6,421 research outputs found

    Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport

    Get PDF
    Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Machine learning for prediction models to mitigate the voltage deviation in photovoltaic-rich distributed network

    Get PDF
    The voltage deviation is one of the most crucial power quality issues that occur in electrical power systems. Renewable energy plays a vital role in electrical distribution networks due to the high economic returns. However, the presence of photovoltaic systems changes the nature of the energy flow in the grid and causes many problems such as voltage deviation. In this work, several predictive models are examined for voltage regulation in the Jordanian Sabha distribution network equipped with photovoltaic farms. The augmented grey wolf optimizer is used to train the different predictive models. To evaluate the performance of models, a value of one for regression factor and a low value for root mean square error, mean square error, and mean absolute error are used as standards. In addition, a comparison between nineteen predictive models has been made. The results have proved the capability of linear regression and the gaussian process to restore the bus voltages in the distribution network accurately and quickly and to solve the shortening in the voltage dynamic response caused by the iterative nature of the heuristic algorithm. 

    A compiler approach to scalable concurrent program design

    Get PDF
    The programmer's most powerful tool for controlling complexity in program design is abstraction. We seek to use abstraction in the design of concurrent programs, so as to separate design decisions concerned with decomposition, communication, synchronization, mapping, granularity, and load balancing. This paper describes programming and compiler techniques intended to facilitate this design strategy. The programming techniques are based on a core programming notation with two important properties: the ability to separate concurrent programming concerns, and extensibility with reusable programmer-defined abstractions. The compiler techniques are based on a simple transformation system together with a set of compilation transformations and portable run-time support. The transformation system allows programmer-defined abstractions to be defined as source-to-source transformations that convert abstractions into the core notation. The same transformation system is used to apply compilation transformations that incrementally transform the core notation toward an abstract concurrent machine. This machine can be implemented on a variety of concurrent architectures using simple run-time support. The transformation, compilation, and run-time system techniques have been implemented and are incorporated in a public-domain program development toolkit. This toolkit operates on a wide variety of networked workstations, multicomputers, and shared-memory multiprocessors. It includes a program transformer, concurrent compiler, syntax checker, debugger, performance analyzer, and execution animator. A variety of substantial applications have been developed using the toolkit, in areas such as climate modeling and fluid dynamics

    Load Index Metrics for an Optimized Management of Web Services: A Systematic Evaluation

    Get PDF
    The lack of precision to predict service performance through load indices may lead to wrong decisions regarding the use of web services, compromising service performance and raising platform cost unnecessarily. This paper presents experimental studies to qualify the behaviour of load indices in the web service context. The experiments consider three services that generate controlled and significant server demands, four levels of workload for each service and six distinct execution scenarios. The evaluation considers three relevant perspectives: the capability for representing recent workloads, the capability for predicting near-future performance and finally stability. Eight different load indices were analysed, including the JMX Average Time index (proposed in this paper) specifically designed to address the limitations of the other indices. A systematic approach is applied to evaluate the different load indices, considering a multiple linear regression model based on the stepwise-AIC method. The results show that the load indices studied represent the workload to some extent; however, in contrast to expectations, most of them do not exhibit a coherent correlation with service performance and this can result in stability problems. The JMX Average Time index is an exception, showing a stable behaviour which is tightly-coupled to the service runtime for all executions. Load indices are used to predict the service runtime and therefore their inappropriate use can lead to decisions that will impact negatively on both service performance and execution cost

    Speedes: A Case Study Of Space Operations

    Get PDF
    This thesis describes the application of parallel simulation techniques to represent the structured functional parallelism present within the Space Shuttle Operations Flow using the Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES), an object-oriented multi-computing architecture. SPEEDES is a unified parallel simulation environment, which allocates events over multiple processors to get simulation speed up. Its optimistic processing capability minimizes simulation lag time behind wall clock time, or multiples of real-time. SPEEDES accommodates an increase in process complexity with additional parallel computing nodes to allow sharing of processing loads. This thesis focuses on the process of translating a model of Space Shuttle Operations from a procedural oriented and single processor approach to one represented in a process-driven, object-oriented, and distributed processor approach. The processes are depicted by several classes created to represent the operations at the space center. The reference model used is the existing Space Shuttle Model created in ARENA by NASA and UCF in the year 2001. A systematic approach was used for this translation. A reduced version of the ARENA model was created, and then used as the SPEEDES prototype using C++. The prototype was systematically augmented to reflect the entire Space Shuttle Operations Flow. It was then verified, validated, and implemented

    Dynamic load balancing of parallel road traffic simulation

    Get PDF
    The objective of this research was to investigate, develop and evaluate dynamic load-balancing strategies for parallel execution of microscopic road traffic simulations. Urban road traffic simulation presents irregular, and dynamically varying distributed computational load for a parallel processor system. The dynamic nature of road traffic simulation systems lead to uneven load distribution during simulation, even for a system that starts off with even load distributions. Load balancing is a potential way of achieving improved performance by reallocating work from highly loaded processors to lightly loaded processors leading to a reduction in the overall computational time. In dynamic load balancing, workloads are adjusted continually or periodically throughout the computation. In this thesis load balancing strategies were evaluated and some load balancing policies developed. A load index and a profitability determination algorithms were developed. These were used to enhance two load balancing algorithms. One of the algorithms exhibits local communications and distributed load evaluation between the neighbour partitions (diffusion algorithm) and the other algorithm exhibits both local and global communications while the decision making is centralized (MaS algorithm). The enhanced algorithms were implemented and synthesized with a research parallel traffic simulation. The performance of the research parallel traffic simulator, optimized with the two modified dynamic load balancing strategies were studied

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409
    corecore