1,322 research outputs found

    Modelling and Simulation of a Manipulator with Stable Viscoelastic Grasping Incorporating Friction

    Get PDF
    Design, dynamics and control of a humanoid robotic hand based on anthropological dimensions, with joint friction, is modelled, simulated and analysed in this paper by using computer aided design and multibody dynamic simulation. Combined joint friction model is incorporated in the joints. Experimental values of coefficient of friction of grease lubricated sliding contacts representative of manipulator joints are presented. Human fingers deform to the shape of the grasped object (enveloping grasp) at the area of interaction. A mass-spring-damper model of the grasp is developed. The interaction of the viscoelastic gripper of the arm with objects is analysed by using Bond Graph modelling method. Simulations were conducted for several material parameters. These results of the simulation are then used to develop a prototype of the proposed gripper. Bond graph model is experimentally validated by using the prototype. The gripper is used to successfully transport soft and fragile objects. This paper provides information on optimisation of friction and its inclusion in both dynamic modelling and simulation to enhance mechanical efficiency

    Design and control of a multi-fingered robot hand provided with tactile feedback

    Get PDF
    The design, construction, control and application of a three fingered robot hand with nine degrees of freedom and built-in multi-component force sensors is described. The adopted gripper kinematics are justified and optimized with respect to grasping and manipulation flexibility. The hand was constructed with miniature motor drive systems imbedded into the fingers. The control is hierarchically structured and is implemented on a simple PC-AT computer. The hand's dexterity and intelligence are demonstrated with some experiments

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Experimental Validation of Contact Dynamics for In-Hand Manipulation

    Full text link
    This paper evaluates state-of-the-art contact models at predicting the motions and forces involved in simple in-hand robotic manipulations. In particular it focuses on three primitive actions --linear sliding, pivoting, and rolling-- that involve contacts between a gripper, a rigid object, and their environment. The evaluation is done through thousands of controlled experiments designed to capture the motion of object and gripper, and all contact forces and torques at 250Hz. We demonstrate that a contact modeling approach based on Coulomb's friction law and maximum energy principle is effective at reasoning about interaction to first order, but limited for making accurate predictions. We attribute the major limitations to 1) the non-uniqueness of force resolution inherent to grasps with multiple hard contacts of complex geometries, 2) unmodeled dynamics due to contact compliance, and 3) unmodeled geometries dueto manufacturing defects.Comment: International Symposium on Experimental Robotics, ISER 2016, Tokyo, Japa

    Proprioceptive Learning with Soft Polyhedral Networks

    Full text link
    Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.Comment: 20 pages, 10 figures, 2 tables, submitted to the International Journal of Robotics Research for revie

    Contact mechanics analysis of a soft robotic fingerpad

    Get PDF
    The precision grasping capabilities of robotic hands is a key feature which is more and more required in the manipulation of objects in several unstructured fields, as for instance industrial, medical, agriculture and food industry. For this purpose, the realization of soft robotic fingers is crucial to reproduce the human finger skills. From this point of view the fingerpad is the part which is mostly involved in the contact. Particular attention must be paid to the knowledge of the mechanical contact behavior of soft artificial fingerpads. In this paper, artificial silicone fingerpads are applied to the last phalanx of robotic fingers actuated by tendons. The mechanical interaction between the fingerpad and a flat surface is analyzed in terms of deformations, contact areas and indentations. A reliable model of fingertip deformation properties provides important information for understanding robotic hand performance, that can be useful both in the design phase and for defining control strategies. The approach is based on theoretical, experimental, and numerical methods. The results will be exploited for the design of more effective robotic fingers for precision grasping of soft or fragile objects avoiding damages
    • …
    corecore