with the lateral hypothalamus having a strong effect on promoting wakfulness from 

NREM sleep. This also makes sense in an evolutionary aspect, as the general hub that connects 

the homeostatic maintenance of the body itself with the surrounding environment has long been 

known to be the hypothalamus. 
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ABSTRACT 

Brain state dependent thalamocortical (TC) activity plays and important role in sensory coding, 

oscillations and cognition. The lateral geniculate nucleus (LGN) relays visual information to 

the cortex, but the state dependent spontaneous and visually evoked activity of LGN neurons 

in awake behaving animals remains controversial. In awake head-restrained mice, using a 

combination of pupillometry, extracellular and intracellular recordings from morphologically 

and physiologically identified LGN neurons we show that TC neurons and putative local 

interneurons are inversely related to arousal forming two complementary coalitions with TC 

cells being positively correlates with wakefulness, while local interneuron activity is negatively 

correlated. Additionally, the orientation tuning of visually evoked thalamic cell responses is 

altered during various brain states. Intracellular recordings indicated that the membrane 

potential of LGN TC neurons was tightly correlated to fluctuations in pupil size. Inactivating 

the corticothalamic feedback by GABAA agonist muscimol applied on the dural surface 

significantly diminishes the correlation between brain states and thalamic neuronal activity. 

Additional investigations show that by photostimulating GABAergic axons (expressing 

Channelrhodopsin-2 in a Cre-dependent manner) that project from the lateral hypothalamus 

(LH) to the dorsal raphe nucleus (DRN), neurons in the DRN increase their action potential 

output, presumably through disinhibition. Taken together our results show that LGN neuronal 

membrane potential and action potential output are dynamically linked to arousal dependent 

brain states in awake mice and this fact might have important functional implications. 
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ÖSSZEFOGLALÓ 

Az agyiállapot-függő talamokortikális (TC) sejtaktivitás fontos szerepet játszik a szenzoros 

kódolásban, illetve agyi oszcillációkban és kognícióban. A corpus geniculatum laterale (CGL) 

közvetíti a vizuális információt az agykéregbe, ám a CGL állapotfüggő spontán aktivitása, ill. 

a vizuális kiváltott válaszai éber állatokban egyelőre nem egyértelműek. Éber, fejbefogott 

egerek morfológiailag és élettanilag beazonosított CGL-neuronjaiban történő pupillometriai, 

extracelluláris és intracelluláris mérések kombinációjából kiderül, hogy a TC-sejtek és a 

valószínűsíthetően lokális interneuronok fordított viszonyban vannak egymással az éberség 

szintjétől függően, és így egy egymást kiegészítő koalíciót képeznek. Míg a TC-neuronok 

aktivitása pozitívan korrelált az éberség szintjével, addig az lokális interneuronok negatívan 

korreláltak. Ezen kívül a talamikus sejtek vizuális kiváltott válaszainak az orientációs 

finomhangolása megváltozik az agyi állapotok hullámzásával. Az intracelluláris elvezetések 

alapján kimutattuk, hogy CGL TC-sejtjeinek membránpotenciálja szoros korrelációt mutatnak 

a pupillaátmérő változásaival. A kortikotalamikus visszacsatolás inaktiválásakor, amit a 

muscimol nevű GABAA-receptor agonista alkalmazásával értünk el a dura mater felületén, 

szignifikánsan csökken a korreláció az agyi állapotok és a talamikus sejtek aktivitása között. 

További kísérleteink alapján a laterális hypothalamusból (LH) a nucleus raphe dorsalisba 

(NRD) érkező GABAerg axonok fotostimulációja (Cre-dependens Channelrhodopsin-2 

expressziója révén) növeli az NRD sejtjeinek a tüzelését, feltételezhetően diszinhibíción 

keresztül. Eredményeinket összefoglalva elmondható, hogy a CGL neuronjainak 

membránpotenciálja és tüzelése dinamikusan kapcsolódik az agyi állapotok váltakozásaihoz 

éber egerekben, aminek a funkcionális relevanciája számottevő lehet a jövőben. 

 


