275 research outputs found

    Design and Motion Planning of a Wheeled Type Pipeline Inspection Robot

    Get PDF
    The most popular method for transporting fluids, and gases is through pipelines. For them to work correctly, regular inspection is necessary. Humans must enter potentially dangerous environments to inspect pipelines. As a result, pipeline robots came into existence. These robots aid in pipeline inspection, protecting numerous people from harm. Despite numerous improvements, pipeline robots still have several limitations. This paper presents the design and motion planning of a wheeled type pipeline inspection robot that can inspect pipelines having an inner diameter between 250 mm to 350 mm. The traditional wheeled robot design has three wheels fixed symmetrically at a 120° angle apart from each other. When maneuvering through a curved pipeline, this robot encounters motion singularity. The proposed robot fixes the wheels at different angles to address this issue, allowing the robot to stay in constant contact with the pipe's surface. Motion analysis is done for the proposed and existing robot design to study their behavior inside the pipeline. The result shows that the proposed robot avoids motion singularity and improves mobility inside pipelines. 3d printing technology aids in the development of the proposed robot. The experimental tests on the developed robot inside a 300 mm-diameter straight and curved pipeline show that the robot avoids motion singularity

    Development of a Miniature Pipe Crawler for Application in Fossil Energy Power Plants

    Get PDF
    The power generation of fossil fuel power plants relies on burning coal to generate steam. The heat exchange between the water and burned coal occurs in the combustion chamber, which operates at a high pressure and temperature. Monitoring the integrity of the tubes inside the combustion chamber is a key factor to avoid failures. However, this is not an easy task as some areas are hard to reach and the pipeline commonly has a complex geometry. Moreover, the inspection is typically manual, external and the environment is hazardous for humans. This thesis presents the development and testing of an electrically powered pipe crawler that can navigate inside 5 cm diameter tubes and provide an assessment of their health. The crawler utilizes peristaltic motion within the tubes via interconnected modules for gripping and extending. The modular nature of the system allows it to traverse through straight sections and multiple 90â—¦ and 180â—¦ bends. Additional modules in the system include an ultrasonic sensor for tube thickness measurements, as well as environmental sensors, LiDAR, and a camera. These modules utilize a gear system that allows for 360â—¦ rotation and provide a means of inspecting the entire internal circumference of the tubes

    Lunar deep drill apparatus

    Get PDF
    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary

    DEVELOPMENT OF AN INSPECTION PLATFORM AND A SUITE OF SENSORS FOR ASSESSING CORROSION AND MECHANICAL DAMAGE ON UNPIGGABLE TRANSMISSION MAINS

    Full text link

    Parallel Platform-Based Robot for Operation in Active Water Pipes

    Get PDF
    This thesis presents a novel design for a pipe inspection robot. The main aim of the design has been to allow the robot to operate in a water pipe while it is still in service. Water pipes form a very crucial part of the infrastructure of the world we live in today. Despite their importance, water leakage is a major problem suffered by water companies worldwide, costing them billions of dollars every year. There are a wide variety of different techniques used for leak detection and localisation, but no one method is capable of accurately pinpointing the leak location and severity in all pipe conditions with minimal labour. A survey of existing pipe inspection robots showed that there have been many designs implemented that are capable of navigating the pipeline environment. However, none of these were capable of fully autonomous control in a live water pipe. It was concluded that an autonomous pipe inspection robot capable of working in active pipelines would be of great industrial benefit as it would be able to carry a wide range of sensors directly to the source of the leak with minimal, if any, human intervention. An inchworm robot prototype was constructed based on a Gough-Stewart parallel platform. The robot’s inverse kinematics equations were derived and a simulation model of the robot was constructed. These were verified using a motion capture suite, confirming that they are valid representations of the robot. The simulation was used to determine the robot’s movement limitations and minimum bend radius it could navigate. Several CFD simulations were carried out in order to estimate the maximum fluid force exerted on the robot. It was found that the robot’s design successfully minimised the fluid force such that off-the-shelf actuators had the capability to overcome it. The prototype was successfully tested in both a straight and bent pipe, demonstrating its ability to navigate a dry pipe environment. Overall, the robot prototype served as a successful proof of concept for a design of pipe inspection robot that would be capable of operating in active pipelines

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore