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Abstract—Powered wheelchair users often struggle to drive
safely and effectively and in more critical cases can only get
around when accompanied by an assistant. To address these
issues, we propose a collaborative control mechanism that assists
the user as and when they require help. The system uses a
multiple–hypotheses method to predict the driver’s intentions
and if necessary, adjusts the control signals to achieve the
desired goal safely. The main emphasis of this paper is on a
comprehensive evaluation, where we not only look at the system
performance, but, perhaps more importantly, we characterise the
user performance, in an experiment that combines eye–tracking
with a secondary task. Without assistance, participants experi-
enced multiple collisions whilst driving around the predefined
route. Conversely, when they were assisted by the collaborative
controller, not only did they drive more safely, but they were
able to pay less attention to their driving, resulting in a reduced
cognitive workload. We discuss the importance of these results
and their implications for other applications of shared control,
such as brain–machine interfaces, where it could be used to
compensate for both the low frequency and the low resolutionof
the user input.

I. I NTRODUCTION

M ANY people who suffer from mobility–impairments
rely on powered wheelchairs to get out and about. In

2000, it was estimated that there were over 11350 electrically
powered indoor/outdoor chair (EPIOC) users in the UK alone
and this number was growing steadily by over 3500 per
year [1]. However, a substantial number of users find it difficult
to operate their chairs effectively [2]. In a study of young
people using EPIOCs, Evanset al. found common accidents
that occurred included “the chair running into people” and
“banging into furniture” [3]. In another study, Franket al.
reported that over 10% of users had accidents within four
months of receiving their EPIOC [4]. This shows that there
is a clear need for the development of smart wheelchairs that
would empower people with mobility impairments to get on
safely with their activities of daily living.

Cooper et al. survey many components of wheelchair
design: everything from mechanical aspects, interfaces and
control algorithms to ISO standards that are being developed
to assist users in driving safely [5]. However, in this paperwe
focus specifically on the evaluation of shared control method-
ologies. There are many approaches to assisted mobility, for
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example, Tahaet al. [6] provide a high level of autonomation
that requires relatively little user interaction and Zenget al. [7]
provide the possibility of guiding the user along trajectories
that have previously been “walked–through”. For people with
severe physical disabilities that might prevent them from inter-
acting through conventional interfaces, Millánet al.developed
a brain machine interface [8], while Simpson and Levine have
experimented with voice control [9]. Many hybrid systems,
such as Wheelesley [10] and the NavChair [11] have also been
developed, which can switch (sometimes autonomously) be-
tween different modes of operation. Ding and Cooper present
a more comprehensive comparison of intelligent wheelchairs
in their review paper [12].

The collaborative control methodology that we have pro-
posed infers the user’s intentions from their joystick input,
based upon the affordances of the local environment [13].
In line with Nisbet’s recommendations [14], the wheelchair
only adjusts the motor control signals if the user requires
assistance to complete the desired manoeuvre safely. However,
whilst wheelchair users are driving, they are often concur-
rently interacting with their surroundings or other people. For
example, Brandtet al. found that 87% of the 111 people
surveyed used their wheelchairs to go shopping [15]. In this
example, there is a clear need for divided attention between
manoeuvring the wheelchair safely and searching for items on
shelves. Consequently, traditional evaluation metrics from the
field of robotics (e.g. speed and accuracy) are not sufficient
to determine the success of a system in such circumstances.
Instead, human factors should also be taken into account.

The primary contribution of this paper to the shared control
literature is in terms of the comprehensive human factors
analysis. We collectively examine the effects of collaborative
control by employing: joystick signal analysis [16], secondary
tasks [17] and eye-tracking [18], in addition to standard system
performance metrics. An extensive study with 21 healthy par-
ticipants and 1 wheelchair user yields statistically significant
results that confirm that the findings from previous studies are
both cumulative and repeatable over longer and more complex
tasks. Moreover, a potential end-user of the system exhibits
similar traits to the healthy subjects.

This paper begins by formalising our collaborative control
architecture and explaining our choice of implementation.
We then describe the experiments that we conducted with
able–bodied users in an office environment. The results show
that the collaborative controller enabled people to drive more
safely, whilst concurrently reducing the demands on visual
attention, cognitive workload and manual dexterity. We then
compare these statistically significant results with thoseof
a case study involving an experienced mobility–impaired
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Fig. 1. The collaborative control architecture. The symbolΨ indicates a
translational and rotational velocity tuple, whereass denotes an(x, y, θ) pose.

wheelchair user. In doing so, we find that even proficient
wheelchair users can benefit from shared control under spe-
cific circumstances, e.g. when they are under a heightened
workload, or are inattentive to the driving task.

II. COLLABORATIVE CONTROL

In contrast with discrete approaches to shared control,
whereby a cognitively disabled user was able to indicate
a final destination, to which the wheelchair would drive
autonomously [19], we are focussed towards people with
physical disabilities who can still use an analogue joystick
input, to a certain extent. A more appropriate solution for this
situation would be where the wheelchair autonomously follows
a deliberative plan, with the user intervening as and when they
wish to deviate from it [20]. However, as discussed in the
Introduction, we wanted the user to be actively involved in the
movement as much as possible. Therefore, our collaborative
control system (Fig. 1) is designed to: determine the user’s
intention; verify the desired action is safe to perform and,
where necessary, adjust the resultant control signals to achieve
the goal safely. We define a safe action as one that does not
result in a collision. If a crash is predicted, evasive action must
be taken and this is provided by our dynamic local obstacle
avoidance algorithm, which is described later in this section.

We extend the idea oforientation correction, where the
heading of the wheelchair is constrained to fall within a
certain error margin of a pre-selected goal [21], by introducing
the concept ofsafe mini-trajectories. These are dynamically
generated paths, which provide a safe passage from the current
wheelchair position to a sub-goal (e.g. through a doorway) and
primarily offer short term navigational assistance, rather than
obstacle avoidance. For example they ensure that you approach
a doorway from a suitable angle to pass through with relative
ease. In addition, rather than pre-selecting a single target, we
continuously update our prediction of the user’s intentions,
based upon both the globally pre–mapped and the locally
perceived affordances of the surroundings. In this navigation
task, the affordances are defined as areas that are navigableor
places where the wheelchair should stop.

A. Notation

Here we define the notation that will be used throughout the
following sections, when describing the individual components

of the collaborative control system. The sampling period (T )
is set to be 100 ms, since we are sampling from our data
acquisition module (DAQ), laser scanner and sonar sensors at
10 Hz on the actual wheelchair. Note that all angles are given
in radians and will be constrained to lie on the interval(−π, π].
We will be using the symbol⊙ to denote the Hadamard prod-
uct (i.e. the element–wise multiplication between two matrices
of the same dimensions). On any variable, a superscriptc

relates to the properties of the actual wheelchair, superscript
m indicates motor commands, superscriptu denotes user input
and superscriptd denotes the desired state. For example,s

d
n

denotes then-th desired pose of the wheelchair, whereass
c
n

denotes what actually happened: then-th physical pose of
the wheelchair. Translational velocities are written asv and
rotational velocities asω. We define the following vector to
hold the state information:

s :=
[

x y θ
]T

, (1)

and the input to the system is given as:

Ψ :=
[

v ω
]T

. (2)

B. Localisation

In our experiments, the wheelchair was operating in a
known, indoor, mapped environment, which, for example,
would also be typical for a home–user, or a patient in a reha-
bilitation centre. Therefore we were able to use a reliable and
inexpensive computer vision based localisation system, which
determined the position of the wheelchair with respect to
fiducials (fixed 2D paper markers) on the ceiling, as described
in [13]. A camera was positioned on the wheelchair looking
directly towards the ceiling, i.e. with its z-axis perpendicular to
the plane of the fiducials. To overcome the extremes of bright-
ness caused by the lighting, an adaptive Gaussian thresholding
function was applied to the images. Once a fiducial had been
detected in the camera’s viewport, a transformation matrixwas
computed—based upon the position, size and orientation of
the marker—that determined the cameras position relative to
that specific marker [22]. Since, in our case, each fiducial’s
position was known in the global coordinate system and the
relative placement of the camera on the wheelchair, we could
determine the pose of the chair. In practice we were able to
achieve a localisation accuracy within 5 cm and 2 ° orientation.

In cases where it would be undesirable to place markers in
the environment, approaches such as active localisation [23],
or the widely studied methods of SLAM (simultaneous local-
isation and mapping) [24] could be used. As a compromise,
in partially known environments, it may be desirable to fuse
information from several different information sources, as was
done in [19].

C. Prediction of Intent

There are many different approaches to intention prediction
and plan recognition [25], [26]. We have chosen to perform
the plan recognition using a multiple hypotheses method,
following the approach we used in action recognition and
imitation [27]. In this methodology, all the user’s known
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Fig. 2. Calculating the angle and Euclidean distance to thei-th desired target
pose (“drive through doorway”), for the confidence coefficient.

actions are represented by inverse models. Between them,
they predict in parallel the required states of the system to
achieve each of these tasks. By comparing the actual state of
the system with these predictions, we generate aconfidence
of each task being undertaken.

Our hypotheses are task based, so we manually define
targets of interest, such as the poses of doorways and desks,
which the user may wish to drive through or approach. For a
practical application, these activities of daily living could be
pre–defined by the end–user, a therapist or a family member,
according to the user’s needs.

The inverse model (Section II-E), which aims to minimise
the distance to the target and angle between the heading of
the wheelchair and the target, is instantiated for each of these
targets. This then deterministically generates the possible next
states of the wheelchair. In this experiment there wereNT =
3 pre-defined targets (each of the doorways in Fig. 6). This
results in 3 known hypotheses of the potential tasks to be
performed.

For each of theNT hypotheses, we generate a confidence
coefficient,Ci (Equation 3), which represents the confidence
of that particular (i–th) prediction being correct. This coeffi-
cient is the product of two functions: the first (Equation 4)
is computed using the Euclidean distance from the current
wheelchair pose (sc) to thei-th target (sdi ), the second (Equa-
tion 6) is based upon the heading of the chair (θc), compared
with the angle to thei-th target (φi, Equation 5), as shown
in Fig. 2. The scaling factor (µ) in Equation 6 determines the
sensitivity towards the angular error and was experimentally
set to 2.0, which yielded satisfactory tolerance.

Ci = Ce,iCθ,i, wherei ∈ {1, . . . , NT } , (3)

Ce,i = exp

{

−
√

(xd
i − xc)2 + (ydi − yc)2

}

, (4)

φi = atan2
(

(ydi − yc), (xd
i − xc)

)

, (5)

Cθ,i = exp
{

−
µ

π
|θc − φi|

}

. (6)

The exponential base functions in the confidence coefficient,
mean that it falls off steeply as spatial or angular errors are in-
troduced. The resultant function also has the desirable property
of scaling the output so that it falls on the interval (0, 1], which
makes it easy to compare competing hypotheses. However, we

also deal with the case that the user is not performing any of
the known tasks. This is achieved by introducing a confidence
threshold value,Cthresh, below which, no assistance is given.
Once this threshold has been surpassed, we apply winner–
takes–all to determine the user’s intention.

If Cthresh = 0, the wheelchair would always be attracted
to the most likely target. If0 < Cthresh < 1, there will be
some occasions when the wheelchair is attracted to a likely
target and some when the wheelchair will not be attracted to
any target at all. IfCthresh = 1, the wheelchair will never be
attracted to a target and the user will always have full control.
When predicting the user’s intended target, a lower value of
Cthresh will increase the false positive rate, whereas a higher
value will reduce the true positive rate. We experimentallyset
the confidence thresholdCthresh to be 0.2, which maximised
the trade–off between the true–positive and false–positive rates
of target detection, in the scenario described in [13]

Several hypotheses can be easily generated simply by stor-
ing the poses of interesting targets. In this set of experiments,
we take the targets to be the locations of doorways in our pre-
mapped environment (see Fig. 6). In an unknown environment,
new targets could be added automatically as new features are
incrementally added to the map [24].

D. Safe Mini–Trajectory

If a hypothesis is deemed to be correct by the intention
predictor module, a path known as the safe mini–trajectory
is planned from the current wheelchair posescn to the cor-
responding desired posesdn. There are many approaches
for solving this local path–planning problem, such as the
VFH+ [28] and look ahead planners, like the dynamic window
approach [29]. These approaches use dynamic simulations
of the vehicle to plan ahead and will be revisited for local
obstacle avoidance in Section II-H.

Similar trajectories can also be generated using geometric
approaches, such as the elastic bands method [30]. We base
our implementation on this method, where we iteratively insert
waypoints into the path until there are no intersections between
the bounding box of the wheelchair and any of the known
map features [13]. We use the bounding box approximation to
introduce a safety margin, since often the user’s limbs do not
all fall within the footprint of the wheelchair. Waypoints are
also inserted perpendicular to the door opening, to ensure an
appropriate approach trajectory. The path is then interpolated
using B-splines to create a smooth trajectory. Whichever
method is chosen, the resulting points (s

d
n) are then fed

through an inverse model of the wheelchair, which generates
appropriate controls signals to follow the safe mini-trajectory,
should such a behaviour be required.

E. Wheelchair Inverse Model

An inverse model estimates the control signals that are
required to move a system from its current state into a desired
state and is akin to a controller [25]. In our case, this means
determining the translational and rotational velocity commands
required to move the wheelchair from its current pose (s

c
n)

to the desired pose (sdn). In order to achieve this, we first
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generate a path to the target location, as previously described
in Section II-D.

Next we use a control law to move the wheelchair from
one waypoint (scn ≈ s

d
n−1) to the next (sdn) along the path.

A variety of methods to do this—such as path following with
orientation correction—are discussed in [31]. In our case,we
re–formulate our problem in polar coordinates, as described
in [32]. For the inverse model, we use the Euclidean distance
(ρn) and angle (αn) between the target position and the chair’s
current pose, in a similar manner to when we generate the
confidence coefficient (Equation 3, Fig. 2). Therefore, the error
signal vector is the difference between the target pose and the
current wheelchair pose:

en =





ex,n
ey,n
eθ,n



 = s
d
n − s

c
n, (7)

ρn =
√

(ex,n)2 + (ey,n)2, (8)

αn = atan2 (ey,n, ex,n)− θcn. (9)

An additional angular component is introduced that aims to
correct the final desired heading of the wheelchair:

βn = θdn − αn. (10)

The steady state error of the system is small, compared with
the error in the wheelchair’s sensory inputs. Therefore, since
we are concerned more with stability, we will not consider
the integral error component in our controller [33]. However,
to prevent any overshoot, we add a derivative component to
providing some damping in the control law described by [32].
This results in the following PD (proportional plus derivative)
controller, which generates the components of the desired
translational and rotational velocity tuple (Ψ

d
n):

vdn = kρρn + kdρ
ρn − ρn−1

T
, (11)

ωd
n = kααn+kββn+kdα

αn − αn−1

T
+kdβ

βn − βn−1

T
. (12)

We set the parameters by experimentally increasing the pro-
portional coefficients until there was a slight overshoot and
then we introduced the derivative coefficients with the aim
of critically damping the system. The parameters used in our
experiments were:

k = (kρ, kα, kβ, kdρ, kdα, kdβ)
= (100, 180,−15,−5, 25,−0.1).

(13)

F. Wheelchair Forward Model

We now introduce the concept of a forward model, which
describes the predicted behaviour of the wheelchair. A forward
model estimates the next state of the system, given the current
state and current inputs [25]. So in our case, the state refers to
the pose (sc) of the wheelchair, given all of its sensory inputs,
(e.g. the user input, wheel encoders, sonar, laser scanner,
camera etc.).

Forming a usable forward model is always a trade–off
between the accuracy of the prediction and the complexity of
the model. In our case, we disregard some of the peculiarities

of the wheelchair’s dynamic response for ease of computation.
Most notably, we ignore the effects of the castor wheels, but
we also disregard the effects of uneven inclines and changesin
coefficients of friction, which can cause wheel slippage [34].
These phenomena most noticeably disturb the physical rota-
tional velocity of the chair when negating the translational
velocity commands (resulting in incorrect odometry readings),
but not significantly so, when you consider the inevitably
inherent errors in the wheelchair sensors. In practice, we have
found that the simplified model works sufficiently well to plan
safe trajectories, as will be demonstrated in the results section
of this paper.

The maximum motor command values arevmmax = vumax =
100 andωm

max = ωu
max = 100, which correspond to the full

scale deflection (FSD) of the joystick along its vertical and
horizontal axes respectively. In this set of experiments, the
maximum physical speed of the chair is limited tovcmax =
1ms−1 andωc

max = π
2 rads

−1. We define the coefficient of ac-
celeration to describe how quickly the wheelchair can respond
to requests for changes in velocity; this is an inherent property
of the dynamics of the wheelchair. We experimentally found
it to beka =

[

4 4 8
]T

, such that the acceleration profile
of our model approximately mimics our actual wheelchair.
In practice, this means it takes around two seconds to reach
maximum speed from standstill.

The wheelchair state transitions are given by:

s
c
n+1 = s

c
n + ṡ

c
nT + a

c
n

T 2

2
, (14)

whereacn is defined as follows. We use the desired velocity
signals to accelerate/decelerate the model of the wheelchair
until the simulated physical velocities of the chair are equiv-
alent to the desired ones:

a
c
n = ka ⊙ (Γ⊙ ṡ

d
n − ṡ

c
n), (15)

ṡ
d
n =





cos(θcn) 0
sin(θcn) 0

0 1



Ψ
d
n. (16)

The vectorΓ is simply the scaling factor that relates the control
signals to the desired physical speed of the wheelchair.

Γ =
[

γv γv γω
]T

, (17)

γv =
vcmax

vmmax

, γω =
ωc
max

ωm
max

. (18)

G. Adaptive Assistance

If the system becomes very confident that a user is aiming
for a specific goal, but then their input begins to deviate from
the model, some assistance may be required. Alternatively they
may have changed their plans; hence the need to adapt the level
of assistance based upon the affordances of the surroundings.

Our approach is to gently guide the wheelchair towards
the safe mini–trajectory, once we are confident this is where
they are headed. Nonetheless, in a manner similar to that of
Zenget al. [35], the speed of the manoeuvre is still controlled
by the user. The speed is proportional to the component of
the amplitude of the joystick signal that falls in the direction
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determined by the intelligent controller, in order to follow the
safe path. The user is allowed to reverse backwards along the
safe path at any time, until the confidence value drops below
Cthresh, when they revert tonormal control.

In our implementation, the angular deflection of the joystick
from the centre forward position isξu, which can be calculated
as:

ξ := arctan
(ω

v

)

(19)

We compute auser gaincoefficientGu, which indicates the
magnitude of the user input in the direction of the computer–
generated safe mini–trajectory. This is the coefficient that
ensures the user is always in control of the speed of the
wheelchair. The larger the discrepancy between the user input
and the safe mini–trajectory, the slower the wheelchair will
move.

Gu = max

(

‖Ψu‖

‖Ψu
max‖

· cos(ξw − ξu), 0

)

(20)

Here, the collaborative controller combines the user input
with the control signals generated by the wheelchair’s inverse
model, based upon the confidence coefficient of the predicted
intention.

Ψ
m =

{

Ψ
u if C ≤ Cthresh

Gu
(

CΨ
d + (1− C)Ψu

)

if C > Cthresh

(21)

H. Dynamic Local Obstacle Avoidance (DLOA)

There has been much work in the field of mobile robotics
with regard to autonomous obstacle avoidance, as reviewed
in [36]. Approaches such as the vector field histogram
(VFH) [37] are often used. The VFH was later adapted to
be used in the context of a powered wheelchair by Levine
et al. [11]. However, even this extensively modified version
was reported to require a minimum of 18 cm of clearance to
pass through gaps 70 % of the time, which was not flexible
enough for performing our tasks, some of which only allowed
10 cm of clearance. Therefore we took a different approach,
similar to the Dynamic Window Approach [29] and Nearness
Diagram [38], which is based upon predicting the possible
motion of the wheelchair for the following time step. However,
since we are not navigating purely autonomously, we can look
to the user for a hint and therefore begin the search in the
direction indicated by the current user input.

We based our implementation on the forward models that
underpin our intention prediction mechanism in the collab-
orative controller. Using our forward model, we defined the
wheelchair’s safety zone to be the boundary of the area the
wheelchair would traverse in the next 100 ms time-step, plus
a velocity-dependent error margin. The zone can include the
geometric features of the wheelchair, but it should be noted,
that unlike in mobile robots and cars, the users of wheelchairs
often have limbs that extend beyond the footprint of the vehicle
This safety zone was computed in polar form, as a vector of
distances (Zw) from the centre of the wheelchair, with the
index (i) of each element representing the angle (θ) from the
heading of the wheelchair, such that:

i =

⌊

NL

2
+

θ

δ

⌋

, i ∈ Z, (22)

Fig. 3. The dynamic local obstacle avoidance (DLOA) algorithm evaluates
multiple forward models until it finds the direction that is both safe and closest
to the user’s intended direction of travel.

Require: Zw Wheelchair safety zone
Require: L Laser range data
Require: NL Number of laser readings
Require: δ Angular resolution of laser readings
Require: ξ Joystick angle
Require: Kǫ Maximum angular adjustment (we usedπ

4
)

φ0 :=
⌊

ξ
δ

⌋

ǫ := 0
repeat

∆ := φ0 +
⌊

ǫ
2

⌋

safe:= true
i := 0
while i < NL do

j := i + ∆
if j ≥ 0 and j < NL then

if Zw(j) ≥ L(i) then
safe:= false
break

end if
end if
i := i+ 1

end while
ǫ := −sign(2ǫ + 1)(|ǫ|+ 1)

until safe= true or |ǫ| > Kǫ

return (safe, δǫ)

whereNL is the length of the vector andδ is the angular
resolution of our laser scanner.

Next, we evaluate whether or not there were any intersec-
tions with the laser range dataL, which was also presented
as a vector of distances. An intersection would represent a
collision, so we must search for a direction to travel that would
not result in an intersection and is closest to the user’s intended
direction. To do this, we constructed the algorithm shown in
Fig. 3, which shiftsZw — yielding a rotation in Cartesian
space — until it finds a suitable direction, or determines there
is no safe direction. This process is illustrated in Fig. 4.

Finally, the new motor control signals are generated. If the
safe direction that is computed by the DLOA is significantly
different to the output from the collaborative control system,
the translational velocity is reduced proportionally to this
difference and the rotational velocity is set to achieve the
newly desired direction, by using the wheelchair’s inverse
model.

III. M ETHODOLOGY

The wheelchair platform that we have developed is shown
in Fig. 5a. As discussed in the Introduction and in accordance
with the recommendations of Tsuiet al. [39], when evaluating
assistive robotic technologies, it is important not only to
use traditional robotics metrics, such as speed and accuracy,
but also to consider human factors. Therefore, we indirectly
measure the user’s workload, with the help of a secondary task,
whilst we concurrently monitor their visual attention using an
eye–tracker (Fig. 5b). Questionnaires are also used to gather
feedback from the participants.

It is difficult to recruit large numbers of wheelchair users
that are suitable for participating in such experiments, which
makes it difficult to provide statistically significant results [40].
Therefore, some research groups have taken the approach of
performing an experiment with able–bodied subjects and then
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Fig. 4. As the wheelchair faces the gap between the mobile robot and
the door, the joystick is set in the straight forward position. However, if the
wheelchair’s safety zone were centred on the joystick angle, it would intersect
with the laser scan. Therefore, the dynamic local obstacle avoidance (DLOA)
module shifts it approximately 45 degrees to the right, so that the wheelchair
would head towards the open doorway

(a) Wheelchair platform (b) Secondary task

Fig. 5. In this experiment, the user controls the wheelchairwith the joystick
in their right hand, whilst performing a secondary task on the joypad buttons
with their left hand.

documenting a case study with a typical end user [35]. We
also use a sample set of able–bodied test subjects and correlate
these results with an experimental case study involving an ex-
perienced mobility–impaired wheelchair user. We recruited 21
able-bodied volunteers aged between 17 and 47 to participate
in the experiments. Each subject took about 40 minutes to
complete the trial and fill in a brief questionnaire.

A. Primary Task

Some studies have found that maze–like obstacle courses do
not always work well in user evaluations of wheelchairs [39],
so we perform our experiments in a real office environment.
The primary task involved driving the wheelchair in as safe
and effective manner as possible to complete the circuit

Fig. 6. The primary task was to drive around this circuit in anoffice
environment (the start and finish are at the same location).

shown in Fig. 6. Each lap involved performing manoeuvres in
cluttered office environments and navigating a corridor, which
resulted in passing through three doorways of varying widths.
When the wheelchair passed through the narrowest door,
there was only a total of 10 cm in clearance. The ability to
navigate through doorways without having a collision is both
a common metric that researchers use to evaluate intelligent
wheelchairs and a requirement in order to be prescribed a
powered wheelchair in some countries [41].

B. Secondary Task

Secondary task reaction times and hit rates are indirect
indicators of cognitive workload and have been widely used
in driving research [42], [43]. They have not been used
extensively in wheelchair research, yet due to the similar
nature of the task, we believe they are appropriate and yield
compelling evidence. We used the same secondary task as we
did in [17], due to the ease of quantitatively measuring the
performance and the clear results previously obtained. It was
chosen to be deliberately distracting and to require a certain
degree of visual attention. This allowed us to determine how
users might drive under increased workload.

For the secondary task, the tablet PC screen was coloured
dark blue. A single random quadrant of the screen would then
be highlighted in white, at random time intervals (bounded
between 100 ms and 500 ms), as shown in Fig. 5b. In an
effort to obtain a larger volume of reaction data whilst the
user was actually driving through the doorways, we set the
bound on the time interval to be lower compared with previous
experiments [17]. As with the previous set of trials, each
participant was told to react as quickly as possible to the
quadrant appearing. They had to press the appropriate button
on the joypad controller: i.e. the right quadrant of the screen
corresponds to the east button on the joypad; the top screen
quadrant corresponds to the north button etc.. In the case that a
correct button was pressed, the reaction time would be logged,
the highlighted quadrant would turn momentarily green, to
give the user positive feedback, before reverting back to dark
blue and the whole cycle would begin again. Conversely,
when an incorrect button had been pressed, the quadrant of
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the screen that corresponded to the incorrect button would
momentarily turn red (negative feedback) and the secondary
task would remain in the same state until the correct button
had been pressed.

C. Participant Feedback

At the end of each experiment, the participant was asked
to fill in a brief questionnaire about the experience. It was
predominantly a comparative questionnaire asking them to
indicate how strongly they agreed with each of the statements
in Fig. 13, for each control mode, on a five point Likert
scale (1 = strongly agreed, 5 = strongly disagreed). Before
considering the statements, the participants were told that
they only referred to the actual experiment (whilst they were
performing the secondary task) not to how they felt during the
training periods.

D. Experimental Protocol

First, we calibrated the eye–tracking equipment. The proce-
dure involved the participant focusing sequentially on 9 points
of a grid on the computer screen, as described in [18]. The
calibration was briefly verified, by checking that the resulting
tracked region of interest on the monitor, corresponded with
where the participant was actually looking.

The independent variable we were testing was the
wheelchair control method, which could take one of two
states: provide adaptive assistance, or provide no assistance. To
counterbalance any order effects [44], odd numbered partici-
pants undertook a set of trials with adaptive assistance before
moving on to a set of trials without any assistance. Conversely,
even numbered participants undertook the trials without any
assistance, before being introduced to the adaptive assistance
mode of operation.

Each participant was given five minutes to drive the
wheelchair around the office environment and along the corri-
dor, to familiarise themselves with the active control mode.
Next, whilst they were stationary, they were introduced to
the secondary task (the participants were told this was a
reaction game). They were then given a practice trial (one
lap of the circuit shown in Fig. 6), whilst simultaneously
playing the reaction game. It was reiterated that their main
task was to drive safely and then to play the reaction game
to the best of their ability. They were then asked to repeat
the trial, whilst we recorded the experimental data. This was
followed by a two minute break before undertaking the entire
procedure again for the remaining wheelchair control method
(either with adaptive assistance, or without assistance).The
second set of trials were identical to the first, apart from the
fact that the wheelchair control method was swapped and the
stationary practice session of the secondary task was omitted.
Each participant therefore performed a total of 4 trials (2 for
each condition and we used the 2nd trial of each condition for
the data analysis). For safety reasons, we limited the maximum
translational velocity of the wheelchair to 1 metre per second
and the maximum angular velocity to 90 ° per second.

Fig. 7. Number of collisions each user experienced under each condition.

IV. RESULTS

A. Primary Task Results

Perhaps the most safety–critical measure we can use to
quantify the performance of the primary task, is to count
the number of collisions the participant had during each trial.
Two types of collisions were observed:head–on, involving the
footplate and/or front castors, andclipping, which involved
the drive wheels or side of the wheelchair. Both types were
equally destructive, although head–on collisions generally took
longer to recover from, due to re-manoeuvring. Fig. 7 shows
that 76% of the participants had at least one collision when
they were not given any assistance. Conversely, there was only
one collision over all the trials, when the collaborative control
method was active and after investigation, this was due to
mechanical failure. The bearing–ring had broken on the front
right castor, which prevented the wheel from steering. We
replaced the bearings before continuing with any further trials.

For safety reasons, the collaborative controller never allows
the wheelchair to travel faster than the speed indicated by
the user input. This means there is an inherent cost of using
the collaborative controller in terms of the time taken to
drive a specific course. It took participants an average of
32.6 seconds (SD = 5.2) to complete each run, when not
being given any assistance and this increased by an average
of 3.7 seconds, when they performed the same task using the
collaborative control system. This was also observed in [20],
where participants took longer to complete the task using
their equivalent of collaborative control, the semi-autonomous
mode, compared with the manual and autonomous modes.
There is often a trade off between speed and safety from a
system point of view and user workload from a human factors
point of view.

Since some users required more help than others, a more
realistic measure would be the percentage increase in time
required for each person to complete the task with the collab-
orative controller active. In Fig. 8, we show the cost as the
percentage increase in the time taken to perform the primary
task when using collaborative control, as opposed to being
given no assistance. There were a few cases when this cost
was negative, meaning the user completed the course more
quickly when the collaborative controller was active. In these
cases it took longer to complete the course without assistance
due to head–on collisions that required the user to reverse
before continuing with the primary task.
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Fig. 8. Only three participants completed the primary task more quickly
when assistance was given.

Fig. 9. A comparison of typical secondary task reactions when driving with
and without control. In general, a slight increase in reaction times could be
observed when negotiating doorways and cluttered spaces, which are indicated
by the highlighted regions of the graph.

Furthermore, since we are interested in the effect of collab-
orative control on human factors, the experimenters carefully
observed the behaviour of participants, whilst they were driv-
ing. When driving without assistance from the collaborative
controller, the experimenters observed many of the participants
making rapid corrective joystick movements, which resulted in
the chair being driven inefficiently, in a manner akin to bang–
bang control [45]. However, this behaviour was not observed
when the collaborative controller was active.

We found that this phenomenon could be quantitatively
characterised by analysing the joystick signals. The smooth-
ness of movements are typically characterised by the jerk
component, which is defined as the third derivative of position,
i.e. the rate of change of acceleration [46], [47]. In line with
previous studies [16], we found that, when being assisted by
the collaborative controller, there was a statistically significant
reduction of an average of 23% in the jerk component of the
participants’ input signals (p = 0.0015). This resulted in a
much less erratic style of driving. In other studies on shared
control, joystick entropy is used, rather than jerk, but similar
results were found, albeit with only four participants [48].

B. Secondary Task Results

Typical reaction patterns are shown in Fig. 9 and as we
can see in Table I, when not being given any assistance, the
mean reaction time increases from 531 ms (SD=0.257) in open
spaces to 706 ms (SD=0.518) when negotiating doorways. In
open spaces many possible trajectories can be followed with

TABLE I
MEAN REACTION TIMES (SIGNIFICANCE: STUDENT’ S t–TEST).

Mean reaction times
Doorways Elsewhere p-value

No assistance 706ms 531ms p = 0.050
Collaborative control 521ms 470ms p = 0.254
p-value p = 0.045 p = 0.136

little constraint on precision, however the trajectory must be
much more precise when manoeuvring through doorways, in
order to avoid collisions. Our results indicate that the primary
task was more demanding at these points, resulting in a higher
cognitive workload [42], [43]. Interestingly, when using the
collaborative control method, there was not a corresponding
significant increase (for Student’st–test, p = 0.250). We
can see that compared with when no assistance is given, the
collaborative controller has significantly decreased the reaction
times from 706 ms (SD=0.518) to 521 ms (SD=0.189) when
passing through doorways and cluttered spaces (p = 0.045),
which suggests the collaborative controller has simplifiedthe
navigation task, thus reducing the user’s workload.

In keeping with our previous work [17], we find the collab-
orative controller also significantly decreases the incorrect re-
actions from 9.2% (SD=4.65) to 6.6% (SD=2.62,p = 0.032).

C. Eye–tracking Results

Initially we analysed the eye-tracking video footage manu-
ally. Fig. 10 shows some key frames as a participant passes
through the doorway without any assistance. In this case, the
participant did not check the surroundings in sufficient time
to prevent a crash (Fig. 10(c)). Consequently some reversing
and re-manoeuvring was required (Fig. 10(d)), before they
could focus on the secondary task again. After the crash, the
participant appears to take more notice of the surroundings,
as shown in Fig. 10(f).

Conversely, when the same participant was assisted by the
collaborative controller, there was no need to constantly check
the surroundings for obstacles, since the wheelchair would
re–align itself, where necessary. In this case, the participant
was able to devote much more time to focusing on the
secondary task, yet did not have any collisions. Most par-
ticipants exhibited fairly similar behaviour, spending a larger
fraction of their time looking at the secondary task when
being given assistance as shown in the histogram of Fig. 12.
Some participants did exhibit a slight increase in saccadiceye
movements when being assisted on the approach to a doorway.
However, on average these increases were not as large as
our pilot study suggested [18]. The latest results suggest
that when we added the dynamic local obstacle avoidance
(DLOA) module, participants became more comfortable with
the collaborative system.

To provide a useful quantitative analysis of the eye–tracking
results, we calculated both the horizontal and vertical standard
deviations of the points of gaze for each subject. The reduction
in the standard deviation of points of gaze when being assisted
(Fig. 11) correlated strongly with our qualitative observations
of the eye movements. On average, when driving with the
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(a) Secondary task (b) Check surroundings (c) Collision

(d) Reverse: joystick (e) Secondary task (f) Check surroundings

Fig. 10. When no assistance is given a participant crashes into the door–
frame. The points of gaze are indicated on the scene images with red circles.
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Fig. 11. When the participants were assisted by the collaborative controller,
there was a statistically significant reduction in eye–movement.

assistance of the collaborative controller, there was a 15.8%
reduction in the standard deviation of the points of gaze in
the horizontal direction and an 18.0% reduction in the vertical
direction (p = 0.001 for both the x and y directions).

D. Questionnaire Results

Each participant indicated how strongly they agreed with
each of the statements in Fig. 13 for both sets of trials (i.e.
when they were not being given any assistance and when
the collaborative controller was active). The results showthat
on average, people tended to agree that the wheelchair was
easy to manoeuvre, behaved as expected, was natural to drive
and that the reaction game was easy. They were generally
indifferent to the level of concentration required to perform the
tasks. However, there was a large standard deviation acrossthe
subjects’ answers and appeared to be little difference between
the perceptions of the system when using the collaborative
controller compared with when no assistance was given.

When doing a between subjects analysis of the results, we
found no statistically significant trends, meaning that what
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Fig. 12. A histogram showing the percentage of the trial thatthe user spent
looking at different regions of the scene image.
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Fig. 13. The degree to which participants agreed more strongly (positive
values) with each statement when using collaborative control as opposed to
being given no assistance.

some people foundeasyor natural, others did not. Since each
participant has their own personal expectations and subjective
opinions of whether a task waseasyor not, much like they
have their own thresholds of pain [49], we therefore decided
to do a within subjects analysis.

Using the same questionnaire data, we compared the Likert
ranking of each statement for the case when assistance was
given with that when no assistance was given, for each
individual participant. The graph in Fig. 13, shows how much
more strongly participants agreed with each statement, when
using collaborative control. The only question that showeda
statistically significant response(p = 0.003) was that people
agreed more strongly with the statement “I had to concentrate
hard to drive the wheelchair”, when they werenot being
assisted by the collaborative controller.

V. CASE STUDY

The quantitative data presented so far has related to trials
with able–bodied subjects. In this section, we compare these
results with those obtained from a trial with a wheelchair user.
The volunteer participant suffers from complex regional pain
syndrome (CRPS) and arthritis. This means that she cannot put
any pressure on her left leg and has difficulty using crutches
because of the complex nature of her condition. To increase
her independence, she uses a manual wheelchair to get around
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TABLE II
QUESTIONNAIRE RESPONSES FROM A WHEELCHAIR USER(L IKERT

VALUES 1 = STRONG AGREEMENT, 5 = STRONG DISAGREEMENT)

Statement Number
Q1 Q2 Q3 Q4 Q5

No assistance 2 4 5 2 2
Collaborative control 1 4 5 1 1

TABLE III
MEAN REACTION TIMES FOR AN EXPERIENCED WHEELCHAIR USER

Mean reaction times
Doorways Elsewhere p-value

No assistance 860ms 1032ms p = 0.081
Collaborative control 583ms 541ms p = 0.914
p-value p = 0.033 p = 0.013

without exacerbating her joint pains. However, she finds it very
tiring to propel herself manually for more than an hour or so.
Therefore, when she is shopping or travelling further afield,
she prefers to use a powered wheelchair. When performing the
trials with the wheelchair user, we followed exactly the same
protocol that we had previously used with healthy subjects (as
described in Section III-D).

A. Experimental Results for a Wheelchair User

The responses given to our questionnaire are recorded
in Table II. It was contrary to our experienced wheelchair
user’s expectations that whilst performing the secondary task,
she found it easier to manoeuvre with assistance from the
collaborative controller. Despite this, the wheelchair did not
behave as she expected in either trial; predominantly due to
the dynamics of the chair being quite different from her own
wheelchair [50]. In particular, to increase safety, the chair had
been speed–limited and sudden changes of direction were not
permitted (these parameters are often be set by the wheelchair
provider, when a user is assessed for a wheelchair [1]).

The participant perceived the reaction game to be easier
to play when she was driving with assistance from the col-
laborative controller. This correlates well with her increase
in secondary task performance: when not driving through
doorways, her reactions times almost halved from 1032 ms
to 541 ms (Table III).

When being assisted by the collaborative controller, the
standard deviation of the participant’s points of gaze reduced
more significantly than those of the able–bodied partici-
pants. Averaged across her trials, it reduced by 41.1% in
the horizontal direction and 45.7% in the vertical direction.
We hypothesise that this is because, being an experienced
wheelchair user, she is more aware of potential obstacles
(including pedestrians) than inexperienced users. However,
throughout the training period she became more accustomed
to the collaborative system. In her trials, she left the collision
avoidance and heading correction to the wheelchair, allowing
her to pay more attention to the secondary task.

The improvement in the percentage of incorrect reactions
was not found to be statistically significant on its own (p =
0.185), due to the limited number of trials we were able
to run. However, it does mimic the results obtained from
our able–bodied participants, with the mean percentage of

Fig. 14. An experienced wheelchair user’s pattern of reactions. Doorways
and cluttered spaces are highlighted.

incorrect reactions when using collaborative control (8.9%)
falling within the standard deviation of the results obtained in
Section IV-B. Moreover the percentage of reactions that were
incorrect when no assistance was given was even higher than
our previous findings with able–bodied participants.

Whilst performing the experiment without being given as-
sistance, the wheelchair user experienced two minor crashes.
The first occurred when she was focused on the secondary task
and tried to turn right too early as she was coming out of a
doorway into the corridor. This meant that the driving wheels
caught on the door–frame. The second time was a left turn,
entering a different office from the corridor. This time having
been travelling relatively fast down the corridor whilst paying
little attention to her driving, she approached the doorwayat
speed and slightly overshot it, bumping the footplate into the
door–frame. In both of these cases, she had to reverse and
re-align the wheelchair, in order to successfully completethe
circuit; this added to her primary task completion time.

Conversely, when the collaborative controller was active,
similar crashes were prevented by not letting the chair turn,
until it was clear of an obstacle (or door–frame). Additionally,
if the chair was approaching a narrow gap, it would proactively
slow down and align to the gap, which prevented overshooting
doorways, even if the initial approach was at relatively high
speed. Additionally, we observed a change in the wheelchair
user’s behaviour in terms of the manipulation of the joystick,
which correlated with that of the healthy participants (see
Section IV-A). When being assisted by the collaborative
controller, the jerk component in the joystick signals reduced
by 34%, which resulted in visibly smoother hand movements
and consequently more efficient trajectories.

Although on average the wheelchair user did complete the
primary driving task marginally more quickly when using the
collaborative controller, her results do not statistically signifi-
cantly contradict our findings with able bodied subjects. Both
her mean completion times fell within the standard deviation
of our experiments with able-bodied participants (p = 0.620).
The main reason that her task completion times deteriorated
when driving without assistance was due to her needing to
reverse and correct the trajectory after the collisions, which
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occurred in each of her non-assisted trials.

B. A Qualitative Analysis of the Collaborative Controller

When choosing a new wheelchair, the end user is encour-
aged to “test drive the new model in the real world, just as one
would test drive a new car on the roads” [50]. Therefore, in
addition to gaining the quantitative data from the wheelchair
user’s experiments, she agreed to assess the wheelchair from
a user’s perspective. The main advantages of our system that
she identified, was that it did proactively help with the steering
(preventing collisions), but at the same time allowed her toget
close enough to objects to interact with them. In particular, she
managed to help herself to a drink from the water cooler.

However, she did feel some points should be addressed. She
found it sometimes “overcompensated” when a collision was
predicted; this was because safety was our primary concern.
However, the sensitivity of the system could be reduced,
particularly through the use of long–term learning and user–
modelling techniques [51]. Additionally, she found that the
chair could not detect overhanging tabletops. It is difficult to
reliably detect a table, since a planar laser scanner is insuffi-
cient and sonar sensors by themselves are not reliable [52].It
may be possible to solve the problem, using other devices such
as stereo or infrared time–of–flight cameras [53], however,
reliable sensors and techniques to do this currently remainan
open area of research.

VI. CONCLUSION

We have comprehensively evaluated our shared control
system, placing particular emphasis on the human factors
analysis. A suit of tools, including: joystick signal analysis,
secondary tasks and eye-tracking has yielded statistically sig-
nificant results from 21 healthy subjects. We have shown that
our collaborative control mechanisms have enabled people to
drive the wheelchair safely, at a slight cost in time, whilstcon-
currently reducing the demands on visual attention, cognitive
workload and manual dexterity. Furthermore, we have found
that even an experienced wheelchair user who is mobility
impaired, but still able to operate a joystick with a reasonable
degree of precision, can benefit from shared control under
specific circumstances, i.e. when under a heightened workload
or inattentive to the task.

VII. F UTURE WORK AND FURTHER APPLICATIONS

People with severe physical disabilities may not be able to
interact through conventional interfaces and instead may bene-
fit from solutions such as brain–computer interfaces (BCI) [8].
However, it is difficult to control a powered wheelchair safely
and efficiently, using the BCI directly, due to the low in-
formation rate [54]. We have shown how safe and efficient
manoeuvres can be achieved, even when there is a lack of
precision in the user’s input. Therefore, collaborative control
may be the key to compensating for this in BCIs. Moreover,
initial work with a tele–operated robot has shown that a shared
control paradigm has reduced the number of BCI commands
required to follow a specified trajectory [55], which is akinto
our findings whereby using collaborative control resulted in a
reduced amount of joystick movement [16].
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