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AN ABSTRACT OF THE THESIS OF Cecilia H. Espinosa for the Master of Science in 

Electrical and Computer Engineering presented May 22,1991. 

Title: Low To Medium Level Image Processing for a Mobile Robot. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Marek A. Perkowski, Chair 

Jei~choltz 

The use of visual perception in autonomous mobile systems was approached with caution 

by mobile robot developers because of the high computational cost and huge memory require-

ments of most image processing operations. When used, the image processing is implemented 

on multiprocessors or complex and expensive systems, thereby requiring the robot to be wired or 

radio controlled from the computer system base. 
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Hereby developed is a simple, inexpensive and automatic image processing subsystem that 

is completely implementable on a PC-386SX with 640K base memory. The subsystem will 

serve as the front end of the vision system for the PSUBOT, an autonomous wheelchair robot 

currently being developed in the Department of Electrical Engineering, Portland State Univer

sity. The low to medium level image processing of indoor scene images yields a compact scene 

description that will be used by the scene analysis and recognition subsystem to allow the robot 

to initially "learn" its environment and later recognize or confinn its bearings in the known 

environment. 

The software component of the image processing subsystem is a systematic sequencing of 

some image preprocessing programs that were developed by past students and parts of Benjamin 

Dawson's SIMPP2 package for interfacing with the vision hardware. An automatic binarization 

thresholding program was written to completely automatize the preprocessing sequence and a 

line feature extraction scheme was developed and implemented to extract and characterize the 

line features that comprise the scene description. The hierarchical approach to line feature 

extraction was based on the fundamental concepts of the Hough Transfonn method and pyram

ids. The scheme proved to be efficient in extracting the salient line features in the scene and 

proved robust even in images with relatively poor quality. The fonnat by which the results are 

passed to the scene recognition subsystem presetves the hierarchical classification of the line 

features, thereby allowing the subsystem to exploit that aspect in the course of the recognition 

task. 
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CHAPTER I 

INTRODUCTION 

The field of digital image processing has grown tremendously in the past decades, stirred 

by the increased capabilities computer technology afforded. Image processing enthusiasts have 

swamped the field with ideas, techniques and algorithms geared towards such aims as the 

improvement of the pictorial infonnation for human interpretation [l], or processing of scene 

data for autonomous machine perception. Its diverse applications in the pure and applied sci

ences, medical diagnosis, military activities, robotics, rehabilitation, etc. [2], have led to more 

developments in the field, most of which are rather application oriented. 

Robotics itself developed independently, initially concerned with mechanical effectors and 

manipulators for the machine assembly and eventually extended to autonomous mobile systems 

[3, 4]. Artificial intelligence allowed the use of image processing to endow the robots with 

"sight" and made it possible for the robot to react to the "visual feedback" accordingly [5, 6]. 

Currently, an autonomous wheelchair robot (PSUBOT) is being developed in the Depart

ment of Electrical Engineering of Portland State University (PSU). The robot is being developed 

primarily to transport a physically handicapped person within a known environment. The wheel

chair robot is envisioned to use visual perception to "learn" its environment, recognize its bear

ings in the "learned" environment and use this perception as a navigational aid. A complete 

vision system would obviously involve real-time image capture, real-time processing of the 

images to derive pertinent image features and "recognize" the environment based on these 

features. To be particularly feasible for the autonomous wheelchair robot, the system must be 

implementable within the reasonable bounds of hardware requirements and constraints, real

timeliness and efficacy. 
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This thesis involves the development of the front end of the vision system, i.e., the design 

of an automated sequence of low to medium level image processing operations that will yield the 

pertinent image features for the scene recognition task. A brief history of mobile robots and a 

description of PSUBOT are given to show the constraints and conditions that surround the 

design development. 

MOBILE ROBOTS 

The idea of robots stretches back to the pre-electronic era when mechanical entities 

endowed with human-like behavior existed only in science fiction. The technological develop

ment really started in the late fifties when industrial robots were finally developed for some 

mechanical assembly, material transport and eventually material inspection in the manufacturing 

environment. The main objective was to alleviate use of human labor and increase production 

efficiency [7]. Robot research then was concentrated on mechanical manipulators either 

remotely controlled or preprogrammed to effect specific functions. Stanford Research lnstitute's 

SHAKEY marked the advent of mobile robot vehicles that are envisioned to be capable of auto

nomous navigation and real-time control of the robot system that interacts with the environment 

[4]. Autonomous robots then were required to have environment perception, planning and 

decision-making and real-time task execution control. Environment perception was mostly real

ized with the use of television cameras, rangefinders and proximity sensors to provide the robot 

with real-time information to perform path generation, guidance and target tracking. Because of 

the computation intensive characteristics of image processing, vision for perception was kept at a 

minimum. If ever vision was used actively, the system has to use multiple cameras for stereo 

vision and more powerful multiprocessors to cope with real-time requirements. Systems were 

developed for outdoor and indoor navigation but with complex and expensive hardware, pri

marily developed as research testbeds. 
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Applications for mobile robots have now bloomed from the automated factory to auto

nomous tanks, sentry robots, ship and aircraft applications in the military, patient and material 

transport in medical care services, mobile tractors and harvesting machines for agriculture, 

mobile lawn mowers and vacuum cleaners in the domestic front [8]. 

PSUBOT: THE AUTONOMOUS WHEELCHAIR ROBOT 

PSUBOT is a motorized wheelchair robot being currently developed in the PSU Electrical 

Engineering Department. It is primarily intended to transport a physically handicapped person 

within a known environment particularly the inside of a building. The wheelchair is envisioned 

to be endowed with capabilities that might be lacking in its passenger. A handicapped passenger 

may have hand-eye coordination problems, may even be blind, or may just not be capable of 

operating or controlling the wheelchair. On these premises, the wheelchair must be capable of 

autonomous navigation. Autonomous in this context means that the wheelchair carries all the 

necessary equipment needed for navigation control to be able to move around the known 

environment freely, and must rely on sensory feedback to control its motion and find its way in 

the environment. The operations necessary for data processing of sensory feedback, path plan

ning, decision making and hardware control have to be done onboard so that the motion will not 

be constrained by wires, communication links or distance from a controlling computer. 

The wheelchair must have a vision system to show where it is and where it is going, an 

ultrasonic ranging system to ensure that its immediate path is clear of obstacles, a voice recogni

tion system that will enable it to respond to verbal commands when needed, wheel feedback sen

sors and controllers to improve the straight line or trajectory motion. Global pathplanning is 

done by an intelligent ,database that keeps the map of the "learned" environment and the current 

state of the robot received from the subsystems. A central controller serves as the navigator, 

directing the wheel controller as appropriate based on information obtained from the intelligent 

database. Figure 1 shows the functional components of the PSUBOT. 
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wheels user 

Sonar System 

Figure 1. Functional components of the PSUBOT. 

Currently, PSUBOT is voice controlled [9], i.e., navigational control is solely dependent 

on voice commands that may start or stop the motion of the wheelchair, direct forward or reverse 

motion, speed up or slow down smoothly and tum in a specified direction at a specified angle. A 

feedback system that uses speed sensing has been installed on each wheel, allowing the speed of 

each wheel to be monitored during the motion. 

PROBLEM STATEMENT 

So much work has been done to develop complex and expensive systems that the feasibil

ity of their use in basic applications is outweighed by their complexity and cost [10]. This obser

vation so aptly describes the developments in image processing and robotic technology when 

one thinks of using these developments in a simple indoor transport system like the PSUBOT. 

The fact that the robot is a wheelchair that must carry all its processors, controllers and power 

source in addition to its passenger to navigate about its environment is already a restriction on 

the size and type of processing hardware and data storage facilities that may be used. It is true 

that hardware technology can offer powerful, compact equipment and processors, but the cost of 
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such equipment makes it unreasonable for use on a wheelchair that is intended for practical use. 

Since all the software processing will be done on board the vehicle and in real-time, all the 

processes will have to share whatever computer resources there are on board. This idea does not 

seem so attractive for an image processing system since image processing operations involve 

intensive calculations and intensive memory use. The vision system will also require storage of 

a lot of "learned" images that have to be on hand for the recognition task. The form by which 

the images are represented and stored could be a bottleneck in the memory use aspect and also in 

the ease or speed of the subsequent recognition task. 

Thus, the design of the processing system must be such that there is a reasonable balance 

of simplicity, speed of computation, and data representation compactness in addition to optimum 

efficiency so as to meet the requirements and satisfy the constraints imposed on the entire robot 

system. 

GOALS AND DESIGN DEVELOPMENT METHODOLOGY 

The primary goal of the thesis is the development of a simple, inexpensive and automatic 

or unsupervised low to medium level image processing system that is directed towards the 

development of a vision system for the PSUBOT. At the current stage of conceptualization, the 

PSUBOT is primarily designed as an indoor transport system. As such, the vehicle is limited to 

the inside of a building where scenes would mostly consist of corridors, wall corners, door out

lines, wall-floor boundaries and other fixtures common in indoor scenes. The image processing 

then may be limited to those operations that are primarily concerned with the extraction of scene 

features whose outlines may almost always be described as straight lines or some configurations 

of straight lines. To address the problem earlier stated, the primary goal may be broken down to 

the following subgoals: (1) selection of the appropriate processing techniques that will favor the 

extraction of straight line boundaries; (2) tailoring these techniques to suit system requirements 

and constraints (3) devising a straight line extraction scheme that will allow the scene 
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characterization to be represented in some compact form and which is almost ready for use by 

the scene recognition task; and (4) organizing the processes into a completely automatic 

sequence. An oveiview of the image processing system as a whole, and the hardware and 

software aspects of the low to medium level image processing system developed are presented in 

Chapter II. 

Algorithms, techniques and ideas have swamped the field of image processing in the past 

years, each one advocating attractive results and effects. Comparative studies and evaluations of 

performance were published to give more light to the conditions for which the various methods 

are appropriate. The selection process was based on a balance of preseiving image feature 

integrity as may be judged visually, simplicity and speed of calculations involved and amount of 

memory usage during the processing. Where ever applicable, published comparative studies and 

evaluations were used to guide the selection procedure. 

To uphold the spirit of engineering, it was deemed reasonable to use available resources 

appropriate for the purpose, filling in the gaps where necessary rather than inventing new 

methods where the available ones will work as well. Found useful were Benjamin Dawson's 

Simple Image Processing Package(SIMPP2) [11, 12] and some programs developed by past stu

dents of the Department of Electrical Engineering of PSU. Some of the routines and programs 

which suited the purpose were used for the preprocessing and boundary extraction stages. These 

programs were, however, highly user interactive so that some interfaces have to be fixed to have 

a continuous processing. A program was developed to automatically determine the parameters 

originally supplied by the user to totally eliminate human inteivention. Detailed descriptions of 

the preprocessing and boundary extraction stages are given in Chapters III and IV, respectively. 

The most critical aspect of the development was the determination of an appropriate line 

feature extraction and characterization scheme since this processing stage determines how the 

scene is characterized for storage or for use by the recognition task. The results of this stage are 

practically the basis of the vision capability of the mobile robot. For reasons cited in Chapter V, 
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the Hough Transform method was finally chosen. However, a hierarchical approach was used to 

overcome the complications that are inherent to the method. This gave rise to the development 

of some data abstraction to simulate a pyramid structure so as to make the line extraction and 

characterization scheme be implementable in a PC. It must be noted that the working memory 

segmentation of a DOS-driven PC places severe constraints on the amount of active data space 

that may be used. The data structure also provided for the output of the characterization in terms 

of the hierarchical levels, a form which might prove useful for the scene recognition task. A 

complete discussion of the line feature extraction and characterization scheme is presented in 

ChapterV. 

EVALUATION CRITERIA 

The primary concerns in the design of an image processing system for an autonomous 

robot like the PSUBOT are: real-timeliness, efficacy of the image processing and transportabil

ity. Real-timeliness in the context of the wheelchair robot could be measured in terms of area

sonable percentage of the average speed of the wheelchair in an indoor environment, which if 

operated via a joystick by a passenger who has complete control of his senses, may be in the 

vicinity of 1 meter/sec. Efficacy may be measured in terms of how well each of the processing 

steps contributes to the quality of the scene features finally extracted and characterized in order 

to facilitate scene recognition based on these features. The goodness measure for the scene 

feature extraction is rather a qualitative one, i.e., it is based on how discernable the features are 

on the resulting processed image to a human viewer. An additional factor that may be con

sidered within the domain of efficacy is the degree of noise tolerance of the image processing 

steps as this determines the amount of noise-eliminating steps that need to be used to yield credi

ble features, precautionary steps that may weigh down on the overall processing time. Consider

ing that the PSUBOT requires all of its subsytems to share processing facilities on board the 

vehicle, then all the image processing task must be implementable in the restricted confines of 



8 

the PC installed on the vehicle. 

The implementation of an image processing system on a PC for a mobile robot that is 

designed for a practical purpose like passenger transport is a rather unexploited area in robotics. 

Though one such system (also a self-navigating wheelchair) was started in Arizona State Univer

sity [13, 14], the image processing task was not so involved for use in scene recognition. Thus, 

the initial requirement of determining an effective combination of image processing steps that 

will allow scene recognition based on visual feedback, somehow shifts the prioritization of the 

evaluation criteria for this endeavor. Thus, the major concerns for this undertaking are transpor

tability of the image processing system components and efficiency of scene feature extraction. 

Although processing speed was considered in all aspects of the development, it was not given 

the highest priority in the selection procedure, since the initial effort was concentrated at organ

izing a system that is transportable and efficient, a system that may serve as the base for future 

developments and improvements. 

Whenever available, published performance evaluations and surveys were used to guide 

the selection procedure. However, the final choice of the techniques to be adopted and/or the 

parameters pertinent thereto were based on their suitability to the immediate goals, their effects 

on the other operations involved, and their final impact on the recognizability of the scene 

features extracted. 



CHAPTER II 

THE IMAGE PROCESSING SYSTEM 

An image can be intetpreted as an energy distribution over a surface. Imaging devices like 

cameras use image sensors that generate analog signals which represent the spatial energy varia

tions in the image [15]. Sampling and quantization of these signals result in a digital image 

which has been discretized both in spatial coordinates and in brightness. The digital image is a 

two-dimensional array whose row and column indices identify a point in the image and the 

corresponding value of the array element (called pixel or picture element) represents the bright

ness of the image at that point. The pixel value called the gray level is a positive integer 

representing the quantized measurement of the brightness. Digital image processing involves the 

systematic treatment and manipulation of the pixel values so as to extract the desired infonna

tion about the image. 

HARDWARE ASPECTS 

The image processing equipment basically consists of a video source that generates image 

signals, a frame grabber to digitize the image signals and store the digitized image in an image 

memory, and a computer to initiate and control the image acquisition process and perfonn other 

image processing functions on the digitized image. 

The image processing system at hand uses a CCD camera as the video source, the 

PCVISIONplus FRAME GRABBER card by Image Technology Inc., and a PC-386SX con

nected as shown in Figure 2. An external video monitor may be optionally used to allow moni

toring of the digital image during the processing. The details of how the components are inter

connected for image acquisition is described in Appendix A. 
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Figure 2. Hardware components of the image processing system. 
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The PCVISIONplus card plugs directly into an expansion slot in the PC. The card receives 

input video signal (RS 170/330), digitizes the video signal to 256 gray levels and stores the 

resulting pixels in a 1024 x 512 byte frame memory [16]. The PCVISIONplus is controlled by 

the computer through 16 1-byte registers that are dedicated for use by the card. With the 

appropriate software interface, the computer initiates the image acquisition and may access the 

image memory in 64K blocks, allowing the computer to read or modify selected pixel positions 

or pixel values. 

SOFIW ARE ASPECTS 

The image processing software consists of routines for initializing the PCVISIONplus 

registers, look-up tables (LUTS) and image memory, interfacing with the image memory, image 

acquisition, image enhancement, edge detection and extraction, and line feature extraction and 

characterization. The PCVISIONplus initialization routines were developed by past EE students 

[17] for the purpose of interfacing SIMPP (Benjamin Dawson's earlier version) with the 

PCVISIONplus. The image memory interface routines allow access to one or more pixels in the 

image memory for reading or modification. The image acquisition routine drives the frame 

grabber to digitize an input image and store the digitized image in the image memory. These 
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routines are parts of SIMPP2. 

The image enhancement consists of Histogram Equalization and Image Smoothing. Histo

gram Equalization [l, 2) is supposed to improve contrast in preparation for the extraction of 

object boundaries whereas Image Smoothing [18) reduces extraneous data introduced by the 

acquisition hardware and the digitization process. The edge detection and extraction routines 

consist of the Edge Detection [19) using the Sobel operators to highlight object boundaries or 

edges; the Binarization [20) of the image to extract the detected edges; and the Thinning [21 J of 

these edges to one-pixel-width lines. The threshold for the binarization is detennined automati

cally using the Between-Cass-Variance method [22). The Labelling routine [11) is used prior to 

Thinning to eliminate small spots (surviving noisy pixels). Programs for Histogram Equaliza

tion, Image Smoothing, Edge Detection and Thinning were previously developed by Alvin 

Legate and Kelly Spiller in connection with a student project in the Department of Electrical 

Engineering of the Portland State University in Spring 1989. The Histogram Detennination, 

Binarization and Labelling routines are parts of SIMPP2. The automatic Threshold Detennina

tion routine was developed in the course of this thesis to completely eliminate human supervi

sion of the image processing. The above-mentioned routines were integrated into an automatic 

image-acquisition-to-edge-extraction processing sequence that produces an image that is ready 

for feature extraction. 

The "Hierarchical Hough Transfonn" program developed in this thesis finally processes the 

results of the edge extraction stage to extract the lines that define the outlines of objects in the 

scene. The program characterizes these lines in tenns of the nonnal parameters of the nonnal 

equation of the lines, the lines' midpoints and lengths which are then written in a file for the 

recognition stage. The lines are written in the order in which they occur in the hierarchical struc

ture adopted, thereby allowing the recognition stage to exploit the classification offered by the 

structure. 
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All the routines and programs were written in C. The Borland C++ compiler (Vl.0) and 

DOS 4.0 were used forthe development on a PC-386SX. 

AN OVERVIEW OF THE IMAGE PROCESSING SYSTEM 

A picture of the vision system conceptualized for the PSUBOT is shown in Figure 3. It 

consists of two main components: the low to medium level image processing subsystem that will 

extract a description of the scene from the input images; and the scene recognition subsystem 

that compares the scene description generated by the first component with a previously "learned" 

scene. The low to medium level image processing system organized and developed in this thesis 

is intended to be the front end of the complete vision system for a mobile robot designed for 

autonomous navigation in a non-hostile environment, particularly the inside of a building. 

Real-time image capture is implemented by digitizing a snapped image of the scene and 

storing the digitized frame in the image memory for further processing. After image acquisition, 

the image processing steps are divided into three major areas of concern: image enhancement, 

image 
signals 

Image 
Acquisition 

Image Ed~e Detection Line Extraction & 
~ Enhancement ~ & xtraction ~ Characterization 

Low to medium level image processing subsytem ............................................................................................. ················ 

result of -
recognition step 

Scene Recognition -
learned scenes - subsystem I 

from database I 
I 
I learned sceneS:::- ________________________ .J 

for storage 

Figure 3. The vision system for the PSUBOT. 
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edge detection and extraction, and line extraction and characterization, all directed towards the 

characterization of indoor scenes in terms of line features that represent the outlines of the 

objects in the scene. Figure 4 shows the sequence of operations that comprise the low to 

medium level image processing subsystem. 

Image enhancement is primarily intended to "improve" the quality of the digitized image 

so as to emphasize or deemphasize certain image characteristics. The image signals that are gen

erated by the imaging device contain lots of physical information about the image, all chunked 

into what we call "brighmess". Digitization of the analog image signals into a discrete number 

of brighmess levels results in a digital image where neighboring pixels have gray levels that are 

almost similar or even the same. Also, the imaging and digitization processes could introduce 

extraneous values or noise into the array. Histogram Equalization of the digitized image spreads 

the pixel values to the maximum 256 grey level range. At the same time it enhances the contrast, 

thereby making the object boundaries more discemable. Use of the median filter gets rid of the 

spot noise without much effect on the boundaries. Edges are then enhanced or highlighted with 

the use of the Sobel edge operators and the image binarized to finally extract such edges. 

In images of the inside of the building, corridors, lobbies, or rooms, most of the edges that 

mark the pertinent static features correspond to wall-floor boundaries, wall comers, wall-ceiling 

boundaries, door outlines, window outlines, and furniture outlines. These features are almost 

always straight lines or may be approximated with straight lines. To improve the characteriza

tion of such features, the extracted edges are thinned to one-pixel-width lines on which the 

Hough transformation is applied. The Hough transformation represents a line in terms of its 

polar parameters, thereby allowing the characterization of the line in terms of its polar equation. 

Based on the results of the Hough transformation, the scene of lines is characterized in terms of 

the length of the lines and their positions and locations in the image. 

The hierarchical approach used in the line extraction affords a natural classification of the 

lines according to their relative expanse in the image. These allow characterization of the scene 
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in terms of lists of lines in each level of the hierarchy. A summary for each level contains the 

length of the longest line in the list, the total number of lines in the level, the number of horizon

tal lines, the number of vertical lines and the number of slanting lines. Each line in the list is 

attributed with its length, normal parameters with respect to the center of the image and its mid

point which is indicative of its location or relative position in the image. These characterizations 

are stored in the scene database for later use or are compared with those of the expected scenes 

to aid in the identification or confirmation of the robot's orientation, position or location. 

The complete vision system interacts with the robot's intelligent database which initiates 

the operating mode for the image processing system and controls the camera position as it deems 

necessary to meet the needs of the central controller. 

The vision system will have 3 modes of operation: a learn mode, where the system sets up 

the scene database as the robot is initially guided around the intended environment; a scene

identification mode where the system is to identify the bearings of the robot in a previously 

"learned" environment; and a navigation mode where the system is intermitently asked to 

confirm the bearings and provide the robot with the navigability of the path it is traversing. 

The Learn Mode 

The robot will be initially given a layout of the environment, the layout expressed in terms 

of a connectivity map, the rooms and hallway intersections as nodes and hallways as edges. The 

robot is then guided about the environment, and the image processing system is allowed to 

gather scene information to be associated with each node. In this mode, the system takes frontal 

views of the entrances to the rooms and intersections, and frontal views of the hallway on both 

sides of the entrances. Frontal snaps of the hallways will be taken at certain points along the 

hallway, and will be associated with the edge representing the hallway. This will serve as check

points that will be used during the navigation mode. 
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The Scene-identification Mode 

The scene-identification mode will have two variations: initial identification of location in 

the "learned" environment; and identification of location with knowledge of previous bearings. 

In the first variation, snaps of the scene are compared with the scenes in the database until a 

scene is finally identified. The robot has to stop to get its initial bearings, and the database will 

stand attendant to the vision system and the sonar system to provide the need for possible scene 

models. In the second variation, snaps are taken until a particular snap matches a scene in a set 

of expected scenes in the vicinity, thereby confinning the robot's position and location. Being 

aware of the state of motion of the robot and the vicinity in which the robot is currently located, 

the database could note the time elements involved to guess the possible set that must be given 

to the vision system for confinnation. 

The Navigation Mode 

Navigability of a path requires that there exists sufficient space for the robot to move on. 

In this mode, the image processing system will be particularly partial to the scan of the lower 

portion of a frontal image, identifying lines corresponding to wall-floor boundaries that mark the 

hallway, giving the intelligent database some feedback regarding the freeness of the navigation 

path. This mode also makes use of the scene-identification mode to confinn the robot's relative 

position to a current target scene as deemed necessary by the intelligent database. 



CHAPfERIII 

IMAGE ENHANCEMENT 

Image enhancement techniques are primarily intended to prepare the image for further pro

cessing that will lead to the credible analysis and interpretation of desired image features. The 

techniques generally involve some transformations of the image gray levels so as to enhance or 

deemphasize certain image features. Image enhancement techniques are used to make the resul

tant image more suitable for specific applications, making the image enhancement step become 

problem-oriented [l). Of particular interest are enhancement techniques that will prepare the 

image for the extraction of boundary features. Such enhancement requirement may be met by: 

(1) brightening the image by increasing the intensity level of each pixel by a constant value, an 

operation which may be required of images that are predominantly dark; 

(2) stretching the image so that chosen areas of particular interest are enlarged for more 

detailed analysis; 

(3) the use of histogram modification techniques to effect a global transformation in the gray 

level intensities according to a preset condition about the intensity distribution; 

(4) image smoothing to diminish noise introduced by spurious sampling and transmission 

effects; 

(5) sharpening operations to emphasize desired image features. 

With processing speed and efficiency as the primary concerns, the image enhancement 

steps chosen are primarily aimed at transfonning the image in such a way that objects become 

easily distinguishable from the background. Due to the limitations imposed by the image 

acquisition and digitization hardware used for the images taken for the tests, the images used 

consisted of 64 gray levels only. Histogram equalization is first applied to spread out the image 
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to the 256-gray-level intensity range and to improve contrast between objects in the image. The 

smoothing operation is then applied to eliminate noisy spots in the image. Object boundaries are 

finally sharpened in preparation for the boundary extraction steps. 

The histogram equalization and smoothing operations are described in detail in the follow

ing sections, whereas the sharpening operation which is primarily concerned with the edge 

extraction is described in the next chapter. 

HISTOGRAM EQUALIZATION 

The gray level histogram of an image gives a global description of the image. Based on the 

gray level distribution, an image may be judged to have generally dark characteristics or the 

image has a predominance of light tones as the case may be. Histogram equalization is a tech

nique that makes use of the gray level histogram to guide the gray level modification that will 

result into an image where the tones are more or less distributed uniformly. The technique is 

based on the transformation of the form: 

s = T(r) (3.1) 

that produces a level s for every pixel value r in the original image. From elementary probabil

ity theory, if T (r) is single-valued and monotonically increasing in the range of r, the probabili

ties for the s and r are equal [23], i.e., 

Ps (s) ds =Pr (r) dr (3.2) 

where Ps (s) and Pr (r) are the probability density functions for the s and r levels, respectively. 

Histogram equalization makes use of a transformation function based on the cumulative 

distribution function [l], which indeed satisfies the single-valuedness and monotonicity require

ments for a transformation function. The transformation function for mapping the original histo

gram to a new histogram of M gray levels is: 
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r 

T(r) =M JPr (w)dw (3.3) 

where w is a dummy variable of integration. If h (r) is the number of pixels for each gray level 

r of the original histogram H and g (s) is the number of pixels for each gray level s of the new 

histogram G, then the probability density functions are expressed as: 

Ps (s) = ~ p (r) = ..!:!:.J!:l N ' r N · (3.4) 

Equation (3.2) may then be rewritten as: 

g (s) ds = h (r) dr (3.5) 

which simply means that a small interval dr in the original histogram H is mapped to a 

corresponding interval ds in the transformed histogram G via the cumulative histogram as 

shown in Figure 5. The combination of equations (3.1), (3.3) and (3.4) produces: 

s =Ml 1*1-dw. 

Direct differentiation of equation (3.6) gives: 

ds M Tr= Nh(r) 

(3.6) 

which when substituted into equation (3.5) shows the new histogram G to have a constant fre-

quency for any level s , i.e., 

h() 1 _!f_ 
g (s) = r * h (r) - M 

As a result, crowded gray level ranges get mapped to wider ranges and ranges where fre-

quencies are low get mapped to narrower intervals as shown in Figure 5. The transformation 

results in an image where the contrast is enhanced in the more crowded range and the contrast is 

compressed in the less crowded range [2], thereby improving the overall visibility of the object 

boundaries. The technique also makes possible the transformation of an image from one gray 

level range to another desired gray level range. 
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Figure 5. The mapping of a gray level histogram H to a uniform histogram G using the 
histogram equalization technique. 

Implementation of Histogram Equalization on a Digital Image 

The discussion presented above was based on the consideration of the gray level histo-

grams as continuous functions. However, when gray levels assume discrete values as in the case 

of a digitized image, the gray level histogram of the digital image consists of counts (nj ) of pix-

els for each discrete gray level (rj ). For an image of N pixels, the probability density for each 

level is expressed as: 

Pr (r1-) = !!L. N' (3.7) 

The new gray level sk in the new M -gray-level range is then detennined according to the 

discrete equivalent of equation (3.3) which is: 

k 
Sk =M 1~Pr (rj). (3.8) 

The histogram equalization routine used calls the histogram detennination routine for the 

generation of the gray level distribution h (nj ) for j = 0 to j = M - 1. The probability density is 

then determined for each gray level (rj) according to equation (3.7). A look-up table of the new 
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gray level distribution based on equation (3.8) is then created for k = 0 to k = M. Each pixel 

valuer in the input image is then replaced by the corresponding s value from the look-up table, 

resulting in the transformed image. 

Figure 7 shows the effect of histogram equalization on a test image shown in Figure 6. It 

is obvious that the resulting image has better contrast than the input test image. The gray level 

histograms in Figure 8 show that the test image has only 64 gray levels, whereas the transformed 

image is spread out over the 256-gray-level range. The histogram of the transformed image is 

however not flat as described earlier since the gray levels are discrete. 

IMAGE SMOOTHING 

The sampling system and the transmission channel used in the image digitization process 

can introduce extraneous data into the acquired digital image. These spurious data often appear 

as very low or very high intensity levels for some pixels, making the pixels inconsistent with 

their neighbors. The smoothing techniques are intended to diminish if not totally eliminate these 

spots so that they do not interfere in the operations that identify image features based on inten

sity variations in pixel neighborhoods. Smoothing operations may be effected either in the spa

tial domain or in the frequency domain. Spatial domain techniques make use of the intensity 

levels in a pixel's neighborhood to adjust the pixel's intensity level so that it becomes consistent 

with its immediate neighbors. On the other hand, frequency domain techniques implement the 

operation by the convolution or multiplication of the Fourier transform of the image with a low 

pass filter function. In general, the operation attenuates the high frequency components of the 

Fourier transform spectra based on some threshold that is characteristic of the filter function 

used. Sharp transitions in the gray levels of the image which occur around noise spots and edges 

heavily contribute to the high frequency components of the image's Fourier transform. The con

volution results in blurring the pixels that contribute to the high frequency components. 
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(a) of input image (b) of transformed image 

Figure 8. The gray level histograms of the images in Figures 6 and 7. 

The need for transforming the image function into its Fourier transform, performing the 

convolution in the transform domain and inverting the resultant transform back to the original 

domain mean a lot of calculations unless specialized hardwares are used to implement the 

transformation. The spatial domain techniques are much simpler and more practical for real-time 

applications if no special hardware is to be considered and if calculation simplicity can be 

equated to speed without considerable loss of the efficacy. Also, the spatial domain techniques 

do not need preset threshold values for the pixel value transformation, making the techniques 

self-sufficient and not dependent on previous knowledge of some appropriate thresholds. 

The spatial domain techniques like neighborhood averaging and median filtering base the 

transformation of the intensity level of every pixel (x, y) on the intensity levels of the pixels in a 

predefined neighborhood of (x, y ). In neighborhood averaging, a pixel's intensity level I (x, y) 

is replaced by the average of the intensity values of the pixels in its neighborhood, i.e., 
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I(x,y)= it LIU,k), U, k) E S 

where S is the set of coordinates of the pixels in the neighbomood of (x, y ), including (x, y) 

itself, and M is the total number of pixels in the neighborhood. On the other hand, median filter

ing replaces I (x, y) by the median intensity value in the neighborhood: 

I (x, y) = median {I U, k) : U, k) E S } . 

One of the principal difficulties of the neighborhood averaging method is its blurring effect 

on edges and other sharp details [18] which makes it undesirable for use in images where edges 

are of primary interest. As Bovik, Huang and Munson [24] reiterated about smoothing tech

niques: "if noise reduction is to be effected prior to detecting edges, then the filtering strategy 

used must not severely degrade the edge content of the image", it is indeed reasonable that the 

smoothing technique must not sacrifice edge integrity for noise suppression. Their study on the 

efficacy of median filters showed that the technique is indeed effective in removing noise from 

images while retaining the integrity of the edges. They also showed that the median filters 

improve the performance of both the zero-crossing edge operator and the conventional gradient

based edge, operator which they used for the edge detection. Of the different median filter 

geometries they tested (see Figure 9), the square geometry performed best in terms of noise 

supression and edge preservation which they attributed to the larger span of the filter. 

square cross x-shape 

Figure 9. Median filter geometries used by Bovik, Huang and Munson. 
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Implementation of the Median Filtering Technique 

The median filtering technique was chosen to effect smoothing prior to edge detection and 

extraction. As was pointed out earlier, the technique was shown to be effective in noise suppres-

sion and edge preservation. A 3 x 3 neighbornood window was used for each pixel position. The 

filtering was done by centering the window on each pixel, the pixel intensity values within the 

window sorted to locate a median value, and the center pixel's value replaced by this value. The 

application of the median filtering technique to an image may be described by the following 

pseudocode: 

/*median filtering: 3x3 filter window*/ 
/*begin*/ 

read first 3 image rows into buffer 
while Oast buffer row has an image row) 
{ start window at first 3 columns of buffer 

while (window within buffer) 

} 

{ insert sort each pixel value into sorting array 

} 

write middle value in sorting array into center pixel in image 
shift window one pixel column along buffer 

shuffle buffer rows (shift out top row, shift up rows 2 and 3) 
read the next image row into row 3 of buffer 

/*end*/ 

Figure 10 shows the effect of median filtering on the image in Figure 7. The operation 

indeed eliminated some relatively bright spots in the original image yielding a much smoother 

resulting image. The resulting gray level histogram reflects the decrease in the pixel counts at 

some higher gray levels and some increase at the lower gray levels. 
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Figure 10. Effect of median filtering on the image in Figure 7. 



CHAPTER IV 

EDGE DETECTION AND EXTRACTION 

Object boundaries or edges are characterized by abrupt changes in the gray levels of neigh

boring pixels. Edge detection techniques exploit this property to identify and enhance or shar

pen the pixels along the object boundaries with the use of some appropriate edge operators. The 

sharpened edge pixels are then extracted by the binarization of the image, i.e., based on an 

appropriate gray level threshold value, the image is transformed into a two gray-level representa

tion so that the edge pixels are assigned one gray level and the non-edge pixels are assigned the 

other gray level. The extracted edge pixels are then further thinned to one-pixel widths in 

preparation for a higher level of abstraction of the edges which is the subject of the next chapter. 

EDGE DETECTION 

Edge detection involves the application of edge operators to small areas in the image to 

identify the pixels that comprise possible edge boundaries. An edge operator or detector is a 

mathematical operator or its equivalent, so designed to detect the presence of a local edge in a 

small area of the image based on the variation of gray levels in the pixels comprising the area. 

Edge operators fall into 3 main classes [2]: 

(1) operators that approximate the mathematical gradient; 

(2) template matching operators that use multiple templates for different possible orientations 

of the edge; 

(3) operators that fit local intensities with parametric models. 

Despite the development of more sophisticated edge detectors, the simpler gradient opera

tors such as the Robert's Cross, Prewitt and Sobel operators are well established and commonly 
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used, chiefly because of their computational simplicity which is an important consideration in 

robot-oriented vision (25]. 

The Gradient 

In the realm of continuous two-dimensional functions, the gradient of f (x, y) which is 

denoted as V f (x, y) in equation ( 4.1), is defined as the vector that points in the maximum rate 

of increase of the function f (x, y ). Its magnitude which is denoted as G (x, y) in equation (4.2), 

is the maximum rate of increase off (x, y) per unit distance in the direction of the vector, the 

direction as given in equation ( 4.3). To simplify notations, the symbols Gx and Gy are used to 

denote the partial derivatives: 

Gy = df(:~,y) 

gradient vector: Vf(x,y)= [g;] (4.1) 

gradient magnitude: G(x, y) = jvf (x, y)I = (Gx2 + Gy2)1h (4.2) 

di d. . tan-I Gx gra ent 1recuon: a = c;:: 
y 

(4.3) 

When operating on discrete quantities as in digital images where x, y and f (x, y) are 

natural numbers, the partial derivatives are approximated by the finite differences in the orthogo-

nal directions x and y as: 

Gx =f(x,y)-f(x+l,y) 
Gy =f(x,y)-f(x,y+l) (4.4) 

where the relationships between the pixels are shown in Figure l l(a). The gradient magnitude 

approximation may be further simplified as the sum of the absolute values of Gx and Gy, a fonn 

which is more desirable for computer implementation of the gradient [1]: 

G(x,y)= jaxj + jayj (4.5) 
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Figure 11. The 2 x 2 convolution masks for the digital derivative approximation. 
(a) Mapping of a 2 x 2 pixel neighborhood, (b) the digital derivative convolution 
masks. 
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The gradient magnitude as approximated according to equation ( 4.5) may be noted to be propor-

tional to the difference in gray levels between adjacent pixels. Thus, the magnitude is relatively 

large where pixel values change abruptly, is small in the regions that are fairly smooth, and is 

zero where the gray level is constant. 

The digital derivatives Gx and Gy of the equation set (4.4) are more conveniently 

represented as convolution masks as shown in Figure 1 l(b). This simplifies the digital derivative 

approximation as the convolution of the 2 x 2 neighborhoods of the image array with the masks. 

In the context of pixel areas and masks, convolution is a weighted summation process, with each 

element of the mask representing the weighting factor for the value of the corresponding pixel. 

Thus, the convolution result is simply the sum of the products of the pixel values in the image 

area and the corresponding weighting factors in the mask. The gradient magnitude may then be 

approximated according to equation (4.5) using the convolution results. 

A common implementation of the gradient method described above is the generation of the 

so-called gradient image g (x, y) [l]. A gradient image g (x, y) results when the value of the gra-

dient magnitude of the pixel in the f (x, y) image is assigned to a corresponding pixel in the 

g (x, y ). The gradient image pixels that correspond to the edge pixels would be prominently 

bright, whereas those corresponding to the non-edge pixels tend to be darker. 
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The Gradient Edge Detectors 

Several edge operators were developed to approximate the gradient in attempts to accu-

rately mark pixels that comprise the boundaries. A number of these operators are described in 

[19] and [25]. These edge operators (also commonly referred to as differential operators) use 

convolutions to approximate the x and y components of the image intensity gradient. Most not-

able of the said operators are the Robert's Cross, Prewitt and Sobel operators as advocated by 

Kitchen and Malin [25], Ballard and Brown [2] and Levialdi [19]. The convolution masks for 

these operators are shown in Figure 12. 

Gx 

Gy 

~ 
~ 

[ill] 
~ 

(a) Robert's Cross 

-1 0 1 

-1 0 1 

-1 0 1 

1 1 1 

0 0 0 

-1 -1 -1 

(b) Prewitt 

Figure 12. Differential edge operators. 

-1 0 1 

-2 0 2 

-1 0 1 

1 2 1 

0 0 0 

-1 -2 -1 

(c) Sobel 

The Robert's Cross operator uses the cross differences in the 2 x 2 neighborhood whereas 

the Prewitt and Sobel operators approximate the gradient in 3 x 3 neighborhoods. The Prewitt 

and Sobel operators introduce local averaging to reduce the effect of noise, a factor that Ballard 

and Brown attributed to their better perfonnance over the Robert's Cross operator. The Sobel 

operator is very similar to the Prewitt operator with a heavier weighting assigned to pixels that 

are closer to the center of the neighborhood, a factor that was suspected to account for the supe-

rior perfonnance of the Sobel operator over the other operators in comparative studies made by 

the above-mentioned authors. Levialdi also emphasized that the Sobel operator perfonned 
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sufficiently well even on vertical and diagonal edges on which white noise was added with noise 

to signal ratios of 1 and 10. 

Sobel Operator. The Sobel operator was chosen for the system at hand because of its advo-

cated superior performance in addition to the computational simplicity inherent to convolution-

type operators. The Sobel operator approximates the gradient in a 3 x 3 pixel neighborhood by 

the convolution of the masks in Figure 12(c) with the 3 x 3 neighborhood of the center pixel x, y 

shown in Figure 13. The convolution results into the following digital derivative expressions: 

Gx = [f (x+l,y-1) + 2/ (x+l,y) + f (x+l,y+l)] - [f (x-1,y-1) + 2/ (x-1,y) + f (x-1,y+l)] 
Gy = [f (x-1,y-l) + 2/ (x,y-1) + f (x+l,y-1)]- [f (x-1,y+l) + 2/ (x,y+l) + f (x+l,y+l)] 

x-l,y-1 x,y-1 x+l,y-1 

x-1,y x,y x+l,y 

x-1,y+l x,y+l x+l,y+l 

Figure 13. Mapping of the 3 x 3 pixel neighborhood. 

The magnitude of the gradient approximated according to equation (4.4) is then assigned to the 

center pixel x, y of the gradient image g (x, y ), i.e., 

g(x,y)= IGx I+ IGy I· 
Effecting the convolution for each pixel in the image results in an image where pixels in the 

vicinity of the boundaries are highlighted because of the higher gradient magnitudes at these 

points. Figure 14 shows the effect of the edge detection with the use of the Sobel operator on the 

image in Figure lO(a). 
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(a) gradient image (b) gray level histogram of (a) 

Figure 14. The gradient image of Figure lO(a). 

BINARIZATION 

The edge pixels identified and enhanced by the edge detection step must be be extracted 

from the gradient image in order to focus the subsequent transformations on these regions which 

indicate the object boundaries. A popular technique in extracting objects of interest from an 

image is thresholding segmentation, or binarization as it is commonly called. The technique 

involves a selection of a threshold gray level value with which the image will be transfonned 

into a 2-gray-level representation, i.e., 

{
bo if! (x,y)?. T 

ft (x. Y) = b 1 otherwise 

where f (x, y) is the pixel's gray level value in the input image, f, (x, y) is its resulting gray 

level in the binary image consisting of gray levels bo and bi. and T is the threshold gray level. 

The threshold T must be so selected so that it discriminates the pixels that belong to the object 
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desired from the pixels that are not of interest. hencefonh referred to as belonging to the back

ground based on the pixel gray levels. Selection of the threshold may be based on experience 

with a set of selected typical images or from some previous knowledge of the gray levels of the 

object pixels or may be based on the behavior of the gray level histogram of the image. 

AUTOMATIC THRESHOLD SELECTION 

Basically there are two different approaches for thresholding: local thresholding and global 

thresholding. In local thresholding, the image is subdivided into subimages and the threshold for 

each subimage is determined based on the local properties of the subimage. Global thresholding 

selects a single threshold value and applies this value to the entire image. Automatic global 

thresholding techniques make use of the gray level histogram as the basis of the threshold selec

tion. If the object is clearly distinguishable from the background, the histogram will be bimodal, 

i.e., there will be two peaks, each peak representing the gray level concentration of one group, 

and the bottom of the valley between the peaks representing the separation between the two 

groups. However, in most images, the histogram is not strictly bimodal or the peaks may vary 

significantly in size or the valley may be relatively wide, thereby complicating the location of 

the point of separation between the object and the background [26). Histogram modification 

methods have been suggested by Weszka and Rosenfeld [27) depending on the histogram 

behavior. However, examining every histogram, deciding on a modification method to use and 

finally deciding on the threshold is a cumbersome procedure if the histogram behaviors vary 

widely as in images of scenes. 

To overcome the difficulties of locating the bottom of the valley, Pun [28) developed the 

so-called entropic method that locates the threshold based on the entropies of the object and 

background groups as could be deduced from the histogram. Entropy is a measure of the degree 

of randomness of a set of random variables. Assuming that the probabilities of occurrence of 

each gray level are statistically independent, Pun developed a criterion measure based on the a 
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posteriori entropy of the histogram. The gray level at which the measure is maximum is sup

posed to be the threshold. Kapur, Sahoo and Wong [26] later found some derivation flaws in 

Pun's criterion measure which they rectified. They came up with their version of the entropic 

method by deriving two probability distributions from the original histogram: one for the object 

group, the other for the background group. The sum of the entropies of the two distributions 

becomes the criterion measure, and the gray level at which the criterion measure achieves the 

maximum is selected as the threshold. (The formulations for the method will be given later). 

However, they also showed that depending on the behavior of the histogram, the criterion meas

ure plot may have more than two peaks, thereby requiring the final selection of the threshold to 

be made visually. An improvement of the entropic thresholding method proposed by Abutaleb 

[29] makes use of two-dimensional entropy. Two-dimensional entropy involves adding the spa

tial gray level distribution to the one-dimensional gray level distribution. The gray level of each 

pixel and the average gray-level value of its neighborhood are taken into consideration for the 

entropic threshold. However, Abutaleb himself found that the one-dimensional method 

(described earlier) yields comparable results with the two-dimensional method especially with 

noisy images, making the one-dimensional method preferable over the more computationally 

expensive two-dimensional method. 

Another approach that determines the global threshold automatically and is not concerned 

with the bottom of the valley is the Between-Class-Variance method devised by Otsu [22]. The 

method is based on discriminant analysis. It involves a partitioning of the pixels into the object 

and background classes and determines the threshold based on some class variance criteria. The 

method is computationally simpler than the entropic method since the entropic method uses the 

logarithm function whereas variance computations simply involve squares. 

A survey of thresholding techniques conducted by Sahoo, Soltani and Wong [30] showed 

both methods to perform well in terms of their shape and uniformity measures with bimodal 

images. However, the Between-Class-Variance method outranked the entropic method and all 
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the other methods considered in test cases that do not have bimodal histograms. The results of 

the survey are consistent with the comparative performance study of global thresholding tech-

niques made by Lee and Chung [31) which also showed the Between-Class-Variance method to 

perform well regardless of object size. The entropic method worked well with varying object 

sizes provided the distributions of the object and the background are similar. Both methods 

however were found to be sensitive to noise. Both surveys ranked the Between-Class-Variance 

method as the best global thresholding method based on their overall analyses of the strengths 

and weaknesses of the different methods. 

In the light of the foregoing analysis, the Between-Class-Variance method seems to be the 

better threshold selector for the binarization of the gradient image, considering that: (1) the 

method makes an unsupervised determination of the threshold; (2) the edge pixels that comprise 

the object group is indeed much smaller than the background group; (3) there is no assurance 

that the image to be binarized will always be bimodal, nor the distributions of the object and the 

background will always be similar; and (4) the method is computationally simpler than the 

entropic method or any other global thresholding method considered in the above mentioned sur-

veys. 

The Entropic Method 

The improved entropy-based method developed by Kapur, et.al., treats the probability dis-

tribution of the gray levels as two distributions, one for the objects, the other for the background. 

Let ni be the number of pixels of gray level i in an image of N pixels and M + 1 gray levels. The 

gray level histogram may then be treated as a probability distribution, i.e., with Pi as the proba-

bility of occurrence of gray level i: 

ni 
Pi=N' Pi 2:0, ~Pi= 1. f:6 

Two probability distributions are defined from the probability distribution of the gray levels 
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described above, distribution A for the discrete values 0 to s, and distribution B for s + 1 to M as 

follows: 

s 
where: Ps =,~Pi · 

A· PI P2 
. Ps 'Ps ' 

B . Ps+I Ps+2 
· 1-P8 '1-Ps' 

Ps 
' Ps 

PM 
'1-Ps 

To simplify notations in the formulations, let: 

s 
Hs = - ~Pi lnpi 

M 
HM = - ,~Pi lnpi 

where: 1n is the natural logarithm. 

The entropies for the distributions are: 

H(A) =- f .£j_ 1n 1!L =lnP + Hs 
{;;/) Ps Ps 8 7';' 

H(B)=- f Pi 1n Pi =ln(l-P)+HM-Hs 
i=s+l 1-P8 1-P8 

8 1-P8 

The entropy of the complete probability distribution is the sum 'lf(S) of H (A ) and H (B ) : 

\jf(s) = lnP
8 

(1-Ps) + Hs + HM -H8 

Ps 1 n ' 
(4.6) 

\jf(s) is maximized to obtain the maximum information between the object and the background 

distibutions in the image while the value of s that maximizes \jf(s) is the threshold value. The 

maximum \jf(s) occurs when the distributions A and B are identical or similar. 

The Between-Class-Variance Method 

Otsu (22] formulated the Between-Class-Variance Method based on discriminant analysis, 

establishing a criterion for evaluating the "goodness" of threshold that leads to the automatic 



selection of an optimal threshold. The formulation is as follows: 

The gray-level histogram is regarded as a probability distribution: 

n· 
Pl.=-' p· >O N' , _, 

M 
">'p; = 1 ,";;J;J • 
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(4.7) 

where ni is the number of pixels of gray level i in an image of N pixels and M + 1 gray levels. 

Let a threshold level k classify the pixels into two classes C 0 and C 1 corresponding to the 

object and the background. C 0 will be composed of pixels with levels 0 to k and C 1 will be 

composed of those with levels k+ 1 to M. Let ro(k ), µ(k) and µT respectively denote the zeroth-

order and the first-order cumulative moments of the histogram, and the total mean level of the 

image to be subjected to the threshold: 

k 
ro(k)= 1~Pi 

k M 
µ(k) = I~ ip; µT = µ(M) = I~ ip; 

The probabilities of class occurrence are: 

roo= Pr(Co) = ro(k) 
ro1=Pr(C1) = 1 - ro(k) 

The class mean levels are: 

µa= tii Pr(i I Co)= ,ti~= -$1-
µ1 = . ~ i Pr(i I c 1) = ~. i.f!i_ = µT - µ(k) 

1=~1 ;~1 ro1 1 - ro(k) 

For any choice of k, the zeroth-order and first order moments are related by: 

rooµa + ro1µ1 = µr , roo + ro1=1. 

The class variances are: 

k aa = I~ (i - µo)2 Pr(i I co) 

M 
at= i=iti (i - µ1)

2 Pr(i I c 1) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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The within-class variance ow' the between-class variance on and the total variance crr of the 

levels are given by: 

aw = roo aa + C.01 CJ l 
Ob= 00o (~ - µy )2 + C.01 (µ1 - µy )2 

M 
CJf = I~ (i - µy )2 

(4.13) 

To evaluate the "goodness"' of the threshold at level k the following discriminant criterion 

measures or measures of class separability were considered: 

ai 
A.=~· 

Of 
IC=~, 

ai 
Tl= a;:· (4.14) 

Motivated by the conjecture that well thresholded classes would be separated in gray levels, and 

conversely, a threshold giving the best separation of classes in gray levels would be the best 

threshold, the problem can be reduced to the search for a threshold k that maximizes one of the 

criterion measures in equation (4.14). Since aw+ ai =or, the discriminant criteria that maxim-

izes any of the above measures for k are equivalent to one another. It is noticeable that the 

measures A. and K are functions of class variances (second-order statistics), whereas 11 is a func-

tion of the class means only. Also, crr is independent of k' which means that the threshold level 

k that maximizes 11 equivalently maximizes cri. Thus, 11 is the simplest of the above measures 

for the evaluation of the goodness of the threshold at level k. By using the relation from (4.11) 

in (4.13), the formula for an simplifies to: 

ai = rooco1 (µ1 - ~)2 . (4.15) 

Substitution of(4.9) and (4.10) into equation (4.15) finally expresses crj in terms of the simple 

cumulative quantities in (4.8): 

an (k) = [µy co(k)- µ(k) ]2 
(l)(k )[ 1 - (l)(k) ] 

(4.16) 

Equation (4.16) is always defined within the effective range of the histogram, i.e., 

co(k)[l - co(k)] > 0 or 0 < co(k) < 1. Equation (4.15), shows that an takes the minimum value 
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of zero when ro(k) = 0 or 1 making all pixels either C 0 or C 1 and takes a positive and bounded 

value for any k within the effective range of the histogram. The selection of the optimal thres

hold k* is then reduced to a sequential search for a k within the effective range of the histogram 

that maximizes the between-class variance an. 

Application to the test scene images 

For the sake of confirming the better thresholding method for the images for which this 

system is developed, both the entropic method by Kapur, et.al. and the Between-Class-Variance 

(BCV) method of Otsu were tried on the test images. The C program source codes written for 

this purpose are presented in Appendices B and C for the Between-Oass-Variance method and 

the entropic method, respectively. For both methods the effective range of the gray level histo

gram was first determined so as to restrict the search within that range only. Tests were made on 

two treatments of the gray level range: one where all the gray levels were considered (start = 0), 

another when only the non-zero gradients were taken into account (start> 0). It must be noted 

that the major objective is to find a gradient magnitude value (the pixel values in the gradient 

image) that will classify the pixels along the boundaries as the edge pixels. A zero gradient 

magnitude denotes that the pixel is definitely far from the boundary. 

The binarization thresholds for the image in Figure 15(a) are tabulated in Table I and the 

resulting binarized images are shown in Figure 16. The results showed that the entropic method 

consistently gave much lower thresholds than the BCV method, resulting in much thicker edges. 

It is also noted that excluding the zero-gradient pixels from the classification resulted in higher 

values for the criterion measures, implying the better separability of the groups. As expected, 

lower binarization thresholds give thicker edges, the edges getting thinner as the threshold is 

increased. Thinner edges are favored as long as no considerable edges or parts of the edges are 

lost as will be discussed in the next section. Timed runs on a PC-386SX showed that the BCV 

method takes approximately 50 msec to determine the threshold for an image, while the entropic 
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(a) gradient image (b) gray level histogram of (a) 

Figure 15. The gradient image to be binarized. 

TABLE I 

BINARIZATION THRESHOLD DETERMINATION RESULTS 

test histogram entropic method BCV method 
image range threshold max'ljl threshold max'Tl 

1 
0-255 68 8.1403 86 0.72191 
1 -255 75 8.7958 93 0.72573 

2 
0-255 43 7.1009 94 0.72637 
1 -255 51 7.9652 107 0.73562 

3 
0-255 47 7.3037 111 0.77228 
1 -255 53 8.0879 120 0.79299 
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(a) threshold= 107 (b) threshold = 94 

(c) threshold= 51 (d) threshold= 43 

Figure 16. The binarized images. 
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method takes 90 msec, a discrepancy that may be attributed to the use of the logarithmic func

tion in the entropic method. 

The Between-Cass-Variance method was the final choice for the automatic detennination 

binarization threshold for the gradient image produced by the edge detection step. Since the 

main objective is to classify the pixel based on its gradient as part of the edge or not, it was 

deemed reasonable to exclude pixels with zero gradient from the threshold detennination. 

The binarization operation is as follows: 

(1) Obtain the gray level histogram of the image by calling the histogramming routine. 

(2) Detennine the zeroth- and the first-order cumulative moments ro(k) and µ(k) respectively 

according to (4.7) for each gray level k = 0 to M. 

(3) Let the total mean level µT be the µ(k) at k = M. 

(4) For each gray level k, detennine the between-class variance crn according to (4.16) noting 

the highest variance value and the corresponding level k. 

(5) Using the gray level k at the maximum crn as the threshold, change all pixel gray levels 

below the threshold to zero (black) and all the other pixels to M (white). 

The result is an image with white streaks (edges) in a black background. 

EDGE THINNING 

Most edge detectors may produce a "thick" edge, since the detectors respond at and near 

the edge. To improve characterization of the edges, the "thick" edges are thinned by eliminating 

the "outside" edge one layer at a time until one-pixel thick edges are obtained [20). 

A thinning algorithm developed by Zhang and Suen [21] iteratively removes all the con

tour points that do not belong to the skeleton of the image. So as to preserve the connectivity of 

the skeleton, each iteration consists of two subiterations. 

Consider the positional mapping of a 3 x 3 neighborhood given in Figure 17, the center 

representing the position of the contour point Pl considered for deletion or not. For 
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simplification, let the pixel values be 1 for contour points and 0 for non-contour points. Now, 

consider a blob or streak of edge pixels that is to be reduced to a skeleton (one-pixel-thick line). 

In the first subiteration, a contour point Pl is deleted if it satisfies all of the following con

ditions: 

(1) it has 2 to 6 neighbors, meaning it is not an end point of the skeleton and that it is on the 

edge of the blob; 

(2) there is exactly one 01 transition in the ordered set P2, P3, ... , P8, P9 meaning, it is not a 

part of a line that is already a skeleton; 

(3) P2 * P4 * P6 = O; 

( 4) P4 * P6 * P8 = O; 

Conditions (3) and (4) mean that the contour point is to be deleted (provided it satisfied condi

tions (1) and (2), when it is a north-west corner point (P2 = P8 = 0), or when it is an east boun

dary point (P4 = 0), or it is a south boundary point (P6 = 0). 

The second subiteration, still requires conditions (1) and (2) and replaces (3) and (4) by: 

(3 ') P2 * P4 * P8 = O; 

( 4 ') P2 * P6 * P8 = O; 

North 

P9 P2 P3 

West P8 Pl P4 East 

P7 P6 P5 

South 

Figure 17. Positional mapping of the 3 x 3 neighborhood of a contour point P 1. 
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this time deleting the contour point when it is a south-east comer point (P4 = P6 = 0), or it is a 

north boundary point (P2 = 0) or it is a west boundary point (P8 = 0). 

Condition (1) prevents erosion of the line, and condition (2) preserves the connectivity of 

the skeleton. In one pass, the two subiterations are applied to each edge pixel in the binarized 

image and the pixel marked for deletion if the conditions are satisfied. After all the pixels have 

been examined, the marked pixels are deleted. The iterations are repeated until no more pixels 

may be deleted, resulting in a line-thinned image. Figure 18 shows the effect of the thinning 

procedure on a binarized image. 

The thinning process is an expensive process in the sense that it examines every pixel for 

exclusion from or inclusion in the final edge line. However, it is an indispensable step if these 

lines are to be characterized in terms of straight line equations as would be described in the next 

(a) before thinning (b) after thinning 

Figure 18. Thinning effect on an image. 
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chapter, since the characterization process also examines each line pixel and does some parame

terization of the line pixels to finally decide on the best description for the edge line. Thus, the 

main objective of this step is to reduce the computational load and narrow down the possibilities 

that would be considered as the more probable descriptions. 

LABELLING 

Considering the amount of attention an edge pixel receives from thinning and subsequent 

characterization steps, it is desirable to eliminate the pixels that have no chance of being finally 

taken as line pixels and thus reduce the number of pixels that are to be subjected to further exam

ination and processing. The edge line characterization (as will be described in the next chapter) 

sets some minimum length to a line segment that will be retained as a valid line. The minimum 

length in simplest terms is the minimum number of pixels that may lie in the line. It is therefore 

reasonable to eliminate pixel streaks or blobs whose pixel composition is less than the minimum 

number for a pixel line so that such streaks or blobs will no longer be examined during the thin

ning and characterization steps. This "cleaning-up" procedure is implemented by a labelling 

routine that counts the number of connected pixels comprising a blob or streak and eliminates 

the blobs that are smaller than a specified pixel area. The eliminated blobs become part of the 

background. The labelling procedure marks the counted pixels with a gray level other than 

white or black to keep track of the pixels already examined so that a second binarization step is 

necessary to convert all the non-black pixels (the surviving blobs, gray level > 0) back to white. 

The threshold for the binarization this time is simply gray level 1 since all the surviving edge 

pixels were simply marked non-black. This results in a "cleaner" image, free of very small spots 

(see Figure 19). 
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(a) before labelling (b) after labelling 

Figure 19. The Effect of the labelling routine. 

THE EDGE DETECTION AND EXTRACTION SEQUENCE 

Based on the foregoing considerations, the sequence of operations needed to extract the 

edges and prepare these edges for line feature characterization is as follows: 

(1) edge detection using the Sobel operator; 

(2) gray level histogram detennination for the threshold detennination; 

(3) threshold detennination using the BCV method; 

(4) binarization using the threshold generated by (3); 

(5) labelling using the line length threshold set; 

(6) rebinarization with threshold= 1; 

(7) edge thinning. 
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FEATURE EXTRACTION AND CHARACTERIZATION 

The feature extraction method used for a recognition system highly depends on the features 

of interest and the subsequent characterization amenable to the required recognition task. Image 

features are closely associated with object boundaries identified in the image. Extraction of such 

features were addressed in different ways depending on some prior knowledge of the type of 

objects expected in the image and the intended treatments of the extracted features. 

Scenes of the inside of a building are primarily characterized with lines marking wall-floor 

boundaries, wall comers, posts, door outlines and furniture outlines. The scene may be therefore 

described in terms of characterizations of line features, e.g., their relative orientations, relative 

lengths, and relative positions. This chapter centers on the issue of feature extraction and char

acterization of straight line features. 

REVIEW OF LINE FEATURE EXTRACTION TECHNIQUES 

Collinearity and proximity of edge points are of course the primary concerns in linear 

feature extraction. Each researcher has his own way of imposing such constraints. The follow

ing works are but a few of the numerous efforts done on the extraction oflinear features. 

Kahn, Kitchen and Riseman [32] extracted lines by using their so-called connected com

ponents algorithm to group pixels with similar intensity gradients into line suppon regions and 

fitting lines to these regions. Bums, Hanson and Riseman [33] also grouped pixels of similar gra

dient orientations into line-support regions and used the structure of the associated intensity sur

face to determine the location and properties of the line. Nevatia and Babu [34] linked edge ele

ments based on proximity and orientation and approximated the linked elements by piecewise 

I 
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linear segments. Hung and Kasvand [35) used the chain code and the difference codes on quan

tized thin lines to identify the "critical pixels" (pixels marking significant bends in the line) and 

used these critical pixels' positions to determine linear approximations to the lines. The chain 

code is a sequence of numbers generated by labelling pixels with direction numbers correspond

ing to a fixed set of orientations on a fixed grid. The sequence of numbers generated by talcing 

the differences of successive chain code elements is the difference code which indicates the rela

tive direction of the chain code segments. Shneier [36) made use of the pyramid structure in his 

line extraction process. His method involves building a series of successively lower resolution 

images from the original image, applying line-detector masks to each level followed by a line 

enhancement step and grouping the line-response points into line segments by means of a step

wise clustering process. His stepwise clustering process first groups points with similar direction 

and then subdivides each group on the basis of the separation between the points. The number of 

points in each subgroup determines the existence of the line. The same treatments are used for 

each pyramid level, therefore, each line in the lower resolution level corresponds to elongated 

lines in the original image. The extraction and representation allows for finding relevant areas in 

the image for further examination or processing. 

An interesting approach to line feature extraction is the work by Princen, Illingworth and 

Kittler [37]. They presented a hierarchical approach to line extraction based on the Hough 

Transform. Line segments are identified in small subimages using the conventional Hough 

Transform parameterization and these short line segments were grouped into longer ones at each 

higher level of the hierarchy. They used the overlapped pyramid structure for the hierarchical 

grouping. The pyramid structure was also used by Shneier [36, 38], Rosenfeld [39) and Hong 

[ 40] in edge feature extraction but employing much different techniques for extracting the lines 

and relating the higher level lines with their lower level components. 

Of the linear feature extraction techniques, the Hough Transform method seems to be the 

most tolerant to missing edge points and random extraneous data which are almost always 
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inherent in digitized real images. The Hough Transform method is also applicable to non-linear 

shapes provided the shape can be described in terms of some parametric curves [2, 41]. Illing

worth and Kittler [42] made a comprehensive review of the Hough Transform method and the 

research done in the area. The review cited several desirable features of the method that make it 

superior to other boundary-based feature extraction techniques for shape and even motion 

analysis in natural images. Most natural images contain noisy, missing and extraneous data. 

Among the advantages of the Hough Transform method are: (1) the method treats each edge 

point independently, making implementation in more than one processing unit possible; (2) it 

combines events based on the transform space rather than the input image thereby making it 

tolerant of partial or slightly deformed shapes in the image; (3) it is very robust to the addition of 

random data produced by poor image segmentation; (4) it can simultaneously accumulate evi

dence for several occurences of a particular shape in the image. 

However, the standard implementation of the Hough Transform method entails large 

storage and computational requirements. The review also described some work done to over

come this drawback like the use of small-sized accumulator arrays and the use of extra data to 

restrict the range of parameters which need to be addressed in the case of non-linear shapes. 

THE HOUGH TRANSFORM METHOD 

The problem of line or curve detection in general involves establishing meaningful groups 

of edge points that lie along a line or curve. The Hough Transform method is a classical way of 

detecting edge points that satisfy the collinearity constraint for straight lines [37] without the 

strict pixel-connectivity restriction imposed on the edge points. The Hough Transformation 

involves the mapping of points in image space to sets of points in an appropriately quantized 

parameter space based on some parameterization scheme of the shape model expected in the 

image. 
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Straight Line Parameterization 

A set of collinear points in image space may be described by the slope-intercept form for 

the equation of an infinite length straight line: 

y=mx+c (5.1) 

where (x, y) is a point on the line in image space and (m , c) are two parameters corresponding 

to the slope and they-intercept of the line, respectively. 

Each straight line has its own unique (m, c) pair, so that when mapped to the m-c param-

eter space, a line will be a single point in the parameter space. When a point (x, y) is sampled 

for all possible (m, c) pairs in the parameter space which satisfies equation (5.1), a straight line 

in the parameter space results as described by the transposed form of equation (5.1), i.e., 

c =-xm +y 

where (m, c) is a point in the parameter space line and (-x, y) are the slope and the c -intercept 

of the line in the parameter space, respectively. 

If each point (xi, Yi) maps to a straight line in the m-c parameter space, then the point of 

intersection of these parameter space lines defines the unique (m , c) parameters for the line in 

the image space. Figure 20(b) shows the m -c parameterization of 3 points in the straight line 

of Figure 20(a). 

However, the above straight line parameterization form fails for vertical and near vertical 

lines when m ~00• A more robust form is the parameterization based on the normal form of the 

straight line equation: 

p =x cos0 +y sin0 (5.2) 

where p is the length of the normal vector and 0 is the angle the normal vector makes with the 

x-axis. 

With the same principle as the slope-intercept parameterization, each point (xi, Yi) there-

fore, maps to a sinusoidal curve in the p-0 parameter space. When 0 is restricted to the interval 
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Figure 20. Straight line parameterizations. (a) the straight line, (b) slope-intercept 
parameterization, (c) normal parameterization. 
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(0, 1t), the parameter space sinusoids that describe all the points in the image space line will 

intersect at a unique point (p, 0) in the parameter space. Thus, an intersection point in parameter 

space defines the unique (p, 0) parameters of the image space line formed by the points. The 

p-0 parameterization of the line in Figure 20(a) is shown in Figure 20(c). 

Hough Transform method of Line Extraction 

The key idea of the Hough Transform method as applied to straight line extraction is the 

mapping of image points to the parameter space based on the normal form of the straight line 

equation and identifying the straight lines based on events in the parameter space. The straight 

line equation in the x-y image space is viewed as a mutual constraint between image space 

points and parameter space points. This treatment defines a one-to-many mapping from an image 

point to a set of parameter values. Similarly, a point in the parameter space maps to all the 
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points in the image space that satisfy the parameter value pair represented by the parameter 

space point. Thus the number of parameter space curves that intersect at a parameter space point 

gives the number of points in the image space that comprise the line described by the parameter 

value pair. 

The standard implementation of the Hough Transform method for straight line extraction 

involves the use of a two-dimensional accumulator array to represent the quantized parameter 

space. The parameterization involves the sampling of each edge point in the image space with 

each 0 value in the parameter space using equation (5.2) and incrementing the corresponding 

(p, 0) cell in the accumulator array. After all the edge points have been parameterized, the accu-

mulator array is then scanned and cells with counts higher than a preset threshold are taken as 

straight line indicators. The count is equivalent to the number of collinear edge points and the 

parameter values of the line are obtainable from the coordinates of the cell. 

The fineness of the quantization must be so chosen as to reflect the accuracy of the deter-

mination of the parameters. In a study of the discretization errors in the Hough Transformation, 

Van Veen and Groen [43] suggested that the sampling is optimal when: 

dp=l sin d0 2 (5.3) 

where l is the length of the segment in the image space, dp and d0 are the quantization intervals 

for the parameter space. 

APPROACHES TO THE USE OF THE HOUGH TRANSFORM METHOD 

The capability of the Hough Transform to simultaneously extract straight lines in an image 

space plus its high tolerance to missing edge points or extraneous edge points makes it an 

appropriate method for extracting lines from images of natural scenes. 

- -----------. 
i 
I 
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A Global Application of the Hough Transform Method 

The simplest implementation of the method is by the parameterization of all the edge 

points in the whole image into a single accumulator array and scanning the array for counts 

greater than a threshold length set for a valid line. However, this requires a huge accumulator 

array if an optimal quantization inteival is to be obseived. The simplest way to implement the 

accumulator is with the use of an array-type data structure, setting aside as much computer 

memory data space as required by the parameterization space. Implementation on a PC might 

pose some problems because of the way memory space is segmented according to the operating 

system used. Assuming that memory data space is limitless, still, allocating such huge space is 

not wise engineering because only a number of the array cells will indicate the valid lines and 

some cells may not even accumulate any counts, meaning a big chunk of the space is not really 

useful in the final analysis. A hash table or a linked list implementation may be more economi

cal but these implementations may also present drawbacks in the ease and speed by which the 

cells may be accessed. 

The transform 's independent treatment of edge points may also be viewed as a weakness in 

the global application because it could result in accidental associations of edge points [ 44] which 

by accident are collinear but really belong to some other true line. Accidental associations may 

occur for example when there are several true lines that may all be intersected by one line that 

does not really exist. All the intersection points are of course collinear and would vote for the 

same cell in the accumulator array and if the number of points satisfy the threshold set for valid 

lines then the false line will be declared to exist. Also, line segments that happen to be collinear 

will be declared as one long line regardless of their spatial separation. 

Finally, localization of the lines in the image space must be considered. Since the parame

ter values describe an infinite length line, finding the specific location and extent of the line in 

the image space may require some back-transformation to find the endpoints of the line. 
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The Hierarchical Approach 

Splitting the whole image into smaller subimages and implementing the transformation on 

the smaller subimages means a smaller accumulator array [42] plus localization of the lines 

detected to the subimage region [37]. Localizing the parameter space to each subimage reduces 

the possibilities of accidental associations of points into a line and eliminates the combination of 

widely separated collinear segments into single lines. The location of the subimage region also 

provides the exact location of the lines in the image. This application of the Hough Transform 

method results to a number of short lines, each line localized in its subimage region. 

Since the ultimate goal is to come up with a global description of the image in terms of the 

lines found in the image, it is then a matter of grouping the line segments into longer lines 

according to some collinearity and proximity constraints. To maintain the proximity require

ment, a neighborhood of subimages is treated as a single subimage, and line segments detected 

in these subimages that happen to be collinear are grouped into longer lines. This results to a set 

of longer lines each one localized to its bigger subimage region. 

The process of grouping lines in neighboring subimages to form longer lines in the com

bined neighborhood is continued until no more neighboring subimages may be combined into 

larger areas or no more lines can be grouped together. Each grouping of lines in a neighborhood 

of subimages into longer lines in the bigger subimage constitutes one level of the hierarchy. 

Thus, the lowest level of the hierarchy consists of the image containing the edge pixels, the first 

level consists of the line segments in each subimage of the input image, the second level consists 

of grouped first level line segments in neighboring subimages, and so forth. 

THE LINE EXTRACTION SCHEME 

The hierarchical approach is adopted for the line extraction problem in this application 

considering the solution it offers to the problems of accumulator array size, accidental associa

tions of points and line localization. 
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The Hierarchical Structure 

The hierarchical approach uses the concept of the overlapped pyramid structure. Each level 

of the pyramid consists of lines found in the subimage components of the level. This representa

tion makes it different from the conventional pyramid structure which consists of successively 

lower resolution images [2, 38]. The pyramid concept was used in the way the subimages are 

grouped into bigger subimages to reflect the extent of collinear line segments in successive lev

els of the hierarchy. At each level, a neighborhood of 2 x 2 subimages in the lower level is 

treated as one subimage as shown in Figure 21. 

level i level i+l level i+2 level i+3 

Figure 21. Grouping of 2 x 2 subimage neighborhoods into bigger subimages. 

The lowest level of the hierarchy consists of short line segments determined from subim

ages that comprise the binary line-thinned image resulting from the edge extraction operations. 

The pyramid is built from the bottom to the top by grouping line segments from 2 x 2 adjacent 

subimages (to be called central subimages) to form longer line segments in the next higher level, 

provided there is sufficient support for the existence of the line from within the central subimage 

region or from the immediate neighbors of the central subimage region. The subimages in the 

4 x 4 neighborhood which is composed of the central subimages and their immediate neighbors 

will be called sibling subimages and the region corresponding to the span of the central subim

ages in the higher level will be referred to as the parent subimage. Figure 22 shows a neighbor

hood of sibling subimages used to form longer line segments for a parent subimage. 
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It must be noted that the parent subimages define the subimage components of the new 

level. The central 2 x 2 regions that make up the parent subimages are disjoint. However, they 

share rows and columns with adjacent central subimage regions to provide support infonnation 

for the confinnation of the line existence in the parent subimage. Figure 23 shows the over-

lapped regions for adjacent subimages. This technique was first proposed by Shneier [38] for his 

edge pyramid and was later used by Princen, lliingworth and Kittler [37] for line segment group-

ing. 
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Figure 23. Overlapping regions for adjacent central subimages. 
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Formation of new levels continues as long as new parent subimages may be formed from 

the lower level sibling subimages. The formation of the parent subimage is actually implemented 

in terms of the grouping of collinear line segments in the lower level sibling subimages. This 

results in a longer line segment that is indicated to exist inside the parent subimage. 

The Data Structure Representation of the Hierarchy 

The hierarchical structure is implemented as a hierarchy of data structures as shown in Fig-

ure 24. The pyramid itself may be viewed as a list of levels (Figure 24(a)) with the head of the 

list corresponding to the highest level. Considering the manner by which the line segments are 

grouped, the most obvious representation of each level is by an array of cells, each cell 
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Figure 24. Hierarchical representation of the hierarchical structure. 
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containing the line segment groups that exist in each subimage component of the level. How-

ever, because only the longer line segments propagate to higher levels, it is highly probable that 

not all the subimage components will contain line groups. It was then decided to represent only 

those subimage components that contain line groups. To preserve the topology of the subimage 

partitioning for the level, the lines are listed according to the order by which their subimage 

locations occur in the image. This was effected by representing each level as a list of rowlists 

(Figure 24(b)). Each rowlist corresponds to a row of subimages of the partitioning. The rowlist 

contains all the line segments found along the row (Figure 24(c)). Each line segment in tum is 

attributed with a pointer to the local center of its subimage location, its normal parameters, and a 

list of the lowest level subimage regions that contain the subsegments comprising the line. 

The Lowest Level Line Segment Determination 

At the lowest level, the binary line-thinned image is partitioned into subimages of size L 

(L x L pixel neighborhoods). The line segment determination in each subimage involves the 

p-0 parameterization of each edge point, incrementing the appropriate accumulator cell for each 

parameter point found and finally scanning the accumulator cells for counts that satisfy the thres-

hold count for valid lines. 

As shown in Figure 25, the expanse of the L -sized central subimage implies that only lines 

intersected by the corresponding normal vector inside the circular region may exist inside the 

central subimage. This sets the parameter space limits for the valid lines to be: 

-~s;ps;~, Qs;0<1t (5.4) 

However, the shortest possible line that may pass the edge of the circular region will not be 

detectable from the accumulator counts even if it is a part of a longer line that happens to pass 

through the subimage. In order to make these lines detectable, it is necessary that the immediate 

neighborhood of the subimage be considered to provide support information for the line. Thus, 

an overlapped region of size 2L that contains the subimage as the central part and L/2 rows and 
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columns of pixels that immediately surround the subimage was considered for the Hough 

Transformation. The use of the overlap also contributes to a more uniform distribution of detect

able counts. This is because the ratio of the lengths of the longest and the shortest lines, AB !CD 

is 1.55 for the scheme with overlaps, which is much lower than the ratio EF !GH = 3.41 for the 

scheme with no overlaps. This uniformity helps in setting a safe threshold value for the counts 

that will be taken as indicative of valid lines, i.e., taking a reasonable fraction of AB as the thres-

hold will be sufficient to detect enough counts for CD as well. Whereas, for GH to be detect

able, the threshold must not be greater than the length GH, which however, is too small for EF. 

Thus, with the overlap, imposing that 50% of the line must be within the region to be detectable 

is sufficient to detect the properly supported short segment, whereas, a much lower requirement 

must be set for the non-overlapped case. Setting a low pixel count as a threshold will result in 

indications of short segments that are really parts of longer segments, thereby introducing redun-

dant results. 

The size of the region and the parameter space limits dictate the quantization intervals 

(p~. 0,0 which must be sufficiently small to distinguish all possible valid lines in the region. The 
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number of possible line orientations in the overlapped region is taken as 4L . This requires the 

parameter space quantization intervals to be: 

1t 
0a= 4L' Pt. =L sin 

8
t. 2 

(5.5) 

Thus, the accumulator array needed to represent the parameter space will consist of 

( ..b... + 1 ) x 4L cells. 
Pt. 

It must be recalled that the normal parameters (p, 0) are referenced to the center of the x-y 

coordinate system. In a similar sense, the (p, 0) parameters found for the collinear edge points in 

the subimage are referenced to the local center of the subimage. For the benefit of notational 

convenience, let the local parameters of the the line segment be denoted as (p0 , 00 ), the local 

coordinates of the edge points as (x1, Y1) and the local subimage center as (xs, Ys ). Thus, the 

detected line segments may be thought of as collinear edge points that satisfy equation (5.2), i.e., 

Po = X1 cosao +YI sin0o 

Higher Level Grouping 

Line segments from neighborhoods of 4 x 4 subimages containing the 2 x 2 central subim-

ages are grouped into longer line segments, provided that the line segments are collinear in a 

sense that will be explained shortly. Each line segment detected in a lower level may be 

described as a feature point located at the intersection of the line and its normal in the lower 

level subimage region, i.e., 

Xo =Po cos0o' Yo =Po sin0o. 

Figure 26 shows a neighborhood of subimages containing a straight line represented as feature 

points marked at the foot of the normal (x0 , y0 ), local to each subimage involved. 

Since each feature point is represented with respect to its local origin (xs, Ys) and must 

now be considered with respect to the center of the parent subimage (xp, Yp ), the appropriate 
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Figure 26. A neighborhood of subimages containing collinear line segments. 
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parameter space curve is detennined by adjusting the x and y of equation (5.2) for the local 

centers of the subimages as: 

p = (Xo - (Xp -Xs )) cos0 + 6'o - (yp - Ys )) sin0. (5.6) 

The conventional Hough Transfonn parameterization scheme is used to find the collinear 

line segments in the neighborhood of feature the points using equation (5.6) for the p-0 mapping 

of the feature points. However, the parameterization introduces possible discretization errors dp 

and d0 (different from the sampling intervals p~ and 0~. dp is taken to be fl., the minimum bar 

width that can include all edge points for a line of any angle if the line is drawn on a discrete 

grid with a point spacing of one pixel. d0 is the 0 sampling interval used in the lower level. The 

possible p, 0 values for a feature point (x0 , y 0) in the new parameter space will therefore be 

given by: 

d0 d0 00 - 2 :5 0 :5 0o + 2 • (5.7a) 

Po-~ :5p:5 Po+~. (5.7b) 

These set the collinearity constraints for the feature point (x0 , y0 ), meaning that any other 

feature point that would have a (p, 0) value within this range is collinear with the point (x0 , y0 ). 
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The bounds given by the relations (5.7a) and (5.7b) narrow down the range of the parameter 

space that need to be examined for collinear feature points. 

Just like the lowest level scheme, the feature points in the sibling subimages are parameter-

ized, this time according to equation (5.6) and only within the range of the collinearity con-

straints for the feature point. The appropriate accumulator cell is tabbed for each parameter point 

found. Similarly, a longer line segment is detected if there are collinear line segments in at least 

two neighboring subimages of the 4 x 4 neighborhood. Line segments identified to be collinear 

are grouped together and treated as a single longer line segment. The longer line segment is attri-

buted now with its local parent subimage center represented as its (xs, Ys ), its local parameters 

(p0 , 00 ) and a list of member subsegments. Each member subsegment is represented as a pointer 

to the center of the lowest level subimage region that contains the subsegment. The segments 

that become members of a new group at the higher level are deleted from the lower level and 

their lists of member subsegments are now linked to the new group's subsegment list. The 

grouping scheme terminates shorter lines at lower levels in the hierarchy and allows only longer 

lines to participate at higher level groupings, thereby reducing the amount of calculations needed 

at higher levels. 

The quantization intervals are set in the same manner as was used in the lowest level 

according to (5.5) where the L is now the size of the central region which is twice the size in the 

preceding level. The assumed error bound ~0 given by the relation (5.7b) and the sample spac-

ing 08 imply that only five samples of 0 are relevant for each feature point. The width ~p from 

relation (5.7a) and the sample spacing p8 imply that the number of cells that need to be incre

mented along the p axis for each 0 value is equal to the rounded off value of -,/2. + 1. The spar
PLl 

sity of the feature points in the sibling subimages also suggests that the conventional accumula-

tor array (which indeed grows larger as the level in the hierarchy increases), may be represented 

as a linked list with elements only for the relevant cells. 
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The hierarchical scheme for the line feature extraction and characterization using the 

Hough Transform technique is divided into 2 routines: 

(1) the lowest level line segment determination from the binary line-thinned image; 

(2) the high level line segment grouping. 

To simplify references to the routines, let hhlow refer to the lowest level line segment determi

nation routine, hhigh refer to the high level line segment grouping routine, and hhough refer to 

the main program that manages the calls to hhlow and hhigh . Let exp 2-square refer to a square 

of 2n x 2n pixels. 

The first step in the preparation of the input image for the hierarchical treatment is the 

determination of the smallest exp 2-square that may encompass the image. The image is then 

centered in this square to allow a uniform partitioning of the image into subimage regions at 

each level of the hierarchy. The main algorithm implemented may be summarized as follows: 

(1) center input image in smallest exp 2-square; 

(2) call hhlow to generate the first level, given the exp 2-square-centered input image; 

(3) call hhigh to generate the second level, given the first level; 

(4) as long as a new level is generated, repeat calling hhigh, each time giving it the last level 

generated. 

The C program source codes written for the implementation are given in Appendices D, E, 

F, G and H. Appendix Dis a listing the #include file for the main program and the subprograms 

listed in Appendices E, F, G and H. It contains the data structure definitions for the hierarchical 

representation used and all the other definitions pertinent to the implementation. Appendix E 

contains the main Hierarchical Hough Transform Program hhough that calls hhlow and hhigh 

accordingly and manages the hierarchical levels and the routines that are common to hhlow and 
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hhigh. Appendix F contains hhlow and its pertinent subroutines. Appendix G contains hhigh 

and its pertinent subroutines. Appendix H contains the routines used for generating a print out 

of the line segment descriptions and for remapping the lines found in each level to the image 

memory for display on the external monitor. Only the routines in Appendices E, F and G are 

necessary for the line feature extraction task for real-time application. The routines in Appendix 

H are useful for monitoring the development of the hierarchical structure. 

The Lowest Level Line Segment Determination Implementation 

The lowest level line segment determination scheme described is implemented according 

to the following pseudocode: 

/*lowest level line segment determination*/ 
/* begin hhlow *I 
{ Do initialization steps 

} 

while (an image row is part of subimage row) 
{ Set up the subimage row in buffer 

} 

Set up first subimage 
while (an image column is a part of the central subimage) 
{ List edge points found in overlapped subimage 

} 

if ((edge points count>= threshold) && (central points count> 0)) 
{ Parameterize edge points 

FindPeaks in the accumulator array 
if (linesegments found) 

link up linesegments into linelist 
} 
Set up next subimage 

if (linelist is not empty) 
{ attach rowmarker to head of linelist 

if (is first rowlist) 

} 

mark as head of row lists 
else 

link up to rowmarker of last row list 

Shift out upper L rows in buffer, shift up lower L rows 

return (list of rowlists) 

/* end of hhlow *I 
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The initialization steps consist of setting up buffers to hold the pixel rows that comprise a 

row of overlapped subimages, setting up space for the accumulator array, setting up a sine-

cosine look-up table for use in the parameterization, setting up pointers to the first subimage row 

in the image row buffers and setting up the Hough Transform parameter space settings. The 

image rows that comprise the overlapped subimages are buffered so as to avoid frequent access 

to the image memory during the processing of the subimages. It was considered reasonable to 

set up a sine-cosine look-up table for the parameterization so as to minimize calls to the sine and 

cosine functions in the compiler's math library. It must be noted that each edge point will be 

sampled for all possible 9 in the parameterization range. The accumulator array is set up only 

once, and since the line segment determination is done for each subimage separately, the same 

accumulator array is used for each subimage. 

Subimage settings. The subimage size used for the lowest level line segment determina-

tion is L = 4. This partitions the exp 2-square-centered binary line-thinned input image into 

subimages of 4 x 4 pixel neighborhoods. The overlapped region for a subimage is the 8 x 8 

pixel neighborhood with the 4 x 4 pixel subimage centered in this neighborhood. 

Hough Transform parameter space settings. Based on the considerations described earlier, 

the parameter space sampling intervals are as follows: 

9 - 1t - 1t a- 4L -16 

Pa =L x sin ~a = 0.40 

Therefore the quantized parameter space settings are: 

theta axis: 
rho axis: 

number of intervals 
4L = 16 

_b_+l=ll 
Pa 

range 
[0, 1t] 

[-2,+2] 

An 11 x 16 accumulator array was used to represent the quantized parameter space, each 

cell corresponding to a point in the quantized space. Since array cell indices are always positive 

l 
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integers, the p-axis must to be shifted so that all the p-ordinates may be addressed in terms of the 

row indices. This requires that each of the p values computed in terms of the quantized space 

(pq) will have to be adjusted by: 

Pq
1 
= Pq + Pzero 

where Pzero is the index for the middle row that corresponds to the center of the quantized p-axis 

(Pq = 0). 

The threshold for the counts that indicate a valid line is set at 4, assuming that at least 50% 

of the points on the line must exist in the overlapped image to indicate the line as valid. 

Line segment determination in the subimage. Prior to the parameterization, the number of 

edge points in the overlapped subimage is first counted. If the number of edge points is at least 

equal to the threshold set and there is at least one edge point in the central subimage, then the 

subimage is subjected to all the rigors of the Hough Transform method, otherwise the subimage 

is simply discarded. As was stressed in earlier discussions, each edge point is sampled for each e 

in the quantized space. The appropriate accumulator cell is incremented for each (p, 9) deter

mined, and the accumulator is finally scanned for counts that satisfy the threshold. Each 

identified line segment is represented as a list element containing its local (p0 , 00 ) and the local 

center of its subimage region (Xs , y s ), which is then linked to the list of segments found in its 

subimage row. 

Level 1 of the hierarchy is therefore composed of at most 60 lists of line segments for the 

256 x 240 image, each list corresponding to each row of subimages. 

Hig11er Level Line Segment Grouping Scheme Implementation 

The grouping of collinear line segments in a neighborhood of lower level subimages is 

very similar to the scheme used for the low level line segment determination. This time the ele

ments of the subimage are no longer image pixels but feature points representing the lower level 

lines. A 4 x 4 array of pointers to line segment elements in the lower level rowlists now keep 
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track of component feature points in each 4 x 4 sibling subimages that comprise the overlapped 

subimage and the inner 2 x 2 pointers keep track of the feature points in the central subimages. 

Given the list of rowlists that constitutes the last level, hhigh returns a list of rowlists for the 

new level fonned. The pseudocode for the implementation of the high level grouping scheme is 

as follows: 

/* higher level line segment grouping */ 
!*begin hhigh */ 
{ while (lowlevel rowlist is part of central subimage row) 

} 

{ Set up pointers to lowlevel rowlists comprising the subimage row 
while (not end of all the lowlevel rowlists of row) 

} 

{ Set up the siblings window 
if ((feature points>= threshold) && (central point> 0)) 
{ Label central points (line segment elements in central siblings) 

for (each feature point in the central siblings) 
{ Get collinearity votes from immediate sibling points 

Find a group from the highest-voted (p, 0) cell 

} 

if (group found) 
{ mark feature points as "grouped" 

link up new line segment into linelist 
} 
else 

mark the feature point as "not grouped" 

Finalize Labels of central points 
} 
Shuffle pointers to the next siblings window 

} 
if (linelist not empty) 
{ get rowmarker for linelist 

if (first rowlist) 

} 

mark as head of row lists 
else 

link up new rowlist to head of last rowlist 

Delete grouped segments from the upper 2 lowlevel rowlists 
Shove out the upper 2 lowlevel rowlists, include the next 2 rowlists 

Delete grouped segments in the last group of low level row lists 
if (list of rowlists not empty) 

Delete rowmarkers to empty lowlevel rowlists 
return (list of new row lists) 

/* end of hhigh *I 
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The subimage size at each new level is the combined size of the 2 x 2 neighborhood of 

central sibling images. Thus, the subimage size L for a new level is simply twice the size in the 

last level. 

The quantized parameter space settings are determined in the same manner as that in the 

lowest level. Table II presents a summary of the quantized parameter space settings for each of 

the levels for a 256 x 240 input image centered in a 256 x 256 square. 

TABLE II 

SETTINGS FOR THE HOUGH TRANSFORM QUANTIZED PARAMETER SPACE 

level 
subimage sampling intervals no. of intervals p range 

Pzero sizeL 0.:1 P.:1 e p -L,+L 

1 4 1t 0.4 16 11 -2,+2 5 16 
2 8 1t 0.4 32 21 -4, +4 11 32 
3 16 1t 0.4 64 41 -8, +8 21 64 
4 32 1t 0.4 128 81 -16, +16 41 ng--
5 64 1t 0.4 256 161 -32, +32 81 

~ 
6 128 1t 0.4 512 321 -64, +64 161 

512 
7 256 1t 0.4 1024 641 -128, +128 321 1024 

The tabulation shows that as the level increases, the size of the accumulator array also 

increases. However, as explained earlier, only the 0 values within ±lhll0 and the p values within 

±1hdp need to be sampled for each feature point. Since d0 is one half of the 06 of the previous 

level and dp is constant at 0.707, then only 5 samples need to be taken for the 0 dimension and 

3 samples for the p dimension. Thus, only the accumulator array cells required for the sampling 

were considered and represented as a list of 5 sets of p cells. Each set of p cells represents the 3 

consecutive cells in the conventional array that lie within the range of the p values that need to 

be sampled. Each cell consists of a counter field for the accumulation and a field where the iden-

tity of contributors to the count are noted. This provides a way of tracking the feature points that 



70 

belong to a group if ever one is indicated. The same space was used for the groupings in all the 

levels, each time initializing the space by assigning the appropriate accumulator array coordi

nates to the cells according to the range established by the feature point's collinearity constraint. 

For simplicity, let this subspace of the parameter space be called the voting array. 

Similar to the low level scheme, there must be enough feature points in the sibling subim

ages and there must be at least one in the central region for the line segments to be considered 

for grouping. Each feature point establishes the range of p and 0 values that need to be used for 

the sampling. For each central feature point, each point in the immediate neighboring sibling 

subimages is sampled, provided the ranges of 0 for the central feature point and the neighboring 

point overlap. The count in the appropriate cell of the voting array is incremented by 1 for every 

(rho, 0) pair that is within the range of the voting array. The "identity" of the voter is also noted 

in the cell if it is a central feature point. A group corresponding to a longer line segment is 

fonned when a cell indicates more than one vote. Since a feature point can be assigned to 15 

possible lines according to its collinearity constraints, and each neighboring feature point may 

vote for these possibilities as its own collinearity constraints will allow, it is then always possi

ble that several cells may accumulate more than one vote. Thus, to get the best line description 

of a new group, the voting array is searched for the cell that obtains the highest vote. The param

eter space point represented by the cell is then taken as the set of (rho, 0) parameters for the new 

group. Since we are now dealing with short line segments that are being combined into longer 

line segments, a feature point is allowed to be a part of only one group. To ensure this, all the 

central feature points that get included in a group are appropriately marked as "grouped" feature 

points, so that they will no longer be considered in the fonnation of other groups within the same 

parent subimage. 

Each feature point must be initially labeled to be able to keep track of the identity of the 

central feature points. This also differentiates the central feature points from those of the sup

porting sibling subimages. It must be recalled that the feature points in the sibling subimages 
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outside the central subimage region simply provide support information for the existence of a 

group but do not get included in the group formed for the parent subimage. The label assigned 

to a central feature point is updated during the grouping process depending on whether the 

feature point becomes a group member or not. The labels are finally changed after all the central 

feature points were considered to mark the feature point for deletion from its lower level if it 

became a group member in the higher level or for retention in its level if its presence was not 

indicated in the new level. 

When a line segment becomes a member of a new group, its list of subsegments is 

detached from the element used to represent the line segment and linked to the new group's sub

segment list. After a new rowlist is completed, the last level's rowlists used for the grouping are 

cleared of the elements that were indicated as "grouped" and have no more subsegment list any

way. These elements are detected by the finalized labels. Using the labels as the basis for dele

tion rather than the subsegment list allows the use of the same cleaning up treatment for all lev

els including the cleaning up of the first level lines which do not have subsegment lists. Finally, 

when the whole level is completed, the last level is cleared of empty rowlists, thereby cleaning 

up the remnants of the segments that have propagated to longer lines and leaving only those 

lines that really belong to the level. 

The images in Figures 28 and 29 show the lines formed at each level when the aforemen

tioned scheme was applied to the binary line-thinned image shown in Figure 27. The first level 

remap (Figure 28(a)) shows that isolated streaks shorter than 4 pixels were not detected which is 

of course expected. It is also noticeable that small discontinuities and/or irregularities in the 

lines were smoothed out, exhibiting the robustness of the Hough Transform method to missing 

data and to irregularities in the data. The higher level remaps show that longer lines indeed pro

pagate to higher levels. However, there are also short lines that propagate up regardless of their 

lengths. These are the lines that lie across the boundaries of adjacent subimages that do not get 

grouped into one parent subimage until at a much higher level. All throughout the lower level 



72 

Figure 27. A binary line-thinned image. 

groupings the part of the line that lies in one subimage consistently supports the other part result

ing in the propagation of both parts to the level where their subimages become parts of a central 

subimage region. This may be attributed to the constraint that was set for the detectability of a 

line group. 

For this implementation, a line group is considered detectable or is indicated to exist if 

there are at least two feature points that are collinear, one feature point located in a central 

subimage and the other point lying in an immediate neighboring subimage which may be a cen

tral subimage or a sibling subimage outside of the central subimage region. Because of this con

straint, the propensity of the Hough Transfonn method for combining feature points that are col

linear in adjacent subimages into a single line regardless of their discontinuity in the lower level 

as exhibited in the formation of the level 5 lines. 



(a) Level 1 (b) Level 2 

(c) Level 3 (d)Level4 

Figure 28. Remaps of the line segments detected at Levels 1, 2, 3 and 4 for image in 
Figure 27. 
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(a) Level 5 (b) Level 6 

(c) Level 7 (d) All 

Figure 29. Remaps of the line segments detected at Levels 5, 6, 7 and all the levels for 
image in Figure 27. 
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IMPACT OF THE INITIAL SUBIMAGE SIZE 

ON THE LINE FEATURE EXTRACTION 

The higher level grouping simply takes the line segments available in the lower level for 

consideration. It is obvious that the amount of detail that may be extracted highly depends on 

the lowest level line segment extraction from the input image. The amount of detail is deter-

mined by the initial subimage size into which the input image is partitioned, noting that the ini-

tial proximity constraint imposed by the circular region in the central subimage and the threshold 

for the shortest detectable line are determined by the subimage size. A smaller subimage size 

means a smaller accumulator array, which is a good point, but a smaller subimage size would 

also mean more grouping levels and more line segment elements to handle at each level. Table 

III presents the effects of the initial subimage size on the processing times (in seconds) for the 

lowest level line segment determination and the higher level groupings when the scheme was 

applied to the line-thinned images in Figure 30. The number of line segments identified at each 

level before and after the groupings are presented in Table IV. The results show that a smaller 

subimage size requires lesser processing time for the lowest level line segment determination, 

but incurs more time in the higher level groupings. The timing results indicate that the best 

subimage size is 8. The lowest level remaps for Imagel with initial subimage sizes 4, 8 and 16 

are shown in Figure 31. 

TABLE III 

PROCESSING TIMES FOR THE LINE FEATURE EXTRACTION AT 
DIFFERENT INITIAL SUBIMAGE SIZES 

Image! Image2 
size 4 8 16 4 8 16 
hhlow 31 51 101 35 64 130 
hhigh 53 15 5 66 24 11 
total 84 66 106 101 88 141 



size 
level 

1 
2 
3 
4 
5 
6 
7 

total 

TABLE IV 

NUMBER OF LINES EXTRACI'ED BY THE HIERARCHICAL SCHEME 
AT DIFFERENT INITIAL SUBIMAGE SIZES 

Imagel Image2 
4 8 16 4 8 

i f i f i f i f i f i 
1090 107 307 14 116 9 1379 57 470 21 211 
562 34 174 12 63 2 729 30 254 7 112 
328 37 99 14 35 3 413 24 141 13 63 
177 31 51 9 19 3 222 25 80 9 37 
88 17 27 5 8 8 114 15 47 14 15 
44 13 11 11 - - 60 14 16 16 -
14 14 - - - - 20 20 - - -

253 65 25 185 80 

(a) Imagel (b) Image2 

Figure 30. Binary line-thinned images used for initial subimage size analysis. 
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(a) size= 4 

(b) size= 8 (c) size= 16 

Figure 31. The Level 1 line segments detected with varied initial subimage sizes. 
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The remaps show that size 4 made the best extraction of the diagonal line defining the corridor 

outline, whereas a considerable part of this line was not detected with size 8 and the line was 

totally not visible with size 16. A clear outline of the corridor was propagated to level 6 (1 step 

from the top level) for the size 4 case, whereas a part of the corridor detected with size 8 was 

propagated to level 4 (2 steps from the top level) as shown in as shown in Figure 32. 

Thus, size 4 was deemed to be a good initial subimage size despite the longer processing 

time involved considering the credibility of the features extracted and made visible at the higher 

levels. 

(a) Level 4 (size= 8) (b) Level 6 (size= 4) 

Figure 32. Detectability of the lines at higher levels. 
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FEATURE CHARACTERIZATION 

The aforementioned grouping scheme maintains the hierarchical structure presented in Fig

ure 24. At the end of the processing, each of the levels will only contain the lines (or groups of 

collinear segments) that were detected in the respective levels. The resulting structure may be 

viewed as lines grouped according to levels, where each level is a set of rows of lines and each 

row consisting of what may now be viewed as individual lines. However, each line is itself a 

group of short line segments obtained at the lowest level from the input image. At each level, a 

line is represented by its (p, 0) parameters referenced to the center of the subimage where the 

line was detected. The expanse of the subimage for each line is determined by the subimage size 

dictated by the hierarchical subimage grouping scheme imposed by the pyramidal treatment of 

the image. 

A globalization of the lines' parameters affords a quicker view of the spatial relationship of 

all the lines regardless of their level classification. The global characterization involves: (1) 

expressing each line's parameters in terms of the complete image's center; (2) determination of 

the line's endpoints from the lowest level subsegments that make up the line; and (3) determina

tion of the length of the line from these endpoints. With such a characterization, each line may 

be represented by its normal equation with the global (p, 0) as the parameters of the equation, 

and the line specifically located in the image by its endpoints. 

Despite the globalization of the line parameters, the hierarchical grouping of the lines 

according to levels is preserved to allow the scene recognition subsystem to exploit the 

classification of the lines afforded by the hierarchical structure. To provide the scene recognition 

subsystem some general information about the scene, summaries of the contents of each level 

are made and these level summaries are combined to give an overall summary of the scene. A 

level summary consists of the length of the longest line, the number of horizontal lines, the 

number of vertical lines, the number of slanting lines (neither horizontal nor vertical) and the 
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total number of lines in the level. The scene summary therefore, consists of the length of the 

longest line in the scene, the total number of horizontal lines, the total number of vertical lines, 

the total number of slanting lines and the total number of lines found in the scene. 

The program source codes for the postprocessing of the results generated by the hierarchi

cal line extraction scheme, the summarization of the the said results and the generation of the 

final output is presented in Appendix I. This set of routines is called by the main Hierarchical 

Hough Transform Program given in Appendix E. 

The characterizations and summaries are written in a file in a format that will enable the 

scene recognition subsystem to easily reconstruct the hierarchical structure for the scene recogni

tion task. Each output line starts with a single letter to indicate the type of information each out

put line contains. An F indicates a comment line that reflects the meaning of each item in the 

data lines. A P indicates the overall summary that contains the number of levels in the hierar

chy, the size of the image in terms of the bigger dimension, the length of the longest line found, 

the total number of horizontal lines, the total number of vertical lines, the total number of slant

ing lines and the overall total number of lines. L indicates the level summary, giving the level 

number, the length of the longest line in the level, the number of horizontal, vertical and slanting 

lines and the total number of lines found in the level. Entries for the description of the line seg

ments found in each level start with an H, V or N for the horizontal line, vertical line or slanting 

line, respectively. A line segment entry contains the coordinates of the line's midpoint CYs, Xs ), 

the normal parameters of the line (p, 0), the length of the line and the expanse of the line 

(.ily, ax). The normal parameters are given as integers, the values of which correspond to the 

interval in the quantized parameter space. The sizes of the quantization intervals p8 , 08 are 

given in the entry denoted by C. The .:lx and ily items are only significant for slanting lines, but 

for the sake of uniformity in the representation, the values were assigned assigned as (256, 0) for 

vertical lines and (0, 256) for horizontal lines. A sample output listing is given in Appendix J. 



CHAPTER VI 

EVALUATION OF RESULTS 

The sequence of processing originally conceived to be essential to the extraction of line 

features in indoor scenes consists of: Histogram Equalization, Smoothing with the use of the 

median filter, Edge Detection using the Sobel edge detectors, Binarization to extract the edges 

detected, Labelling, reBinarization and Thinning to refine the edges to thin lines and Line 

Extraction using a hierarchical approach to the Hough Transfonn method. The Binarization step 

includes the automatic determination of the binarization threshold from the gray level histogram 

of the image using the Between-Class-Variance method. The reBinarization step converts the 

labelled image back to the black and white state using a threshold of 1. Presented in Table V are 

the processing times in a PC-386SX for each of the operations when applied to Imagel shown in 

Figure 33. 

TABLEV 

EXECUTION TIMES FOR THE IMAGE PROCESSING 
OPERATIONS ON IMAGEl 

operation time(sec) % total time 
Histogram Equalization 20 7.02 
Smoothing 59 20.70 
Edge Detection 50 17.54 
Binarization 18 6.32 
Labelling & reBinarization 22 7.72 
Thinning 30 10.53 
Line Extraction & Charac. 86 30.17 

Total 285 100.00 
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A total processing time of 285 seconds is indeed unattractive for the real-time application 

envisioned for the system. To minimize the processing time, the necessity or dispensability of 

the operations is evaluated based on their impact on the scene description extracted and the pro

cessing times involved. Among the operations, Histogram Equalization, Edge Detection, Binari

zation, Thinning and Line Feature Extraction and Characterization are considered indispensable. 

However, Smoothing, Labelling and reBinarization are considered enhancement steps. Smooth

ing was used to reduce noise in the digitized image, hopefully to improve the detectability of the 

edges and to prevent the detection of false edges. Labelling and reBinarization are supposed to 

get rid of small spots or streaks in the binarized image, thereby reducing the number of pixels 

that will be processed by the Thinning and the Line Extraction steps. Histogram Equalization, 

Smoothing, Edge Detection and Binarization have constant execution times since the operations 

process all the image pixels regardless of the image quality or the density of edge features in the 

image. On the other hand, the processing times for Labelling, Thinning and Line Extraction are 

affected by the amount of pixels comprising the extracted edges. The evaluation is therefore 

centered on the examination of the factors that affect the execution time of the Thinning and the 

Line Extraction steps and the impact of the Smoothing and Labelling steps on the execution 

times and the resulting quality of the scene features extracted. 

First and foremost, it was observed that the choice of a binarization threshold is a critical 

factor in the edge extraction steps. A relatively low threshold will yield thick edges, whereas a 

relatively high threshold might lose some edge details. Two automatic threshold determination 

methods were initially considered, namely, the Between-Class-Variance method (BCV) and the 

entropy-based method (ENT). As was earlier discussed in Chapter IV, two treatments of the 

gray level histogram of the gradient image were considered. One treatment includes the com

plete histogram for the threshold determination, whereas another treatment establishes the effec

tive range of the histogram to include only the nonzero gradient pixels. The second treatment 

was deemed more appropriate since the main concern was the classification of the gradient 
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pixels as edge or non-edge pixels. As was pointed out, the threshold values based on the first 

treatment were lower than that of the second treatment. It was also noted that the ENT results are 

consistently much lower than the BCV results, an outcome that may be attributed to the criterion 

measures that were used as the basis for the separation of the classes. The ENT takes the point 

where the sum of the posteriori entropies of the two classes is maximum as the threshold point, 

which is tantamount to saying that it takes the point where the separation into the two classes 

will make probability distributions of the two classes have equal or at least similar. Whereas, the 

BCV considers the point where the variance between the classes is maximum as the threshold 

point. The binarized images in Chapter IV, show that the edges extracted by the threshold deter

mined by ENT are much thicker than those of the BCV-determined values. Despite the higher 

values, the BCV-determined thresholds effectively extracted the edges. Anyway, the threshold 

values determined from both methods with the two treatments of the effective range of the histo

gram are hereby taken for determining the impact of the binarization threshold on the thinning 

process. The Table VI notations BO and B 1 denote BCV-determined thresholds taking the effec

tive range of the histogram to start at gradient 0 and 1, respectively. Similarly, EO and El denote 

entropy-based thresholds with the corresponding treatment of the histogram as BO and B 1, 

respectively. The entropy-based method gave the same threshold value E for the unsmoothed 

image considered. 

The timing data for the thinning process presented in Table VI for Image2 inFigure 24 con

sistently show that the thinning times required for the binary images resulting from the threshold 

determined by the entropy-based method are consistently higher than that for the BCV

thresholded ones. The higher number of passes or iterations made in deleting the outer pixels of 

the edge streaks indicates more deletions made to finally skeletonize the edges. 

Table VI also shows that although the thresholds for the unsmoothed image are practically 

the same as that for the smoothed image, the resulting binarized images take longer thinning 

times than their smoothed counterparts. The number of thinning passes are the same, indicating 
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TABLE VI 

EFFECT OF THE BIN ARIZA TION THRESHOLD [T], SMOOTHING AND LABELLING 
ON THE THINNING TIME [s] AND NUMBER OF PASSES [P] FOR IMAGE2 

Smoothed Image unSmoothed Image 
with Labelling no Labelling with Labelling no Labelling 

Bl BO El EO Bl BO El EO Bl BO E Bl BO E 
T 93 86 75 68 93 86 75 68 93 86 78 93 86 78 
s 31 32 37 37 31 32 37 38 32 33 38 33 33 40 
p 3 3 4 4 3 3 4 4 3 3 4 3 3 4 

that it is the higher number of edge pixels that caused the longer execution time rather than the 

thickness of the edge streaks. Figure 35 shows that there are more spots and streaks of white 

pixels in the binarized unsmoothed image than in the binarized smoothed one. 

The effect of Labelling is not so discemable in the thinning data. However, a comparison 
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(a) smoothed image (b) unsmoothed image 

Figure 35. The effect of smoothing on binarized images. 
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of the thinned labelled image with the thinned unlabelled image showed that some ends of the 

thinned lines in the labelled image were diminished. The erosion of the ends is a side effect of 

the way the labelling routine treats pixel connectivity. The labelling routine takes side-

adjacency as the only requirement for connectivity, thereby deleting even those small streaks 

that happen to be connected to bigger blobs by one vertex only. 

The final impact of the smoothing and labelling processes are determined by their effects 

on the Line Feature Extraction step. Table VII shows their effects on the processing times and 

Table VIII shows the number of lines identified at each level before and after the line segment 

grouping for Image 1. 

The use of the Labelling step for the removal of small blobs or streaks that may thin out to 

very short lines which will not be detectable anyway, improves the total execution time for both 

the smoothed and unsmoothed images. The figures for the number of lines detected in the 

lowest level however shows that some lines were made undetectable by the Labelling step. The 

Labelling step's negligence of vertex-connectivity in adjacent blobs caused the erosion of the 

edges at the ends making the end segment too short to be detected or worse, completely losing 

the end segment. Also, weak edges that tend to appear as a series of aligned streaks are of 

course eliminated. So in a sense, the Labelling step causes some losses in the detectable lines 

especially if the extracted edges that will yield the line are rather weak. 

TABLE VII 

EFFECTS OF SMOOTHING AND LABELLING ON THE PROCESSING TIMES 
OF THE LINE FEATURE EXTRACTION ROUTINES FOR IMAGEl 

Smoothed Image unSmoothed Image 
with Labelling no Labelling with Labelling no Labelling 

hhlow 31 33 36 41 
hhigh 53 59 84 95 
hpost 2 2 2 2 
total 86 94 122 138 



Level 
1 
2 
3 
4 
5 
6 
7 

total 

TABLE VIII 

EFFECTS OF SMOOTHING AND LABELLING ON THE 
NUMBER OF LINES EXTRACTED FROM IMAGEl 

Smoothed Image unSmoothed Image 
with Labelling no Labelling with Labelling no Labelling 
1090 107 1194 127 1459 149 1640 192 
562 34 611 45 773 78 863 91 
328 37 355 43 443 67 491 84 
177 31 191 35 240 51 262 54 

88 17 96 15 126 31 138 38 
44 13 49 16 54 22 56 24 
14 14 15 15 14 14 14 14 

253 296 411 496 
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Elimination of the Smoothing step increased the processing times the more because of the 

increased number of white pixels that need to be parameterized. The number of lines formed at 

the lowest level is notably much higher than those formed with the smoothed image. Since the 

Hough Transform is not concerned about connectivity of pixels as long the right number of pix-

els vote for a parameter pair, then, the noise spots which the cluster within a span of the initial 

subimage size are contributors to a line if the number is right. But as long as the lines formed by 

the noise spots are rather isolated from the lines indicated by the true edges, then there are no 

complications since these noise lines will never propagate into the higher levels. The problem 

arises when the noisy spots cluster around the edges and form lines with the real edge pixels. 

Remaps of the results show that the lines are indeed formed by the noise clusters and get linked 

with real lines during the grouping so that the "adulterated" line becomes longer and propagates 

to higher levels. 

Because of the propensity of noise to gather around edges, and because of the high regard 

of the Hough Transform scheme for collinear points regardless of their connectivity, it is not 

really safe to disregard the initial noise removal from the processing sequence. However, the 

Labelling step is dispensable since the small pixel blobs which the labelling step removes are 
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discarded just the same by the lowest level line segment determination step. Although there is 

an increase in the line extraction step processing time, the increase is still less than the time 

incurred for the Labelling and the reBinarization steps. The tendency of the Labelling routine to 

cut off edges is indeed detrimental to the extraction of the desired features especially when the 

edges are rather weak because of poor image quality or inadequate lighting. 

In the final analysis, Labelling may be eliminated as an edge enhancement step, thereby 

eliminating the need for reBinarization prior to Thinning. Smoothing, however, is to stay to 

ensure the credibility of the features extracted. Table IX presents a comparison of the execution 

times for the image processing steps if the sequence of operations includes Labelling and 

reBinarization (seql) or excludes the Labelling and reBinarization (seq2). The elimination of 

the Labelling step had no effect on the Thinning time but it did increase the processing time for 

Line Feature Extraction and Characterization. 

TABLE IX 

EFFECTS OF LABELLING ON THE EXECUTION TIMES 
FOR THE IMAGE PROCESSING OPERATIONS 

Image! Image2 
seql seq2 seql seq2 

Image Enhancement 79 79 79 79 
Edge Detection 50 50 50 50 
Binarization 18 18 18 18 
Labelling & reBinarization 22 - 23 -
Thinning 30 30 31 31 
Line Extraction & Charac. 86 94 103 110 
total 285 271 304 288 



CHAPfER VII 

CONCLUSIONS AND FUTURE WORK 

CONCLUSIONS 

The low to medium level image processing system developed in this thesis was basically 

designed to be the front end of the vision system of the PSUBOT. As such, the system must be 

simple, inexpensive and automatic to meet the transportability requirement of the autonomous 

wheelchair robot. 

To devise the simplest possible system, the thesis started with the identification of the 

scene features that the scene recognition system might need for the recognition task and devised 

a sequencing of the minimal operations that will lead to the generation of the scene description 

in terms of these features. A thorough study of the image processing operations that favor the 

extraction of object boundaries in natural scene images was made and presented in this thesis. 

True to the spirit of engineering, published performance surveys and evaluations were used as 

the starting point for the selection, available software were used, and gaps were filled in to come 

up with a system that will effect a spontaneous processing of the image from the image acquisi

tion step to the final generation of the scene description. To completely automatize the image 

preprocessing, programs for the unsupervised binarization threshold determination were written 

based on the entropic method and the between-class-variance method. Tests made on the real 

images used showed the between-class-variance method to be most appropriate for the applica

tion intended. The sequence of operations were finally evaluated for efficiency in effecting their 

respective functions on the natural scene images, effects on the performance of the other opera

tions, processing speed and their ultimate impact on the credibility of the scene features 
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extracted. The final sequence of preprocessing steps consists of Histogram Equalization, Image 

Smoothing using the median filter, Edge Detection with the Sobel operator, Binarization using 

the automatically determined threshold, and Edge Thinning. The sequence is now fully 

automatic, effecting a spontaneous processing of the image from the image acquisition step to 

the generation of the line-thinned image that is input to the feature extraction steps. 

The real crux of this thesis work, is the development of a hierarchical line feature extrac

tion scheme that will provide the scene recognition system with a credible, easily reconstruct

able, and compact description of the scene. The hierarchical approach to line extraction used the 

basic concepts of the Hough Transform method and pyramids to offset the weaknesses of the 

Hough Transform method and to exploit its strong points towards a robust line feature extraction 

scheme. The "Hierarchical Hough Transform" program was written to implement the scheme. 

Parameters that affect the efficiency of the scheme in extracting the salient scene features were 

identified, but due to time constraints, only the initial subimage size was subjected to a thorough 

analysis. Tests on indoor scene images proved that using the appropriate initial subimage, the 

scheme can efficiently extract line feature descriptions even in images with relatively poor qual

ity. The scheme proved robust to isolated noisy spots in the image and is tolerant of missing 

data, characteristics that may be attributed to the use of the Hough Transform method. However, 

unlike the conventional Hough Transform method implementation, accidental associations of 

edge points into false lines are reduced because of the localization of the transform to subimages. 

A natural classification of the features is effected by the hierarchical treatment, a classification 

that may be exploited by the scene recognition task. 

In the final analysis, the thesis was successful in devising an automatic system that is com

pletely implementable in a PC-386SX with 640K base memory, thereby satisfying the transpor

tability requirements of the robot. Line feature extraction itself is a tedious process, requiring as 

much time and space as the image preprocessing operations. Although the idea of the Hough 

Transform method and pyramids are not really new and novel, the implementation of the line 
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feature extraction step in the PC and on real scenes at that, proves that there is always a way to 

go around the limitations of space and time. 

The use of visual perception in autonomous mobile systems was approached with caution 

by most mobile system developers because of some inherent characteristics of image processing 

operations. Most image processing operations involve intensive calculations, intensive memory 

use, big memory requirements and are rather reputed to be slow. If ever used, the image pro

cessing operations are done on multiprocessors, more powerful computers or bigger systems, 

thereby requiring the mobile robot to be wired to the computer or be radio controlled from the 

main system or be loaded with the all these complexities. The fact that the system developed in 

this thesis is completely implementable in a PC that is perfectly transportable and inexpensive, is 

almost a breakthrough in the applicability of visual perception in mobile systems that may be 

used for the more mundane but noble applications like mobility aids for the handicapped and the 

elderly. 

In the light of the evaluation criteria set forth for this endeavor, the system developed 

meets the transportability and efficacy requirements but is very slow for the real-time application 

intended. However, the thesis has at least devised a system that may serve as the core for further 

developments to improve the processing speed aspect. The thesis has also identified the parame

ters that may be manipulated to further enhance the overall performance of the system. 

FUTURE WORK 

The main concern in the development of the system was devising a scheme that will lead 

to the effective extraction of scene features for the PSUBOT's scene recognition system. Now 

that the whole processing system fits in the confines of the PC thereby satisfying transportability 

requirement, it is about time to improve the real-timeliness of the whole set-up. The nature of 

the processes chosen are highly amenable to parallel processing, but the use of multiprocessors 

unless implementable in a PC set-up will defeat one of the objectives of the undertaking. 
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Pipelining the operations may be considered so as to gain some headstart in the operations that 

needs to process a part of the image at a time, independent of the other parts. This might be used 

for the Smoothing, Edge Detection, and the lowest level line segment determination. 

The line extraction scheme developed in this thesis has a number of offshoots. Variations 

of the proximity and collinearity constraints may be tried and analyzed to improve its tolerance 

to noise introduced by the acquisition process. Though it was proven to perform well in images 

where the noise spots are rather iso1ated from the edges, it would be an added gain if the smooth

ing process be eliminated altogether. The constraints that were used in this thesis were rather lax 

thereby propagating short lines to higher levels. Some selectivity with respect to line length may 

be tried so as to give a better classification of the lines into levels according to their relative 

lengths. This in effect will improve noise tolerance since the noise lines that are not necessarily 

attached to real lines will not be propagated to higher levels thereby preventing their association 

with the real lines. The lines left in the lowest level may then be treated as the noisy lines and be 

simply discarded. 

The concept of the hierarchical approach and the Hough Transform may be extended to the 

extraction of nonlinear features. If the conventional Hough Transform method is applicable to 

nonlinear curves, then there must be a way of detecting these nonlinear curves in a hierarchical 

manner. As it did with the linear features problem, the hierarchical approach will surely reduce 

the amount of parameter space that need to be examined at a time thereby reducing the accumu

lator size problem that indeed increases with the increased dimensionality of the parameteriza

tions. 
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The image acquisition hardware components consists of the PCVISIONplus FRAME 

GRABBER card that plugs directly into an expansion slot in the PC, a CCD camera that pro-

vides the video input, and an optional external video monitor to display the acquired images. 

The card contains the digitizer for the incoming video signal from the camera, the image 

memory where the resulting pixels (digital values) are stored, and display logic that converts the 

pixels in the frame memory back to an analog RS-170 format for display on the external moni-

tor. 

The card is provided with two rectangular 8-pin connectors that protrude thru the back 

panel of the PC into which two cables are plugged in to connect the card to the camera and the 

external monitor. Each cable has a square female connector at one end that plugs into the 8-pin 

connector and 4 BNC connectors on the other end, each of the BNC connectors color coded 

according to its function. The standard cable plugs into the upper connector, and the optional 

sync cable plugs into the lower connector. The connections for the image acquisition hardware 

components are as shown: 

back of 
external monitor 

0 

0 
viaeo EE lens 

9V/300mA 
power supply 

red 
blue 
green 
white c::::J upper connector 

c:::::J lower connector 
black 
white 
~ 
brown 

Details of the jumper locations and settings for the image memory, registers, and input video 

synchronization modes are given in the PCVISIONplus FRAME GRABBER User's Manual 

(Part No. 47-HOOOl0-01). 
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During image acquisition the frame grabber drives the camera with composite sync via the 

black BNC connector of the optional sync cable that must be connected to the EXT socket of the 

camera. The frame grabber receives the composite video input via the white BNC connector of 

the standard cable which is connected to the VIDEO socket of the camera. The camera is pro

vided with a 9v/300mA power adaptor. The green BNC connector of the standard cable is con

nected to the external monitor to give a monochrome video output signal with optional sync. The 

other BNC connectors are used for true color systems and other synchronization modes and are 

not used in this application. 

The image acquisition is initiated by the acquire routine in SIMPP2 which provides 2 

modes of acquiring the image. The snap mode acquires a single image from the video source. 

The grab mode acquires a continuous live image from the video source. Entering an integer dur

ing the grab mode terminates the acquisition process, thereby recording the last frame grabbed in 

the image memory. The image is displayed on the external monitor during the acquisition pro

cess. 
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!*************************************************************************** 
* s2thrbcv.c 
* binarization threshold determination using the between-class-variance 
* method ofNobuyuki Otsu from "A Threshold Selection Method from Gray
* Level Histogram", IEEE Trans. on Systems, Man, and Cybernetics, 
* Vol. SMC-9, No. 1, January 1979, pp. 62-66. 

* 
* INPUT : start -- desired starting point for effective range of 
* histogram 
* freq[] -- gray level histogram determined by the SIMPP2 
* histogram determination routine 
* OUTPUT : threshval - the binarization threshold value. 
***************************************************************************! 
#include "simpp2.h" 

int be_ var(int start, long freq[]) 
{ 

int long ftotal; /* total frequency *I 
float w[PIXEL_SIZE]; /* cumulative probability of class occurence */ 
float u[PIXEL_SIZE]; /*cumulative class mean level*/ 
double bcv, bcvmax=O.O; /*between-class variance, the maximum bcv */ 
double tvar=0.0; /* total variance *I 
double ut; /*total mean level*/ 
float ptemp; /*probability, Pr(i) = freq[]/N */ 
int threshval; /*the threshold value*/ 
int end; /*end of effective range of histogram*/ 
int i; /* general loop variable */ 

/*get total freq and establish effective range of histogram */ 
/* start at the first nonzero freq from the start value specified*/ 
while ((start< PIXEL_SIZE) && (freq[start] == OL)) 

start++; 
if (start == PIXEL_SIZE) 
{ printf ("histogram is empty\n"); 

return (0); 
} 
/*find the end of the effective range of the histogram*/ 
end= start; 
ftotal = freq[start]; 
for (i=(start+ l); i<PIXEL_SIZE; i++) 

if (freq[i] > OL) 
{ end= i; 

ftotal += freq[i]; 
} 

if (start== end) 
{ printf ("there's only one gray level: % ld\n", start); 

return (start+ 1); 
} 



/*determine cumulative probability, w[u]; cumulative class mean, u[] */ 
ptemp = ((fioat)freq[start]) I (float)ftotal; 
w[start] = ptemp; /*probability of class occurence, Pr(i) */ 
u[start] =start* ptemp; /*class mean level, iPr(i) */ 
for (i=(start+ 1); i<(end+ 1); i++) 
{ ptemp = ((fioat)freq[i]) I (fioat)ftotal; 

w[i] = w[i-1) + ptemp; /*cumulative Pr(i) */ 
u[i] = u[i-1) + i*ptemp; /*cumulative iPr(i) */ 

} 
ut = (double)u[end]; /*total mean level*/ 

/* determine total variance *I 
for (i=start; i<(end+ 1); i++) 

tvar = tvar + (i-ut)*(i-ut)*(((double)freq[i])/(double)ftotal); 

/*compute bcv, and search for the maximum value*/ 
i =start; 
while (i<end) 
{ bcv = (ut * w[i]) - u[i]; 

} 

bcv = (bcv*bcv) I ((double)w[i] * ((double)l - w[i])); 
if (bcv >= bcvmax) 
{ bcvmax = bcv; 

} 

threshval = i; 
i++; 

else 
break; /*the last bcv is the maximum*/ 

return (threshval+ 1); 
} /* end threshold *I 

/****************************end s2thrbcv.c ********************************/ 
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/*************************************************************************** 
* s2thrent.c 
* threshold determination using one-dimensional entropy of histogram. 
* based on the entropy-based method as improved by Kapur, Sahoo and Wong, 
* "A new method for gray-level picture thresholding using the entropy of 
* of the histogram", Computer Vision, Graphics, and Image Processing, 
* Vol. 29, No.3, March 1985, pp.273-285. 

* 
* INPUT : start -- desired starting point for the effective range of the 
* histogram 
* freq[] - gray level histogram determined by the SIMPP2 histogram 
* determination routine 
* OUTPUT: threshval - threshold value 
***************************************************************************/ 
#include "simpp2.h" 
#include <math.h> 
#include <alloc.h> 

int entropy(int start, long freq[]) 
{ 

long ftotal; /*sum total of all pixel values */ 
double pf[PIXEL_SIZE]; /* probability of occurence of gray level * / 
double *Hs; /*cumulative entropy at the particular pixel val*/ 
double pfm, Hm; /*cumulative probability, entropy at end of freq range*/ 
double psi, maxpsi; /*the criterion measure*/ 
int threshval; /*the threshold value (at maxpsi) */ 
int end; /*end of the effective histogram range*/ 
int i; /* general loop variable *I 

/*get total freq and establish effective range of histogram*/ 
/* find the first nonzero freq--> start of effective range */ 

while ((start< PIXEL_SIZE) && (freq[ start]== OL)) 
start++; 

if (start == PIXEL_SIZE) 
{ printf("histogram is empty.\n"); 

return (0); 
} 

/*find the end of the effective range of the histogram*/ 
end= start; 
ftotal = freq[start]; 
for (i=(start+l); i<PIXEL_SIZE; i++) 

if (freq[i] > OL) 
{ end= i; 

ftotal += freq[i]; 
} 

if (start== end) 
{ printf("there's only one gray level\n"); 

return (start+ l); 
} 



/* allocate space for the cumulative entropy values */ 
Hs =(double *)malloc(PIXEL_SIZE*sizeof(double)); 
if (Hs == NULL) 
{ printf("\nmalloc failed for Hs allocation.\n"); 

exit (1); 
} 

/* pf[] : probability of occurence of specific gray level *I 
/*cumulative entropy Hs =sum of (pf log(pf)) from i=start to i=s) */ 
pf[start] = Hs[start] = (double)O; 
pf[start] = ((double)freq[start])/((double)ftotal); 
Hs[start] = -(pf[start]) * log(pf[start]); 
pfm = pf[start]; 
Hm = Hs[start]; 
for (i=(start+ 1); i<(end+ 1); i++) 
{ pf[i] = Hs[i] = (double)O; 

pf[i] = ((double)freq[i])/((double)ftotal); 
if (pf[i] == 0.0) 

Hs[i] = Hm; 
else 

Hs[i] = Hm - pf[i] * log(pf[i]); 
pf[i] = pfm + pf[i]; /* convert probability to cumulative probability */ 
pfm = pf[i]; 
Hm = Hs[i]; 

/* search for maximum entropy * / 
i =start; 
maxpsi = 0; 
while (i<end) 
{ psi= log(pf[i]*(l- pf[i])) + Hs[i]/pf[i] + (Hm-Hs[i])/(1-pf[i]); 

if (psi >= maxpsi) 
{ maxpsi =psi; 

threshval = i; 
i++; 

} 
else 

break; /*a maximum entropy was found*/ 
} 
free(Hs); 
return (threshval+ l); 

} /* end entropy *I 
/******************************end s2thrent.c **************************/ 
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!**************************************************************************** 
* s2hhdefs.h 
* global definitions for hhough routines (hierarchical HT approach) 
****************************************************************************/ 
#define PI 3.1416 

/* input image specs for buffers and array declarations */ 
#define DXC 256 /* x dimension (width of image in pixels)*/ 
#define DYC 240 /* y dimension (length of image in pixels) */ 
#define SUBSIZE 16 /*maximum initial subimage size that may be used*/ 
#define GSIZE 2 /* size of central subimage region== 2x2 neighborhood*/ 

/******************************structures*********************************/ 
struct sincos { /* sincos look-up-table struct */ 

double sint; 
double cost; 

}; 
typedef struct sincos scpair; 

struct ptrs { 
int yklead; 
int xklead; 
intjstart; 
intjend; 

/* subimage bounds pointers*/ 
/* extra rows at top and bottom for mod2 square fit *I 
/*extra cols at left and right for mod2 square fit */ 

/* buffer row that contains an image row *I 
/*buffer row last filled*/ 

} ; 

int istart; 
int iend; 
int ykstart; 
int ykend; 
int ykcentral; 
int xkstart; 
int xkend; 
int xkcentral; 
float ys; 
float xs; 

/*first window that includes image*/ 
/* end of window that contains image *I 
/*first subimage row in buffer in image coordinates*/ 
/*last subimage row in buffer in image coordinates */ 
/*start of central subimage row in buffer*/ 

/* first image column in window in image coordinates * / 
/*last image column in window in image coordinates */ 
/*start of central subimage column in buffer*/ 

/* local center of window in image coordinates * / 

typedef struct ptrs bounds; 

struct pt { /* feature point coordinates *I 
float xp; 
float yp; 
struct pt *next; 

} ; 
typedef struct pt f eatpt; 

struct line { /*line segment local parameters*/ 
int len; /* group membership indicator/ final line length *I 
float xs; /* x of local center of subimage containing line segment */ 
float ys; /* y of local center of subimage containing line segment */ 
int rhos; /*normal distance of segment from local center (accu.space)*/ 
int thetas;/* angle of normal with horizontal x-axis (in accu. space)*/ 
struct line *next;/* pointer to the next line segment*/ 



featpt *subseg; /* for subsegment list */ 
}; 
typedef struct line lineseg; 

struct rmark { /* rowmarker node *I 
float ys; /* y's of subimage centers in row*/ 
lineseg *row;/* points to the row's line segments*/ 
struct rmark *nextrow; /* points to next row of subimages *I 

} ; 
typedef struct rmark rowmark; 

struct lmark { /* levelmarker node*/ 
int levelnum; /*level number*/ 

}; 

int levelsubO; /* size of central subimage region (in pixels) */ 
double levelrhodel; /* rho-quant. interval for the level's HT space*/ 
double levelthetadel; /* theta-quant. interval for the level' s HT space *I 
rowmark *level; /*pointer to the level components (see Figure 24 of text)*/ 
struct lmark *nextlevel; /*pointer to the next lower level*/ 

typedef struct lmark levelmark; 

struct anode { /*one cell in the HT accu. used for higher level grouping */ 
int rhos; /*rho value in terms of the HT accumulator space*/ 
float vote; /* number of votes accumulated for the cell *I 
int voter[GSIZE*4 +l]; /*to contain labels of voting central feat pt*/ 

}; 
typedef struct anode acell; 
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/**************************************************************************** 
* hhough.c 
* The Hierarchical Hough Transform Program 
"' a hierarchical approach to the Hough Transform method for the detection 
* and extraction of straight lines by normal parameterization. 
****************************************************************************/ 
#include "simpp2.h" 
#include "s2hhdefs.h" 
#include <rnath.h> 
#include <alloc.h> 

/*functions called*/ 
void SetHTspace(void); 
void Centerlrnage(int dx, int dy); 
void SetSibounds(void); 

/* in hhlow.c */ 
rowmark *hhlow(int x, int y, int dx, int dy); 

/*in hhigh.c */ 
rowmark *hhigh(levelrnark *pyramid, acell *HTgrp[]); 

/*in hhpost.c */ 
void hhpost(int dx, int dy, levelrnark *pyramid); 
void SurnmarizeLevs(levelrnark *pyr); 
levelrnark *FreePyrarnid(levelrnark *pyr); 

/* global variables */ 
int subO; /* subimage size */ 
bounds sb; /* subimage bounds markers *I 
int rhosize, thetasize; /*rho-theta space size*/ 
int rhozero; /* rho=O position in rho-translated HTspace * / 
double rhodel, thetadel; /*rho-theta sampling intervals*/ 
double delrho, deltheta; /* rho-theta error limits *I 
int threshnurn; /* min feature points reqd for a true line * / 
int curlevel; /*current pyramid level*/ 
int rhocells; /*width of voting list (higher level grouping) */ 
double levrdel, levtdel; /* lev's rhodel, thetadel for accuvals->parvals */ 

/***************************************************************************** 
***************************************************************************** 
I main routine 
I call lowlevel linesegrnent extraction from the subimages comprising the 
I binary line-thinned image; 
I create each higher level of the pyramid from the collinear linesegrnents 
I of the lower level; 
I call postprocessing routine to adjust line parameters to be referenced 
I on the image center and to determine the final line attributes: 
I midpoint, length, rho-theta parameters. 
I INPUT : image location in image memory 
I starting at (x,y) with dx columns, dy rows 
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***************************************************************************** 
*****************************************************************************/ 
void hhough(int x, int y, int dx, int dy) 
{ int i,j; 

rowmark *levhead; 
levelmark *pyrlev, *pyramid; 
acell *HTgrp[GSIZE*2 +1]; 

/* row marker node pointer *I 
/* level node pointers *I 
/*group voting accumulator*/ 

/*** printf("initial pyramid level marker set\n"); ***/ 
pyramid= (levelmark *)malloc(sizeof(levelmark)); 
if (pyramid == NULL) 
{ printf("malloc failed in pyramid level markern"); 

exit (1); 
} 
pyramid->level= NULL; 
pyramid->nextlevel= NULL; 

/**************************************************************************** 
level 1 linesegment determination 

****************************************************************************/ 
/* subO = SUBSIZE; */ /* subimage size (may be fixed) */ 

printf("subsize(max 16) ==> "); /* subimage size (specify if desired)*/ 
scanf("%d", &subO); 
curlevel = 1; 
threshnum = subO; 

/*current level number*/ 
/* minimum number of points for a line *I 

/*set up subimage bounds and parameter space settings*/ 
Centerlmage(dx, dy); 
SetSiboundsO; 
SetHTspaceO; 

/* get level 1 line segments from the low level line extraction routine hhlow *I 
/* and set up the first level *I 

printf("subimages -->level I line segmentsO); 
pyramid->level = hhlow(x, y, dx, dy); 
pyramid->levelnum = curlevel; 
pyramid->levelsubO = subO; 
pyramid->levelrhodel = rhodel; 
pyramid->levelthetadel = thetadel; 
levrdel = pyramid->levelrhodel; 
levtdel = pyramid->levelthetadel; 
printf("level 1 done\n"); 

/***************************************************************************** 
grouping of line segments to yield longer lines (higher level) 

*****************************************************************************/ 
pyrlev = pyramid; /* level 1 lines *I 
rhocells = O; /* initial value*/ 
HTgrp[O] = NULL; 
threshnum = GSIZE; /*minimum number of voters for a line group*/ 



while (pyrlev !=NULL) /*last level not empty*/ 
{ curlevel += 1; /* next level number *I 

subO *= GSIZE; /*size of parent subimage */ 
printf (''\nlevel % ld segments -->level % ld groups\n", 

pyrlev->levelnum, curlevel); 
SetHTspaceO; /*set up HT space specifics*/ 
delrho = (int)((sqrt((double)2)/2)/rhodel) * rhodel; 
j = (int)(delrho/rhodel + .5) *2 +1; 
if (rhocells != j) 
{ rhocells = j; !*rho cells for a theta row in voting array*/ 

if (HTgrp[O] !=NULL) 
for (j=O; j<(l +2*GSIZE); j++) 

free(HTgrp[j ]); 

/*set up HTaccu-like array for group vote accumulation*/ 
for (j=O; j<(1+2*GSIZE); j++) 
{ HTgrp[j] = (acell *)malloc(rhocells * sizeof(acell)); 

if (HTgrp[j] ==NULL) 

} 
} 

{ printf("malloc failed in HTgrp[%ld]\n",j); 
exit (l); 

} 

SetSiboundsO; /* setup coordinate bounds of sibling subimages */ 
levhead = hhigh(pyramid, HTgrp ); /* the new level * / 
if (levhead !=NULL) 
{ /*get a new level marker*/ 

pyrlev = (levelmark *)malloc(sizeof(levelmark)); 
if (pyrlev == NULL) 
{ printf("malloc failed in pyrlev markef\n"); 

exit (1); 
} 
pyrlev->level = levhead; 
pyrlev->nextlevel =pyramid;/* link the new level to last level*/ 
pyrlev->levelnum = curlevel; /*fill in new level specifications */ 
pyrlev->levelsubO = subO; 
pyrlev->levelrhodel = rhodel; 
pyrlev->levelthetadel = thetadel; 
pyramid = pyrlev; 

} /* endif new pyr level *I 
else 

pyrlev = NULL; 
} /* endwhile more levels */ 
printf (''\npyramid complete\n"); 

/*release HTgrp space*/ 
for (j=O; j<(l +2*GSIZE); j++) 

free(HTgrp[j]); 
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/**************************************************************************** 
postprocessing of the pyramid 

****************************************************************************/ 
printf(''\npostprocessing pyramid\n"); 
hhpost(dx, dy, pyramid); 

/*count lines and det. length oflongest line in each level and*/ 
/* generate output file of the lines *I 
SummarizeLevs(pyramid); /*generate a count-maxlen summary*/ 
printf ("\npostprocessing done\n"); 
printf("freeing pyramid\n"); 
pyramid = FreePyramid(pyramid); 
printf ("ALL DONE\n"); 

} /*end hhough */ 

!****************************************************************************/ 
!***************************************************************************** 
: Find the smallest exp2 square that may encompass image, the basis for a 
: uniform subdivision of the image into an exp2 number of subimage windows. 
: CALLED BY: hhough 
: INPUT : image size -- dx columns, dy rows 
*****************************************************************************/ 
void Centerlmage(int dx, int dy) 
{ int width; /* the bigger dimension *I 

int wmod2; /* the exp2 square size *I 

/* center image in an exp2 square *I 
if (dx < dy) /*which is wider?*/ 

width= dy; 
else 

width= dx; 
wmod2= 1; 
while (wmod2 <width) /*find smallest exp2 square that fits image */ 

wmod2 *= 2; 
sb.xklead = (wmod2 - dx)/2; /* extra columns at each side of image */ 
sb.yklead = (wmod2 - dy)/2; /* extra rows at top and bottom of image */ 

} /* end Center Image *I 

!***************************************************************************** 
: Set pointers to the first subimage bounds. 
: CALLED BY: hhough 
*****************************************************************************/ 
void SetSiboundsO 
{ int bstart, bend; 

/*find first window containing a central subimage */ 
bstart = sb.yklead + sub0/2; 
bend = 2 * subO; 
while ((bend - bstart) < (sub0/2)) 

bstart = bstart - subO; 



sb.jstart = bstart; /* first buffer row to contain an image row */ 
sb.jend =bend; /*last buffer row to contain an image row */ 
sb.ykstart = 0 - bstart; /*start of subimage row in image coordinates*/ 
sb.ykend = sb.ykstart + 2*sub0; /*end of subimage row in image coord */ 
sb.ykcentral = sb.ykstart + (sub0/2); /*start of central subimage */ 

bstart = sb.xklead + sub0/2; 
bend = 2 * subO; 
while ((bend - bstart) < (sub0/2)) 

bstart = bstart -subO; 
sb.istart = bstart; /* first column: subimage window *I 

} /*end SetSibounds */ 
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/***************************************************************************** 
: Set HT space limits and quantization intervals, and error limits 
: CALLED BY : hhough 
*****************************************************************************/ 
void SetHTspace() 
{ 
/*theta axis settings */ 

thetasize = 4 * subO; /* space size *I 
thetadel = (double)Pl/thetasize; /* sampling interval */ 
deltheta = ((double)Pl/sub0)/2; /* + - sampling error*/ 

/*rho axis settings */ 
rhodel = (double)((int)((subO * sin(thetadel/2)) *10 + 0.5))/10; 
rhosize = (int)((sub0/2)/rhodel + 0.5) *2 + l; 
rhozero = rhosize/2; /*position: rho=O */ 

} /* end SetHTspace *I 

/*************************** end hhough.c ***********************************/ 
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/**************************************************************************** 
* hhlow.c 
* Level 0 of the hierarchical approach to straight line extraction using 
* the Hough Transform method. 
* The binary thin-lined image is subdivided into subimages from which the 
* line segments are extracted by the conventional Hough Transform 
* method based on the normal equation form of straight lines. 
* Line segments extracted comprise level 1 of the pyramid structure. 

* 
* CALLED BY : hhough 
* INPUT : start of image location in image memory (x,y), 
* image size: dx rows, dy columns. 
* RETURNS : pointer to head of row lists 
****************************************************************************/ 
#include "simpp2.h" 
#include "s2hhdefs.h" 
#include <math.h> 
#include <alloc.h> 

/*from s2prim.c of SIMPP2 */ 
int read_hline(int x, int yk, int dx, PIXEL *simage); 

/* internal functions *I 
void SetRows(int x, int y, int dx, int dy, PIXEL *simage[]); 
void GetEdgePts(int dx, PIXEL *simage[], featpt *elist, int *ecnt, int *cent); 
void ShuffleRows(int dy, PIXEL *simage[]); 
void Parameterize(featpt *elist, int ecount, float xs, float ys, 

scpair SC[], int *HTaccu[]); 
lineseg *FindPeaks(int *HTaccu[], float xs, float ys, lineseg *seg); 
rowmark *GetRowMarker(void); 

/*globals declared in hhough.c */ 
extern bounds sb; /* subimage bounds markers */ 
extern int subO; /* subimage size*/ 
extern rhosize, thetasize; /* rho-theta space size *I 
extern int rhozero; /* rho=O position in rho-translated HTspace */ 
extern double rhodel, thetadel; /* rho-theta sampling intervals * / 
extern int threshnum; /* min feature points reqd for a true line *I 

/***************************************************************************** 
*****************************************************************************/ 
rowmark *hhlow(int x, int y, int dx, int dy) 
{ scpairLUTSC[SUBSIZE*4]; /*sin-cos look up table*/ 

PIXEL *simage[SUBSIZE*2]; /* subimage row buffer*/ 
int *HTaccu[SUBSIZE*3]; /*HT accumulator array*/ 
featpt *edlist, *hdlist; /*list of edge points found in subimage */ 
int featcount, cencount; /* number of edge points found: total, central *I 
lineseg *oneseg, *headseg, *tailseg; /*line segment pointers*/ 
rowmark *levrow, *levhead, *levtail; /* pointers to rowmarkers * / 
intj; 



/* set up sin-cos look up table *I 
for (j=O; j<thetasize; j++) 
{ LUTSC[j].sint = sin(thetadel * j); 

LUTSC[j].cost = cos(thetadel * j); 
} 

/*allocate HTaccu space*/ 
for (j=O; j<rhosize; j++) 
{ HTaccu[j] =(int *)malloc(thetasize*sizeof(int)); 

if (HTaccu[j] ==NULL) 
{ printf("malloc failed in HTaccu[% ld] allocation\n", j); 

exit (l); 
} 

/* allocate subimage row buffers *I 
for (j=O; j<(2*sub0); j++) 
{ simagefj] = (PIXEL *)malloc(dx*sizeof(PIXEL)); 

if (simage[j] = NULL) 
{ printf("malloc failed in simage[% ld]'n", j); 

exit (l); 
} 

/* allocate edge point list buff er *I 
hdlist = edlist = (featpt *)malloc(4*subO*subO*sizeof(featpt)); 
if (edlist ==NULL) 
{ printf("malloc failed in edlist allocation\n"); 

exit (1); 
} 

/*initialize level 1 pointers */ 
levhead = levtail = levrow =NULL; 

/*scan image for subimage linesegments */ 
while (sb.ykcentral < dy) /* central subimage within dy */ 
{ SetRows(x, y, dx, dy, simage); /*take a subimage row*/ 

headseg = NULL; /* head of segment list for row *I 

/*scan the subimage row using subimage windows*/ 
while (sb.xkcentral < dx) /*central subimage within dx */ 
{ GetEdgePts(dx, simage, edlist, &featcount, &cencount); 

edlist = hdlist; 
/* find line segment/s if enough edgepoints */ 

if ((featcount >= threshnum) && (cencount > 0)) 
{ Parameterize(edlist, featcount, sb.xs, sb.ys, LUTSC, HTaccu); 

oneseg = FindPeaks(HTaccu, sb.xs, sb.ys, oneseg); 
if (oneseg !=NULL) /*line segment/s found in the subimage */ 
{ if (headseg =NULL) 

headseg = oneseg; /* this is the first line segment in row */ 
else 

118 



tailseg->next = oneseg; 
while (oneseg->next !=NULL)/* if more than one segment*/ 

oneseg = oneseg->next; /*find tail oflinesegment list*/ 
tailseg = oneseg; /*remember the tail of the list*/ 

} /* endif oneseg *I 
} /* endif counts *I 

} /* endwhile xkcentral -- subimage along row*/ 
if (headseg !=NULL) /*there are line segments in row of subimages */ 
{ levrow = GetR.owMarker(); /* get a rowmarker for the row oflinesegs *I 

levrow->row = headseg; /*hold on to the head of the row*/ 
levrow->ys = headseg->ys; /*note ys of the local subimage centers*/ 

} 

if (levhead ==NULL) 
levhead = levrow; /* it is the first row of line segments */ 

else 
levtail->nextrow = levrow; /*link up new row to preceeding row*/ 

levtail = levrow; /*last row so far formed in level*/ 

ShuffleRows(dy, simage); /*set pointers for next row of subimages */ 
} /* endwhile ykcentral -- more rows to process*/ 

/*all rows processed, release buffers*/ 
hdlist = NULL; 
free (edlist); 
oneseg = headseg = tailseg = NULL; 
levrow = levtail = NULL; 
for (j=O; j<rhosize; j++) 

free(HTaccu[j]); 
for (j=O; j<(2*sub0); j++) 

free(simage[j]); 
return (lev head); /* return pointer to head of row lists *I 

} /*end hhlow */ 
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/****************************************************************************! 
/***************************************************************************** 
I Set up the subimage buffer with the image rows for the subimage windows 
I and set bounds for the first subimage window. 
I CALLED BY : hhlow 
I INPUT : image location (x,y); image size (dx,dy); 
I subimage row buffers, *simage[] 
*****************************************************************************! 
void SetR.ows(int x, int y, int dx, int dy, PIXEL *simage[]) 
{ int yk; /*image row that will be stuffed into buffer*/ 

inti, j; 

/*locate subimage ys center*/ 
sb.ys = (float)(sb.ykstart + (sb.ykstart + 2*sub0 -1))/2; 

/* locate yk -- image row to stuff into subimage buffer *I 
if (sb.ykcentral < 0) 

yk = O; /* row 1 of image to be stuffed into buffer *I 



else 
yk = sb.ykcentral + sub0/2; /*the first row that will get into buffer*/ 

/* stuff subimage buffer from image array/memory */ 
if (yk < dy) 

for (j=sb.jstart, yk=y+yk; j<sb.jend; j++, yk++) 
read_hline(x, yk, dx, simage[j]); /* read a row of pixels *I 

/*set subimage buffer scan to start at first real image row*/ 
if (sb.ykstart < 0) 

sb.ykstart = O; /*first row in image coordinates*/ 
if ((sb.ykend - 2*sub0) < 0) 

sb.jstart = 2*sub0 - sb.ykend; /*first row in buffer coordinates */ 
else 

sb.jstart = O; 

/* start with first window containing central subimage *I 
sb.xkstart = 0 - sb.istart; 
sb.xkend = sb.xkstart + 2*sub0; 
sb.xkcentral = sb.xkstart + sub0/2; 
sb.iend = sb.xkend; 

} /*end SetRows */ 
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/***************************************************************************** 
I List edgepoints in the subimage window, count points within the central 
I subimage, and adjust bounds for next window along the same subimage row. 
I CALLED BY : hhlow 
I INPUT : image width, dx; subimage row buffers, *simage[]; 
I edge list buffer, *elist; edge point count, *ecnt; 
I count of edge points found in central region, *ccount 
*****************************************************************************/ 
void GetEdgePts(int dx, PIXEL *simage[], featpt *elist, int *ecnt, int *cent) 
{ int xk, yk; /* pixel coordinates *I 

featpt *head;/* pointer to head of edgelist */ 
int xstartcent, xendcent; /*central subimage bounds, along x axis*/ 
int ystartcent, yendcent; /*central subimage bounds, along y axis*/ 
inti, j; 

/* subimage xs center*/ 
sb.xs = (float)(sb.xkstart + (sb.xkstart + 2*sub0 - 1))/2; 

/* set first xk -- subimage pixel position */ 
if (sb.xkstart < 0) 

sb.xkstart = O; 
xk = sb.xkstart; 
yk = sb.ykstart; 

/* locate the bounding coordinates of the central subimage *I 
xstartcent = sb.xkcentral; 
xendcent = xstartcent + subO; 
ystartcent = sb.ykcentral; 



yendcent = ystartcent + subO; 

/*collect subimage edge points into edge list*/ 
head = elist; 
*ecnt = *cent = O; 
for (j=sb.jstart; j<sb.jend; j++, yk++) /*for each row of pixels*/ 
{ for (i=sb.xkstart; i<sb.xkend; i++, xk++) /*scan along pixel row*/ 

if (simageU][i] == MAXPIX) /*pixel is an edge pixel*/ 

} 

{ elist->xp = xk; /*note position into edgelist */ 

} 

elist->yp = yk; 
++(*ecnt); /*count the edge pixel*/ 
/* check if edge pixel is in central subimage *I 
if (((elist->xp >= xstartcent) && (elist->xp < xendcent)) 

&& ((elist->yp >= ystartcent) && (elist->yp < yendcent))) 
++(*cent); /*count the edge pixel found in central region*/ 

++elist; 

xk = sb.xkstart; /*be ready for the next row of pixels*/ 

head=NULL; 

/* adjust bounds for next subimage along row*/ 
sb.xkstart = sb.iend - subO; 
sb.xkcentral = sb.xkstart + (sub0/2); 
sb.xkend = sb.xkstart + 2*sub0; 
sb.iend = sb.xkend; 
if (sb.xkend >= dx) 

sb.xkend = dx; 
} /* end GetEdgePts *I 
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!***************************************************************************** 
I Shift subimage row buffer pointers, discarding the upper subO rows, 
I advancing the lower subO rows, buffer made ready for another subO rows. 
I CALLED BY : hhlow 
I INPUT : number of image rows, dy; subimage row buffer, *simage[] 
*****************************************************************************/ 
void ShuffleRows(int dy, PIXEL *simage[]) 
{ PIXEL *temp; /* pointer to row of pixels *I 

intj; 

/*adjust bounds for next subimage row*/ 
if (sb.ykend != dy) 

sb.ykstart = sb.ykend - subO; 
else 

sb.ykstart = sb.ykstart + subO; 
sb.ykcentral = sb.ykstart + sub0/2; 
sb.ykend = sb.ykstart + 2*sub0; 
if (sb.ykend >= dy) 

sb.ykend = dy; 
sb.jstart = subO; 
sb.jend = sb.ykend - sb.ykstart; 



/* shuffle pointers; upper subO rows out for subO rows in *I 
if (sb.ykcentral < dy) 
{ for (j=O; j<subO; j++) 

{ temp= simage[j]; 

} 

} 

simageLiJ = simage[j+subO]; 
simage[j+subO] = temp; 

temp=NULL; 

} /* end ShuffleRows *I 
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/***************************************************************************** 
I Initialize HTaccu, Parameterize edge points in edge list and Accumulate 
I counts for each rho-theta in the accumulator range. 
I Parameterization: for each possible theta, rho is determined for each point 
I Accumulation : each rho is adjusted for rhozero(for accumulator space) 
I and when rho is within the rho-axis range, the corresponding rho-theta 
I cell is incremented. 
I CALLED BY : hblow 
I INPUT : edge pixel list, *elist; edge pixel count, ecount; 
I local subimage center (xs,ys); sin-cos look up table, SC[]; 
I HT accumulator array, *HTaccu[]. 
*****************************************************************************/ 
void Parameterize(featpt *elist, int ecount, float xs, float ys, 

scpair SC[], int *HTaccu[]) 
{ featpt *head; /* head of the edge list * / 

double rho; /*rho parameter*/ 
int rspace; /*rho adjusted for accumulator space*/ 
int r, t; 

/*initialize HTaccu */ 
for (r=O; r<rhosize; r++) 

for (t=O; t<thetasize; t++) 
HTaccu[r] [t] = O; 

/*parameterize the edgelist */ 
head = elist; 
for (t=O; t<thetasize; t++) 
{ for (r=O; r<ecount; r++, elist++) 

{ rho= (elist->xp - xs) * SC[t].cost + (ys - elist->yp) * SC[t].sint; 

} 

if (rho< 0) /* adjust for accumulator space */ 
rspace = (int)(rho/rhodel - 0.5) + rhozero; 

else 
rspace = (int)(rho/rhodel + 0.5) + rhozero; 

if ((rspace >= 0) && (rspace < rhosize)) /*edge pt in valid line*/ 
++(HTaccu[rspace][t]); 

elist = head; 
} 
head=NULL; 

} /* end Parameterize *I 
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!***************************************************************************** 
I Scan the HTaccu for counts > threshnum. 
I Each cell found denotes a valid line segment and is recorded as a linesegment 
I node with the (ys,xs)-local subimage center and its (rho,theta) parameters. 
I CALLED BY : hhlow 
I INPUT : HT accumulator array, *HTaccu[]; subimage center (xs,ys); 
I line segment pointer, *seg. 
I RETURNS : a list of line segments 
*****************************************************************************/ 
lineseg *FindPeaks(int *HTaccu[], float xs, float ys, lineseg *seg) 
{ lineseg *oneline; /* line segment found *I 

int r, t; 

seg=NULL; 
/* scan HTaccu for counts >= threshnum *I 

for (r=O; r<rhosize; r++) 
for (t=O; t<thetasize; t++) 
if (HTaccu[r][t] >= threshnum) 
{ oneline = (lineseg *)malloc(sizeof(lineseg)); 

if ( oneline == NULL) 
{ printf("malloc failed in FindPeak lineseg allocation\n"); 

exit (l); 
} 
/* record the line segment's parameters and subimage center *I 
/*store -1 in len field, will be used later in the higher grouping*/ 
oneline->ys = ys; 
oneline->xs = xs; 
oneline->thetas = t; 
oneline->rhos = r - rhozero; 
oneline->len = -1; 
oneline->subseg =NULL; /*no subsegments yet*/ 
oneline->next = seg; /*link to list ofline segs found in subimage*/ 
seg = oneline; 

} /* endif >= threshnum *I 
oneline = NULL; 
return (seg); /*return the head oflist ofline segments found*/ 

} /* end FindPeaks *I 

!***************************************************************************** 
I Get a row marker for the list of line segments found in a row of subimages. 
*****************************************************************************/ 
rowmark *GetR.owMarkerO 
{ rowmark *rowmarker; 

rowmarker = (rowmark *)malloc(sizeof(rowmark)); 
if (rowmarker == NULL) 
{ printf("malloc failed in rowmarker allocation.\n"); 

exit (l); 
} 
rowmarker->row = NULL; 
rowmarker->nextrow = NULL; 
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/**************************************************************************** 
* hhigh.c 
* higher level grouping for the hierarchical HT method 
* A neighborhood of 4x4 subimages is checked for line segments that are 
* collinear to the line segments found in the central 2x2 subimage region. 
* CALLED BY : hhough 
*INPUT : the last level, *pyramid; HT accumulator cells, *HTgrp[]. 
****************************************************************************/ 
#include "simpp2.h" 
#include "s2hhdefs.h" 
#include <math.h> 
#include <alloc.h> 

/* internal functions *I 
rowmark *SetSegRows(rowmark *currow); 
void SetSegWindow(int *fcount, int *ccount); 
void LabelCentral(int cstart, int cend); 
void GetRpar(double tp, float xp, float yp, lineseg *fpt,acell *HTrow,int sw); 
void GetVotes(intj, inti, lineseg *fpt, float yp, float xp, double Trange[], 

acell *HTgrp[]); 
lineseg *PeakGrp(int fj, int fi, double Trange[], acell *HTgrp[],int *ccount); 
featpt *GetSubseg(lineseg *fpt, featpt *headseg); 
void FinalLabels(int start, int end); 
void CleanRows(int end); 
void ShuffteSegRows(void); 
void ShuffleSegWindow(void); 
void CleanLevel(levelmark *lastlevel); 

/* in hhlow.c */ 
rowmark *GetRowMarker(void); 

/* globals declared in hhough.c *I 
extern int subO; /* subimage size * / 
extern bounds sb; /* subimage bounds markers */ 
extern int rhosize; /*rho space size */ 
extern int rhozero; /* rho=O position * / 
extern double rhodel, thetadel; /*rho-theta sampling intervals */ 
extern double delrho, deltheta; /*rho-theta error limits */ 
extern int threshnum; /* min feat pts for true line */ 
extern int curlevel; /* current pyramid level * / 
extern int rhocells; /*width of voting list (grouping) */ 
extern double levrdel, levtdel; /* rhodel,thetadel values for last level*/ 

rowmark *segrow[GSIZE*2]; /* ptrs to rows oflower level linesegs */ 
lineseg *segmark[GSIZE*2]; /* ptrs to linesegs last considered */ 
lineseg *window[GSIZE*2][GSIZE*2]; /* linesegs in sibling subimages for grpg*/ 

/***************************************************************************** 
*****************************************************************************/ 
rowmark *hhigh(levelmark *pyramid, acell *HTgrp[]) 
{ int fptcount, cencount; /*number of featpts in current window*/ 



double Trange[GSIZE*2 +1]; /*range of possible theta values*/ 
lineseg *oneseg, *headseg, *tailseg, *fpt; /* line segment pointers *I 
rowmark *levrow, *levhead, *levtail; /*row pointers for new level*/ 
rowmark *prevlev; /* pointerto a row in the last level*/ 
int j, i; 

/*initialize the new level pointers*/ 
levhead = levtail = levrow = NULL; 

/* the last level *I 
prevlev = pyramid->level; 
levrdel = pyramid->levelrhodel; 
levtdel = pyramid->levelthetadel; 

/*form the new level*/ 
sb.ykcentral = GSIZE; /*indicator of central group presence*/ 
while ((prevlev !=NULL) II (sb.ykcentral >= (int)GSIZE/2)) 
/*take a set oflower level rows of segments */ 
{ prevlev = SetSegRows(prevlev); 

headseg = NULL; /* head of line segment list for row *I 
while ((sb.jend > 0) II (sb.xkcentral > 0)) 
{ SetSegWindow(&fptcount, &cencount); 

if ((fptcount >= threshnum) && (cencount > 0)) 
{ LabelCentral(GSIZE/2, GSIZE+GSIZE/2); 

j = GSIZE/2; 
/* take a central feature point at a time *I 
while (j < (GSIZE+GSIZE/2)) 
{ i = GSIZE/2; 

while (i < (GSIZE+GSIZE/2)) 
{ if (windowu][i] !=NULL) 

{ fpt = windowU][i]; 
I* get voters for each featpt in the subimage */ 
while ((fpt != NULL)&&(fpt->xs < (windowu][i]->xs +.5))) 
{ if (fpt->len > -2) 

{ GetVotes(j,i,fpt, sb.ys, sb.xs,Trange,HTgrp); 
/*form a line segment from highest voted group*/ 
oneseg = PeakGrp(j,i,Trange,HTgrp, &cencount); 
if (oneseg ==NULL) 
{ fpt->len = -3; /*not group central feat pt */ 

cencount--; 
} 
else /*a group was found, form a line segment*/ 
{ oneseg->xs = sb.xs; 

oneseg->ys = sb.ys; 
oneseg->len = -1; 
if (headseg ==NULL) /*first line seg in row*/ 

headseg = oneseg; 
else /* link new line to tail of list *I 

tailseg->next = oneseg; 
tailseg = oneseg; /* hold on to the tail * / 

} /* endif oneseg */ 
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} /* endif fpt->len > -2 : not voted */ 
if (cencount > 0) 

fpt = fpt->next; /* get the next central feat pt*/ 
else /* all central feature points done *I 
{ j = 2*GSIZE; 

i = 2*GSIZE; 
break; 

} 
} /* end while same subwindow *I 

} /* endif window !=NULL */ 
i++; 

} /* endwhile i */ 
j++; 

} /* end while j *I 
FinalLabels(GSIZE/2., GSIZE+GSIZE/2.); 

} /* endif group segments*/ 
ShuffleSegWindowO; /*set pointers to next set of sibling subimages*/ 

} /* endwhile within row */ 
if (headseg != NULL) 
{ levrow = GetRowMarkerO; /* for new line segment groups in the row */ 

levrow->row = headseg; 
levrow->ys = headseg->ys; 
if (levhead ==NULL) 

levhead = levrow; /*first rowlist */ 
else 

levtail->nextrow = levrow; /*link up to last rowlist formed*/ 
levtail = levrow; 

} /* endif levrow *I 
CleanRows(GSIZE); /* delete grouped segments from lower level *I 
ShuffleSegRowsO; /* get another set of rows from lower level *I 

} /* endwhile more rows*/ 
CleanRows(2*GSIZE); /*delete last grouped segs from lowlevel */ 
if (levhead !=NULL) 

CleanLevel(pyramid); /* get rid of rowmarkers that carry no linesegs */ 
oneseg = headseg = tailseg = fpt = NULL; 
levrow = levtail = prevlev =NULL; 
return (levhead); 

} /* end hhigh */ 
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!****************************************************************************/ 
!***************************************************************************** 
I set up pointers to headsegments of rows for the overlapped subimage group 
I CALLED BY : hhigh 
I INPUT : the row to be processed from the last level 
I RETURNS : the row that will be taken first in the next round 
*****************************************************************************/ 
rowmark *SetSegRows(rowmark *currow) 
{ rowmark *subrow; /* pointer to row of last level */ 

int yk; /* note position of row in terms of image space coordinates *I 
intjstart; /*the last level's row that will becone a part of the subimm */ 



intj; 

/*find ys of subimage center*/ 
sb.ys =(float)(sb.ykstart + sb.ykend -1)/2; 
yk = sb.ykstart + sub0/2 -1; 

/*determine they position of the row in terms of image space coordinates*/ 
if (sb.jend == 2*sub0) 

sb.jstart = O; 
else 

yk = yk + subO; 

sb.jend = O; /* indicative of non-empty window pointers */ 
/* set pointers to rows of the last level that will contain the sibling*/ 
/* subimages of the new level's row*/ 
subrow = currow; 
for (j=sb.jstart; yk < sb.ykend; yk += sub0/2, j++) 

if ((subrow !=NULL) && (subrow->ys < yk)) 
{ segrow[j] = subrow; 

sb.jend++; 
subrow = subrow->nextrow; 

} 
else 

segrow[j] = NULL; 

!*set up lineseg markers along the rows*/ 
for (j=O; j<(2*GSIZE); j++) 

if (segrow[j] != NULL) 
segmark[j] = segrow[j]->row; 

else 
segmark[j] = NULL; 

/* set up first window bounds along row *I 
sb.xkstart = O - sb.istart; 
sb.xkend = sb.xkstart + 2*sub0; 
sb.iend = O; /*start of window column to be filled up*/ 
sb.xkcentral = GSIZE; /* indicator of number in central window * / 

return(subrow); 
} /*end SetSegRows */ 
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!***************************************************************************** 
I set row bounds for next subimage row, shuffle pointers to displace upper 
I half rows, preparing lower half pointers for the next "group" rows. 
I CALLED BY : hhigh 
*****************************************************************************/ 
void ShuffieSegRowsO 
{ intj; 

/* make ready for next set of rows for the windows */ 
sb.ykstart = sb.ykstart + subO; 



sb.ykend = sb.ykstart + 2*sub0; 

/* shuffle rowmark pointers: displace upper "group" number of rows */ 
sb.ykcentral = O; 
for (j=O; j<GSIZE; j++) 
{ segrow[j] = segrow[j+GSIZE]; 

if (segrow[j] != NULL) 
sb.ykcentral = j; 

} 
sb.jstart = GSIZE; /* where to start adding more rows from lower level * / 

} /*end ShuffteSegRows */ 
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/***************************************************************************** 
I set up the pointers to line segments comprising a window along the rows for 
I the overlapped subimage group 
I CALLED BY : hhigh 
I INPUT : feature points count in the overlapped region, *fcount; 
I feature points count in the central subimage region, *ccount. 
*****************************************************************************/ 
void SetSegWindow(int *fcount, int *ccount) 
{ int cstart, cend; /* central subimage * / 

int count; /* feat pt count *I 
int xstart, xk; /* x positions in temis of image space coordinates *I 
lineseg *temp; /*pointer to line segments(feature points)*/ 
inti, j; 

/* find center of new subimage *I 
sb.xs = (ftoat)(sb.xkstart + sb.xkend -1)/2; 

/* start of the overlapped subimage window *I 
xstart = sb.xkstart + sub0/2 -1; 
if (sb.iend == GSIZE) 

xstart = xstart + subO; 

*fcount = *ccount = 0; 
cstart = GSIZE/2; 
cend = cstart + GSIZE; 
/* set up pointers to feature points in the overlapped subimage window *I 
for (j=O; j<(2*GSIZE); j++) 
{ if (segmark[j] == NULL) 

{ for (i=sb.iend; i<(2*GSIZE); i++) 
window[j][i] =NULL; 

} 
else 
{ for (xk=xstart, i=sb.iend; xk < sb.xkend; xk += sub0/2, i++) 

{ if ((segmark[j] !=NULL) && (segmark[j]->xs < xk)) 
{ window[j][i] = segmark[j]; 

count= O; 
while ((segmark[j] != NULL) && (segmark[j]->xs < xk)) 
{ count++; 

segmark[j] = segmark[j]->next; 



} 

} 
*fcount += count; 
if ((i>=cstart) && (i<cend) && (j>=cstart) && (j<cend)) 

*ccount += count; 

else 
windowfj][i] =NULL; 

} /* endif segmark */ 
/* endfor j */ 

/*count feat points in old window columns*/ 
if (sb.iend == GSIZE) 

for (j=O; j<(2*GSIZE); j++) 
for (i=O; i<GSIZE; i++) 

if (windowfj][i] != NULL) 
{ temp= windowfj][i]; 

count= O; 
while ((temp !=NULL) && (temp->xs < (window[j][i]->xs +.5))) 
{ count++; 

temp = temp->next; 
} 
*fcount += count; 
if ((i>=cstart) && (i<cend) && (j>=cstart) && (j<cend)) 

*ccount += count; 
} 

temp=NULL; 
} /*end SetSegWindow */ 
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/***************************************************************************** 
I set bounds for next segment window, and shuffle the window pointers to 
I displace the left half segment columns, the right half to be filled in anew. 
I CALLED BY : hhigh 
*****************************************************************************/ 
void ShuffleSegWindowO 
{intj,i; 

/* set up bounds for next window *I 
sb.xkstart = sb.xkstart + subO; 
sb.xkend = sb.xkstart + 2*sub0; 
sb.iend = GSIZE; /*start of window columns to be filled*/ 

/* check if there are more line segments left to shift into the window */ 
sb.jend = 0; 
for (j=O; j<(2*GSIZE); j++) 

if (segmark[j] !=NULL) 
sb.jend++; 

/* check if there would be a central subimage part left after shuffle *I 
sb.xkcentral = O; 
for (j=(GSIZE/2); j<(GSIZE+GSIZE/2); j++) 



for (i=(GSIZE+GSIZE/2); i<(2*GSIZE); i++) 
if (window[j][i] !=NULL) 

sb.xkcentral++; 

/*shuffle segment window pointers: displace left "group" number of columns*/ 
if ((sb.jend > 0) II (sb.xkcentral > 0)) 
{ for (j=O; j<(2*GSIZE); j++) 

for (i=O; i<GSIZE; i++) 
window[j][i] = window[j][i+GSIZE]; 

} 
} /*end ShuffleSegWindow */ 
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/***************************************************************************** 
I Label central feature points (using the len field) with ints > 0. 
I to differentiate the featpts from the featpts in the supporting siblings. 
I (len field of featpts in supporting siblings may be: 
I -1 : not processed yet if in a later subimage, 
I or not member of any earlier groups if in an earlier subimage, 
I 0 : already a group member in earlier groupings. 
I CALLED BY : hhigh 
I INPUT : bounds of the central subimage region, cstart and cend. 
*****************************************************************************/ 
void LabelCentral(int cstart, int cend) 
{ inti, j, label; 

lineseg *temp; 

label= 1; 
for (j=cstart; j<cend; j++) 

for (i=cstart; i<cend; i++) 
if (window[j][i] !=NULL) 
{ temp = windowfj][i]; 

while ((temp !=NULL) && (temp->xs < (window[j][i]->xs +.5))) 
{ temp->len = label++; 

} 
} 

temp= temp->next; 

temp=NULL; 
} /* LabelCentral */ 

/***************************************************************************** 
I Finalize flags(field len) of central feature points: 
I -3 --> -1 : no group membership 
I -2 --> 0 : a group member 
I CALLED BY : hhigh 
I INPUT : bounds of the central subimage region, start and end. 
*****************************************************************************/ 
void FinalLabels(int start, int end) 
{ intj,i; 

lineseg *fpt; /*a line segment (feature point)*/ 

for (j=start; j<end; j++) 



for (i=start; i<end; i++) 
if (window[j][i] !=NULL) 
{ fpt = window[j][i]; 

while ((fpt !=NULL) && (fpt->xs < (window[j][i]->xs +.5))) 
{ fpt->len += 2; 

fi>t = fi>t->next; 
} 

} 
fi>t=NULL; 

} /* end FinalLabels *I 
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/***************************************************************************** 
I For each central feature point: 
I initialize voting arrays and find support for the feature point from its 
I immediate neighbors. 
I flag(len field): support area=> O:grpmember, -1 :nogrp 
I central area=> >O:not processed, 
I -2:processed/grpmember, 
I -3:processed/nogrp 
I CALLED BY : hhigh 
I INPUT : the feature point seeking a group, *fi>t; 
I position of the feature point in window (j,i); 
I the feature point's lower level subimage center (yp,xp); 
I range of theta allowed by the feature point's collinearity 
I constraint, Trange[]; the voting array, *HTgrp[]. 
*****************************************************************************! 
void GetVotes(intj, inti, lineseg *fi>t, float yp, float xp, 

double Trange[], acell *HTgrp[]) 
{ double fmin, fmax, tp; /*the featpt's theta-range */ 

double nm.in, nmax; /*the neighbor's theta-range*/ 
lineseg *npt; /* the neighbor * / 
int nj, ni; /*window coordinates of the immediate neighbors*/ 
intk; 

/* initialize Trange markers */ 
for (k=O; k<(GSIZE*2+ 1); k++) 

Trange[k] = PI+ thetadel/2; 

/* find groups for each central feature point *I 
fmin = (fi>t->thetas * levtdel) - deltheta; 
fmax = (fi>t->thetas * levtdel) + deltheta; 
if (fmin < 0) 

fmin = O; 
if (fmax > (PI - thetadel/2)) 

fmax = PI - thetadel; 

/* set up theta range values and get rho parameters of the featpt *I 
for (tp=fmin, k=O; tp < (fmax + thetadel/2); tp += thetadel, k++) 
{ Trange[k] = tp; 

GetRpar(tp, xp, yp, fi>t, HTgrp[k], 0); 



/*examine immediate neighbors*/ 
for (nj=(j-1 ); nj<=(j+ 1 ); nj++) 
for (ni=(i-1); ni<=(i+l); ni++) 

if ((window[nj][ni] !=NULL) && (window[nj][ni] != window[j][i])) 
{ npt = window[nj][ni]; 

while ((npt !=NULL) && (npt->xs < (window[nj][ni]->xs +.5))) 
{ if (npt->len > (-2)) /* central:notdone*/ 

{ /*get neighbor's theta range*/ 
nmin = (npt->thetas *levtdel) - deltheta; 
nmax = (npt->thetas *levtdel) + deltheta; 
/*check for overlap with the feature point's theta range*/ 
if (((nmin + thetadel/2) > fmin)&&((nmin - thetadel/2) < fmax)) 

nmax=fmax; 
else if(((nmax-thetadel/2)<fmax) && ((nmax+thetadel/2)>fmin)) 

nmin= fmin; 
else 

nmin = nmax = PI + thetadel/2; 
if (nmin < (PI- thetadel/2)) 
{ for(tp=fmin,k=O; tp<(nmin-thetadel/2); tp +=thetadel,k++); 

for(tp=Trange[k]; tp<(nmax+thetadel/2); tp +=thetadel,k++) 
{ /*theta ranges overlap, get neighbor's vote*/ 

GetRpar(Trange[k], xp, yp, npt, HTgrp[k], 1); 
} 

} /* endifnmin !=PI*/ 
} /* endif npt->len > -2 */ 
npt = npt->next; /*next featpt within window*/ 

} /* endwhile within window */ 
} /* endif npt */ 

/* endfor ni *I 
/* endfor nj */ 
npt=NULL; 

} /*end GetVotes */ 
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/***************************************************************************** 
I Get the rho parameters for the point and tab appropriate cell in HTgrp. 
I (a vote is added in the H->vote, the featpt label recorded in H->voter[] 
I and H->voter[O] incremented for each central featpt voter) 
I note: sw=O for the featpt getting votes, sw= 1 for voting neighbors. 
I CALLED BY : GetVotes 
I INPUT : fpt's lower level subimage center (xp,yp); theta value to be 
I sampled, tp; row of the voting array corresponding to tp, *HTrow 
I type of feature point being parameterized, sw. 
*****************************************************************************/ 
void GetRpar(double tp, float xp, float yp, lineseg *fpt, acell *HTrow,int sw) 
{ double rs, rp; /*rho of sibling subimage, rho of parent*/ 

double frho, ftheta; /* param values of sibling in its level */ 
int rspace, lastrspace; /* rho in quantized parameter space *I 
acell *H; /* an accumulator cell *I 
inti, r, m; 

/* initialize the voting array */ 



H=HTrow; 
if (sw == 0) 
{ for (i=O, H=HTrow; i<rhocells; i++, H++) 

{ H->vote = O; 

} 

H->rhos = -1; 
H->voter[O] = O; /*number of voters for the cell*/ 

} 
H=HTrow; 
m=O; 

/*adjust rho from lowerlevel subimage to the new level subimage */ 
lastrspace = rhosize; /* to watch out for possible duplicated votes */ 
frho = fpt->rhos * levrdel; 
ftheta = fpt->thetas * levtdel; 
for(rs=(frho - delrho),r=O; rs<(frho + delrho +rhodel/2); rs+= rhodel,r++) 
{ rp = rs * cos(tp - ftheta) 

- (xp - fpt->xs)*cos(tp) - (fpt->ys - yp)*sin(tp); 
if (rp < 0) /* rho in parent subimage *I 

rspace = (int)(rp/rhodel - .5) + rhozero; 
else 

rspace = (int)(rp/rhodel + .5) + rhozero; 

/* rspace must be within range and nust not be a duplication*/ 
if ((rspace < 0) II (rspace >= rhosize) II (rspace == lastrspace)) 

i = rhocells; 
else 
{ lastrspace = rspace; 

if (sw == 0) /* initialization of voting array params */ 
i=m; 

else /* sw == 1 : a neighbor voter *I 
for (i=O,H=HTrow; ((i<rhocells)&&(rspace != H->rhos)); i++,H++ ); 

} /* endif rspace within space range *I 

if (i < rhocells) /*may vote*/ 
{ if (sw == 0) 

H->rhos = rspace; 
if (r = (rhocells-1)/2) /*vote weight is 1 for rs=rho of fpt */ 

H->vote += l; 
else 

H->vote += 0.99; 
if (fpt->len > 0) /*is a central fpt voter*/ 
{ H->voter[O] += 1; /*number of central fpt voters so far*/ 

H->voter[H->voter[O]] = fpt->len; 
} 
if (sw == 0) 
{ m++; 

H++; 
} 

} /* endif may vote */ 
} /* endfor rho range of sibling */ 
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H=NULL; 
/* end GetRpar *I 

/***************************************************************************** 
I find maximum voted cell> 1, make a lineseg, 
I change flags(len field) of grouped central featpts (label--> -2), 
I adjust fptcount, cencount 
I CALLED BY : hhigh 
I INPUT : the feature points position in the window (fj, fi); 
I theta range of feature point Trange[]; the voting array *HTgrp[]; 
I count of central feature points, *ccount 
I RETURNS : a new line segment (a group) 
*****************************************************************************/ 
lineseg *PeakGrp(int fj, int fi, double Trange[], acell *HTgrp[], int *ccount) 
{ float vmax; /*highest vote*/ 

int imax., jmax.; /* i,j of highest voted cell * / 
int voters; /* num of cent voters*/ 
acell *H; /* pointer to voting array cells *I 
featpt *member, *lastmember; /*center of lowest level subim contg segment*/ 
lineseg *fpt, *onegrp; /*new group*/ 
intj, i, k; 

/*search for the highest vote*/ 
vmax. = l; 
for (j=O; ((j<(GSIZE*2+ 1)) && (Trange[j] <PI)); j++) 
for (i=O, H=HTgrp[j]; ((i<rhocells) && (H->vote > 0)); i++, H++) 

if (H->vote > vmax.) 
{ vmax. = H->vote; 

imax. = i; 
jmax. = j; 

} 

/*create group if maximum found> 1 */ 
onegrp = NULL; 
if (vmax. > 1) /*group found*/ 
{ voters= HTgrp[jmax.][imax.].voter[O]; 

onegrp = (lineseg *)malloc(sizeof(lineseg)); 
if (onegrp ==NULL) 
{ printf ("malloc failed in onegrp\n"); 

exit (1); 
} 
onegrp->rhos = HTgrp[jmax.][imax].rhos - rhozero; 
onegrp->thetas = (int)(Trange[jmax] /thetadel +.5); 
onegrp->next = NULL; 
onegrp->subseg =NULL; 
lastmember = NULL; 

I* connect central featpt voters' subsegments to new group * / 
j=fj-1; 
while (j<(fj+2)) 
{ i = fi - 1; 



while (i<(fi+2)) 
{ if (window[j][i] != NULL) 

{ fpt = window[j][i]; 
while ((fpt !=NULL) && (fpt->xs < (window[j][i]->xs +.5))) 
{ k= 1; 

while (k <(voters+ 1)) 
{ /* check if fpt is one of the voters *I 

if (fpt->len == HTgrp[jmax][imax].voter[k]) /* voter*/ 
{ if (curlevel < 3) /* lineseg has no members*/ 

{ /* has to create a subsegment node first*/ 
member= GetSubseg(fpt, onegrp->subseg); 
if (onegrp->subseg ==NULL) 
{ onegrp->subseg =member; /*first subseg in list*/ 

lastmember = member; 
} 
else if (member!= NULL) /*link up to subseg list*/ 
{ lastmember->next = member; 

} 
} 

lastmember = member, 

else /* lineseg has a string of members *I 
{ member= fpt->subseg; 

fpt->subseg = NULL; 
if (onegrp->subseg ==NULL) 

onegrp->subseg =member; 
else 

lastmember->next =member; 
while (member->next != NULL) 

member= member->next; 
lastmember = member; 

} /* endif curlevel < 3 */ 
fpt->len = -2; /* a grouped central featpt */ 
HTgrp[jmax][imax].voter[O] -= 1; 
*ccount -= 1; 
break; 

} /* endif fpt voted *I 
else 

k += 1; /*check next voter number*/ 
} /* endwhile central voter list*/ 
if (HTgrp[jmax][imax].voter[O] > 0) 

fpt = fpt->next; 
else /*voters' list empty, end of group formation*/ 
{ i = fi + 2; 

j = fj + 2; 
break; 

} 
} /* endwhile same window*/ 

} /* endif fpt *I 
i++; 

} /* endwhile i */ 
j++; 
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} /* endwhile j */ 
fpt=NULL; 
member= lastmember = NULL; 

} /* endif group found*/ 
H=NULL; 
return (onegrp); 

} /* end PeakGrp *I 
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/***************************************************************************** 
I Get member linesegments (in terms oflevel 0 subimage centers) for new group. 
I CALLED BY : PeakGrp 
I INPUT : the feature point, *fpt; the new group's subsegment list *headseg 
I RETURNS : a subsegment node containing the member's lowest level subimage 
I center coordinates. 
*****************************************************************************/ 
featpt *GetSubseg(lineseg *fpt, featpt *headseg) 
{ featpt *mhd; /*temporary pointer to *headseg */ 

featpt *newseg; /*the subsegment node created for the member line segment*/ 

mhd = headseg; 
newseg =NULL; 

/*is seg already member?, a segment must get included just once *I 
while (mhd != NULL) 

if ((mhd->xp == fpt->xs)&&(mhd->yp == fpt->ys)) 
break; 

else 
mhd = mhd->next; 

if (mhd ==NULL) /* a new member */ 
{ newseg = (featpt *)malloc(sizeof(featpt)); 

if (newseg =NULL) 

} 

{ printf ("malloc failed in newseg\n"); 
exit (1); 

} 
newseg->xp = fpt->xs; 
newseg->yp = fpt->ys; 
newseg->next = NULL; 

mhd=NULL; 
return (newseg); 

} /* end GetSubseg *I 

!***************************************************************************** 
I delete segments in rows to be displaced (segrows<group or the last segrows) 
I that have become group members (len-->0) in the higher level 
I CALLED BY : hhigh 
I INPUT : number of rows that must be cleaned up, end -- corresponds to 
I the upper two rows of the lower level that will be shifted out 
I of the overlapped subimage rows. 
*****************************************************************************/ 



void CleanRows(int end) 
{ lineseg *test, *last; /* ptrs to line segments in row being cleaned up *I 

intj; 

for (j=O: j<end; j++) 
{ if (segrowLi] !=NULL) 

{ test= segrow[j]->row; 
while ((test !=NULL) && (test->len == 0)) 
{ segrow[j]->row = test->next; 

test->next =NULL; 
free( test); 
test= segrow[j]->row; 

} 
if (test != NULL) 
{ last = test; 

test= test->next; 
while (test != NULL) 

if (test->len == 0) 
{ last->next = test->next; 

test->next = NULL; 
free( test); 
test= last->next; 

} 
else 
{ last = test; 

test= test->next; 
} 

/* endwhile test!= NULL*/ 
} /* endif test=segrow[j]->row !=NULL */ 

} /* endif segrow[j] !=NULL */ 
} /* endfor segrow[j] <group*/ 

} /* end CleanRows *I 
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!***************************************************************************** 
I delete rowmarks in the previous level that no longer support row segments. 
I (rowmarks->row == NULL) 
I CALLED BY : hhigh 
I INPUT : the last level 
*****************************************************************************! 
void CleanLevel(levelmark *lastlevel) 
{ rowmark *test, *last; /*ptrs to rowmarks that will be checked forlinesegs*/ 

test= lastlevel->level; 
while ((test !=NULL) && (test->row ==NULL)) 
{ lastlevel->level = test->nextrow; 

} 

test->nextrow =NULL; 
free( test); 
test= lastlevel->level; 

if (test !=NULL) 
{ last = test; 



test = test->nextrow; 
while (test != NULL) 

if (test->row == NULL) 
{ last->nextrow = test->nextrow; 

test->nextrow =NULL; 
free( test); 
test= last->nextrow; 

} 
else 
{ last = test; 

test= test->nextrow; 
} 

} /* endif test != NULL */ 
} /* end OeanLevel *I 

/***************************end hhigh.c ***********************************/ 
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/**************************************************************************** 
* hhoutc 
* Printout and remapping routines for the lineseg pyramid formed by the 
* hierarchical approach to the HT method 
* Contains: 
* RemapLevelO : draws the lines found in the level in a specified 
* quadrant of image memory and displays the resulting image of 
* lines on the external monitor; 
* WritePyrPspaceO : writes the description of each line at each 
* level of the postprocessed hierarchy in a file. 
* The description is in terms of the line's midpoint, 
* its (rho.theta) parameters, its length and the rectangular 
* dimensions (delta x, delta y) of the area that encompasses the 
* line if it is neither horizontal nor vertical; 
* PrintPyramidO : writes the line descriptions at each level of the 
* hierarchy to stdout. The description consists of the 
* (rho, theta) parameters of the line, the line's subimage center, 
* the label stored in the len field of the lineseg node, and 
* a list of the subsegments if the hierarchy has not been 
* postprocessed yet, otherwise, the output is similar to that of 
* WritePyrPspace; 
* PrintLevel() : writes the descriptions of the lines found in a level 
* of the hierarchy to stdout; 
* PrintRowSegsO : writes the descriptions of the lines found in a row 
* of subimages to stdout. 
* PrintOneSegO : writes the description of a single line segment to 
* std out. 
* 
* Calls to these routines may be inserted at strategic points in 
* hhough, hhlow, hhigh or hhpost to monitor the lines as desired. 
****************************************************************************/ 
#include "simpp2.h" 
#include "s2hhdefs.h" 
#include <math.h> 
#include <alloc.h> 

/*in hhpost.c */ 
void GetEnds(lineseg *fpt, int hsize, int dx, int dy); 
void CheckLimits(int dx, int dy); 
void DeriveName(char *ext); 

/* from s2inter.c of SIMPP2 */ 
void write_pixel(int x, int y, PIXEL z); 

/*globals declared in hhough.c */ 
extern bounds sb; /* subimage bounds markers*/ 
extern double levrdel,levtdel; /*lev's rhodel, thetadel for accuvals->parvals*/ 



/*input image filename to be used to derive outfile name*/ 
/* declared in the driver program for the complete low to *I 
/*medium level image processing system or in the driver */ 
/* program for testing hhough on line-thinned images *I 
extern char name[]; 

/*vars common to hhpost, ReMapLevel */ 
/*declared in hhpostc */ 
extern double halftdel; /*half of the level's thetadel value*/ 
extern int half size; /* half of the level' s subimage size *I 
extern double frho, ftheta; /*rho, theta values in parameter space*/ 
extern int xmin, xmax, ymin, ymax; /* bounds for area cont' g the lineseg *I 
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!***************************************************************************** 
I remap level 
I remap linesegs found in the level in a quadrant of the image memory. 
I INPUT : the starting point (x,y) of the quadrant of width dx and height dy; 
I the level whose lines are to be remapped, *curlev; the current 
I state of the hierarchy, swP, i.e., swP = 0, while the hierarchy 
I is still being developed, swP = 1, when the hierarchy has been 
I postprocessed already. 
*****************************************************************************/ 
void ReMapLevel(int x,int y,int dx,int dy,levelmark *curlev,int swP) 
{ int xi, yi; /* the coordinates of the point image space *I 

float xp, yp; /* the coordinates of point wrt subimage center *I 
rowmark *currow; /* the current row of line segments *I 
lineseg *fpt; /* a feature point*/ 

/*retrieve level's accumulator array parameters*/ 
if (swP == 0) 
{ halftdel = curlev->levelthetadel /2; 

halfsize = curlev->levelsubO !2; 

} 

for (xi= (curlev->levelnum -1); xi> O; xi--) 
halfsize = halfsize/2; 

levrdel = curlev->levelrhodel; 
levtdel = curlev->levelthetadel; 

/* process each line segment for remapping *I 
printf(":::level %ld0, curlev->levelnum); 
!* for every row of line segments *I 
for (currow = curlev->level; currow !=NULL; currow = currow->nextrow) 

/*for every feature point along row*/ 
for (fpt = currow->row; fpt !=NULL; fpt = fpt->next) 
{ /*convert the rho, theta in accumulator coordinates*/ 

/*to image space coordinates*/ 
frho = fpt->rhos * levrdel; 
ftheta = fpt->thetas * levtdel; 
if (swP== 0) 

GetEnds(fpt, halfsize, dx, dy); 



!*****remap the lineseg *****/ 
if (ftheta < halftdel) /*vertical line*/ 
{ !* VERTICAL LINE */ 

if (swP== 0) 
{ xp = fpt->xs + frho; 

if (xp < 0) 
xi = (int)(xp - 0.5); 

else 
xi = (int)(xp + 0.5); 

else 
{ xi= fpt->xs; 

xmin= xi; 

} 

ymin = (int)(fpt->ys - ((float)fpt->len/2) + 1); 
ymax = ymin + fpt->len; 
xmax =xi+ 1; 
/* ensure limits are within the image space * / 
CheckLimits(dx, dy); 

if ((xi>= xmin) && (xi< xmax)) 
{ for (yi=ymin; yi<ymax; yi++) 

} 

write_pixel(x+xi, y+yi, MAXPIX); 
} 

else if ((ftheta > (PI/2 - halftdel)) 
&& (ftheta < (PI/2 + halftdel))) 

{ /* HORIZONTAL LINE *I 
if (swP== 0) 
{ yp = fpt->ys - frho; 

if(yp < 0) 

} 

yi = (int)(yp - 0.5); 
else 

yi = (int)(yp + 0.5); 

else 
{ yi = fpt->ys; 

} 

} 

xmin = (int)(fpt->xs - ((float)fpt->len/2) + 1); 
xmax = xmin + fpt->len; 
ymin= yi; 
ymax = yi + 1; 
CheckLimits(dx, dy); 

if ((yi >= ymin) && (yi < ymax)) 
{ for (xi=xmin; xi<xmax; xi++) 
write_pixel(x+xi, y+yi, MAXPIX); 

} /* endelseif horizontal * / 
else /* SLANTING LINE */ 
{ if (swP == 1) 

{ xp = fpt->subseg->xp; 
yp = fpt->subseg->yp; 
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} 

if(xp< 0) 
xp = -1 * xp; 

xmin = (int)(fpt->xs - xp/2); 
xmax = (int)(xmin + xp + 1); 
if (yp < 0) 

yp = -1 * yp; 
ymin = (int)(fpt->ys - yp/2); 
ymax = (int)(ymin + yp + 1); 
CheckLimits(dx, dy); 

if ((ftheta > (Pl/4 - halftdel)) 
&& (ftheta < (3*Pl/4 + halftdel))) 
/* lslopel <= 1 */ 
for (xi=xmin; xi<xmax.; xi++) /* scan along x */ 
{ if (swP == 0) 

{ xp = xi - fpt->xs; 
yp = fpt->ys 

} 

- (frho - xp*cos(ftheta))/sin(ftheta); 
if (yp < 0) 

yi = (int)(yp - 0.5); 
else 

yi = (int)(yp + 0.5); 

else 
{ xp = xi - sb.xs; 

} 

yp = sb.ys - (frho - xp*cos(ftheta))/sin(ftheta); 
if (yp < 0) 

yi = (int)(yp - 0.5); 
else 

yi = (int)(yp + 0.5); 

if ((yi >= ymin) && (yi < ymax)) 
write_pixel(x+xi, y+yi, MAXPIX); 
} /* endfor xi *I 

else /* lslopel > 1 */ 
for (yi=ymin; yi<ymax; yi++) /*scan along y */ 
{ if (swP == 0) 

{ yp = fpt->ys - yi; 
xp = fpt->xs 

} 

+ (frho - yp*sin(ftheta))/cos(ftheta); 
if (xp < 0) 

xi = (int)(xp - 0.5); 
else 

xi = (int)(xp + 0.5); 

else 
{ yp = sb.ys - yi; 

xp = sb.xs + (frho - yp*sin(ftheta))/cos(ftheta); 
if (xp < 0) 

xi = (int)(xp - 0.5); 
else 
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xi = (int)(xp + 0.5); 
} 
if ((xi>= xmin) && (xi < xmax)) 

write_pixel(x+xi, y+yi, MAXPIX); 
} /* endfor yi *I 

/* endif slope*/ 
} /* endelse slanting*/ 

} /* endfor fpt *I 
/* endfor levrow *I 

} /*end ReMapLevel */ 
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/***************************************************************************** 
I write the pyramid lines(in tenns of actual rho,theta values) in a file 
I INPUT : a level 
*****************************************************************************/ 
void WritePyrPspace(levelmark *pyr) 
{ FILE *ofp; /*output file*/ 

levelmark *lhead; /* head of level components of images */ 
rowmark *rhead; /* head of rows of lines *I 
lineseg *shead; /*a line segment*/ 
inti, j; 

DeriveN ame("pyr"); 
/*open output file for writing*/ 
if ((ofp = fopen(name, "w")) ==NULL) 
{ printf("fopen failed on %s0, name); 

exit(l); 
} 
else 

printf("param space lines listed in %s0, name); 

/*write the pyramid summary*/ 
fprintf (ofp, "final pyramid: % ld levels, size=% ld 

pyr->levelnum, pyr->levelsubO); 
fprintf (ofp, "summary: maxlen, numH, numV, numN, numTO); 
for (j=O; j<(pyr-levelnum + l); j++) 
{ if (j==O) 

} 

fprintf (ofp, "pyramid: "); 
else 

fprintf (ofp, "level %1d: ",j); 
for (i=O; i<S; i++) 

fprintf (ofp, " %3d ". summaryLJ][i]); 
fprintf (ofp, "O); 

fprintf (ofp, "O); 

/*write each level's line segments*/ 
fprintf(ofp, "line: midpt(ys,xs) parameters(rho,theta) "); 
fprintf(ofp, "length(len) range(yp,xp)O); 
for (lhead=pyr; lhead !=NULL; lhead = lhead->nextlevel) 
{ fprintf(ofp, "***Level %ld0, lhead->levelnum); 



levrdel = lhead->levelrhodel; 
levtdel = lhead->levelthetadel; 
/* for each row of line segments *I 
for (rhead=lhead->level; rhead != NULL; rhead = rhead->nextrow) 

/* for each line segment *I 
for (shead= rhead->row; shead != NULL; shead = shead->next) 

if (shead->len > 0) 
{ fprintf(ofp, "m(%6.2f, %6.2f) ", shead->ys, shead->xs); 

fprintf(ofp, "p(%8.31f, %8.51f) 1(%3d) ", 

} 

shead->rhos *levrdel, shead->thetas *levtdel, shead->len); 
fprintf(ofp, "r(%3.2f, %3.2f)O, 

shead->subseg->yp, shead->subseg->xp); 

/* endfor shead *I 
/* endfor rhead */ 

} /* endfor lhead *I 
fprintf(ofp, "ENDO); 
fclose(ofp); 

} /*end WritePyrPspace */ 
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/***************************************************************************** 
* routines for printing out the lines 
*****************************************************************************! 

void PrintOneSeg(lineseg *seg); 
void PrintRowSegs(rowmark *levrow, intj, inti); 

/***************************************************************************** 
I print one line segment 
I INPUT : the line segment 
*****************************************************************************/ 
void PrintOneSeg(lineseg *seg) 
{ featpt *member; /*a subsegment*/ 

intn; 

printf("***(%6.2f, %6.2f) (%10.5lf, %10.5lf) (%1d)", 
seg->ys, seg->xs, seg->rhos * levrdel, seg->thetas * levtdel, 
seg->len); 

for (member=seg->subseg,n=O; member != NULL; member=member->next, n++) 
{ if (n%5 == 0) 

printf(" "); 
printf("(%6.2f,%6.2f)", member->yp, member->xp); 

} 
printf("O); 

} /*end PrintOneSeg */ 
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/***************************************************************************** 
IPrintallsegrnen~foundinrow 
I INPUT : a row of segments 
*****************************************************************************/ 
void PrintRowSegs(rowmark *levrow) 
{ lineseg *shead; /* a line segment *I 

printf("rowsegmen~ : ys=%.2f :0, levrow->ys); 
for (shead= levrow->row; shead != NULL; shead = shead->next) 

PrintOneSeg(shead); 
} /*end PrintRowSegs */ 

/***************************************************************************** 
I Print all segmen~ found in level 
I INPUT : a level 
*****************************************************************************/ 
void PrintLevel(rowmark *level) 
{ rowmark *rhead; /*head of row of line segmen~ */ 

lineseg *shead; /*a line segment*/ 

printf("level's segments :0); 
for (rhead=level; rhead !=NULL; rhead = rhead->nextrow) 

PrintRowSegs(rhead, j, i); 
} /*end PrintLevel */ 

/***************************************************************************** 
I print the pyramid 
I INPUT : the complete hierarchy 
*****************************************************************************/ 
void PrintPyramid(levelmark *pyr) 
{ levelmark *lhead; /*points to current level*/ 

for (lhead=pyr, lhead !=NULL; lhead = lhead->nextlevel) 
{ levrdel = lhead->levelrhodel; 

} 

levtdel = lhead->levelthetadel; 
printf("level %1d: ", lhead->levelnum); 
PrintLevel(lhead->level, 0, 0); 

} /*end PrintPyramid */ 

/******************************* end hhout.c ********************************/ 
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/****************************************************************************/ 
* hhpost.c 
* postprocessing of the lineseg pyramid formed by the hierarchical 
* approach to the Hf method, involves: 
* determination of midpoint and length 
* rho, theta parameters adjusted to be referenced on the image center 
* subseg field of lineseg node to contain: 
* expanse (ywidth, xwidth) of slanting lines (non-horizontal, 
* non-vertical); (imagesize,0) for verticals and (0,imagesize) 
* for horizontals; 
* all member subsegments are then deleted 
* INPUT : size of image(dx,dy); and the hierarchy oflines, *pyramid. 
****************************************************************************/ 
#include "simpp2.h" 
#include "s2hhdefs.h" 
#include <math.h> 
#include <alloc.h> 

/*internal routines*/ 
void GetEnds(lineseg *fpt, int hsize, int dx, int dy); 
void CheckLimits(int dx, int dy); 
void WritePyrAspace(levelmark *pyr, int summary[][S]); 
void DeriveName(char *ext); 

/*globals declared in hhough.c */ 
extern int subO; /* subimage size*/ 
extern bounds sb; /* subimage bounds markers */ 
extern double model, thetadel; /*rho-theta sampling intervals*/ 
extern double levrdel,levtdel; /*lev's rhodel,thetadel for accuvals->parvals*/ 

/*input image file name to be used for deriving outfile name*/ 
/* declared in driver program for the image processing system or * / 
/*the driver program for testing the hhough */ 
extern char name[]; 

/*vars common to hhpost, ReMapLevel */ 
double halftdel; /* half the thetadel oflevel */ 
int halfsize; /*half the initial subimage size*/ 
double frho, ftheta; /*rho, theta values in parameter space*/ 
int xmin, xmax, ymin, ymax; /*bounds for area containing the lineseg */ 

/***************************************************************************** 
*****************************************************************************/ 
void hhpost(int dx, int dy, levelmark *pyramid) 
{ featpt *tempsub, *mark.sub;/* temporary vars used for deleting subseg list*/ 

levelmark *pyrlev; /*a level*/ 
rowmark *levrow; /* a row of lines *I 
lineseg *fpt; /*a line segment*/ 
int xi, yi; /* point coordinates in image space *I 
float xp, yp; /* coordinates of point wrt subimage center *I 
float xs, ys; /* to hold old subimage center reference of line *I 



float xdel, ydel; /*temporary variables*/ 
int n, done; /*loop control variables*/ 

/*retrieve level's accumulator array parameters*/ 
halftdel = pyramid->levelthetadel /2; 
halfsize = pyramid->levelsubO {2; 
for (n = (pyramid->levelnum -1); n > 0; n--) 

halfsize = halfsize/2; 

/* set up parameter intervals for whole image space */ 
if (dx > dy) 

subO= dx; 
else 

subO= dy; 
thetadel = (double)PI I (4*sub0); 
rhodel = (double)((int)((subO * sin(thetadel/2)) * 10 + 0.5))/10; 

/*get image center*/ 
sb.xs = (fioat)(dx -1){2; 
sb.ys = (float)(dy -1){2; 

/*adjust each line segment's rho-theta parameters to image center*/ 
for (pyrlev =pyramid; pyrlev !=NULL; pyrlev = pyrlev->nextlevel) 
{ levrdel = pyrlev->levelrhodel; 
levtdel = pyrlev->levelthetadel; 

/* update levelmark data */ 
pyrlev->levelsubO = subO; 
pyrlev->levelrhodel = rhodel; 
pyrlev->levelthetadel = thetadel; 

for (levrow = pyrlev->level; levrow !=NULL; levrow = levrow->nextrow) 
for (fpt = levrow->row; fpt !=NULL; fpt = fpt->next) 
/* store original subimage center reference *I 
{ xs = fpt->xs; 

ys = fpt->ys; 
/*get rho.theta values in parameter space tenns */ 
frho = fpt->rhos * levrdel; 
ftheta = fpt->thetas * levtdel; 
/*get line segments endpoints for midpt, length det'n */ 
GetEnds(fpt, halfsize, dx, dy); 

/*ensure that there is at least one subseg node to contain*/ 
/* xwidth, ywidth of area contg line when necessary *I 
if (fpt->subseg = NULL) 
{ tempsub = (featpt *)malloc(sizeof(featpt)); 

if (tempsub ==NULL) 
{ printf("malloc failed in hhpostO); 

exit (1); 
} 
tempsub->next = NULL; 
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fpt->subseg = tempsub; 
} 

/* set first subseg node as zero for vertical/horizontal lines*/ 
/* or the xwidth and ywidth of line region for slanting lines *I 
fpt->subseg->xp = fpt->subseg->yp = O; 

/* note lineseg midpt in (ys, xs) and length in (len) */ 
if (ftheta < halftdel) /*** VERTICAL LINE ***/ 
{ xp = fpt->xs + frho; 

} 

if (xp < 0) 
xi = (int)(xp - 0.5); 

else 
xi = (int)(xp + 0.5); 

fpt->xs = xi; /*** line's midpoint ***/ 
fpt->ys = ((ftoat)ymin + ymax-1)/2; 
fpt->len = ymax - ymin; /***line's length ***/ 
fpt->thetas = O; /***make theta exactly 0 ***/ 
fpt->subseg->yp = (ftoat)subO; /* for uniformity only */ 

else if ((ftheta > (Pl/2 - halftdel)) 
&& (ftheta < (PI/2 + halftdel))) /***HORIZONTAL LINE***/ 

{ yp = fpt->ys - frho; 

} 

if (yp < 0) 
yi = (int)(yp - 0.5); 

else 
yi = (int)(yp + 0.5); 

fpt->ys = yi; /***line's midpoint ***/ 
fpt->xs = ((ftoat)xmin + xmax-1)/2; 
fpt->len = xmax - xmin; /*** line's length ***/ 
fpt->thetas = (int)((PI/2) /thetadel +.5); 
fpt->subseg->xp = (fioat)subO; 

else /*** SLANTING LINE ***/ 
{ if ((ftheta > (PI/4 - halftdel)) 

&& (ftheta < (3*PI/4 + halftdel))) /* !slope!<= 1 */ 
{ /* find endpoints by scanning the x *I 

xdel = ydel = xmax; 
xi= xmin; 
done= O; 
n=O; 
while (n<2) 
{ while (done== 0) 

{ xp = xi - fpt->xs; 
yp = fpt->ys - (frho - xp*cos(ftheta))/sin(ftheta); 
if (yp < 0) 

yi = (int)(yp - 0.5); 
else 

yi = (int)(yp + 0.5); 
if ((yi >= ymin) && (yi < ymax)) 

break; /*one end point found*/ 
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} 

} 

if (n== 0) 
xi++; 

else 
xi--; 

if ((xi< xmin) II (xi>= xmax)) 
done = 1; /* no points found *I 

if ((n == 0) && (done== 0)) 
/* one end ofline found *I 

{ xdel =xi; 
ydel= yi; 

} 

/* start next check with other end*/ 
xi= xmax- 1; 
n++; 

else 
n=2; 

if (xdel < (fl.oat)xmax:) 
/* the endpts of the line were found *I 
{ xp = xi - xdel; 

yp = yi - ydel; 
if ((int)yp == 0) 
/* the line is horizontal *I 
{ fpt->thetas = (int)((PI/2) I thetadel +.5); 

fpt->ys = (float)yi; 

} 

fpt->xs = (xi + xdel)/2; 
fpt->len =xi - (int)xdel + 1; 
fpt->subseg->xp = (fl.oat)subO; 

else 
/***the line is slanting indeed***/ 
{ /* the line's midpoint *I 

fpt->xs = (xi + xdel)/2; 
fpt->ys = (yi + ydel)/2; 
/* xwidth of area containing the line *I 
fpt->subseg->xp = (float)xi-xdel; 
I* ywidth of area containing the line *I 
fpt->subseg->yp = (float)yi-ydel; 
/* determine the line's length *I 
xdel =(xi - xdel) * (xi - xdel); 
ydel = (yi - ydel) * (yi - ydel); 
fpt->len =(int)(sqrt(((double)xdel)+((double)ydel))+.5); 
/*adjust the theta for the prevalent thetadel */ 
fpt->thetas = (int)(ftheta/thetadel + .5); 

} 
} 
else 
{ fpt->len = O; /*line has no points in its subimage */ 

fpt->thetas = (int)(ftheta/thetadel + .5); 
} 
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} /* endif lslopel <= 1 */ 
else /* lslopel > 1 */ 
/* find endpoint by making a y scan *I 
{ xdel = ydel = ymax; 

yi = ymin; 
done= O; 
n=O; 
while (n<2) 
{ while (done== 0) 

{ yp = fpt->ys - yi; 
xp = (frho - yp*sin(ftheta))/cos(ftheta) 

+ fpt->xs; 
if (xp < 0) 

xi = (int)(xp - 0.5); 
else 

xi = (int)(xp + 0.5); 
if ((xi>= xmin) && (xi < xmax)) 

break; /* one endpoint of line found *I 
if(n== 0) 

yi++; 
else 

yi--; 
if ((yi < ymin) II (yi >= ymax)) 

done = 1; /* no points of the line was found * / 
} 
if ((n==O) && (done==O)) 
/* one end of the line was found *I 
{ ydel = yi; 

} 

xdel= xi; 
/* start next check with other end*/ 
yi=ymax-1; 
n++; 

else 
n=2; 

} /* end find endpoints *I 
if (ydel < (fioat)ymax) 
/* the endpoints of the line were found * / 
{ xp = xi - xdel; 

yp = yi - ydel; 
if ((int)xp == 0) 
/*the line is vertical*/ 
{ fpt->xs =xi; /*the line's midpoint*/ 

} 

fpt->ys = (yi + ydel)/2; 
fpt->len = yi - (int)ydel + l; /*the line's length*/ 
fpt->thetas = O; /*make theta exactly 0 */ 
fpt->subseg->yp = (fioat)subO; 

else /***the line is slanting indeed (not vertical)***/ 
{ fpt->xs =(xi+ xdel)/2; /*the line's midpoint*/ 

fpt->ys = (yi + ydel)/2; 
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} 

} 
} 

/* xwidth of the area containing the line*/ 
fpt->subseg->xp = (fioat)xi-xdel; 
/* ywidth of the area containing the line *I 
fpt->subseg->yp = (fioat)yi-ydel; 
/* detennine the line's length *I 
xdel = (xi - xdel) * (xi - xdel); 
ydel = (yi - ydel) * (yi - ydel); 
fpt->len =(int)(sqrt(((double)xdel)+((double)ydel))+.5); 
/* adjust theta to current thetadel */ 
fpt->thetas = (int)(ftheta/thetadel + .5); 

else 
{ fpt->len = O; /*there were no points found for the line*/ 

fpt->thetas = (int)(ftheta/thetadel + .5); 
} 

} /* endelse slanting line *I 

/* release all other subsegs except the very first one which *I 
!* contains the area defining the expanse of line in image *I 
if ((fpt->subseg !=NULL) && (fpt->subseg->next !=NULL)) 
{ tempsub = fpt->subseg->next; 

fpt->subseg->next = NULL; 
while (tempsub != NULL) 
{ marksub = tempsub->next; 

tempsub->next =NULL; 
free (tempsub); 
tempsub = marksub; 

} 
} 

/*adjust line segment's rho-theta parameters to image center*/ 
xdel = sb.xs - xs; 
ydel = ys - sb. ys; 
if (((int)xdel != 0) II ((int)ydel != 0)) 
{ frho = frho - xdel*cos(ftheta) - ydel*sin(ftheta); 

if (frho < 0) 

} 

fpt->rhos = (int)(frho/rhodel - .5); 
else 

fpt->rhos = (int)(frho/rhodel + .5); 

} /* endf or fpt *I 
/* endfor levrow *I 

} /* endfor pyrlev */ 
} !* end hhpost *I 
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/***************************************************************************** 
I Get the upper left corner and lower right comer of the level 0 subimages 
I of the member linesegments, to define the area formed by the lowest level 
I subimages that contains the line. 
I CALLED BY : hhpost, ReMapLevel 
I INPUT : the line segment, *fpt; half initial subimage size, hsize; 
I xwidth, ywidth of area containing the line, (dx,dy) 
*****************************************************************************/ 
void GetEnds(lineseg *fpt, int hsize, int dx, int dy) 
{ featpt *head, *test;/* pointers to subsegment list*/ 

featpt min, max; /* upperleft comer/lowerright corner of area contg line*/ 

if (fpt->subseg ==NULL) 
/*the line has no subsegments*/ 
{ min.xp = max.xp = fpt->xs; 

min.yp = max.yp = fpt->ys; 
} 
else 
/* scan the subsegment list *I 
{ head= fpt->subseg; 
min.xp = max.xp = head->xp; 
min.yp = max.yp = head->yp; 
test= head->next; 
/* find the upper left corner subimage */ 
/* and the lower right corner subimage *I 
while (test != NULL) 
{ if (test->yp < (min.yp - .5)) 

min.yp = test->yp; 

} 
} 

else if (test->yp > (max.yp + .5)) 
max.yp = test->yp; 

if (test->xp < (min.xp - .5)) 
min.xp = test->xp; 

else if (test->xp > (max.xp + .5)) 
max.xp = test->xp; 

test = test->next; 

/*adjust endpts to encompass the level 0 subimage range involved*/ 
xmin = (int)(min.xp - hsize + 1); 
ymin = (int)(min.yp - hsize + l); 
xmax = (int)(max.xp + hsize + 1); 
ymax = (int)(max.yp + hsize + 1); 

/* ensure that the endpoints are within the image space *I 
CheckLimits(dx, dy); 

} /* end GetEnds *I 
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/***************************************************************************** 
I Ensure that the bounds of the area containing the line are within the bounds 
I of the image coordinates. 
I CALLED BY : GetEnds, ReMapLevel 
I INPUT : size of the complete image (dx,dy) 
*****************************************************************************/ 
void CheckLimits(int dx, int dy) 
{ 

if (xmin < 0) 
xmin=O; 

if (ymin < 0) 
ymin=O; 

if (xmax > dx) 
xmax=dx; 

if (ymax > dy) 
ymax=dy; 

} /* end CheckLimits *I 

!***************************************************************************** 
I Summary of the pyramid lines for each level and the overall pyramid: 
I longest line; number of horizontals; number of verticals; 
I number of slanting lines; total number of lines. 
I CALLED BY : hhough 
I INPUT : a level 
*****************************************************************************/ 
void SummarizeLevs(levelmark *pyr) 
{ int summary[8][5]; /* 7levs: maxlen, numH, numV, numN, numT */ 

levelmark *lhead; /* a level*/ 
rowmark *rhead; /*a rowlist */ 
lineseg *shead; /* a line segment *I 
int longest; /* longest line found *I 
inti, j; 

/*initialize summary[][] */ 
for (j=O; j<8; j++) 

for (i=O; i<5; i++) 
summary[j][i] = O; 

for (lhead=pyr; lhead !=NULL; lhead = lhead->nextlevel) 
{ j = lhead->levelnum; /* note the level number */ 

longest = O; /* length of longest line in level *I 
for (rhead=lhead->level; rhead !=NULL; rhead = rhead->nextrow) 

for (shead= rhead->row; shead !=NULL; shead = shead->next) 
if (shead->len > 0) 
{ if (shead->subseg->xp >= (float)subO) 

summary[j][l] += 1; /*horizontal*/ 
else if (shead->subseg->yp >= (fioat)subO) 

summary[j][2] += 1; /*vertical*/ 
else summary[j][3] += 1; /*neither */ 
if (shead->len > longest) 

longest= shead->len; 



} 
/* endfor shead */ 

I* endfor rhead *I 

/* find the longest line at each level *I 
summary[j][O] =longest; 
for (i=l; i<4; i++) 

summary[j][4] += summary[j][i]; 
/* endfor !head *I 

/* overall pyramid : summary[O] [] *I 
longest = O; /* max length in pyramid *I 
for (j=l; j<(pyr->levelnum + l); j++) 
{ for(i=l; i<5; i++) 

} 

summary[O][i] += summary[j][i]; 
if (summary Li] [O] > longest) 

longest= summary[j][O]; 

summary[O] [O] = longest; 

/*write lines in the order of occurrence in the pyramid levels*/ 
/*line attributes: orientation(Horizontal, Vertical, Neither); */ 
/* midpt(y,x); par(rhos,thetas) in tenns of accumulator */ 
/* space quantization intervals; length */ 
WritePyrAspace(pyr, summary); 

printf("Oummary: level mlen numH num V numN numT "); 
for (j=O; j<(pyr->levelnum + 1); j++) 
{ printf("%4d It' j); 

} 

for (i=O; i<5; i++) 
printf("%3d ", summary[j][i]); 

printf(" "); 

} /*end SummarizeLevs */ 
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!***************************************************************************** 
I write the pyramid lines(in tenns of rho,theta accu space values) in a file 
I with the appropriate summary for each level: maxlen, number of horizontals, 
I number of verticals, number of slanting lines, total number of lines. 
I CALLED BY : hhough 
I INPUT : the postprocessed pyramid, *pyr; the summaries 
*****************************************************************************/ 
void WritePyrAspace(levelmark *pyr, int summary[][5]) 
{ FILE *ofp; /*output file*/ 

levelmark *!head; /* a level *I 
rowmark *rhead; /* a row ofline segments *I 
lineseg *shead; /* a line segment*/ 
inti; 

/* derive name of output file from the input image name. 
DeriveName("pas"); 



/* open output file for writing *I 
if ((ofp = fopen(name, "w")) ==NULL) 
{ printf("fopen failed on %s0, name); 

exit(l); 
} 
else 

printf("accu space lines listed in %s0, name); 

/* write the fonnat notes on the first 4 lines *I 
fprintf(ofp, "F P _yramid numlevs size maxlength numH numV numN numTO); 
fprintf(ofp, "F L_evel levnumber maxlength numH numV numN numTO); 
fprintf(ofp, "F HVN ys xs rhos thetas length ywidth xwidthO); 
fprintf(ofp, "F C_onversionfactors rhodel thetadel (for rhos, thetas)O); 

/*write: C rhodel thetadel: rho=rhos*rhodel, theta=thetas*thetadel */ 
fprintf(ofp, "C %lf %lf0, pyr->levelrhodel, pyr->levelthetadel); 

/*write pyr summary: P numlevs imagesize maxlen numH numV numN numT*/ 
fprintf(ofp, "P %1d %3d ", pyr->levelnum, pyr->levelsubO); 
for (i=O; i<S; i++) 

fprintf(ofp, "%3d ", summary[O][i]); 
fprintf(ofp, "0); 

I* write level summary: L levelnum maxlen numH numV numN numT*/ 
for (lhead=pyr; lhead !=NULL; lhead = lhead->nextlevel) 
{ fprintf(ofp, "L %ld ", lhead->levelnum); 

for (i=O; i<S; i++) 
fprintf(ofp, "%3d ", summary[lhead->levelnum] [i]); 

fprintf(ofp, "O); 

/*write out lines as: HVN ys xs rhos thetas len yp xp */ 
for (rhead=lhead->level; rhead !=NULL; rhead = rhead->nextrow) 

for (shead= rhead->row; shead != NULL; shead = shead->next) 
if (shead->len > 0) 
{ if (shead->subseg->xp >= (float)subO) 

fprintf(ofp, "H ");/*horizontal*/ 

} 

else if (shead->subseg->yp >= (float)subO) 
fprintf( ofp, "V "); /* vertical *I 

else 
fprintf(ofp, "N ");/*neither */ 

fprintf(ofp, "%6.2f %6.2f %4d %3d %3d ", shead->ys, 
shead->xs, shead->rhos, shead->thetas, shead->len); 

fprintf(ofp, "%6.2f %6.2f0, 
shead->subseg->yp,shead->subseg->xp); 

/* endfor shead *I 
/* endfor rhead *I 

} /* endfor lhead *I 
fprintf(ofp, "F endO); 
fclose(ofp); 

} /* end WritePyrAspace */ 
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/**************************************************************************** 
I Final cleaning up. 
I Release all nodes of the pyramid: subsegs, linesegs, rowmarks, levelmarks 
I CALLED BY : hhough 
I INPUT : the pyramid, *pyr 
****************************************************************************/ 
levelmark *FreePyramid(levelmark *pyr) 
{ levelmark *lhead; /* a level *I 

rowmark *rhead, *rmark; /*a row of line segments*/ 
lineseg *shead, *smark; /*a line segment*/ 
featpt *fhead; /* a subsegment */ 

for (lhead=pyr; lhead !=NULL; lhead = lhead->nextlevel) 
{ for (rhead=lhead->level; rhead !=NULL; rhead = rhead->nextrow) 

{ shead= rhead->row; 
rhead->row =NULL; /*detach linesegs from rowmark */ 
while (shead !=NULL) 
{ smark = shead->next; 

} 

shead->next =NULL; /*detach head oflineseg list */ 
thead = shead->subseg; 
shead->subseg =NULL;/* detach subseg (only one left) */ 
free(fhead); /* free subseg */ 
free(shead); /*free lineseg */ 
shead = smark; /* next lineseg in list *I 

} /* endfor rhead *I 
/* delete rowmarks *I 
mead = lhead->level; 
lhead->level =NULL; /*detach rowmarks from level */ 
while (mead !=NULL) 
{ nnark = rhead->nextrow; 

rhead->nextrow =NULL; /* detach head of rowmarks list */ 
free(rhead); /* free the rowmark * / 
mead= nnark; /*next rowmark in list */ 

} 
} /* endfor lhead *I 
/*delete levelmarks */ 
while (pyr != NULL) 
{ lhead = pyr->nextlevel; 

pyr->nextlevel =NULL; /*detach head oflevelmarks */ 
free(pyr); /*free topmost levelmark */ 
pyr = lhead; /*next levelmark */ 

} 
return (pyr); 

} /* end FreePyramid *I 

/**************************************************************************** 
I derive name of output file from name of input file by changing the .ext 
****************************************************************************/ 
void DeriveName(char *ext) 
{ inti, j; 



/*derive name for output file : name.pyr */ 
i =j = O; 
while (name[i] != '.') 

i++; 
i++; 
while ((name[i] = extU]) != ' ') 
{ i++; 

j++; 
} 
/* end DeriveName */ 

/**************************end hhpost.c ************************************/ 
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F P _yramid numlevs size maxlength numH num V numN numT 
F L_evel levnumber max.length numH num V numN numT 
F HVN ys xs rhos thetas length ywidth xwidth 
F C_onversionfactors model thetadel (for rhos, thetas) 
c 0.400000 0.003068 
p 5 256 256 13 20 9 42 
L 5 256 2 10 3 15 
N 26.50 133.50 233 503 211 5.00 211.00 
v 111.50 4.00 -309 0 144 256.00 0.00 
v 119.50 80.00 -119 0 32 256.00 0.00 
v 111.50 103.00 -61 0 48 256.00 0.00 
v 119.50 100.00 -69 0 64 256.00 0.00 
v 119.50 255.00 319 0 240 256.00 0.00 
v 103.50 254.00 316 0 192 256.00 0.00 
v 119.50 146.00 46 0 32 256.00 0.00 
v 111.50 217.00 224 0 80 256.00 0.00 
v 111.50 192.00 161 0 48 256.00 0.00 
v 119.50 209.00 204 0 64 256.00 0.00 
N 205.00 79.50-211522 127 -4.00 127.00 
N 210.50 135.50-228 525 239 -9.00 239.00 
H 238.00 127.50-296 512 256 0.00 256.00 
H 239.00 127.50 -299 512 256 0.00 256.00 
L4 127 1 1 5 7 
N 1.00 47.50 290 502 95 2.00 95.00 
N 55.50 35.50 -226 8 63 63.00 1.00 
H 94.00 47.50 63 512 96 0.00 256.00 
N 1.50 191.50 293 516 127 -1.00 127.00 
N 8.00 191.50 285 500 95 4.00 95.00 
v 55.50 148.00 51 0 64 256.00 0.00 
N 181.00 39.50 -149 520 79 -2.00 79.00 
L 3 48 2 0 0 2 
H 66.00 223.50 137 512 32 0.00 256.00 
H 194.00 39.50 -186 512 48 0.00 256.00 
L 2 32 4 5 0 9 
H 3.00 111.50 290 512 32 0.00 256.00 
v 39.50 166.00 96 0 32 256.00 0.00 
v 135.50 28.00 -249 0 32 256.00 0.00 
v 135.50 32.00 -239 0 32 256.00 0.00 
v 135.50 77.00 -126 0 32 256.00 0.00 
H 157.00 47.50 -99 512 32 0.00 256.00 
H 215.00 23.50 -233 512 16 0.00 256.00 
H 199.00 239.50 -192 512 32 0.00 256.00 
v 227.50 4.00 -309 0 24 256.00 0.00 
L 1 16 4 4 1 9 
H 20.00 23.50 249 512 16 0.00 256.00 
v 47.50 167.00 99 0 16 256.00 0.00 
H 70.00 231.50 124 512 16 0.00 256.00 
H 94.00 135.50 64 512 16 0.00 256.00 
N 163.50 103.50-107 528 15 -1.00 15.00 
v 159.50 148.00 51 0 16 256.00 0.00 
v 159.50 216.00 221 0 16 256.00 0.00 
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