148 research outputs found

    Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload

    Get PDF
    Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input

    Aerial Object Following Using Visual Fuzzy Servoing

    Get PDF
    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigatio

    3D Object following based on visual information for Unmanned Aerial Vehicles

    Get PDF
    This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigatio

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Information-theoretic environment modeling for mobile robot localization

    Full text link
    To enhance robotic computational efficiency without degenerating accuracy, it is imperative to fit the right and exact amount of information in its simplest form to the investigated task. This thesis conforms to this reasoning in environment model building and robot localization. It puts forth an approach towards building maps and localizing a mobile robot efficiently with respect to unknown, unstructured and moderately dynamic environments. For this, the environment is modeled on an information-theoretic basis, more specifically in terms of its transmission property. Subsequently, the presented environment model, which does not specifically adhere to classical geometric modeling, succeeds in solving the environment disambiguation effectively. The proposed solution lays out a two-level hierarchical structure for localization. The structure makes use of extracted features, which are stored in two different resolutions in a single hybrid feature-map. This enables dual coarse-topological and fine-geometric localization modalities. The first level in the hierarchy describes the environment topologically, where a defined set of places is described by a probabilistic feature representation. A conditional entropy-based criterion is proposed to quantify the transinformation between the feature and the place domains. This criterion provides a double benefit of pruning the large dimensional feature space, and at the same time selecting the best discriminative features that overcome environment aliasing problems. Features with the highest transinformation are filtered and compressed to form a coarse resolution feature-map (codebook). Localization at this level is conducted through place matching. In the second level of the hierarchy, the map is viewed in high-resolution, as consisting of non-compressed entropy-processed features. These features are additionally tagged with their position information. Given the identified topological place provided by the first level, fine localization corresponding to the second level is executed using feature triangulation. To enhance the triangulation accuracy, redundant features are used and two metric evaluating criteria are employ-ed; one for dynamic features and mismatches detection, and another for feature selection. The proposed approach and methods have been tested in realistic indoor environments using a vision sensor and the Scale Invariant Feature Transform local feature extraction. Through experiments, it is demonstrated that an information-theoretic modeling approach is highly efficient in attaining combined accuracy and computational efficiency performances for localization. It has also been proven that the approach is capable of modeling environments with a high degree of unstructuredness, perceptual aliasing, and dynamic variations (illumination conditions; scene dynamics). The merit of employing this modeling type is that environment features are evaluated quantitatively, while at the same time qualitative conclusions are generated about feature selection and performance in a robot localization task. In this way, the accuracy of localization can be adapted in accordance with the available resources. The experimental results also show that the hybrid topological-metric map provides sufficient information to localize a mobile robot on two scales, independent of the robot motion model. The codebook exhibits fast and accurate topological localization at significant compression ratios. The hierarchical localization framework demonstrates robustness and optimized space and time complexities. This, in turn, provides scalability to large environments application and real-time employment adequacies

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Low to medium level image processing for a mobile robot

    Get PDF
    The use of visual perception in autonomous mobile systems was approached with caution by mobile robot developers because of the high computational cost and huge memory requirements of most image processing operations. When used, the image processing is implemented on multiprocessors or complex and expensive systems, thereby requiring the robot to be wired or radio controlled from the computer system base
    corecore