38,142 research outputs found

    Optical Tactile Probe for the Inspection of Mechanical Components

    Get PDF
    Abstract Mechanical components are often subjected to tolerances and geometrical specification. This paper describes an automatic 3D measurement system based on the integration of a stereo structured light scanner and a tactile probe. The tactile probe is optically tracked by the optical scanner by means of 3D measurements of a prismatic flag, rigidly connected to the probe and equipped with multiple chessboard patterns. Both the stereo vision system and the tactile probe can be easily configured enabling complete reconstructions of components having complex shapes. For instance, structured light scanning can be used to acquire external and visible geometries while tactile probing can be limited to the acquisition of internal and hidden surfaces

    Cortical Computation of Stereo Disparity

    Full text link
    Our ability to see the world in depth is a major accomplishment of the brain. Previous models of how positionally disparate cues to the two eyes are binocularly matched limit possible matches by invoking uniqueness and continuity constraints. These approaches cannot explain data wherein uniqueness fails and changes in contrast alter depth percepts, or where surface discontinuities cause surfaces to be seen in depth although they are registered by only one eye (da Vinci stereopsis). A new stereopsis model explains these depth percepts by proposing how cortical complex cells binocularly filter their inputs and how monocular and binocular complex cells compete to determine the winning depth signals.Defense Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (90-0175); Office of Naval Research (N00014-91-J-4100); James S. McDonnell Foundation (94-40); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Sterile neutrino search at the ILL nuclear reactor: the STEREO experiment

    Full text link
    Search for a light sterile neutrino is currently a hot topic of neutrino physics, arising from the so-called gallium and reactor anomalies, in which a deficit of neutrinos was observed with respect to expectations. Such anomalies could be explained by short distance oscillations towards a sterile state, with Δm2∼\Delta \mathrm{m}^2\sim1\,eV2^2. The STEREO detector has been designed to track the electron anti-neutrino energy spectrum distortion from 3 to 8\,MeV due to such a new L/EL/E oscillation, and should therefore confirm or reject the light sterile neutrino hypothesis. Electron anti-neutrinos produced by the compact reactor core of the Institut Laue-Langevin (ILL) will be detected in a 6-cells segmented volume of Gd-loaded liquid scintillator through the inverse β\beta-decay process. The STEREO detector is being set-up and will be commissioned in fall 2016, and start data taking soon after. In this paper we will present the final design of the detector and its status, as well as its expected sensitivity.Comment: Talk presented at NuPhys2015 (London, 16-18 December 2015). 4 pages, LaTeX, 2 eps figure

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Measuring the Depth Perception Invoked by a Simple, Sustained, Polarity-Reversed Stereogram

    Full text link
    The same-sign hypothesis suggests that only those edges in the two retinal images whose luminance gradients have the same sign can be stereoscopically fused to generate a perception of depth. If true, one would expect that the magnitude of the depth induced by a polarity-reversed stereogram (i.e. one where the corresponding figures in the two stereo half images have opposite luminance polarity) should be determined by the disparity of the samesign edges. Here we present a simple, sustained, polarity-reversed stereogram which we believe to be the first example of a polarity-reversed stereogram where this prediction is shown to be true. We conclude by discussing possible reasons why this prediction fails for other polarity-reversed stereograms.Defense Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-95-1-0657); National Science Foundation (SBR-9905194)

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented
    • …
    corecore