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Abstract

The objective of this research was to investigate, develop and evaluate dynamic

load-balancing strategies for parallel execution of microscopic road traffic simula-

tions. Urban road traffic simulation presents irregular, and dynamically varying

distributed computational load for a parallel processor system. The dynamic

nature of road traffic simulation systems lead to uneven load distribution during

simulation, even for a system that starts off with even load distributions. Load

balancing is a potential way of achieving improved performance by reallocating

work from highly loaded processors to lightly loaded processors leading to

a reduction in the overall computational time. In dynamic load balancing,

workloads are adjusted continually or periodically throughout the computation.

In this thesis load balancing strategies were evaluated and some load balancing

policies developed. A load index and a profitability determination algorithms

were developed. These were used to enhance two load balancing algorithms. One

of the algorithms exhibits local communications and distributed load evaluation

between the neighbour partitions (diffusion algorithm) and the other algorithm

exhibits both local and global communications while the decision making is

centralized (MaS algorithm). The enhanced algorithms were implemented and

synthesized with a research parallel traffic simulation. The performance of the

research parallel traffic simulator, optimized with the two modified dynamic load

balancing strategies were studied.
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Chapter 1
Introduction

1.1. Research Aim and Motivations

The efficient use of distributed memory parallel computing systems require the

computational load to be evenly distributed across the computers. However,

for some classes of applications (e.g. parallel road traffic simulation, molecular

dynamic simulation, etc) the load distribution on different compute-nodes often

vary over a long simulation run, leading to a system that is unevenly distributed.

The load imbalance is caused by the dynamic nature of the applications as

simulation objects (e.g. vehicles in traffic simulation) move between the network

partitions and hence across the computers. In such a dynamic situation, even for

an initially balanced system, the system becomes unbalanced after some time.

Load imbalance leads to poor system performance because it creates a scenario

whereby some compute-nodes are relatively idle, wasting processing cycles, while

other compute-nodes remain extremely busy with computations. It would be ideal
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1.1. Research Aim and Motivations

if the busy processors could share out their workload with the idle processors in

order to improve the run-time of the application and hence the efficiency of the

system.

Therefore, in applications where load density varies across the system, load

balancing may be essential for good performance [117][16][106]. Load balancing

aims to balance the load between the compute-nodes and keep them equally

busy. This allows compute-nodes to finish computation at approximately the

same time. Algorithms for analyzing and calculating the amount of load to be

redistributed are called dynamic load balancing algorithms. Early research in load

balancing started as far back as 1970 and therefore considerable literatures exists.

However with the evolving nature of the distributed systems platforms, some

of the research issues already addressed are being readdressed. For example, in

recent times, distributed computing platform has extended from the cluster to the

Grid. This is an advantage to researchers as the Grid means more computational

power for complex applications. However, the heterogenous nature of the Grid

for example(as against the previously dominant homogenous distributed clusters)

presents challenging research in areas such as the load index of dynamic load

balancing. Load index is critical because if not accurately quantified, load

balancing can not be effective. In a heterogenous environment where compute-

nodes vary in CPU power, memory, network backbone, etc, load index must be

able to measure these parameters effectively.

The characteristics of any application under considerations also present new

design challenges that may lead to further research questions. It means that some

existing algorithms can be customized and re-used in some applications, while for

others, new designs may be needed. In this regard, studying and understanding

the application to be optimized is the first step in selecting an algorithm to be

customized.

In [94] the authors said that until now research and development in dynamic

load balancing area have been focused on the identification and evaluation of

2



1.1. Research Aim and Motivations

efficient policies for load information distribution, job transfers, and migration

decision-making. The authors also said that, current and future research emphasis

will be on the development of efficient policies for load information measurement

and distribution and placement decision-making, because these areas cause most

of the overhead of dynamic load balancing. The authors also reported that

profitability analysis is an important area of research because although dynamic

load balancing incurs overhead due to task transfer operations, a task transfer

should not take place unless the benefits of the relocation outweigh its overhead.

In view of the foregoing, this thesis concentrated mainly on the following

areas:

• design of a load index algorithm and a profitability determination algorithm

suitable for parallel traffic simulations and

• design of a centralized load balancing algorithm with global and local com-

munication characteristics, optimized with the load index and profitability

determination algorithms that are designed in this thesis.

It is observed that the design or the implementation of any load balancing

algorithm is application specific. Since the research in this thesis spans two main

fields of parallel traffic simulations and dynamic load balancing, two different

approaches can be adopted to the research:

1. Design a general purpose load balancing algorithm and use the parallel

traffic simulation to test the performance of the algorithm or

2. Study the application to be optimized (i.e. parallel traffic simulation)

and based on its properties, design a load balancing algorithm for its

optimization.

This research adopted the second method. All the research issues were

addressed with reference to traffic simulations as this is the application under

3



1.2. Introduction to Road Traffic Modelling and Simulation

investigation. While the differences between the 2 approaches may be subtle, it

is important to understand the approach adopted in this research. In other words,

while the algorithms designed in this research may be suitable to other classes of

applications, they were designed primarily with traffic simulation in mind.

1.2. Introduction to Road Traffic Modelling and Simulation

A simulation model is a representation of a physical system in terms of a set of

states and events [66][39][22]. Performing a simulation is to mimic the occurrence

of events as they evolve in time and recording their effects on the represented

system state. Computer modelling and simulation is used in many scientific

fields of study (e.g. particle physics, molecular dynamics [5], quantum chemistry,

meteorology, fluid dynamics, etc). In transportation engineering, urban traffic

analysis is a problem whose complexity requires the use of tools based on

computer simulations.

Urban transportation system presents many important challenges that have

large impacts on modern societies. Some of these problems are issues concerning

safety, delays due to congestion, pollution from vehicle emissions, and vulnerabil-

ity to human error and vehicle accidents. Traffic simulation offers the potential

to make significant contributions in alleviating these problems thereby making

urban road network more safe, efficient, and environmentally friendly. Traffic

simulations are used in research, planning, training, and development of traffic

systems [19]. Some of the advantages [67] of traffic simulation are enumerated

below:

1. Research - Traffic simulation and modelling offers the ability to study

the feasibility of systems and the benefits expected from their operation

by validating the proposed system, assessing their expected impacts and

providing the basis for sound cost benefit analysis. It also offers the ability

to study and predict unanticipated future events and traffic flow.
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1.2. Introduction to Road Traffic Modelling and Simulation

2. Traffic designs - Traffic simulations are used in various design stages:

• Design analysis - Design procedures are iterative and the designer

is often faced with frequent design refinement. Design process is

simplified by use of simulations whereby the simulation model is used

to provide detailed statistics that can form the basis for identifying

design flaws and limitations.

• Alternate designs - Traffic simulation is used to evaluate the suitability

and correctness of different designs. By asking the ‘what-if ’ questions,

traffic engineers can design a range of experimental scenarios on

different models, explore the conditions, before applying them to real

life situations.

• Testing new designs - Once a design has been approved, traffic

simulation can be further applied to test the performance of different

geometric designs before committing resources to construction. In this

way, failures and hence overall costs of constructions can be reduced.

3. Training - Simulation is used as a real-time laboratory to train operators of

traffic management centres. The simulation model, after being interfaced

with real-time traffic control equipments and telematics, acts as an envi-

ronment for real world surveillance, communication and traffic equipments.

4. Planning road safety - Simulation models can be used to recreate accident

scenarios. This provides indispensable tools to build safer vehicles and

roadways.

Traffic simulation models can be classified as continuous or discrete simulations.

Continuous simulation models the state changes of the system as it progresses

over time while discrete simulation models changes only at specific points in

time. Traffic simulations are typically dynamic in nature due to the continuous

movement of vehicles and other traffic elements in the simulation. However urban

transportation systems are modelled as discrete simulations by asserting that their

5



1.2. Introduction to Road Traffic Modelling and Simulation

states change only at certain points in time. In this way, it is possible to simulate

traffic using computer systems, which are discrete in nature. Generally, systems

that change states continually such as the movement of vehicles and pedestrians

in a simulation are better modelled in discrete time [67] if it is desired to capture

their activities on a second by second basis.

Discrete simulation models can be generally classified as: Discrete time and

discrete event simulations [100]. In discrete time simulation, time is segmented or

discretized into a succession of time intervals and within each time interval, the

simulation model computes the activities, which changes the states of selected

system elements. Discrete event simulation models systems that are idle most of

the time, or that changes state only at certain periods of simulation. For example,

the instantaneous changes in the states of traffic lights (green, yellow, and red)

can be modelled as discrete events according to the colours of the traffic light.

In this way, a considerable time is saved by recording only the state changes

rather then modelling the signal at each simulation time (as done in discrete time

simulation). Discrete time simulations usually involve more detailed specifications

and are therefore more expensive to simulate than discrete event systems.

There are three main approaches to traffic simulation models, classified

according to the level of details, which represent the system being studied. These

are referred to as Macroscopic, Microscopic and Mesoscopic [14][93][87].

In macroscopic method of traffic simulation, all traffic information is aggre-

gated into traffic streams with no distinction between the individual entities in

the simulation. For example traffic flow may be represented by some scalar values

of flow rate, flow density and flow speed [15]. The macroscopic approach is helpful

in predicting the traffic flow and analysing the traffic density and is easier and

less costly to develop, execute and maintain. It is mostly useful for analysing

a large section of simulation. The disadvantage is that they lack the detailed

calibration of real life situations. They are mostly appropriate if:
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1.2. Introduction to Road Traffic Modelling and Simulation

• The desired results are not subject to microscopic details

• The available model development time and resources are limited

• And the scale of the application cannot accommodate the higher execution

time of the microscopic model

By contrast, in microscopic simulation, the aggregate flow emerges from

the interaction of individual entities. While macroscopic simulations describe

simulation entities and their activities and interactions at a lower level of details,

microscopic models describe both the system objects and their interactions to

higher details. Microscopic traffic models demand that the individual entities

such as cars, driver behaviour, roads, traffic junctions, traffic lights etc. are

considered separately for further analysis. The basic components of a microscopic

traffic simulation models are:

• A comprehensive representation of the road network topology and a detailed

and explicit reproduction of traffic control plans

• A detailed modelling of individual vehicle/driver’s behaviour

• And the interaction between the different simulation elements

Microscopic models are useful tools in modelling traffic interactions to greater

details. They are useful in detecting, analysing and understanding a large range

of traffic problems. These make them an ideal choice for traffic planners, traffic

engineers and consultants. With the detailed model of a microscopic traffic

simulator, the traffic professionals can analyse a section of road network to

greater details and be able to deduce reasonable conclusions. Microscopic traffic

simulations include Paramics [15], Transims [78], OSSA [28][29], Hipertrans [56]

[55] and Aimsums [1]. Similarly, Madcity, the research traffic simulator is a

microscopic discrete time simulation [53] [54].

7



1.3. Dynamic Load Balancing (DLB) in Parallel Traffic Simulations

The main disadvantages of microscopic models are that they are costly to

develop, execute and maintain, when compared to macroscopic models. While

these models possess the potential to be more accurate than the macroscopic

models, the potential may not always be realized due to the complexity of their

logic and the larger number of parameters that need to be calibrated. Hence,

large-scale microscopic models lead to simulators that are slow when executed on

single compute-node systems due to the high level of modelling details involved.

A way of speeding up execution is to run the simulation on a parallel processing

platform comprising more than one compute-node.

In the last decade, several research efforts have been investigating the

integration of the good aspects of microscopic and macroscopic traffic models

into a single model called mesoscopic simulation model. In this model, the

traffic entities are defined at an abstract level of detail (macroscopic), but their

behaviour and interactions are described at a greater level of detail (microscopic).

For example, vehicles are grouped into packets and these are simulated through

the road network. The packet of vehicles act as one entity and its speed on each

road is derived from a speed-density at the moment of entry. The number of

vehicles per kilometer per lane defines the density of a road. A speed-density

function relates the speed of vehicles on the road to the density. If there is a lot

of traffic on the road, the density is high and the speed-density function will give

a low speed to the vehicles, whereas a low density will result in high speeds.

1.3. Dynamic Load Balancing (DLB) in Parallel Traffic Simula-

tions

As stated earlier, this research aims to optimize traffic simulation so it is the

starting point in the review. The review is done with the aim of finding research

problems in dynamic load balancing of parallel traffic simulation. Following the

review is the critical analysis of the dynamic load balancing algorithms used. The
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problems identified in the review are further explored in dynamic load balancing

research with a view to finding the solutions.

Transims traffic simulation implemented a Local Decision Local Migration

(LDLM) method [73] of load balancing in [88]. This is similar to diffusive method

of load balancing. In Transims, since the performance of a subnetwork only

weakly depends on the number of vehicles in the grid, a value proportional to the

number of grids handled by a segment was used as a measure of its computational

load. To estimate the load, each compute-node used wall-clock timers to monitor

the time needed to execute one time-step of the local subnetwork. The compute-

node keeps track of the time spent on different tasks such as: execution time,

idle time, graphics time, boundary time and work time [88]. In addition, each

compute-node computes the estimated load of the residing sub-net l and a

performance p. These weights are computed by simply summing over the actual

road lengths.

At the same time a compute-node receives equivalent information from its

neighbors in intervals of tlb time-steps, which is used to compute a performance

value pi=li/ti. Processor i stores those values for a certain period of time tmonitor,

from which it retrieves the minimum pi
min as its safe performance value. A safe

workload for this processor is thus Li=li/pimin, which has the unit of time period

and is used to determine the load differences with respect to its neighbors.

Tibaut Andrej et al. implemented a parallel traffic simulation with an

algorithm for adaptive load balancing [98]. Load balancing is achieved by

static distribution or dynamic redistribution of simulation load. Vehicles are the

simulation loads used here. The algorithm checks the number of vehicles on each

participating compute-node and finds out the compute-nodes with the maximum,

and the minimum number of vehicles. This information tells the algorithm about

the source (maximum number of vehicles) and the destination (minimum number

of vehicles) of load relocation.

The algorithm is a master-slave global algorithm in which a compute-node
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designated as the decision-maker takes the decisions. The decision-maker system

receives regular updates from the slaves to inform it of the states of the

systems. Based on this information, it identifies the most loaded compute-

node and the least loaded compute-node. If the load difference between these

two computers diverge much from the calculated average value, the system is

considered unbalanced. Based on this information, it initiates the calculation to

relocate the right amount of load between the two in order to balance the load.

Cynthia B. Lee et al. presented a parallel traffic simulator which is also

optimized with a global load balancing algorithm in [27]. The load on the

processor was defined as the number of cars it is responsible for. The authors

claim that using a simple load heuristic such as the number of cars is sufficient,

especially in a homogenous computing platform such as the cluster. The authors

selected a global method of algorithm as against a distributed approach (e.g.

diffusion) for the reason that, for a very uneven data, it may take longer to

reach a satisfactory distribution of the load if a distributed approach is used.

The performance of the parallel simulator, enhanced with global dynamic load

balancing was analysed and its performance compared with the simulator without

load balancing. In one experiment the performance impact of load balancing

on a balanced load was reported. In this experiment, it was reported that the

system with the load balancing performed worse that the system without load

balancing. It said that this is expected because in this case, load balancing

presents an additional overhead for a system that was balanced. Secondly, it

presented results on 3 compute-nodes where the load was unbalanced. The paper

reported that on 2 compute-nodes, there was no performance gain as a result of

load balancing. On 3 compute-nodes however, the system with load balancing

performed worse that the system without load balancing. This shows that as the

number of compute-nodes increases, the load balancing algorithm shows rather

poor performance than the system without load balancing. This obviously shows

that the algorithm is non-scalable.

In [25] Antonio Coradi et al. presented an approach adopting a ‘parallel
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objects’ environment to let users drive object allocation in parallel/distributed

architecture. A set of high level directives permits users to specify the allocation

needs of application objects. This approach was tested with a parallel simulator.

Again, the number of vehicles was used as a measure of load. The experiments

were conducted with about 500 vehicles to compare different levels of load

balancing in different levels of user directives. In each experiment, load balancing

was performed. In addition, the experiments ranges from the case of no user

intervention to cases where the user has influence on specific parameters such as

vehicle and street. Generally, it was concluded that the tool notably improved

the performance, even without any user-level directive. The paper reports that

the allocation policy pursues a load balancing goal adopting a local diffusive

algorithm: load information is exchanged within a neighborhood and allocation

decisions are limited within the neighborhood. Load balancing is triggered either

by the creation of a new object /activity or by changes in the system state (i.e.

load level changes).

1.4. Critical Analysis and Conclusions of DLB in Parallel Traffic

Simulations

All the parallel traffic simulators reviewed above employed dynamic load balanc-

ing in order to optimize the application. However, they all employed different

methods of load balancing. Two of the reviewed simulators employed centralized

methods [27] [98] while the other two employed distributed methods [88] [25] of

load balancing.

Centralized algorithms are simple to implement and have the advantage of

making better load balancing decisions because they have a good view of the

entire system. However, centralized algorithms often suffer scalability problem.

This is because as the number of compute-nodes increases, the communication

overhead increases linearly as the compute-nodes all try to communicate with
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the central decision making compute-node. They also suffer from single point of

failure which means that if the decision making compute-node goes down, the

whole algorithm collapses.

Distributed algorithms on the other hand make poor load balancing decisions

since each compute-node is only aware of its neighbours and hence make decisions

based on local information. They also suffer what is called termination detection–

this is the situation in which it is difficult to reach global balanced decision since

there is no process overseeing the overall activities of the algorithm. However,

communication overhead is less compared to the centralized algorithms and since

communication overhead presents serious performance bottleneck, distributed

algorithms are a favourite of many applications. It is interesting to note that since

these simulators did not report on their performances, there are no experimental

comparisons to support the theoretical advantages and disadvantages of both

the centralized and distributed algorithms with respect to traffic simulators. The

discussions in this respect are based on the general perceptions about the different

classes of these algorithms as reported in load balancing literatures. This thesis,

by comparing distributed and centralized algorithm, will present some results in

this regard.

Three of the algorithms [27] [98][25] used vehicles as load index. A simple

load index such as this is efficient since the overhead is less compared to when

a composite load index is used. However, it also has a disadvantage because it

implies that none of the systems takes into consideration the underlying properties

of the hardware platform used for the simulations. While this may be suitable for

homogeneous platforms, it is not suitable for heterogenous platforms where the

hardware characteristics of the compute-nodes differ considerably. That is, using

vehicles as load index is not adaptive to the hardware platform and therefore not

an accurate measure of load. This is a major shortcoming that this research aims

to address. A load index is designed to consider the properties of the underlying

hardware resources in addition to the load of the application. It is aimed at

heterogenous clusters and the grid environment. The following are the conclusions
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of the summary:

• The load index used by most of the algorithms is the number of vehicles in

the simulation. These are not adaptive to hardware platforms and therefore

especially not suitable to a heterogenous platform such as the grid.

• None of the algorithms employs profitability determination. However, this

is a critical part of a load balancing algorithm. Since every invocation

of load balancing algorithm incurs a non-negligible overhead, it is better to

minimize this process by not completing all the stages except it is profitable

to do so. Profitability determination ensures that simulation proceeds to

carry out the remaining stages of load balancing if and only if it is profitable

to do so.

• The algorithms use different methods of load calculation. In some

algorithms, this is centralized in one compute-node (centralized algorithms)

while in some other algorithms, this is distributed among the participating

compute-nodes (distributed algorithms). This implies that the algorithms

also use different communication patterns. The centralized algorithms

use a mix of both global and local communications while the distributed

algorithms mainly use local communications. However, none of the

algorithms were described in detail and also, there is no indication of which

of these methods give better performance in practice.

From the discussions above, there are no specific requirements for load

balancing of parallel road traffic simulations that are different from other

applications. However, in domain decomposition method of traffic simulations,

this research observes that a global (direct) method of load relocation between

the most loaded (maximum) and the least loaded (minimum) compute-nodes

as implemented in [98] may not be the best method. This is because in this

way, the boundary partitions are likely to increase which in turn increases the

communication overhead. This research adopted a local method of load migration
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in which load ‘diffuses’ from the most loaded compute-node to the least loaded

compute-node through its neighbours. In this way the communication boundaries

are preserved and this is capable of increasing the performance of the system

by decreasing the communication overhead. Global and local methods of load

relocation are explained in detail in section 3.10.3.

1.5. Outline of the Thesis

This thesis is organized into five chapters.

Chapter 1: Introduction

Chapter one starts with research aims and motivations. It also discusses the

research background with introduction to road traffic modelling and a review of

dynamic load balancing in parallel traffic research. The chapter concludes with

a critical analysis and conclusions of DLB in parallel traffic simulations.

Chapter 2: Literature Review of Load Balancing Research

Chapter two discusses the dynamic load balancing problem. It discusses the

taxonomy and literature review of the main contributions to knowledge–literature

review of dynamic load balancing, load index and profitability determination.

Chapter 3: Design and Implementation of Dynamic Load Balancing Algorithms

Chapter three discusses the research framework and the design considerations

necessary in any parallel simulation application. This was followed by the design

of a centralized load balancing algorithm called (MaS), a design of a load index

and a design of profitability determination. This chapter also discusses the

parallelization of the research traffic simulator using the concept of Lane Cut

Points (LCP). The implementation of dynamic load balancing algorithms were

also presented.

Chapter 4: Experimental Results and Discussions

Chapter four presents the experimental results obtained from the experiments
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and the discussion of the results. It shows that load evenness is a factor affecting

performance. It studied the behaviour of the new designs and compared with

existing strategies. It also studied the overhead, quality of load balance and

scalability of the algorithms and in all cases, comparing the performances of the

two algorithms.

Chapter 5: Contributions to knowledge and Final Remarks

Finally, chapter five discusses the contributions to knowledge, conclusions and

possible future direction for this research project.
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Chapter 2
The Load Balancing Problem and

Literature Review

2.1. Chapter Overview

In a parallel processing platform consisting of multiple processes, each process

is responsible for the computation of one or more operations as defined by

the parallel application. A task is defined as the smallest unit of concurrency

performed by the parallel program while a process is defined as an abstract

software entity executing its assigned tasks on a compute-node [115].

Generally, there are 2 basic steps to programming a parallel computer. The

first stage is decomposing the problem into tasks and the second is the subsequent

assignment of the tasks to processes. The first stage is often called partitioning

while the second stage is about mapping the processes to compute-nodes that

are available to the computation. The two steps have similar optimization
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objectives, that is, to balance the load and minimize communication between the

processes/compute-nodes [115]. The above 2 stages of partitioning and mapping

for the purpose of achieving their respective optimization objectives constitutes

the Load balancing problem. In this thesis, load balancing is discussed as an

application optimization problem.

2.2. Taxonomy of Dynamic Load Balancing

There are many classifications of load balancing algorithms and therefore so many

taxonomies exists [17][85]. The taxonomy adopted in this thesis is presented in

Fig. 2.1 and its discussions is taken from [85] and presented below. The Madcity

traffic simulator is an SPMD parallel application, therefore, this taxonomy is

chosen because it is tailored for SPMD applications. Also, the discussions of its

constituent components addresses the design issues in this thesis.

2.2.1. Time of Distribution

The criterion of partitioning data between participating compute-nodes and the

instant of time in which this partitioning takes place is defined by the distribution

policy (DP) of a load balancing algorithm for SPMD applications. Based on this

definition, the load balancing policy is said to be static if data is partitioned

before any task is executed and dynamic if the distribution of tasks to compute-

nodes occurs along the execution of the application, or if the initial distribution

of tasks can be dynamically modified. [40][111][119] presents many examples of

dynamic load balancing policies.

In static load balancing, workloads are distributed to compute-nodes at

compile time, the algorithms being based on the knowledge of the system

predicted by models. Static load balancing algorithms attempt to predict the

program execution behaviour at compile time, partition the tasks into smaller
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Figure 2.1: Taxonomy of load balancing algorithms for SPMD applications
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subtasks (with the aim of reducing communication delays), and then allocate the

subtasks to the compute-nodes. The major advantage of static load balancing is

that the overhead of the scheduling process is incurred at compile time, resulting

in a reduction in the overall execution time, compared to the dynamic load

balancing algorithms in which the overhead is incurred at run-time [94].

Optimal solutions to static load balancing are generally NP-hard [7][8]. How-

ever, under certain assumptions about processes’ behaviour and/or characteristics

of the system, there exists some theoretical results on optimal static assignments

[9][23][80][81][89]. Heuristics approaches, which searches for good solutions,

simply by some rule of thumb [10][21][71] are a common practice because they are

simple and fast. Many approximate and heuristic approaches have been proposed

[44]. Examples of heuristics are:

• Minimize communication by finding dependent processes and assigning

them to the same compute-node.

• Minimize execution time by assigning equal load distributions to computing

compute-nodes.

• Give higher priority to tasks that may be bottlenecks in the execution of

an application.

Two important, general-purpose heuristics are simulated annealing [62], and

variable depth local search originally developed by Kernighan and Lin (K-L)

[60][61]. Some methods specific to the mapping of unstructured meshes include

recursive coordinate bisection (RCB), and recursive spectral bisection (RSB)[2].

For the partitioning of generic (random) graphs, the ‘best’ heuristics are simulated

annealing and K-L. However, for unstructured meshes, K-L is substantially better

than simulated annealing, and is also much faster [75]. Static partitioning can

be often challenging. To ease the challenges of manual partitioning, software

tools have been developed. These tools are referred to as graph partitioners.

The algorithms use a graph model of the computation, while applying graph
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partitioning techniques to divide the graph among the processors. Examples of

graph partitioner are ParMETIS [91][13] and JOSTLE [101][102].

The major problem with the graph partitioners is that they are general

purpose in design and therefore may not work ‘out-of-the-box’ and customizing

them may require so much effort as it involves delving into the code to know the

software interfaces. For some researchers, a better method is to design routines

specific to the application under study. This also has the advantage of being

faster than the general purpose ones as the data structures and other software

details are tied to the specific application.

The work on static load balancing generated considerable interest in load

balancing research, but mainly suffered the following drawbacks [121]:

• Because static balancing is done at a preprocessing stage, static algorithms

cannot respond to short-term load fluctuations that may occur at run-time.

As a result, the performance improvement potential of load balancing is not

fully realized.

• Static algorithms often assume two much job information to be implemented

effectively. Even when the information is available, intensive computation

may be involved in obtaining the optimum schedule.

• Most static partitioning tools are too expensive or difficult to parallelize

and have no notion of incrementality [47]. These make them generally

unsuitable for adaptation to dynamic load balancing algorithms.

• Most static algorithms are specific to applications and not suitable to all

classes of applications

These disadvantages led to the research on dynamic load balancing, in which

the current system load is considered in determining job relocations. Because the

static method attempts to correct the load imbalance only once, it is not suitable
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to a dynamically varying computational load with unpredictable behaviour.

To improve the performance of such applications require the redistribution of

work in a time-varying, dynamic nature. Examples of such applications are

found in computational mechanics (such as particle simulations) and also in the

field of road traffic simulations. For example, the dynamic and unpredictable

vehicle behaviour in parallel simulation of road traffic. A road traffic simulation

program simulates the dynamic movement of vehicles and its interactions with

the simulation objects such as traffic lights, pedestrians, etc for a period of

time. As vehicles move between different network partitions, the computational

requirements of the processes may change from time to time. Since the processes

need to be synchronized at the end of each simulation step, an imbalanced

workload distribution will cause a severe penalty for some processes within the

step. To improve parallel efficiency, processes’ workloads have to be redistributed

periodically at run-time [115].

Similarly, particle simulation calculates the interactions among the atoms for

a period of time. At each time step, the simulation calculates the forces between

atoms, calculates the energy of the whole structure and also the movements of

atoms. Assuming that each process of the program is responsible for simulating

a portion of the system domain, atoms tend to move around the system domain,

thereby changing the computational requirements of the processes.

In general, dynamic algorithms are significantly more complex to implement

than static ones. While static partitioning tools often run in sequential pre-

processing step, dynamic load balancing must be performed on the parallel

platform. The time and memory consumed by the partitioning algorithm takes

time away from the simulation. The system also requires additional code to

determine when it is advantageous to redistribute the data so that its performance

can be monitored. Furthermore, when data is moved between the compute-nodes,

data structures must be reconstructed. All these issues add additional complexity

to the parallel application code and hence more sophisticated than the sequential

code [47].
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Despite the run-time overhead of dynamic load balancing algorithms they

have the potential to outperform static algorithms. Dynamic load balancing

algorithms have been proven beneficial in many parallel and distributed systems.

By aiming to equalize the workload among compute-nodes and minimize inter

processor communication costs, dynamic load balancing can significantly improve

the performance of a distributed system.

As the overheads of dynamic load balancing algorithms at run-time are non

negligible, in practice, it is not always profitable to aim at a global balanced

state. Sometimes, it pays to aim a little lower from the perfectly balanced state

by relaxing the requirements of load balancing to various degrees. The allowable

degrees can be set as a threshold and compared when making load balancing

decisions. In such situations there is a certain tradeoff between balancing quality

and run-time overhead. Some applications are only suitable for static load

balancing. However, it is also common for both static and dynamic load balancing

to be used in an application.

2.2.2. Distribution Policy

Dynamic load balancing algorithms are also classified based on the task distribu-

tion strategy:- demand driven and migration based. In demand-driven policies,

after the initial distribution of some of the existing tasks between the participating

compute-nodes, subsequent distribution of tasks are handled by a decision-making

node, based on the behavior of the compute-nodes [41][84][85]. The decision-

making compute-node allocates an initial set of tasks to each participating

compute-node. As the program proceeds in execution, each compute-node

requests and receives a new set of task when it finishes executing its current tasks.

The set of tasks included in each request is handled by the distribution policy

in demand-driven algorithm. The decision making compute-node can become a

bottleneck especially if the rate at which tasks are requested from it becomes high.

This high request usually increases as the number of participating compute-nodes
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increases. As a result, a solution for this scalability problem based on the use of

hierarchy of coordinators is proposed in [84].

In migration-based algorithms, after the initial distribution of all the existing

tasks between the participating compute-nodes, the algorithm strives to keep the

load balanced by transferring tasks between the compute-nodes during execution.

Transfer policy and internal information policy are always part of the migration-

based algorithms. The transfer policy defines how much tasks are to be transferred

among which compute-nodes and also the different criteria in defining the tasks

migrations. Similarly, the internal information policy (IIP) defines the internal

load index that estimates the remaining of the workload generated by the

application at each compute-node. The IIP also defines the ‘how’ and ‘how often’

this index is measured and its value communicated to other compute-nodes [85].

The major difference between demand-driven and migration-based algorithms

is that in migration-based, all the tasks are distributed at first and then the

algorithm strives to balance the system as execution proceeds. In demand-driven

some of the tasks are distributed at first and then as execution proceeds, more

and more tasks are given to the compute-nodes on request. Also, demand-driven

always requires a central coordinator for its execution while migration-based does

not necessarily need a central coordinator as load migration can also be between

neighbour compute-nodes as in the case of distributed algorithms.

2.2.3. External Load Indexes (EIP)

Parallel applications execute concurrently with other parallel and sequential

applications in a wide range of computational environments. This leads to a

variation of the availabilities of resources at different participating compute-

nodes at different time instants. Load balancing policies for such environments

must deal with this dynamic heterogeneity [85]. As a result of this, many

dynamic load balancing policies use an external load index, which estimates
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the workload generated by the competing processes. These are called integrated

policies in the taxonomy used here, because the policies take into consideration

the SPMD application in a multiprocessing environment. Integrated algorithms

use an external information policy which, in contrast to the internal information

policy, defines the external load index as well as the method and frequency of its

measurements.

Isolated policies are those algorithms that external load indexes are not

inclusive in their load balancing decisions. These policies are appropriate for

dedicated environments where the only executing processes are those generated by

the parallel application itself [36][84][111]. There are however a few exceptions, for

example, the isolated policy described in [84] is demand-driven and the external

load is indirectly taken into consideration, since the rate of requests for tasks at

each compute-node reflects its load.

2.2.4. The Scope of Load Balancing

In load balancing operation, the transfer policy of a migration-based policy defines

the possible transfer sources and destination routes of tasks. Tasks transfers

may take place between any two participating compute-nodes in global policies

[111][118][40][57] whereas local policies usually define groups of compute-nodes,

and then allow task transfers only between two compute-nodes within the same

group [111][118][40].

Typically, the information policy will reflect the scope of the policy. In global

strategies, each compute-node may have load information about every other

compute-node, whereas in local strategies a compute-node only need to have

information about other compute-nodes in its group. The scope of information is

reflected in communication costs–for global policies, the cost of propagating load

information across the entire system is typically high. The advantage however is

that the availability of global information allows load balancing decisions to be
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more precise. The reverse are true for local algorithms.

2.2.5. Local Algorithms and Group definitions

In local algorithms, groups are used to classify compute-nodes. Each compute-

node may belong to only one group [118] and a groups comprises a partition of the

set of participating compute-nodes. Since transfers occur only within a group of

compute-nodes, if no other scheme is used to allow load to be exchanged between

groups, participating schemes may result in permanent unbalance.

In neighborhood-based algorithms [40][111], groups are defined by physical or

logical topologies. Basically, each compute-node may exchange tasks with the

compute-nodes within its neighbourhood, which may be defined by the available

physical communication paths, or by the logic of the application. In this case,

a compute-node may belong to more than one group, thus allowing load to

migrate between groups. However, several executions of a neighborhood-based

load balancing algorithm may be necessary to reach a state of global load balance,

while a global strategy may allow such a state to be reached in a single execution.

2.2.6. The Structure of the Algorithm

In this taxonomy, Migration-based algorithms are also classified according to the

location where the algorithm itself is executed. If all compute-nodes take part

in the load balancing decisions and there is no central decision making compute-

node, the algorithm is said to be distributed. In this case, the load balancing

algorithm is itself an SPMD application, with its code replicated at all compute-

nodes. [40][111][119] present examples of distributed algorithms.
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Distributed Algorithms

Distributed algorithms are sometimes called the nearest-neighbour dynamic load

balancing algorithms [116][32]. At each operation, they are concerned with

the direction of workload migration between the nearest adjacent neighbours.

By exchanging an appropriate amount of workload with the neighbours, the

compute-nodes strive to enter a more balanced state. In other words, a process

compares its workload with all of its neighbours and then gives away or takes in a

certain amount of workload with respect to the load of each nearest neighbours.

Distributed algorithms are usually in two steps; firstly, the compute-nodes decide

how much load to be moved between the neighbour compute-nodes to achieve

load balance and secondly, the compute-nodes select the objects required to meet

the requirement in the first step.

In distributed load balancing algorithms, each system is autonomous in

its load evaluation decision. This results in faster decision-making process.

Also, because communication is performed within a small set of compute-

nodes, distributed methods scale well with increased number of compute-nodes.

Distributed methods are incremental by design, as they move objects only within

a small set of compute-nodes. Since the total computational time is determined by

the time required by the most loaded compute-node, a small number of iterations

is usually required to reduce imbalance to an acceptable level. When global

balance is required, however, many iterations of distributed method may be

required to spread load from a few heavily loaded compute-nodes to the other

less-loaded compute-nodes. The convergence rate to global balance is determined

by the particular local algorithm used to compute the amount of work to migrate

[47].

A review of major distributed algorithms is presented below:
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Diffusion Algorithm

A well researched class of distributed algorithms to determine the flow of work

between processors is known as diffusion. In diffusion [24][74][6][95] a process

balances its workload with all of its nearest neighbours simultaneously in a load

balancing operation. Cybenko [26] was the first to formally propose these class of

algorithms. However, the problem was being studied by several researchers from

different points of view [6][12][45][49][68] [77][114][115].

The performance of diffusion was explored in [111] and found to be superior

to other distributed load balancing algorithms such as dimension exchange and

gradient model. Like any other distributed algorithm, a critical issue with

diffusion algorithm is its rate of convergence. Several methods have been proposed

to accelerate the convergence of diffusion methods. For example, Cybenko

first studied the condition of convergence of diffusion method in [26]. Parallel

multilevel techniques have been used in [49][91][101][102]. Wheat et al. [110]

proposed using a second-order implicit finite discretization to compute work

transfers. This scheme converges to global balance in less iteration, but requires

a bit more work and communication per iteration. The method of Hu and Blake

[51][50] is used in several parallel decomposition packages [91][102]. Similar

studies performed by Boillat [95] concluded that diffusion can converge to an

equilibrium state over a number of iterations.

Gradient Load Balancing Algorithm

Gradient load balancing algorithms are explored extensively in the literature

[68][77][68]. They employ a gradient map of the proximities of under-loaded

compute-nodes in the system to guide the migration of tasks between overloaded

and under loaded compute-nodes. The basic idea is that the under loaded

compute-nodes inform other compute-nodes of their state while the overloaded

compute-nodes respond by sending a portion of their load to the nearest lightly
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loaded compute-node in the system.

In the design of this method, a computer can exist in either of three states:

lightly loaded, averagely loaded or heavily loaded. A computer, by comparing

its load to predetermined thresholds, of "low" and "high" water marks, inform

their neighbours of their status. This information is propagated to overloaded

computers within a fixed radius (typically the dimensions of the network). A

gradient map is then constructed to route work from overloaded to underloaded

compute-nodes. A major problem with this method is the possibility of

transferring too much work from the overloaded to the underloaded compute-

nodes. The authors of [77] attempted to solve this problem by doing a direct

transfer of work between the overloaded and underloaded compute-nodes. Before

doing this, it performs a check to ensure that the underloaded compute-nodes is

still underloaded before committing to the transfer. Gradient methods often lead

to undesirable behaviour and it has been shown to be inferior to the diffusion

method in its performance [111].

Dimension Exchange Model (DEM)

This diffusion-like algorithm is introduced in [26] and analysed further in

[31][113][111][42]. It is described by an n-dimensional hypercube where computers

exchange tasks with each other in each dimension. In a loop over a hypercube of

dimension n, a compute-node performs load balancing with its neighbours in that

dimension, i.e., with the compute-node whose compute-node number matches

that of the given compute-node except in bit n. The two compute-nodes divide

the sum of their loads equally among themselves. The system is completely

balanced by iterating over all the dimensions of the hypercube.

Although the dimension exchange algorithm is described in terms of a

hypercube, it can also be applied to other architecture such as meshes. The

difference is that for non-hypercube architectures, communication is non-local as
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logical neighbours will not necessarily be physical neighbours. The generalized

dimension exchange method [113] suggests using an edge-colouring to maintain

nearest-neighbour exchanges in non-hypercube architectures; however, it requires

more iterations to reach convergence. More importantly, dimension exchange may

migrate work to distant compute-nodes and compute-nodes with non-contiguous

data regions, increasing communication costs for the application code. This

disadvantage outweighs the improved convergence of the method over other

diffusion methods.

Centralized Algorithms

If load balancing calculations are performed at a single compute-node, where the

compute-nodes determine the necessary task transfers and inform the processors

involved in the transfers what they must do, the algorithm is classified as

centralized. Examples of centralized strategies can be found in [57][119].

Although the use of a central decision-making processor may lead to a bottleneck,

it is important to note that distributed strategies may require load information

to be propagated to all processors, which can also lead to higher communication

costs.

Centralized methods require more coordination and can incur high commu-

nication costs, as each compute-node needs to communicate with the central

decision maker and vice versa. These costs tend to increase non-linearly, which is

why centralized methods do not scale well. Also, because the processor designated

as the central scheduler receives update of load information from all the computers

in order to take decisions based on that information, centralized methods tend to

create a single point of failure at the central scheduler.

A review of major centralized algorithms is presented below:
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Master-Slave Algorithm

Master-slave algorithm is a class of centralized load balancing algorithms that

take the form of master-slave relationship in which a dedicated compute-node(s)

collects the load status of every slave, analyzes the average workload and

broadcasts the average to all the slaves. The slaves then do a local negotiation

and reallocation of load between its neighbours, to achieve the specified average

workload, or come as close as possible to the computed average workload [46].

Master-slave algorithm contains an inherently serial component, as the master

handles all the messages from the slaves, and computes the average workload.

In a homogeneous environment such as the cluster in which all the compute-

nodes have equal speed, the optimum way to divide the load is to have equal

load between the compute-nodes. This simple strategy minimizes communication

overhead between the master compute-node and the slaves, and results in the

fastest processing of load. The master-slave algorithm is able to achieve this aim

because it has a central view of the entire system.

Hierarchical Load Balancing Algorithms

Hierarchical methods are another class of centralized algorithms. Hierarchical

methods are explored in [49][111]. In this method, computers are initially

organized into two large groups, balanced between one another and then the

two groups are recursively divided and load balanced. At each level, the

loads of the new group are determined by having the computers grouping

themselves recursively, and summing the total loads of the subgroups. The major

disadvantage is that the algorithm inherently neglects to minimize the distance

and volume of work transferred to achieve load balance. This is particularly

true for communication intensive applications and the resulting disruption of the

existing locality in task mapping may have a severe impact.
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2.2.7. Synchronization

Distributed algorithms are further classified as synchronous or asynchronous

algorithms.

Some examples of synchronous algorithms are described in [40][111][119].

A synchronous load balancing algorithm executes simultaneously on all par-

ticipating compute-nodes. In synchronous strategy, the execution of the

SPMD application contains points of synchronism, where the processors stop

processing the application and switch to load balancing operation. Synchronous

load balancing algorithms are a natural choice for synchronous applications,

because the implementation of synchronous load balancing can benefit from the

synchronism of the application itself.

Some examples of asynchronous load balancing algorithms are described in

[59][119]. In contrast to synchronous algorithms, asynchronous algorithm can be

executed at any time in a given compute-node with no dependency on what is

being executed at the other participating compute-nodes [85].

2.2.8. Load Balancing Activation

A migration based algorithm may be activated either at a fixed frequency

(periodic) or when some specific condition is identified (event-driven or adaptive).

Periodic algorithms are activated regularly and independently of the current

workload distribution of the system. The interval between two activations may be

dictated in three ways; by time, by the execution of a fixed number of operations,

or by some other criterion [85]. The algorithms in [40][57] present load balancing

strategies for synchronous applications where the load balancing algorithm is

activated after a given number of iterations is executed.

The interval between two subsequent activations hugely affects the efficiency
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of a periodic load balancing algorithm. This is a non-trivial problem because if

the interval between activations is too large, the system may remain unbalanced,

with idle compute-nodes, for an intolerable period of time [85]. Similarly, a small

interval may result in unnecessary activations of the algorithm, and consequent

waste of processing time. Either extremes can give poor performance, but setting

the right period is non-trivial.

To reduce the overhead of initiating load balancing at regular intervals, the

adaptive method may be employed. The adaptive method tries to determine

when it is best to balance the load. This is often triggered by either a lightly

loaded compute-node (receiver initiated) or by a heavily loaded compute-node

(sender initiated) based on some specified threshold values [111] or the absence

of further tasks to be executed by one of the compute-nodes [119][59].

2.2.9. The Target Compute-node

Task transfers in a migration-based load balancing algorithm can be classified

into two algorithms. Collective algorithms aim at balancing the load of a group

of compute-nodes while individual algorithms aim to correct the load at a single

compute-node by electing the compute-nodes with which it is to exchange load.

Examples of collective algorithms are described in [40][111][119] while examples

of individual algorithms are presented in [40][59][111].

In individual algorithms, a location policy (LP) is included as part of the

transfer policy, to determine which compute-nodes must exchange load with the

overloaded or under-loaded compute-node [85].

2.2.10. Transfer Direction

The direction of tasks transfer can be classified into receiving and sending.

Individual receiving strategies find new tasks to be executed by an under-loaded

32



2.3. Critical Analysis and Conclusions of Review of Load Balancing Algorithms

compute-node. The location policy in this case tries to identify overloaded

compute-nodes from which the underload compute-node can receive tasks. As

a contrast, sending strategies focus on overloaded compute-nodes. The goal of

the location policy is to identify under-loaded compute-nodes to which tasks can

be sent. Examples of sending strategies are described in [40][111] while examples

of receiving strategies are described in [59][111].

2.2.11. Location Policy

Finally, location policies are classified into individual non-blind algorithms and

individual blind algorithms. Non-blind policies take into considerations the load

indexes of the candidate for load exchange. External load index, internal load

index, or both kinds of indexes may be taken into account. Examples of non-blind

load balancing algorithms are in [40][111].

Blind algorithms, on the other hand, do not consider any load indexes. In

many blind algorithms, compute-nodes are selected for workload exchange on a

random or round-robin basis. Some examples of blind load balancing algorithms

are described in [40][59].

2.3. Critical Analysis and Conclusions of Review of Load Balanc-

ing Algorithms

Load balancing algorithms were reviewed with bias given to those types of

algorithms reviewed in parallel traffic simulation in section §1.3. Below are the

summary of the findings:

1. Static load balancing algorithms: These algorithms do not suite a time-

varying dynamic load situation such as traffic simulation and hence found

insufficient. They are useful just before the simulation starts but over a
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long period when the load becomes unbalanced, due to the dynamic nature

of the traffic, the algorithm are no longer sufficient to correct the imbalance.

2. Dynamic load balancing algorithms: These are suitable to the time-varying

dynamic traffic situations of parallel traffic simulation as they are capable

of keeping the system continually balanced and hence capable of improving

and maintaining the performance of the system. Many applicable dynamic

load balancing algorithms already exist in the literature review. However,

all of the algorithms would need to be modified to adapt them to any

required application. The two main classes of algorithms investigated are

discussed below:

• Centralized algorithms: These classes of algorithms are suitable for parallel

traffic simulation. This is confirmed by the fact that many of the reviewed

traffic simulations in section §1.3 use this method. The most widely used

algorithm in this category is the master-slave algorithm. From the literature

review, it is reported that the algorithms exhibit good decision-making

because they are capable of ‘seeing’ the global view of the entire system.

Their reported disadvantage is that they do not scale well as a result of

various slave compute-nodes communicating with the master compute-node.

However, none of the reviewed traffic simulators evaluated the performance

of this method.

• Distributed algorithms: Many distributed algorithms exist in the literature

review and suite the properties of traffic simulation. They are reported to

have good scalability, which is an important feature of any load balancing

algorithm. The only problem with them is that since there is no central

control, achieving a global load balance would usually require several

iterations and is often difficult to achieve.

A table summarizing the review of dynamic load balancing algorithms is presented

in Fig. 2.2.
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Load Balancing 
Algorithm 

Type of 
Algorithm 

Advantages Disadvantages 

MaS Centralized • Good view of the system  
• Easy to develop 
 

• Non-scalability 
• Overhead as a result of global 

communications with the 
coordinator 

 
Hirachical 
Balancing 
Method (HBM) 

Centralized • Reduced communicational 
overhead as compared to 
MaS  

• Improved scalability as 
compared to MaS 

• Global balance involves 
coordination between the 
different groups. Quality of 
load balance may be less than 
MaS. 

•  
Diffusion Distributed • less communication 

compared to centralized 
algorithms 

• good scalability 

• restricted view of the system  
compared to centralized 
algorithms 

• more difficult to control 
compared to centralized 
algorithms 

• convergence is more difficult to 
achieve 

 
Dimension 
Exchange 

Distributed • less communication 
compared to centralized 
algorithms 

• good scalability 
• improved convergence over 

diffusion 

• restricted view of the system 
compared to centralized 
algorithms 

• more difficult to control  
compared to o centralized 
algorithms 

• likely increase in 
communication cost as a result 
of maintaining non-contiguous 
data regions. 

 
 

Gradient Model Distributed • less communication 
compared to centralized 
algorithms 

• good scalability 
 

• restricted view of the system  
compared to centralized 
algorithms 

• more difficult to control  
compared to centralized 
algorithms 

• too much work likely to be 
migrated from one overloaded 
computer to another under 
loaded computer 

 
 

Figure 2.2: Summary of Literature Review
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Reasons for Selecting the Algorithms

• From the review of parallel traffic simulation, it was observed that two of the

reviewed simulators employed centralized methods [27] [98] while the other

two employed distributed methods [88] [25] of load balancing. However, none

of the authors described the algorithms in detail as to be reused or applied

to other traffic simulation research. The reason for this may be because

most algorithms are application specific.

• In the reviewed traffic simulations, there is no performance comparisons

between the centralized and distributed algorithms. One of the aims of this

research is to study and compare a centralized algorithm with a distributed

algorithm. The idea is to see how the two classes of algorithms compares

with each other in parallel traffic simulation research.

• Among the distributed algorithms studied, diffusion was selected because:

1. It is widely reported to have better performances over the other

distributed algorithms [108].

2. Diffusion is also reported to be simpler to implement than the

dimension exchange and the gradient model algorithms.

3. The fact that in diffusion, each node can balance its load simultane-

ously with its immediate neighbour (unlike dimension exchange, for

example) suites traffic simulations.

• MaS is selected based on the following reasons:

1. The structure of MaS algorithm fits well into that of SPMD Madcity

parallel traffic simulations.

2. Compared to distributed algorithms, MaS algorithms are simpler to

implement. This is mainly because the logical control and coordination

of the simulation is designated to the master processor.
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The above reasons for selecting MaS seems to give it an advantage over

the distributed algorithms but whether these advantages are reflected in its

performance is left to be studied later in the thesis. Since MaS algorithm has a

generic structure, it is the other components of the algorithms that decides its

novelty. For example, theMaS designed in this thesis is unique in its features (the

load index and PD are new) and hence considered a new design. Its work transfer

calculation, which is based on the most loaded compute-node, is also novel. The

work transfer calculation supervises the transfer of load between the neighbours

to ensure that load ‘diffuses’ from the most loaded compute-node through its

neighbours to the least loaded compute-node.

Reasons for not Selecting the other Algorithms

As stated above, the main motivation for selecting MaS and diffusion algorithms

is because while both of them are used in the revised parallel traffic simulations,

there is no report on their performances. As such, this thesis aims to study the

performances of these two algorithms. This reasons excludes the use of other

algorithms which have never been used in traffic simulations. The aim is to

study and know the performances of these algorithms before studying the other

algorithms that have never been used in traffic simulation research.

Secondly, in the case of distributed algorithms, since diffusion is reported

to have the best performance compared to dimension exchange and gradient

model, the aim is to study its performance in parallel traffic simulation before

investigating the other algorithms. Similarly, MaS fits perfectly well with SPMD

parallel traffic simulation which is not the case with hierarchical algorithms.

Moreover, the fact that hierarchical algorithms regroups over and over again

would complicate the communication structure of the parallel simulation and

maintaining the neighbour partitions would be more difficult each time the

computers are regrouped.
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2.4. Review of Load Indices in Dynamic Load Balancing Research

As the name indicates, load balancing is simply about balancing ‘the load’ on the

distributed system. To obtain an effective load index, an accurate measure of the

quantitative load on the compute-nodes need to be measured. The accurate and

efficient measure of load is a key issue and a prerequisite for any load balancing

algorithm. Load information is usually measured by what is called a load index.

The higher the value of the index, the heavier the load on the compute-node,

hence the less desirable it is to transfer jobs to it. Balancing the load means

removing load from the most loaded compute-node to the less loaded compute-

node[121]. Although simple in concept, a good load index that accurately reflects

the system’s load, is very difficult to quantify [121]. This is mainly due to

the complexity of a computer with multiple resources and the different resource

demand patterns of the various jobs [121].

Load indices can be classified based on, whether it is a single index (specific)

or a combination of indices (generic). Specific indices involve obtaining a single

value and, according to some authors, they are useful in specific cases, imposing

lower overloads [64]. Generic indices involve the joining of two or more values.

These are recommended by some authors when enough information is known

about the application or about the objectives of the scheduler [64][121][76][72].

Generic load indices, in addition to displaying a greater tendency to overload, are

not expected to show the same quality of workload representatives as correctly

utilized specific indices.

A wide variety of load indices have been explicitly or implicitly mentioned

in the literature review. For example, the CPU queue length was used as the

load index in [121][37][112][79]. Some other authors used the CPU utilization

[64].Other possibilities include the normalized response time(defined as the ratio

between the response time of a process on a loaded machine and its response

time on the same machine when it is empty), the remaining processing time of

all the jobs running on a host [112], the processing time accumulated by the
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active processes, and the total processing time of the active processes [72][112].

Functions of the above simple variables have also been used in [115][64]. In a

number of studies in which reducing job response time was the objective of load

balancing, the estimated response time was used as the load index [72].

In [64] Kunz evaluated the performance achieved by the scheduler when load

is balanced in relation to six load indices, and found that the best index is the

number of processes in the queue of the processor (processor queue length). In

another experimental evaluations, Kunz used aggregated load indices (generic)

and found that these load indices did not improve the system’s performance in

comparison to the linear indices (specific). He also discovered that they also

caused overloading when obtaining the various linear indices that would make up

the aggregated indices. These studies were all done on a homogeneous cluster

[72].

Generic or composite load indexes are achieved in several ways. In [72]

a mathematical relation expressing all the factors of interest is used as load

index and weights assigned to the various factors. Higher weights means

greater influence in the load balancing decision and this depends on the resource

utilization of the application. e.g. for applications that are memory intensive,

higher weights are given to memory utilization. In the relation below, the

properties of the hardware platform that are of importance to the load index

(LI) are the utilization of CPU (CPUutilization), Memory (Memoryutilization), Disk

(Diskunitization) and Network (Networkutililization).

LI = f(CPUutilization,Memoryutilization, Networkunitization, Diskutilization)

Each of the factors are characterized individually and then substituted in the

equation to obtain a sum which varies between 0 and 1. The factors can be

characterized by means of the operating system utilities. A threshold value is set

which is used for comparing the load in different compute-nodes.

In [35], several load indices are also integrated into one load index. Length
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of load vector is taken as the load index and each task has a resource demand

vector. For each node, when a new task is received, the load index calculates the

sum of tasks’ resource demand vector and node’s load vector. It then selects the

node whose sum of the load vector is shortest to be destination node for the task.

[35] [11] present another way to integrate different load information into single

load index. The load index uses available memory amount, RAM, as threshold,

and calculates the sum of all the tasks minimum memory demand, denoted as

MT. When MT < RAM, it uses CPU queue length, L, as load index, otherwise

it sets load index to critical, CT, as if CPU were overloaded so that the system

refuses to accept new task. This load index could balance utilization of CPU and

memory resource, to enhance system performance. But because the load index

requires the task’s minimum memory demand information, applicability of this

load index is limited.

Studies in [97] get static weight of load information through experiments,

then used weighted sum of load information to be system load index. Load

index decided through experiments can obtain excellent system performance

when task resource demand characteristic is stable. But load index’s flexibility

is restricted. If task resource demand characteristic changed, load index need

to be reconstructed manually. The literature review generally recommends the

adoption of a load index consisting of the average few essential characteristics of

some resources over a given time frame, reducing the possibility of choosing a

value that does not correspond to the system’s real state.

2.4.1. Critical Analysis and Conclusions of Review of Load indexes

Every application has a basic primary load unit (e.g. vehicles in traffic simulation,

molecules in molecular dynamics) which is internal to the application. Every

other load index can be considered as external to the application (e.g. CPU

queue length, memory, network bandwidth, hard disk, etc). The fundamental
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aim of a load balancing algorithm is to improve the application runtime and this

can be done either with the internal or the external load indexes. A combination

of internal and external load indexes are also possible. In such a case, weights

are usually assigned to each of the indices and the weight assigned varies from

application to application. For example, if a composite load index comprises

of CPU and memory utilization, higher weights are given to CPU utilization

in applications strictly CPU-Bound (e.g meteorological weather simulation) and

higher weights given to memory utilization in applications that are strictly

memory-bound (e.g 3D image rendering)[72]. In fact, if this load index is used

in an application that is 100% CPU-bound, memory is assigned a weight of 0

which then makes a composite load index a specific load index. This means

that the parameters that have greater influence on load index depends on the

characteristics of the application under consideration.

Single load indices (specific) are simple and reported to have better perfor-

mance than composite ones(generic) as the overheads of these are much less than

for composite ones [64]. Of the six different load indices reviewed and analysed by

Kunz in this paper, CPU queue length was reported to have the best performance.

Most of the reviewed load indexes were originally designed for homogeneous

systems(e.g. clusters). In recent times, many researchers have extended the

algorithms to the heterogenous systems such as the grid platform[43][63]. The

algorithms are adapted to take advantage of the different heterogeneous nature of

the cluster such as different CPU capacities, varying memory sizes and different

network bandwidths.

What recent researchers fail to address in their algorithm design is that many

of the algorithms did not include the load of the application. Most of them

consider the parameters of the hardware platform but fail to address the load of

the application. At the same time, a few other researchers only include the load of

the application and nothing else. For example, the load index used by majority of

all the reviewed traffic simulations with dynamic load balancing is vehicles. While
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this is simple and efficient, it can only work effectively in a homogeneous cluster.

In a distributed platform such as the grid, it does not take into consideration the

heterogeneous nature of the grid platform and the dynamic load of the compute-

nodes. For example what happens if a compute-node that is say 70% busy had

3000 vehicles but another compute-node that is say 30% busy had 4000 vehicles?

In this example, simply using vehicles as the only load index would attempt to

remove 500 vehicles from the 30% compute-node to the 70% compute-node in an

attempt to equalize the vehicles. If the system load is inclusive in quantifying the

load however, the system would be aware that the 70% system may not be ready

for more vehicles at this time.

The design in this thesis aims to consider the load of the application (such

as vehicle in traffic simulation) in the design of the algorithm in addition to the

system load. The system response time load index captures both the load of the

application and the system load. This design is intended to be suitable for both

homogeneous and heterogeneous systems. However, even though the designed

load index is intended to work on both the homogenous and heterogeneous

distributed platform, the heterogeneous characteristics of the grid would be

created on the cluster(further work could test it on a real grid platform). This

is suitable because in a homogenous system, the system’s hardware resources

may be similar but depending on the load of the individual computers, the

available resources may differ. In other words, most applications and tasks in the

homogeneous system are heterogeneous in nature because they consume different

amounts of resources (some applications run for short or long time duration and

use different percentage of the CPU time and memory). In addition, a synthetic

load would be used to vary the resource usage of the cluster therefore creating a

grid-like environment.
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2.5. Review of Profitability Determination (PD) in Dynamic

Load Balancing Research

Load balancing incurs additional run-time overhead to an already poorly

performing unbalanced system. To minimize the additional overheard, a cost-

benefit analysis is performed to ascertain if it is profitable to undertake load

balancing. That is, if the predicted improvement in the system performance after

load balancing is more than the overhead from the load balancing algorithm.

A periodic load balancing without PD implies that load balancing would be

attempted at every period. This is simply not efficient because load imbalance is

not the only criteria for performing load balancing. The imbalance must be high

enough to warrant its operation.

Many load-balancing algorithms use a version of the gain criteria from the

algorithm of Kernighan and Lin (KL) [60] to select objects to transfer [47].

For each of the compute-node’s objects, the gain of transferring the objects to

another compute-node is computed. For example, to minimize edge-cuts, the

gain can be taken as the net reduction of cut edges if the object is transferred to

the new target compute-node. The set of objects with the highest total gain is

selected for migration. Objects are selected until the sum of their work loads is

approximately equal to the work transfer computed by the load-balancing phase.

In some variants of the KL algorithm only objects on sub-domain boundaries are

examined for transfer [47].

The element selection priority scheme of Wheat [109] is an example of a KL-

like algorithm with uniform object and edge weights. Gain is measured by edge-

cuts in the graph. All transfers of objects are one-directional, so collisions (the

simultaneous swapping of adjacent objects between two compute-nodes which

counteracts their individual gains) do not arise. In [30], Wheat’s work is extended

by weighting the edges by frequency of communication and the objects by their

computational load. To reduce migration costs, high-gain objects with the largest
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computational loads are selected for migration [47].

In [65] a cost benefit heuristics was designed for SAMR application which

provides a very conservative estimate of the amount of decrease in execution

time that will occur from the redistribution of load resulting from the DLB. To

determine if a global redistribution is invoked, an evaluation model is required to

calculate the redistribution cost and the computational gain. The cost and gain

of the algorithm are calculated thus:

Cost: The redistribution cost consists of both communicational and com-

putational overhead. The communicational overhead includes the time to

migrate workload between compute-nodes. In order to adaptively calculate

communication cost, the network performance is modelled by the conventional

model, that is Tcomm = α + β + L, where Tcomm is the communication time,

α is the communication latency, β is the communication transfer rate, and L

is the data size in bytes. The heuristic scheme sends two messages between

groups, and calculates the network performance parameters α and β. If the

amount of workload needed to be redistributed is W, the communication cost

would be α + β + W . To estimate the computational cost, the scheme uses

history information, that is, recording the computational overhead of the previous

iteration. If the cost is denoted as δ, the total cost for redistribution is: Cost =

(α + β +W ) + δ.

Gain: The scheme predicts the computational gain by a heuristic whereby

the global load redistribution is invoked when the computational gain is larger

than some factor times the redistribution cost, that is, when Gain > (γ) x Cost.

Here, (γ) is a user-defined parameter (default is 2:0) which identifies how much

the computational gain must be for the redistribution to be invoked.

In [108] the authors proposed using historical improvement of past load

balancing methods as a basis for formulating the advantages of performing

dynamic load balancing. The time required to load balance can be measured

directly using available facilities. The expected reduction in run time due to
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load balancing can be estimated loosely by assuming efficiency will be increased

to 100 percent or more precisely by maintaining a history of the improvement

in past load balancing steps. If the expected improvement exceeds the cost of

load balancing, the next stage in the load balancing process should begin. The

problem with this method is that it is expensive as a result of the time required

to go through all the historical data each time.

In [111], during the profitability determination phase (triggered by a compute-

node’s load estimate or timer expiration) a decision is made as to whether or not

to invoke the load balancer. The load imbalance factor φ(t) is an estimate of

the potential speedup obtainable through load balancing at time t [14]. It is

defined as the difference between the maximum compute-node loads before and

after load balancing, Lmax and Lbal, respectively. φ(t) = Lmax − Lbal. A decision

on whether or not to load balance is made based on the value of φ(t) relative

to the balancing overhead, Loverhead, required to perform the load balancing. In

general, load balancing is profitable if the savings is greater than the overhead,

i.e., φ(t) > Loverhead.

2.5.1. Critical Analysis and Conclusions of Review of Profitability deter-

mination

From the above revisions, most of the algorithms employ heuristics to calculate

the gain of performing load balancing. Since different applications employ

different heuristics to suit the properties of their application, most of these

are application specific. It is also observed that some of the above reviews

used calculations to determine PD. For example, in [65], separate calculations

were used to estimate gain and cost, taking few network parameters into

considerations. The disadvantages of such method is the additional overhead

associated with too many calculations. This thesis designed a novel profitability

gain algorithm/method based on the most loaded compute-node in the system

since the most loaded processor determines the run-time of the application. This

45



2.6. Chapter Summary

thesis used a methodology of doing the PD calculations off line. By setting the

load threshold off line, it is expected that PD would add very minimal overhead

to the overall load balancing overhead.

2.6. Chapter Summary

This chapter discussed load balancing problem and review of state of the art of

dynamic load balancing algorithms, load indices and profitability determination

algorithms. The chapter also presents a comprehensive taxonomy of load

balancing in SPMD applications along with its discussion. Combining the

information in this chapter with the review of parallel traffic simulation in chapter

one, the following conclusions have been made regarding the major work of this

research:

• Design a suitable load index and a profitability determination(PD) methods

for parallel traffic simulation

• Design a centralized dynamic load balancing algorithm, enhanced with load

index and PD.
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Chapter 3
Design and Implementation of Dynamic

Load Balancing Algorithms

3.1. Chapter Overview

This chapter presents the research framework and a discussion of its components.

It then discusses the factors affecting the design of parallel and distributed

processing such as graph partitioning, synchronization, communication overhead

and load balancing challenges. The partitioned data must be distributed across

the loosely coupled processing environments and processed concurrently for high

performance, yet the processes require timing and scheduling coordination. Also,

the logical processes need to communicate with each other. By far, a load

imbalance in the overall distributed system presents the most serious factors

that affect performance. This chapter discusses the above mentioned design

constraints and goes further to design a load index and a profitability determinant
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3.2. The Research Framework

for dynamic load balancing algorithms. These were used as building blocks in

the design of a centralized master slave(MaS) dynamic load balancing algorithm

and the enhancement of diffusion algorithm with the designed building blocks, to

correct load imbalance in the research parallel traffic simulation.

3.2. The Research Framework

 

Application ( Madcity Parallel Road Traffic Simulator) to 
be augmented with dynamic load balancing 

Operating System (Linux) 

Cluster ( Mut) 
 

Message Passing Library ( PVM) 
 

Figure 3.1: The Experimental Research Framework

This section presents a simplified research framework and the discussions of

the different parts of the framework. The framework for the research platform is

shown in Figure 3.1.

3.3. The Mut Cluster

The University of Westminster (UoW) has a 32 comute-node cluster called Mut.

The head-node is a Sun V20z, 2 X AMD Opteron 250 (64) bits processor, 4GB

memory, 2 x 73 GB hard disk and running Suse Linux Enterprise (SLES) 9

operating system. The 32 compute-nodes are Intel Xeon 2.8Ghz processor, 512
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3.4. The Carmen Cluster

memory, 36Gb hard drive and running Suse Linux Enterprise 9 operating system.

The compute-nodes are connected to the head node by a 10Gbps Infiniband

[70][69] interconnect fabric. The cluster runs Parallel Virtual Machine (PVM)

[96][3][33], the parallel programming API used for this research project.

3.4. The Carmen Cluster

Close to the end of completing the thesis, the Mut cluster was replaced with a

much faster and larger 64 compute-node cluster. Most of the experiments were

performed on Mut but a few others were also done on Carmen, after Mut was

decommissioned. As a result, in each experiment, the hardware platform would

be specified and if not specified, the default is Mut. This is important because

even though the behaviour of the algorithms are identical on both clusters, the

time it takes to run the experiments differ.

Carmen is a 64 compute-node cluster with Spiderman as the head-node. The

head-node is an IBM x3455 series, each featuring 2x Dual core AMD Opteron

2281 Rev F 2.6GHz processors, 2x 80Gb hard drives and 4GB Memory. The

64 Compute-nodes are also IBM x3455, each featuring 2x Dual core AMD

Opteron 2218 Rev 2.6GHz processors, 1x 80Gb hard drive and 4GB Memory

with Infiniband adaptors fitted. The compute-nodes are running SuSe Linux

Enterprise 10 operating system. Also, the compute-nodes are connected to the

head-node by a 10Gbps Infiniband interconnect fabric. The cluster runs Parallel

Virtual Machine (PVM) the parallel programming API used for this research

project.
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3.5. Madcity Traffic Simulator

 

Figure 3.2: Traffic Simulation of the Hyde Network

3.5. Madcity Traffic Simulator

The research traffic simulator, Madcity, available for research purposes, is

developed by the center for parallel computing (CPC) at the University of

Westminster (UoW). It is a discrete-time based microscopic simulator, organized

around a compound data structure that represents the road network. The road

network is modelled as a collection of interconnected junctions. Junctions are

interconnected through roads where each road may have multiple traffic lanes.

The road network also contains representation of traffic control equipment (e.g.

traffic lights).

Traffic is represented as a set of vehicle objects that use the road network.

A vehicle object consists of a set of attributes that identify the vehicles and its

coordinate position, speed, distance etc. This enables every vehicle to keep a

record of essential vehicle data, necessary for the simulation.

At the start of simulation, vehicles are distributed randomly through the lanes.

The total number of vehicles are stored in a vehicletotal variable. At each step of

the simulation, each vehicle is moved according to a set of simple localized rules to
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3.5. Madcity Traffic Simulator

compute its new state and new position. In this, account is taken of the vehicle’s

surrounding conditions. For example, proximity to a slower vehicle ahead will

influence the speed of the vehicle. The ability to read the surrounding conditions

is made available through the network structure. The overall complex pattern of

the urban traffic emerges from the simple local actions of the individual vehicles.

Vehicles travel until they come to the end of the lanes. At this point, vehicles

decide which of the outgoing lanes to join. This decision is made by a simple

randomisation function. The decision to change lanes is also affected by the colour

of the traffic light. As in real life, red light implies that the vehicles wait until the

light turns green, which may be in the next simulation step. After the decision,

vehicles are removed from their current lane and inserted into the destination lane

and simulation continues. A typical simulation scenario, simulating the town of

Hyde in UK is shown in Fig. 3.2.

3.5.1. Load in Madcity Traffic Simulation

To understand what constitute the load in Madcity traffic simulator, an

experiment was performed with the sequential Madcity on a single compute-

node. For a fixed network size, the number of vehicles were varied and in each

increment, the simulation was run for about 5000 steps and the run-time taken.

Figure 3.3 is the result of the experiments. As can be seen in the graph, the

run-time increases linearly as the number of vehicles is increased. This shows

that vehicles constitute the load in Madcity. Henceforth in this thesis, the load

of the system refers to the number of vehicles in the simulation. This simplified

metric allows saying in general that "if compte-node A has a load of 1600 vehicles

and compute-node B has a load of 1000 vehicles, there is need to relocate 300

vehicles from compute-node A to B to achieve load balance".
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3.5. Madcity Traffic Simulator
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Figure 3.3: Effect of Load on the Run-time of Madcity

3.5.2. Manhattan Network Generator

The Manhattan legacy code is an application to generate inputs for the Madcity

simulator: a ‘road network file’ and a ‘turn file’. The Madcity road network file is

a sequence of numbers, representing the topology of a road network. The number

of columns, rows, unit width and unit height can be set as input parameters

to this component. The Madcity turn file describes the junction manoeuvres

available in a given road network. Traffic light details are also included in this

file.
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3.6. Constraints in the Design of Parallel Applications

3.6. Constraints in the Design of Parallel Applications

For an effective parallel application, the following design factors must be carefully

considered in the design stages of the algorithm.

3.6.1. Graph Partitioning/Domain Decomposition of Parallel Applications

An important step in parallel processing is the decomposition of the problem

domain and/or data into different sub-domains. The sub-domains are distributed

to different compute-nodes for simultaneous parallel executions. Adjacent

processes exchange information by message passing during the computation.

For example, in Single Program Multiple Data (SPMD) domain decomposition,

each program is replicated to all the participating compute-nodes while each of

them have different data subset. SPMD applications have the structure of a

master slave program in which the master process supervises and coordinates the

general working of the program. The compute-nodes does the calculations and

communicate with each other through message passing.

Efficient execution of simulations on distributed-memory machines requires

the mapping of the data domain onto the compute-nodes with two main aims,

known as the optimal conditions [90].

• Equalize the number of domain elements assigned to each compute-node

and

• Minimize the inter-processor communication required to perform informa-

tion exchange between adjacent compute-nodes.

In order to compute a mapping of a network domain onto a set of compute-

nodes via graph partitioning, it is first necessary to construct the graph that

models the structure of the computation. Given a weighted, undirected graph
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3.6. Constraints in the Design of Parallel Applications

G = (V,E) (3.1)

where each vertex (V) and edge (E) has an associated weight, the n-way graph

partitioning problem is to split the vertices of V into n disjoint sub-domains so

as to satisfy optimal conditions.

In traffic simulations, the road network is modelled as a graph where road

junctions are represented by the vertices and the roads by the edges connecting

the junctions. Each road has a set of directed lanes because the directions of

the vehicles are important. For every junction there are associated numbers of

outgoing roads connecting these junctions.

A vertex exists for each road junction, and an edge exists on the graph for

each road between the road junctions. Partitioning the vertices of the graphs

into n disjoint sub-domains provides a mapping of the road junctions and the

roads into n compute-nodes. In the situation in which the number of vehicles is

proportional to the number of roads, if the partitioning is computed such that

each sub-domain has the same number of roads, each compute-node will have an

equal amount of work.

The total volume of communications incurred during parallel processing is

proportional to the number of edges that connect vertices in different sub-

domains. Partitioning should therefore be computed so as to minimize edge cuts.

For n road junctions and p compute-node, there are different ways to assign n

junctions to p compute-nodes, but considerations should be given to partitions

that best satisfy the optimal conditions.

Consider for example the simple example of the road network topologies shown

in Figures 3.4 and 3.5 where the road network has been reduced to a mesh for

simplicity. In the figures, the black dots represent the road junctions while the

lines represent the roads connecting the junctions. It is possible for the roads to

have more than one lane connecting the junctions but for simplicity, only single
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lane have been represented. 
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Figure 3.4: Regular Vertical Graph Partitioning
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Figure 3.5: Regular Horizontal Graph Partitioning

In the figures, the road network topology has been partitioned into two

partitions (sub-domain A and sub-domain B) in two different ways, each with

equal load distributions (equal junctions) but different edge-cuts. In Fig. 3.4,

each partition has 4 edge-cuts. During parallel computation, the compute-node

corresponding to sub-domain A will need to send the data for vertices 1, 2, 3

and 4 to the compute-node corresponding to sub-domain B and likewise, the

compute-node corresponding to sub-domain B will send data for vertexes 5, 6,

7 and 8 to the compute-node corresponding to sub-domain A. Similarly, in Fig.
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3.6. Constraints in the Design of Parallel Applications

3.5, each partition has 14 edge-cuts. The compute-node corresponding to sub-

domain A will need to send the data for vertices 1, 2, 3 . . . 14 to the compute-node

corresponding to sub-domain B and likewise, compute-node B will send data for

vertexes 15, 16, 17 . . . 28 to compute-node A. This equals 4 units of data to be

sent in Fig. 3.4 and 14 units of data to be sent in Fig. 3.5.

Considering the number of edge-cut and hence the communication required

between sub-domain A and sub-domain B in both cases, it can be seen that

Fig. 3.4 has a superior partitioning strategy and should be capable of producing

better performance than Fig. 3.5. This is because, while Fig. 3.4 requires

communication between 4 data element, Fig. 3.5 requires communication between

14 data elements.

A computational optimization is to group all the data into one communication

buffer and then send the message at once. Still, the buffer required for sending

a message in the second diagram would be larger than the buffer required for

the first diagram, and since message latency is proportional to the size of the

message, Fig. 3.4 would still perform better than Fig. 3.5.

3.6.2. Domain Replication Method of Parallel Applications

A method similar to domain decomposition is called domain replication which is a

method that store the network file redundantly on all the participating compute-

nodes and allocate each compute-node a different set of junctions [86]. Each

compute-node simulates junctions that have the same junction ID as the process

ID of the compute-node. The redundant part of the network file that is not

simulated occupies a part of the memory and this is a disadvantage but its simpler

to implement than domain decomposition. In this method, at load balancing, the

compute-node that needs to give part of its junctions to another compute-node

would do two things:

• Reassign the junctions with the process ID of the new compute-nodes and
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• broadcast the new network information to all the compute-nodes so they

can equally update their respective network.

Domain replication was adopted in the parallelization of Madcity traffic

simulator. This is a simple and efficient method. The only disadvantage is that

the size of the road network that can be used is restricted by the size of the

memory which holds the entire road network on every compute-node.

3.6.3. Communication Overhead in Parallel and Distributed Systems

Parallel processing platforms are architecturally divided into shared-memory

multiprocessor systems and distributed-memory multiprocessor systems. In the

shared-memory architecture, all the processors have access to the same memory.

The main problem with shared memory systems, however, is that they do not

scale well due to contention issues resulting from every processor trying to access

a single memory bus. For small numbers of processors, collisions are minimal but

increase linearly as the number of processors increase.

In the distributed-memory system, each processor is an independent entity

and has its own processor and memory. The compute-nodes are then connected

together through a network backbone. Distributed memory systems have no

memory bus problem because each processor has full bandwidth from its own

local memory. Thus, it can scale to large number of processors. The size of

the system is constrained only by the size of the network backbone. However,

exchange of information between the processors is more difficult than in the shared

memory architecture. Processors communicate by message passing, in which each

processor has a private local memory in order to keep the variables and data, and

thus can access local data very rapidly. If an exchange of information is needed

between the processors, the processors communicate and synchronize by passing

messages which are simply send and receive instructions. In order to send a

message a computer has to perform the following procedures:
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• Pack the message into a send buffer and send the message to the destination

compute-node.

• The message travels through the network backbone and is received at the

destination compute-node into the receive buffer.

• The destination compute-node unpacks the message into an allocated

variable.

The disadvantage of message passing is the time delay associated with each of

these phases. These delays are referred to as the communication overhead of

parallel applications and constitute a major performance degradation of parallel

applications. As a result, it is often said that communication is expensive.

As explained in (section §3.6.4), in Madcity, apart from the initial communi-

cation in sending the road network between the compute-nodes, communication

is also performed at the end of every simulation time step. Communication at

this stage involves sending the vehicles crossing from one partition to another.

Since communication is expensive, it is optimized in Madcity by use of Lane

Cut Points (LCP)(section §3.10.1). To optimize the communication phase, at

the end of every simulation step, boundary roads and junctions are checked for

every vehicle crossing from one partition to another, and put into an LCP vehicle

buffer. Buffering all the vehicles and sending them at once (instead of sending

the vehicles individually) helps to reduce communication overhead. Once this is

done, the vehicle buffers are exchanged (i.e send and receive operations) between

the compute-nodes.

3.6.4. Synchronization of Parallel and Distributed Systems

Computational synchronization is always required for data dependencies and

strict ordering. When it is absolutely necessary to guarantee that operations

happen in exactly a particular sequence, and in particular that communications
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are properly interspaced with the computations they cooperate with, one can

exercise maximum degree of execution control by using mechanisms which impose

strict temporal ordering on the operations they bound. This ensures that steps

are taken in exactly the sequence defined, and/or with the greatest possible degree

of synchronization [48][100].

In synchronous synchronization, no member of parallel computation is allowed

to advance its simulation clock until all other members have acknowledged that

they are done with computation for the current period. This takes the first

approach to providing a global ordering of events by preventing out of order

events from being generated. In this system it is impossible for inconsistencies

to occur since no member performs calculations until it is sure it has the exact

same information as everyone else [48].

Synchronous simulation is simple and easy to implement but there are trade-

offs between simplicity and performance; the simplicity of synchronous algorithms

comes with a potential cost in performance. Since the critical paths lie with the

slowest compute-node at each iteration, idle time can accumulate at the other

compute-nodes and the total execution time is lower bounded by the execution

time of the slowest compute-node in each iteration.

Synchronous simulation cost includes computation cost, communication cost

and idle time waiting for others to finish task execution. Waiting time is

exacerbated by unequal load distributions in the system because simulation is

lower bounded by the most loaded compute-node in the system. Compute-nodes

with light loads have short execution times but will have to wait for the longest

executing compute-node before all of them can proceed to the next time step.

After each time step, all the compute-nodes exchange messages. A common

implementation of synchronous synchronization is barrier synchronisation [48].

The concept is simply that all processes in some group must reach a certain point

in execution of their code before any is allowed to proceed beyond that point

[99][83]. Getting pass the barrier allows a process to deduce, locally, that the
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whole group has reached a common, global, state.

Barrier synchronisation consists of 3 main phases:

• Computation phase - performing the computational tasks associated with

the application

• Idle phase - time between first and last compute-node in the group

• Synchronization phase - time to complete the barrier synchronization

operation

Computation starts on all compute-nodes immediately following the barrier

synchronization. During this phase, each compute-node executes all the tasks

assigned to it at that iteration. At the end of the computation phase, each

processor enters a barrier and waits for its completion. The idle phase is a result of

variation in computation times between processors due to imbalances in workload

as the algorithm progresses, multitasking other unrelated processes (background

load), or processor heterogeneity. Synchronization time is determined by the

communication performance of the parallel platform in completing the barrier

synchronization. After the barrier synchronization completes, the processors

proceed to the next iteration, repeating the cycle until the algorithm completes

[38].

Madcity, the research traffic simulator is a synchronous traffic simulator that

employs barrier synchronisation. Synchronisation is at the end of every simulation

time step. At this stage, each compute-node does the following;

• Check the end of every boundary road and junctions and for every vehicle

crossing from one partition to another, put it into a vehicle buffer. Buffering

all the vehicles and sending them at once (instead of sending the vehicles

individually) helps to reduce communication overhead
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• Exchange (i.e send and receive operations) the vehicle buffer between the

compute-nodes. This is the communication phase and its explained in more

detail in section §3.6.3 above.

• Wait for every other processor to reach this stage before proceeding to the

next simulation step. This is enforced by barrier synchronisation.

As explained above, the use of barrier synchronisation means that load

evenness is very important for efficiency since the most loaded processor

determines the overall simulation time of the Madcity simulation step. The aim

of load balancing algorithm is to equalize the load between the processors and

achieve better performance.

3.7. The Design of Dynamic Load Balancing Algorithms

J. Watts and S. Taylor [107] describe a typical dynamic load-balancing algorithm

as follows:

Begin Load-balance

EVALUATE load for each task and determine how much is needed

for balance

If PROFITABLE to load balance

CALCULATE work/load transfer between computers

SELECT loads to meet those transfers

MIGRATE selected task to their new computers

End if

End load-balance

This algorithm constitutes five main phases namely load evaluation, profitability

determination, work transfer calculation, load selection and load migration
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[107][108]. The 5 phases were used as a guide in the design considerations for the

various phases of the dynamic load balancing algorithms that follows.

3.7.1. Load Evaluation Strategy

From experimental results in section (§3.5.1) it has been observed that the number

of vehicles is a measure of the load in the research traffic simulation, hence its

load index. This is because the run-time of the simulation is proportional to the

number of vehicles. Using only vehicles as load index is simple and efficient. The

problem with using vehicles as the only measure of load is that it does not give a

complete indication of the total load of the compute-node in which the simulator

is being run.

This may not be very important in a homogeneous system but it is particularly

important in a heterogenous system where heterogeneity arise as a result of the

constituent components in the compute-node and the network such as hardware,

software, interconnection network, OS, etc. Even though the importance of these

variables vary, all of them can affect load characterization. For example, whenever

a system resource, such as a CPU or a hard disk, is occupied by a transaction

or process, it is unavailable for processing other requests. Pending requests must

wait for the resources to become available before they can complete. The higher

the percentage of time that the resource is occupied, the longer each operation

must wait for its turn [52].

As Figure 3.6 shows, the service time for a single resource increases

dramatically as the utilization increases beyond 70 percent. For example, if a

transaction requires 1 second of processing by a given resource, it can be expected

to take 2 seconds on a resource at 50 percent utilization and 5 seconds on a

resource at 80 percent utilization. When utilization for the resource reaches 90

percent, the transaction can be expected to take 10 seconds being serviced by

that resource. As a result of this shortcoming of using vehicles load index, a
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response time load index was designed in this thesis and this is disscussed below:

Design of a Response Time Load Index (RTLI)
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 Figure 3.6: Factor Increase in Application Run-time for a Single Component/Resource as a
Function of Resource Utilization

The identification of appropriate loads with the purpose of considerably

increasing the utilization of idle resources is proven an important point to be

considered in the design of any load balancing algorithm. It was stated in the

literature review that for a load index to be effective, it must reflect accurately,

or at least as closely as possible, the state of the evaluated resources [72]. Single

value load indexes are simple to use (ref §2.4) but the problem is that no single

factor can completely quantify how unbalanced a system is. Composite load

index are better in quantifying the load of a system but the problem is that they

are time consuming and since load balancing aims to incur as little overhead as

possible, composite load indexes are not desirable.

As can be seen in Figure 3.6, for example, the performance of an application

(e.g. Madcity) is also affected by the hardware parameters of the compute-node

such as the processor utilization, etc. For effective load balancing, therefore, the

load index must take into consideration both the load of the application and

the hardware utilization of the parallel processing platform. That is, application

run-time (RT) is a function of both the Resource Load (RL) and the Application
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load (AL). The response time load index is simple yet meets this requirement and

gives an accurate load index to the load balancing system. In other words, RTLI

implicitly measures both AL and RL.

Response time load index(RTLI) is therefore defined as the run-time per

simulation time step. If the run-time per simulation time-step of a simulation is

known, it can be used to predict the time to complete the simulation. Response

time is therefore a measure of both the AL and RL of the system and hence its

load index. However in moving load between the compute-nodes to balance the

system, vehicles are relocated between the compute-nodes. The load imbalance

and the load to relocate are determined in seconds, but this needs to be converted

into an equivalent number of vehicles to be relocated.

The explanation of the usage of RTLI is presented in the pseudo code and the

algorithm below.

Pseudo Code of the Response Time Load Index

1. At periodic DLB initiation, each compute-node measures the time per

simulation step (response time load index (RTLI). Please note that RTLI

measures both AL and RL). It uses the value to calculate the run-time per

vehicles per step (RTpervehicle) using equation 3.2 below:

RTpervehicle = RTLI

Nodevehicles
(3.2)

where:

RTLI = response time load index and

Nodevehicles = total vehicles in the compute node

2. Each compute-node sends the ID and RTLI to the decision making

compute-node.

3. The decision making compute-node receives RTLI and IDs from all the
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compute-nodes. It performs work transfer calculation, using RTLI, it resets

LBAdvice buffer and then stores the load relocation information for every

compute node in the LBAdvice array. This is broadcast to all the compute-

nodes. Note that it is important to reset LBAdvice buffer at each load

balancing step because previous historical data are not used in making load

balancing decisions.

4. Each compute-node receives LBAdvice from the decision making compute-

node.

5. Each compute-node extracts, from LBAdvice, load for its left and right

neighbours into the variables Loadleft and Loadright respectively. Load is

in seconds.

6. Loadleft and Loadright are converted back into a number of equivalent

vehicles (vehiclestorelocate) using equation 3.3.

vehiclestorelocate = Loadrelocate
RTpervehicle

(3.3)

where

Loadrelocate = Loadleft for left neighbour balance

= Loadright for right neighbour balance

7. Each compute-node uses the value in step (6) to decide on the vehicles to

relocate to its neighbours in order to achieve balanced load.

8. Continue with load balancing.
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Response Time Load Index (RTLI) Algorithm

Algorithm 1: The Response time Load index
Input: Set of tasks and processors

Output: Load Index

if Am MASTER then1

Receive RTLI and ID from every participating compute-node;2

Initialise LBAdvice array to zero;3

Do load transfar evaluation, using RTLI, and store in LBAdvice. Send LBAdvice to4

all workers.;
end5

else if am the WORKER then6

Measure my time per sim step i.e. response time load index (RTLI);7

Calculate RTpervehicle = RTLI/Nodevehicles;8

Send MyID and RTLI to the MASTER process;9

Receive LBAdvice from the MASTER process;10

Extract information for my left and right neighbours into Loadleft and Loadright11

respectively;

Convert the load for left and right neighbours which is specified in seconds into12

equivalent vehicles;

Left neighbour vehicles = Loadleft/RTpervehicle;13

Right neighbour vehicles = Loadright/RTpervehicle;14

Select load to meet the requirements of my left and right neighbours;15

Continue with load balancing;16

end17

Resume Normal Simulation;18

From algorithm 1 above, RTLI was converted into vehicles, the primary load

index in Madcity (see section 3.5.1 ). But RTLI is not only restricted to traffic

simulations–it can be adapted to other simulations such as molecular simulation

and just like in Madcity traffic simulation, the algorithm would also need to

convert RTLI into an equivalent primary load index(e.g no of molecules).
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3.7.2. Profitability Determination (PD)\Load Balancing Activation

This was discussed in section 2.2.8. Load balancing is capable of improving the

performance of a system but not always. Profitability determination is the aspect

of the load balancing algorithm that quantifies the potential gain in performance

of an intended load balancing operation. But Can the cost of load balancing be

quantified ahead of load balancing operation? This is one of the issues that this

thesis addressed. The logical processes in the research parallel traffic simulator

synchronize at the end of every simulation step. Synchronization points therefore

provide a natural clean point at which to initiate load balancing followed by a

decision to decide if the current load imbalance is worth proceeding with load

balancing operation.

3.7.3. Design of a PD Based on the Most Loaded Processor

As discussed in section 3.6.4, the bottleneck in a synchronous simulation always

lies with the most loaded compute-node in the system. The design in this thesis

is therefore aimed at the most loaded compute-node (Nodemostloaded). The ideal

load of every processor in a distributed system is the average load (AvgLoad) in

the system. That is, for a perfectly balanced system, every compute-node must

have average load. This implies that for the most loaded processor, for example,

its load is given by equation .

Nodemostloaded = AvgLoad+ x (3.4)

where x is the load above average.

Ideally, x must always be redistributed because for every x above the average,

some other processors are short of x either individually or collectively. But as

discussed in section §3.6.3, it may not always be profitable to relocate x as a

result of communication and computational overheads, except when it is above a
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certain value.

The real question therefore is: what is the minimum value of x in the most

loaded system, which when relocated, would give performance improvement? x

can be investigated by some mathematical relations and it can also be investigated

by heuristic methods but those would incur additional overhead. This research

used a method whereby a threshold value, called PDthreshold is obtained prior to

load balancing operation. If the threshold value is correctly determined, it would

guarantee load balancing benefits in most cases. PD is therefore expressed as

shown in algorithm 3.5 below.

if(x >= PDthreshold) dynamicloadbalance() (3.5)

where:

x = Nodemostloaded − AvgLoad

dynamicloadbalance() = Dynamic load balancing routines

PDthreshold = AvgLoad× pdpercentage (3.6)

pdpercentage is the percentage of the average load at which load balancing is

profitable. Note that pdpercentage is determined by experimentation.

Equation 3.5 means that in the most loaded processor, if the load value above

average is greater than or equal to a load threshold value, determined by a

percentage of the average load, then load balancing is most likely to result in

performance improvement and not otherwise.

Profitability determination is thereby defined as an estimation of load balanc-

ing gain determined by setting a load threshold as a percentage of the average

load, such that when the load above average of the most loaded processor is above
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this threshold value, load balancing is likely to result in improved performance.

The threshold value is determined by experimenting with various percentages

of the average value at which load balancing yields performance improvement.

This is done outside load balancing operation and hence not part of the load

balancing overhead. As stated earlier in this thesis, load balancing injects

additional time into the system in an attempt to reduce its run-time. This is done

in anticipation of the overall gain that is expected as a result of the additional

time. An obvious way to do this is to perform some of the work off line in a

preprocessing stage to the simulation. However, since load balancing is dynamic

in nature, not all aspects of the load balancing algorithm can be done off line.

PD is one aspect of the load balancing algorithm whose threshold value can be

obtained prior to the simulation to reduce its overhead.

Pseudo Code of the Profitability Determination (PD)

The load PD algorithm is a master-slave and as such has both the master and

the slave component.

The master performs the following:

1. At periodic DLB initiation, the master node receives ID and load from every

participating compute-node

2. Sorts the load to determine the most loaded compute-node

3. Picks the load of the most loaded compute-node (nodemostloaded)

4. Obtains PDthreshold and the average load from the system (AvgLoad)

5. Calculates x (x = nodemostloaded - AvgLoad)

6. Defines an integer variable for storing PD decision (PDdecision) and

initialises it to zero. By default, it is assumed that load balancing is not

profitable and no values are stored to influence future decisions
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7. Compares x with PDthreshold

8. If x is greater than PDthreshold, sets PDdecision to TRUE and send PDdecision

to the compute-nodes

9. If x is less than PDthreshold, sets PDdecision to FALSE and send PDdecision

to the compute nodes

The slaves does the following:

10. Send ID and load to MASTER

11. Receive PDdecision from MASTER

12. If PDdecision == TRUE the compute-nodes perform DLB

The PD algorithm is presented below:
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PD Algorithm

Algorithm 2: The PD Algorithm
Input: Set of tasks and processors

Output: PD Decision

if Am MASTER then1

Receive ID and load from every participating compute-node;2

Sort the load to determine the most loaded compute-node;3

Pick the load of the most loaded compute-node (nodemostloaded);4

Obtain PDthreshold and the average load from the system (AvgLoad);5

Calculate x (x = nodemostloaded - AvgLoad);6

Define an integer variable for storing PD decision (PDdecision) and initialise it to7

zero;

if x ≥ PDthreshold then8

set PDdecision ← TRUE;9

send PDdecision to WORKERS10

end11

else12

set PDdecision ← FALSE;13

send PDdecision to WORKERS14

end15

end16

else if am worker then17

Send my ID and my load to MASTER;18

Receive PDdecision from MASTER;19

if PDdecision == TRUE then20

Perform DLB;21

end22

end23

Resume Normal Simulation;24

3.7.4. Work Transfer Calculation

This step is the core of load balancing operation so it would be wise to ensure

that load balancing is profitable before carrying out this operation. work transfer
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can either be calculated locally by the individual compute-nodes or centrally by

a designated compute-node, having obtained the load from all the computers.

Both strategies are investigated in this thesis. As discussed in section §3.5.1, the

primary load index in Madcity is vehicles but since another load index has been

designed in this thesis, load can refer to either vehicle or response time.

The aim of work transfer calculation is to correct load imbalance by estimating

how much load each compute-node should give out or receive in order to maintain

the average load (AvgLoad), which every processor should ideally have. To achieve

this, AvgLoad is compared with the current load of a processor (SysLoad) to

estimate how much a processor has deviated from the system average-load-per-

node. That is,

Load imbalance = SysLoad− AvgLoad.

The Centralized (MaS) Algorithm

In this algorithm, the designated decision making compute-node creates an array

in which it places the IDs of the compute-nodes in the order as they appear in

the parallel simulation and then perform load balancing decisions on them. That

is, compute-node ID 1 is the first in the array, and so on. The left and right

neighbours are represented by array index of myID-1 and myID+1 respectively.

Compute-node one has no myID-1 neighbour and the last compute-node has no

myID+1 neighbour. Load balancing decisions are performed on this array after

which the array called LBAdvice, is broadcasted to all the compute-nodes. Note

that LBAdvice is initialed at the beginning of the algorithm as the values are not

stored to influence future load balancing operations. The interesting thing with

this algorithm is that load balance is achieved all in one time step. The algorithm

is based on the most loaded processor in the system. The most loaded processor

is picked, load is redistributed between the neighbours and then searched again

until all the processors have been able to redistribute their loads.
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In load relocation, the most loaded processor can either find the least loaded

processor and then relocate its load directly to it (direct method) or it can do

that in a stepwise manner through its immediate neighbours (stepwise method).

Either method has its own advantages and disadvantages. For the direct method,

the process of relocation is quick but the resulting road network could lead to

poor performance since the general structure of the network would be disrupted

such that a partition might end up having more neighbours than it had previously.

This could eventually add to the complications and the communications overhead

of sending vehicles from one partition to another. The stepwise method on the

other hand may take longer to balance the load but the resulting road network

boundaries may be preserved, leading to better performance.

The algorithm is as follows:

Algorithm 3: The Work Transfer Calculation of Centralized Algorithm
Input: Set of tasks and processors

Output: Load Balance Advice, LBAdvice
. if Am MASTER then1

Receive ID and load from every participating compute-node;2

Sort the load to determine the most loaded compute-node (NodemostLoaded);3

(in this way, the left and right neighbours is ascertained);4

for i← to l do5

Pick NodemostLoaded;6

Get its neighbours;7

Calculate x (x = NodemostLoaded - AvgLoad);8

Redistribute x to the neighbours of NodemostLoaded;9

Remove NodemostLoaded from the list;10

Sort the load of the remaining processors;11

end12

end13

else if am worker then14

Send ID and my load to the MASTER process;15

end16

Resume Normal Simulation;17
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3.7.5. Load selection and Load Migration

The selection policy selects the most suitable processes for transfer while the

migration policy performs the actual reallocation of load between the participating

compute-nodes [115]. The selection policy takes into account the transfer

overhead, and the extra communication overhead that may be incurred as a result

of the load redistribution in the load balancing operation. For example, in traffic

simulations, the splitting of tightly coupled road junctions could generate high

communication requirements during computer computation and consequently

may outweigh the benefits of load balancing.

One way to re-balance the load is to repartition the road network using one of

the static partitioning algorithms [18]. E.g parallel algorithms such as JOSTLE or

ParMETIS are able to partition large mesh very rapidly [102][91]. The difficulty

with this method is in preserving the initial partition boundaries and creating

additional boundaries could result in higher communication overhead.

For example, ParMETIS was able to partition a mesh of the order of 1 million

nodes in less than 2 seconds on 128 PEs of a Cray T3D [70]. However it is

important, but difficult, to ensure that the new partitioning will be “close” to

the original partitioning. Should the new partitioning deviate considerably from

the old one then the cost of transferring large amounts of data will be incurred.

It has been found that repartitioning is more appropriate when there has been

a substantial localized refinement on the mesh [72,5]. Any of the fast parallel

graph partitioning algorithms of section 2.2.1 may be employed. These include

the parallel multilevel schemes.

To minimize the data movement resulting from the repartitioning, a number

of techniques have been used to modify the graph partitioning algorithms, so

that the new partition is as close to an existing partitioning as possible. The

idea of a virtual vertex was used in [105] [34]. A virtual vertex is associated with

each subdomain and is connected to each vertex in the subdomain by a virtual
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edge. The weight of this edge reflects the communication cost of migrating the

vertex. By partitioning the combined graph, the dual objectives of minimizing

edge-cut and data movement are considered at the same time. In [92], the idea

of local matching was used where matchings were restricted to vertices that

have the same processor. This strategy biases the multilevel graph partitioner

towards an existing partitioning, thus reducing data movement resulting from the

repartitioning. A re-mapping algorithm can be applied after the repartitioning to

allocate the subdomains to the most appropriate processors, in order to reduce

the data movement [90][82].

An alternative strategy to repartitioning [18] is to migrate [20] the excessive

nodes to neighboring compute-nodes, effectively shifting the boundaries to achieve

a balanced load. This approach may potentially cause less movement of data

than repartitioning, although the edge-cut after the migration could possibly be

larger than that given by a global repartitioning. Therefore care must be taken

to keep edge-cut down when choosing the nodes to be migrated. It has been

found [90] that this strategy is more suitable when the load imbalances caused by

the refinement are low, or when localized high imbalances occur throughout the

mesh. This is because in such cases the optimal partition will be relatively close

to the initial partition. The process of migrating loads between compute-nodes

to achieve load balance can be broken down into two distinctive steps [102][103]:

• Flow calculation: Each processor works out a schedule for the amount of

load that should be sent to (or received from) its neighboring compute-

nodes. This is referred to as a flow calculation in [102].

• Node selection: Once the flow is worked out, each compute-node decides

which mesh nodes should be sent or received, to satisfy the flow as well as

to minimize the edge-cut.

Load migration has been studied by a number of authors. A popular strategy

is to start from the boundary nodes and gradually move to the interior of the

75



3.8. The Design of Centralized (MaS) and Distributed Algorithms

road network, until enough nodes are marked for migration [105][104][58]. A load

migration library was also developed in [20]. As a strict rule, only the boundary

junctions need to be moved between the compute-nodes. Load migration is very

complex and the exact details depend on the applications and the data structures

used. In many adaptive computations, the amount of data associated with each

mesh node may be quite large. The time for the migration of the data, and

subsequent cost of updating the data structures, can dominate overall run time,

specially if there is a need to re-balance the load frequently.

3.8. The Design of Centralized (MaS) and Distributed Algo-

rithms

The taxonomy described in section §2.2 and the building blocks designed in

section §3.7 were applied in the design in this section. Though most of the

designs in section §3.7 are master-slave in structure, some of the ideas can be

adapted to distributed algorithms. A combination of different strategies can be

employed to yield different load balancing algorithms.

Four dynamic load balancing algorithms were investigated. Two of the designs

are considered to be the basic centralized and basic distributed algorithms. Basic

means that the structure of the algorithms are as described in the literature

review of dynamic load balancing. Two other algorithms, are an extension of

the basic centralized and distributed algorithms. The extended algorithms are

novel in that the new designs of profitability determination, load index and work

transfer calculation were used in the algorithms.

The motivations to extend these two algorithms are:

• To study the behaviours of the designed building blocks in two algorithms

from different classifications (centralized and distributed) of algorithms.
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These two algorithms are also the ones used in the reviewed traffic

simulators.

• To know if any of these classes of algorithms are most suitable to parallel

traffic simulations.

The distributed algorithm considered falls into the class of diffusion algo-

rithms because the processors balance their workloads with their neighbours

simultaneously. In the discussions that follow, diffusion and distributed are

used interchangebly while master slave (MaS) and centralized are also used

interchangebly.

Applying vehicles load index (VLI) and response time load index (RTLI) of

section §3.7.1 to the centralized algorithm yields 2 variants of the algorithm–one

with isolated load index, Basic Centralized Algrithm (BCA), and the other with

integrated load index, Extended Centralized Algorithm (ECA). The former is

the one most commonly used in parallel road traffic research but as explained

in section §3.7.1, it lacks major features which make it unsuitable especially

for heterogeneous clusters. Similarly, there are 2 variants of the distributed

algorithm–one with isolated load index, the Basic Distributed Algorithm (BDA),

and the other with integrated load index, the Extended Distributed Algorithm

(EDA).

3.8.1. SPMD and Load Balancing Algorithms

Most of the alorithms designed below has a master and worker component because

they are designed for Single Program Multiple Data (SPMD) applications.

Madcity, the parallel Madcity simulator (discussed in section 3.10.1) is an SPMD

application. An SPMD program uses a master-worker paradigm in which the

master/controller takes the supervisory rule while the workers do the work. A

distinction is made between the different sections of the program by selective if

statements. Often, all the processes work on different part of the data while the
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same program resides on all the processors. SPMD parallel applications are easier

to develop as only one source code is developed to run on all the processors. The

control structure of an SPMD program is expressed as follows:

Program

If (process is the Master/Controller) then

/*controller program constructs*/

else

/*worker program constructs*/

endif

End

3.8.2. Basic Centralized Algorithm (BCA)

BCA is dynamic, centralized, migration-based, and isolated. The first step in

parallel processing is to partition the network files and distributed among the

participating processors for simultaneous execution. As execution proceeds,

however, vehicles transfer from one network partition to another. At the time of

load balancing, the load indexes are sent by each compute-node to the decision

making compute-node that executes the load balancing procedure.

The basic algorithm is also periodic and individual. The algorithm is activated

periodically at a set period p. The goal of the algorithm is always to balance the

load of the entire system at every invocation but before it does that, it carries

out a profitability determination to access if load balancing is profitable or not.

At every period, if any overloaded processor is detected and above a threshold,

PDthreshold, a new distribution of road network and hence vehicles is computed.

In this strategy, the load-balancing algorithm is executed at a single predefined

processor. The central decision making processor that is responsible for load

balancing computes a new balanced load distribution, and then informs the other
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participating processors of the load balance advice, LBAdvice. The participating

processors do local work transfer only between the neighbour processors.

The Pseudo Code of the Basic Centralized Algorithm (BCA)

1. At periodic DLB initiation time, each compute-node measures its vehicles

load index (VLI).

2. Each compute-node sends its VLI to the decision making compute-node.

3. The decision making compute-node collects ID and VLI from all the

compute-nodes.

4. The decision making compute-node then initialises LBAdvice to zeros,

calculates load relocation, using VLI, and stores the results in LBAdvice.

5. The decision making compute-node broadcast the result of the LBAdvice to

all the compute-nodes.

6. Each compute-node receives LBAdvice from the decision making compute-

node, extract information for its left and right neighbours into Loadleft and

Loadright respectively.

7. Each compute-node selects load to meet the requirements of its left and

right neighbours.

8. Each compute-node migrates vehicles to the left and right neighbours.

9. Each compute-node inserts the vehicles and reconstruct the road network.
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The Basic Centralized Algorithm

Algorithm 4: The Basic Centralized Algorithm (BCA)
Input: Set of tasks and processors

Output: Load Balance Advice (LBAdvice)

if Am MASTER then1

Receive VLI and ID from every participating compute-node and store in an array;2

n is the total number of participating compute-nodes;3

Sort the array to reflect the taskIDs of the compute-nodes (i.e. compute-nodes with4

taskID = 1 is the first item in the array, etc);

for i← to n− 1 do5

Sort the VLI to determine the most loaded compute-node (and determine the6

left and right neighbours);

Pick the most loaded compute-node (Nodemostloaded);7

Calculate x (x = Nodemostloaded - AvgLoad);8

Initialize LBAdvice array with zeros and compute the load for the right and left9

neighbour of each Nodemostloaded in the new initialized array;
end10

Broadcast to all WORKERS load balance advice (LBAdvice);11

end12

else if am WORKER then13

Send MyID and VLI to the MASTER process;14

Receive LBAdvice from MASTER ;15

repeat search for myID until when myID is found16

Extract information for my left and right neighbours into Loadleft and Loadright;17

Loadleft = vehicles to relocate to left neighbour(identified by myid-1 in the18

LBadvice array);

Loadright= vehicles to relocate to right neighbour(identified by myid+1 in the19

LBadvice array);

Select vehicles to meet the requirements of left and right neighbours;20

Migrate vehicles to the left and right neighbours;21

Insert vehicles, reconstruct the road network;22

end23

Resume Normal Simulation;24
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3.8.3. Extended Centralized Algorithm (ECA)

ECA is dynamic, centralized, migration-based, and integrated. The extended

centralized algorithm(ECA) differs from basic centralized algorithm(BCA) in the

following:

• BCA uses isolated load index (VLI) while ECA uses integrated load index

(RTLI).

• There is no PD in BCA while ECA has a PD component. Note however that

when comparing the 2 algorithms, PD is sometimes used in BCA. When

that is done, there would be a distinction between BCA with PD (BCAPD)

and BCA with no PD (BCA). In this case, (BCAPD) and ECA differs only

in their load index.

The Pseudo Code of ECA

1. At periodic DLB initiation, each compute-node measures the time per

simulation step (response time load index, RTLI). It uses the value to

calculate the run-time per vehicles per step (RTpervehicle) using equation

3.2.

2. Each compute-node sends the ID and RTLI to the decision making

compute-node.

3. The decision making compute-node receives RTLI and IDs from all the

compute-nodes. It performs profitability determination.

4. If profitable to balance the load, it stores a value of 1, meaning TRUE, in

LBdecision else it stores 0, meaning FALSE. The decision making compute-

node performs work transfer calculation, using RTLI, and stores the load

relocation information for every compute node in an array called LBAdvice.

LBdecision and LBAdvice are broadcast to all the compute-nodes.
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5. Each compute-node receives LBdecision and LBAdvice from the decision

making compute-node.

6. If LBdecision is TRUE, each compute-node extracts, from LBAdvice, load

for its left and right neighbours into the variables Loadleft and Loadright

respectively. Load is in seconds.

7. Loadleft and Loadright are converted back into equivalent number of vehicles

using equation 3.3.

8. Each compute-node uses the value in step (7) to decide on the load/vehicles

to relocate to its neighbours in order to achieve balanced load.

9. Each compute-node performs the actual load migration (if there is load to

migrate) to the neighbours.

10. The new network structure is broadcast to all the compute-nodes to update

their road network information.
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The Extended Centralized Algorithm (ECA)

Algorithm 5: The Extended Centralized Algorithm (ECA)
Input: Set of tasks and processors

Output: Balanced Load

if Am MASTER then1
Receive RTLI and ID from every participating compute-node;2
n is the total number of participating compute-nodes;3
Sort the array to reflect the taskIDs of the compute-nodes (i.e compute-node with taskID = 1 is4
the first item in the array, etc);

Find the average load (AvgLoad) and read PDthreshold;5
Sort the load to determine the most loaded processor (NodemostLoaded);6
Initialize LBAdvice array with zeros;7
Set PDdecision = FALSE;8
for i← to n− 1 do9

Calculate x (x = NodemostLoaded - AvgLoad);10
if x ≥ PDthreshold then11

Set PDdecision = TRUE;12
Sort the array to determine the most loaded processor;13
Pick NodemostLoaded;14
Compute the load for NodemostLoaded’s right and left neighbours, store in LBAdvice;15
Broadcast to all WORKERS PDdecision and LBAdvice;16

else17
Broadcast to all WORKERS PDdecision and LBAdvice;18

end19

end20

end21
else if am the WORKER then22

Measure my time per sim step i.e response time load index (RTLI);23
Calculate RTpervehicle = RTLI/n;24
Send MyID and RTLI to the MASTER process;25
Receive PDdecision and LBAdvice from MASTER ;26
if PDdecision == TRUE then27

repeat search for myID until when myId is found28
Extract load for my left and right neighbours into Loadleft and Loadright;29
Left neighbour vehicles = Loadleft/RTpervehicle;30
Right neighbour vehicles = Loadright/RTpervehicle;31
Select vehicls to meet the requirements of my left and right neighbours;32
Migrate vehicles to the left and right neighbours;33
Insert vehicles into the road network;34
Update the road network structure;35

end36

end37
Resume Normal Simulation;38
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3.8.4. The Basic Diffusion Algorithm (BDA)

The algorithm is local, neighbourhood-based, distributed, synchronous, periodic,

individual, and non-blind. In BDA, all compute-nodes simultaneously compute

the new load distribution and so no need to be relayed between the participating

compute-nodes. The notion of neighbourhood is defined by each compute-node,

according to the network partitions that are shared between any 2 or more

compute-nodes.

The algorithm is also dynamic, migration-based, and isolated. Vehicles are

initially distributed among the participating compute-nodes. At the beginning

of the simulation, the SPMD master process estimates the average vehicles,

AvgLoad, that should be on each compute-node and stores this in a variable

accessible to all the worker nodes. Also, every compute-node keeps a record of

the total vehicles in its partition in Nodevehicles and this variable is updated at the

end of every simulation time-step. On initiation of load balancing routines, each

compute-node obtains its current VLI from Nodevehicles as well as the average

load from AvgLoad. Comparing these two values, it estimates how much should

be given to its neighbours or receive from its neighbours. The basic idea is:

using the current total number of vehicles and the expected average vehicles per

compute-node, calculate the difference between these two values. The difference

represents the deviation from the ideal load (i.e. the surplus or the deficit). A

negative value indicates deficit and a positive value indicates overload. How under

loaded or overloaded depends on its deviation from AvgLoad. This value has to

be compensated either by sending or receiving an equivalent number of vehicles

between the neighbours. Work transfer calculation operation is performed until

an optimal load distribution is estimated.
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The Work Transfer Calculation of Distributed algorithm

In a distributed algorithm, because there is no central supervision, the most

important aspects that work transfer calculation need to consider are the

following:

• Direction of load flow

• Load thrashing. i.e. a situation whereby a processor relocates load back to

the processor that just relocates load to it. This can result in an endless

load relocation between two respective neighbours and must be avoided.

The Algorithm for the distributed work transfer calculation is shown below.

This algorithm is executed by every participating processor. The if selection

statements are such as to prevent load thrashing. Load relocation between the

neighbours is carefully considered by each compute-node.
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Algorithm 6: Work Transfer Calculation in Distributed Algorithm
Input: Set of tasks and processors

Output: Load calculation

Read my load index and AvgLoad from the variables;1

Calculate x = My Load index - AvgLoad;2

if No left Neighbour then3

Load flow is right;4

end5

else if No right Neighbour then6

Load flow is left;7

end8

else if Both left and right neighbours then9

if I have received load from left then10

Load flow is right11

end12

else if I have received load from right then13

Load flow is left14

end15

else16

Pick the least load and then flow in that direction;17

Determine the number of processors before the least load (N);18

for i = 1 to N do19

Perform stepwise load redistribution;20

end21

end22

end23

Resume Normal Simulation;24

The Pseudo Code of the Basic Diffusion Algorithm (BDA)

1. On periodic invocation of dynamic load balancing operation every compute-

node participating in the parallel simulation estimates its vehicles load index

(VLI).

2. Every compute-node compares its VLI with the average vehicles, AvgLoad,
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and calculates x which is the difference between VLI and AvgLoad. x is sent

to neighbours.

3. Each compute-node collects x from the neighbours and analyses load

imbalance. It then decides how much load should be moved between its

respective local neighbours to achieve balance. This step is iterative until

load is balanced.

4. Vehicles are then selected for relocation. Vehicles selection strategy is as

follows:

• Collect the boundary nodes and assign them to an array.

• Within the boundary nodes, estimate which vehicles, when selected

best correct the load imbalance.

• Select the corresponding junctions of the vehicles for relocation.

5. Load Migration Strategy

Each compute-node performs the actual migration by reassigning the

selected junctions with the IDs of the destination processor. The vehicles

are then sent to the respective neighbours. The new boundary relocation

information is then sent to all the neighbours to update their road network.

6. The vehicles are received by the neighbours and inserted back into the road

network in the new partition.

All of the strategies are local i.e. all the load balancing decisions are performed

in the individual computers.
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The Basic Diffusion Algorithm (BDA)

Algorithm 7: The Basic Diffusion Algorithm (BDA)
Input: Set of tasks and processors

Output: Load Balancing Decision

if Am MASTER then1

Do nothing2

end3

else if am worker then4

Read the average load (AvgLoad) of the system;5

Read the vehicles load index (VLI);6

for i← to l do7

Initialize send/receive buffers for left (loadleft) and right (loadright) neighbours;8

Calculate x (x = VLI - AvgLoad) and store x in loadleft and loadright ;9

Send loadleft and loadright buffer to my leftneighbour and rightneighbour10

respectively;

Receive buffer from my leftneighbour and rightneighbour;11

Analyse the load by comparing my x with the x of left and the right neighbours12

and determine how x should be redistributed to neighbours;

Send result of analysis to my leftneighbour and rightneighbour;13

Receive analysis result from my leftneighbour and rightneighbour;14

Update my load with left and right neighbour load;15

end16

Migrate vehicles to the left and right neighbours;17

Insert vehicles into the road network;18

Update the road network structure with new partition IDs;19

Send the new network structure to the neighbours to update their network;20

end21

Resume Normal Simulation;22

3.8.5. The Extended Diffusion Algorithm (EDA)

The basic diffusion algorithm was extended with global profitability determina-

tion and response time load index (RTLI) designed in this thesis. The basic

Diffusion algorithm is entirely local such that each compute-node is only aware
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of the information of its neighbours. As a result, it is observed that in a

synchronous diffusive distributed algorithm, a local profitability determination

is a redundant feature. That is, the feature plays very little role in improving

the performance of the system and most often it could lead to performance

degradation. This is because in synchronous diffusion algorithms, barrier

synchronization is implemented using blocking send/receive messages, meaning

that every send must have a matching receive. The problem with this method is

that since PD decisions are made between local neighbours, there is a possibility

that some groups could ‘think’ it profitable to perform load balancing while some

other groups could ‘think’ the opposite. In such a situation, there would be a

deadlock when the compute-nodes that went ahead with load balancing try to

communicate with the neighbours that did not engage in load balancing at this

time.

The implications of this to PD is that every compute-node goes through the

local PD routines but waits at the synchronisation points to receive from the

neighbours before proceeding beyond that point. Hence, PD is lower bounded

by the slowest machine or the most loaded processor in the system leading to

increased overheads. It is perhaps better for the compute-nodes to go ahead with

load balancing at each initiation without incurring the PD overheads.

In global PD, however, the decision making compute-node gathers information

from all the compute-nodes and then makes a quick decision as whether to proceed

with load balancing or not. This is then broadcast to all the compute-nodes. If

it is profitable to load balance, every further action by the compute-nodes from

here is between the local neighbours. Hence, only the PD aspect of the algorithm

is global.

Another advantage of global PD is that since the response time load index

depends on the average load of all the compute-nodes (Algorithm 1 of section

§ 3.7.1), it cannot work well in a fully distributed system where the compute-

nodes only have knowledge of their neighbours. Global PD makes the usage of
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response time in a distributed algorithm possible by calculating the average load

and storing it in a variable for later use.

Pseudo Code of the Extended Diffusion Algorithm (EDA)

1. On periodic invocation of the dynamic load balancing operation every

compute-node participating in the parallel simulation reads its response

time load index (RTLI). It then uses the equation 3.2 to calculate RTV ehicle

2. Each compute-node sends RTLI to the decision making compute-node.

3. The decision making compute-node collects the RTLI and the IDs from

all the compute-nodes, performs a cost-benefit analysis and broadcast the

PDdecision to all the workers.

4. The workers collect PDdecision from the decision making compute-node

and if profitable to load balance goes ahead with load balancing or exit

otherwise.

5. Every compute-node obtains the average load, AvgTime, calculated by PD

above.

6. Every compute-node compares its RTLI with AvgTime and calculates x

7. It packages x and send to neighbours. It also receives from neighbours

and determine how much load should be moved between its respective local

neighbours to achieve balance. This step is iterative and should terminate

when load evenness is achieved. Once completed, the processors convert

time into vehicles by using the relation in equation 3.3.

8. Load Selection Strategy

• Collect the boundary nodes and assign them to an array.

• Within the boundary nodes, estimate which load, when selected best

correct the load imbalance.
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• Select the appropriate junctions for migration.

9. Load Migration Strategy

Performs the actual migration by reassigning the selected junctions with

the IDs of the destination processor. The boundary relocation information

is then sent to all the neighbours.
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Extended Diffusion Algorithm (EDA)

Algorithm 8: Extended Diffusion Algorithm with global PD (EDAG)
Input: Set of tasks and processors

Output: Load Balancing Decision

if Am MASTER then1
Receive RTLI and ID from every participating compute-node;2
Set PDdecision = FALSE;3
for i← to l do4

Pick the most loaded compute-node (Nodemostloaded);5
end6
Calculate the average load, AvgTime. Obtain PDthreshold from the system and calculate x =7
nodemostloaded - AvgTime;

if x ≥ PDthreshold then8
Set PDdecision = TRUE;9
Broadcast PDdecision to all WORKERS;10

end11

end12
else if am worker then13

Send RTLI and ID to the MASTER process;14
Receive PDdecision from MASTER ;15
if PDdecision == TRUE then16

Obtain the average load (AvgTime) calculated by PD above;17
RTpervehicle = RTLI

nodevehicles
;18

for i← to l do19
Initialize send/receive buffers for left (loadleft) and right (loadright) neighbours;20
Calculate x = RTLI - AvgTime and store x in loadleft and loadright ;21
Send loadleft and loadright buffer to leftneighbour and rightneighbour respectively;22
Receive buffer from leftneighbour and rightneighbour;23
Analyse the load by comparing x with the x of left and the right neighbours;24
Determine how x should be redistributed to neighbours;25
Send analysis result to leftneighbour and rightneighbour;26
Receive analysis result from leftneighbour and rightneighbour;27
Update RTLI, loadleft and loadright ;28

end29
Convert loadleft into vehicles (Left neighbour vehicles = loadleft/RTpervehicle);30
Convert loadright into vehicles (Right neighbour vehicles = loadright/RTpervehicle);31
Select load to meet the requirements of my left and right neighbours;32
Migrate vehicles to the left and right neighbours;33
Insert vehicles into the road network;34
Update the road network structure with new partition IDs;35
Send the new network structure to the neighbours to update their network;36

end37

end38
Resume Normal Simulation;39
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The Extended Diffusion Algorithm with global PD (EDAG) differs from Basic

Diffusion Algorithm(BDA) in the following:

• BDA uses isolated load index (VLI) while EDAG uses integrated load index

(RTLI).

• There is no PD in BDA while EDAG has a PD component. Note however

that when comparing the 2 algorithms, PD is sometimes used in BDA.When

that is done, there would be a distinction between BDA with PD (BDAPD)

and BDA with no PD (BDA). In this case, (BDAPD) and EDAG differs

only in their load index.

3.9. Summary of Contributions to Knowledge

Contributions to 
Knowledge 

Existing Method(s) Novelty 

Design of a global  
profitability determination  
(PD) algorithm and 
design of a load index 
based on response time 
(run-time per simulation 
step) per vehicle 

• different heuristic methods 
(e.g. Kernighan Lin) 

• none PD designed for the 
reviewed traffic simulations 

• vehicles load index 
• time per sim step per 

weighted junctions load 
index 

 

• use of most loaded processor  
for profitability determination 

• the idea of reducing DLB 
overhead by performing some 
operations offline prior to DLB 

• response time per simulation          
step per vehicle load index 

• first to employ PD to traffic 
simulation 

 
Design of a centralized 
(MaS) DLB algorithm 

A few traffic simulations 
employed centralized/master 
slave DLB algorithms (as 
discussed in section 1.3) but 
these are application specific 
 

• algorithm design is based on 
the most loaded compute-node 

• the load migration stage is  
supervised by the master 
process 

• 3 building blocks of the 
algorithm(load index, work 
transfer calculation  and PD) 
are novel 

 
 

Figure 3.7: Summary of contributions to knowledge

A table summarizing the contributions to knowledge are presented in Fig. 3.7.
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In the design of load index, the method adopted in [88] also considers the wall-

clock timing in its load estimation but it is different from this design in that:- in

this algorithm, time per sim-step is used with vehicles whereas in [88] time per

sim-step is used with assigning each vertex with half of the weights of the incident

edges. It does this by timing the simulation step of execution and combines this

with the load of the simulation, estimated by summing the weights of the network

vertices, to determine the load index. In this case, number of vehicles is not

directly used as the load of the system. This is because the authors observed

that the simulation speed of the simulator weakly depends on vehicles. For the

design in this thesis, time is converted back to vehicles because this is the basic

unit of load in Madcity. Here, response time is directly related to vehicles as

indicated in section §3.5.1.

3.10. Implementation of the Algorithms

This section presents the actual implementations of the parallelization of Madcity

traffic simulator and the dynamic load balancing algorithms using the designs in

the previous section.

3.10.1. Parallelization of Madcity Traffic Simulator

The parallelization of Madcity traffic simulation was essential to study the

behaviour of the dynamic load balancing algorithm/methods that were designed.

The design and implementation of the parallel Madcity was the first major part

of this research project. After the parallelization, several experiments were

conducted to test the working of the parallel application. Like any software

engineering project, the design of the parallel traffic simulation was first carried

out and this was followed by the implementation. These are discussed in the

following sections.
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Domain Decomposition

 

Figure 3.8: Illustration of Partitioned Network Through Domain Decomposition

An important step in parallel processing is the decomposition of the problem

domain or the data into different sub-domains [120]. The sub-domains are

distributed to the compute-nodes on the cluster, for simultaneous parallel

executions. A consideration here is to keep the partition sizes as even as possible.

In Fig. 3.8, the road network topology has been partitioned into four sub-

networks as indicated by the different shapes of the junctions comprising the

road network. Here, junctions of similar shapes belong to the same partition and

hence will be simulated on the same compute-node during parallel simulation.

This implies that the road network will be simulated on four compute-nodes.

A critical issue in the partitioning of the road network is the number of links

spanning different partitions. In decomposing a road network into multiple sub-

networks, traffic continuity is potentially disrupted. During run-time, when a

vehicle arrives at the boundary point in a lane, where one sub-network ends and

another one begins, the vehicle must be transferred seamlessly to the computing

processor where the vehicle can continue its journey. This vehicle transfer must

be coordinated in time and space such that the integrity of the simulation remains

intact.

Also, the transfer of vehicles from one partition to another involves message
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passing communication, which is expensive. It would be useful to ensure that the

number of links adjoining the partitions are minimized. The difficulty with this

is that minimising the number of adjoining links between partitions often lead to

load imbalance, another poor performance factor. Irrespective of the number of

adjoining links, it would be useful to have a mechanism whereby all the vehicles

going into the same partition at every synchronisation points are buffered and

sent at once. This is achieved by the concept of Lane Cut Point (LCP), a concept

developed with this thesis’s director of studies, Nasser Kalantery, and presented in

[53][54] . The LCP interface in conjunction with parallel coordination must meet

these requirements. LCP helps to handle all the complications and time delay

associated with transferring vehicles between neighbour partitions, by buffering

the vehicles before sending them to the destination processor.

Lane Cut Points (LCPs)

 

Application LCP Parallel 
Coordinator 

Figure 3.9: Illustration of Lane Cut Point (LCP) Concept

Once the road network topology is partitioned for concurrent sub-simulations,

two major run-time issues must be dealt with; communications and syn-

chronisation. Assuming that these two issues are resolved, a coordinated

execution of the whole simulation will be achieved. However, organizing and

implementing synchronisation and communication requires expertise that an

application programmer may not necessarily possess. It would be useful to have

a mechanism whereby the parallel coordination concerns could be separated from
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application development issues, such that, two different sets of entities could meet

across a common interface and yet be able to work independently, each in their

own familiar area. The concept of LCPs was developed to serve such a purpose.

LCP is a data structure, which encapsulates vehicle data at the partition edges

and discrete-time synchronisation is achieved using LCP. The LCP concept is

depicted in Fig. 3.9.

Advantages of LCP-based coordination

There are many benefits of the use of LCP concept.

1. The LCP standard interfaces provide a facility whereby decomposition of a

simulation is developed and debugged on a single processor environment and

hence complexities of debugging in a parallel environment are significantly

reduced. It is necessary here to differentiate between a sequential simulator

and the simulator making use of the LCP interface objects but running on

one compute-node, for testing and debugging purposes.

Use of the LCP library helps to develop an n = 1 system that has all the

features of parallel simulator. Thus whenever vehicles, which are meant

for the neighbour partitions are leaving a partition, these vehicles enter the

LCPs and are then removed from the LCPs at the end of every simulation

step. In this way, the behaviour of the parallelized simulator can be analysed

in the n=1 version and the transition from the n=1 to the n=k (k>=2)

parallel development effort is therefore minimized since most of the possible

errors can be debugged in the n=1 version.

2. LCPs give the advantage of separating the application layers from the

communications/coordination layers that is required for the parallel version

of the simulator. LCPs provide an open interface such that a given

simulation application could be coupled with alternative communication

layer and vice versa, such that different simulations could use the same
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LCP interface for parallelization purpose. To accomplish this objective, the

simulator developers need to develop their applications to conform to the

interface definitions published in the LCP documentation.

3. Also, use of LCPs can reduce the communication overhead associated with

parallel programming. Instead of sending individual vehicles across the

partitions, vehicles meant for a particular partition can be buffered in the

LCP and all the vehicles transferred at once to their respective partitions.

Communication overhead, which has a negative effect on the performance

of a parallel system, can therefore be minimized by use of LCPs.

4. LCP suits the method of microscopic traffic simulations. At certain

intervals, all the compute-nodes involved in parallel simulations need

to synchronize with each other so as to maintain the continuity of

the simulation. Also, the processors sometimes need to exchange the

information of vehicle positions especially if the trace of the simulations

needs to be combined into a single file for visualizations. Though the use

of LCPs means that every vehicle has to be monitored to know when it

needs to get into the neighbour partitions, it rather fits into the method

of microscopic simulation where the behaviour of individual vehicle is

important. LCPs fit into this simulation model because synchronisation

takes place at the end of every simulation step, whereby vehicles are always

checked to determine their current position. At this point, the vehicles are

also checked to determine whether the vehicles should go into or out of an

LCP.

5. Finally, LCP technology is not difficult to implement and so individual

developers can easily adapt it to their programs. The fewer the number of

LCPs however, the better the performance of the simulator. For maximum

efficiency, the point at which the network partitions are made should be

to minimize the number of lanes crossing the partition boundaries. This

reduces the number of LCPs in the network and hence minimizes the
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overhead associated with processing the vehicles in the LCPs at the end

of every simulation step.

The Parallel Traffic Simulation Algorithm

The programming model used is SPMD (Single Program Multiple Data). This

means that the same program image is available on all of the compute-nodes but

each of compute-node has a different data set (i.e. the different domains of the

partitioned road network).

The parallel program has three different phases. The first stage is the

initialisation. At the initialisation, the master process reads the network graph

and partition identifier from the ‘network file’, uses partition identifiers to find the

positions of LCPs and create the LCPs, and then sends the data to the processes.

Each process receives the network data, performs initialisations by creating the

road network from the network data and creating vehicles on every road.

Following initialisation, simulation proceeds as a sequence of a predefined

number of steps. Each step consists of two distinct phases: local execution phase

and communication phase. In the local execution phase, each process simulates

vehicles in its own partition and at the end of every simulation step, vehicles

leaving a partition are passed to the LCPs. Then begins the communication

phase, in which the processes check for vehicles in the LCPs, remove the vehicles

in the LCPs (if any) and send them across to their destination processes where

they are received and inserted into the appropriate roads. Vehicles need to be

received at the destination process before the next simulation step.

Details of the parallelization strategy and the LCP concepts have been

published and presented in two international conferences of the IEEE DSRT (Dis-

tributed Simulations and Real Time applications) [53] and DAPSYS (Distributed

and parallel systems) [54].

99



3.10. Implementation of the Algorithms

The algorithm for the parallel simulator is presented below:

Algorithm 9: SPMD Structure of Parallel Traffic Simulation
Input: Set of tasks and processors

Output: SPMD Parallel Madcity

if Am MASTER then1
Read the road network topology data from the network file;2
Insert the LCPs on the road network boundaries between two partitions ;3
Identify the total number of processes in the parallel simulations;4
Send the road network to all the compute-nodes;5
if trace == on then6

Receive trace from all the workers;7
Assemble the traces into one trace file;8

end9

end10
else if am worker then11

Receive the road network from the MASTER process;12
Construct the road network topology;13
Initialize lcp buffers;14
Simstep is total number of simulation steps Insert the vehicles on the roads;15
for i← to Simstep do16

Perform simulation on part of the sub-network by calculating the new distances of the17
vehicles at every step and moving the vehicles along the roads;

if vehicles are at the end of lane then18
Remove the vehicles and put them in LCP buffer;19

end20
Send the LCP buffer to the neighbours;21
Receive the LCP buffer from the neighbours;22
Insert the vehicles (if any) in the LCP buffer into their respective roads;23
if trace == on then24

Record the simulation trace for the vehicles;25
Send the simulation trace to the MASTER process;26

end27
Synchronize with the MASTER process at the end of every simulation step;28

end29

end30
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3.10.2. Synthesis of Parallel Traffic Simulator with Dynamic Load Balanc-

ing Algorithms

The parallelization of Madcity traffic simulation provides a suitable platform

to synthesize, test, study and compare the behaviour of the proposed dynamic

load balancing algorithms/methods. This section presents the implementations

of the two dynamic load balancing algorithms according to the designs in the

last chapter. The designs of these algorithms were motivated by the properties

of traffic simulations, and the implementation was for parallel Madcity traffic

simulations.

3.10.3. Synthesis of the Centralized(MaS) Algorithm

Load Evaluation

Measuring the vehicles load index in Madcity is fairly straight forward because

each compute-node updates the local vehicle counter variable, Nodevehicles at

the end of every simulation step. Also, every junction keeps track of its total

number of vehicles in the data structure and at the end of every simulation

step, the number of vehicles in every junction is updated. This means that the

load balancing routines do not incur extra overheard to obtain the load in the

simulation. For response time load index, it can only be measured dynamically

as the program runs.

In the load evaluation stage of the DLB, each processor needs to be aware of

its load and also the average load of the entire simulation. These are recorded

at the beginning of the simulation so the compute-nodes just have to read the

values. Load balancing decisions are made with these two values. A compute-

node is either a giver or receptor of load, depending on whether its load is greater

or less than the average load.
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Load Balance Initiation/Profitability determinations

Load balancing is initiated at specified load balancing periods according to a

variable called periodic. If periodic is set at 2000, for example, it means that load

balancing will be called at every 2000 simulation time steps. This value can be

altered to vary the period of load balancing. On initiation, the master processor

waits to receive the current state of the load from all the compute-nodes. It stores

this information in an array that details the process id, and the current value of

the load information received. It then analyses the load and decides if its worth

carrying out the load balancing at this stage. If it is not profitable to load balance

at this stage, normal simulation resumes.

Work Transfer Calculation

The assumption here is that equal load does not necessarily mean that all the

partitions must have exact number of vehicles. A trade off in the number of

vehicles will be made for better communication structure. The detailed algorithm

on how the master process calculates the work transfer that should be reallocated

between the different processors was presented in the design section.

Having collected all the information from the compute-nodes in step 1 and

storing them in an array, the master process sends the received array to function

analyse_the_data(). This function receives the array and then sorts the array in

ascending order starting from the information for the first compute-node to the

last compute-node. This sorting is necessary because in step one, the processors

do not necessarily communicate with the master processor in sequential order.

Also, this is very important because in the calculation of load, the algorithm

refers to the left neighbour by the array index to the left (myindex-1 ) and the

right neighbour by the array index to the right (myindex+1 ).

With this information, the function analyses the load to reallocate using

Algorithm 3. For each of the compute-node, it subtracts the AvgLoad from the
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current vehicle value and stores this information into another array called the

inbalinfo (i.e. information required for balancing the load), along with the ID of

the compute-nodes. Using this array information, it goes through the algorithm

to determine how much each compute-node needs to give out to its left and right

neighbours. It Creates a new empty array known as balinfo and initialize all

the values to zero. This array is used to store all the load balance advice that

would be broadcast to all the compute processors. The final array, LBAdvice to

be broadcast to all the compute-nodes is of the form in Fig. 3.10. This array is

then broadcast to all the compute-nodes.

Processor 

ID 

Vehicles for left 

neighbour 

Vehicles for the 

right neighbour 

This order repeats for 

all the processors … 

 

 

Figure 3.10: Illustration of Load Balance Advice Buffer

Load Selection

Network partitioning in the experimental parallel simulation is junction based,

each junction belonging to a given sub-domain. Junctions with identical partition

IDs constitute a sub-network. Roads do not have explicit partition identification

but the junction data structure maintains a list of its entire exit links. Since

every compute-node has the entire simulation road network (ref. section §3.6.2),

moving a vehicle from one partition to another means reassigning the associated

network junctions with its new partition ID, communicating this information with

all the other compute-nodes to update their network information, and moving

the vehicles in the roads to their new destinations. After this the new boundary

buffers are recreated. The question then is which of the junctions are to be moved

to satisfy load imbalance? Since each junction keeps a record of its number of

vehicles, selecting a junction for transfer is deciding how many of the junctions

satisfy the work transfer calculation. The individual processors do this locally.
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Each of the compute-nodes receives the broadcast array from the master

process and search for its process ID in the array. Once this is found, it uses

it to identify its load balance advice, which comprise of the vehicles to give to

the neighbours or receive from the neighbours. Each compute-node then calls

function analyse_the_network() to process the best junctions to be moved to the

neighbours. To select a junction for transfer, one needs to identify the effects

that the load redistribution would have on the overall balance of the system

and especially the resulting communication pattern after the load redistribution.

Increased network links between two partitions means increase in communication

overhead between the processors as discussed in §3.6.3. It is therefore important

to identify the effects the network repartitioning would have on the overall

network structure after the load balancing stage.

Load Migration

 

Processor 1 Processor 2 Processor 3 

Figure 3.11: Illustration of Network Boundary Migrations

Having reassigned the junctions to their new partition IDs, the next step

is the actual migration of the vehicles to all the neighbours. The compute-

nodes send the vehicles needed for balance to the neighbours. The neighbours

receive the information and unpack the vehicles into their respective lanes. As

explained in section §3.6.2, since the parallel simulation uses domain replication,

each compute-node has a copy of the whole network file and hence junctions are

not physically moved from one compute-node to another. Moving a junction is
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the same as reassigning the junction’s partition ID and sending the new network

partitions information to all the participating compute nodes. This method

further eliminates the communication overhead associated with physically moving

junction’s data structures between migrating domains.

Boundary migration suits the properties of traffic simulations because by

migrating the boundary junctions, the destination (route plans) of the vehicles

are not disrupted. As a strict rule, only the boundary junctions need to be moved

between the compute-nodes. Migration from the boundaries eliminates ‘orphan

junctions’, a situation whereby a relocated junction shares boundaries with the

wrong partitions. Load balancing is just a way of providing more resources for

the execution of the simulation by relieving the heavily loaded processors. To

preserve the communication structure, each processor must first of all compile

the list of all the boundary junctions between the neighbouring partitions. In

Madcity traffic simulation, like in real life road traffic situations, vehicles are

associated with roads and roads to junctions. Therefore, migrating junctions

(i.e. assigning new partition IDs to junctions), enable the junctions, and roads to

belong to the new partition domains. The new road network information is then

communicated to all the other processors to update their network information.

But there is also the need to move the vehicles across the partitions and insert

them in the appropriate roads.

Migration of vehicles take place locally between neighbouring network parti-

tions. This is so that a vehicle can maintain its journey when it crosses to the

neighbouring partitions. Consider, for example, the simple network shown in

Figure 3.11. If each of the boxes represent a road network on each processor,

vehicle movements can only occur between the adjacent partitions say from

processor 1 to processor 2 or from processor 2 to processor 3 and vice versa.

Similarly, if processor 3 needs to reallocate some of its load to processor 1, it has

to first give the excess load to processor 2 who will then give the load to processor

1.
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This method is particularly important because in load balancing of traffic

simulation schemes, the idea is not to disrupt the movement of vehicles from their

intended destinations but simply to provide enough resources for the simulation.

Boundary migration achieves this aim by reducing the load of the overloaded

compute-node without disrupting the movement of the vehicles.

3.10.4. Synthesis of the Diffusion Algorithm

The profitability determination, load selection and load migration strategies are

very similar to that of Centralized Algorithm. The basic difference is in the work

transfer calculations and this is presented below:

Work Transfer Calculation

This step is entirely local. Each processor keeps record of two variables called

Avgload, which is the ideal number of vehicles that each compute-node should

have to maintain load balance and the current load of the compute-node. On

invocation of the load balancing operation, the compute-nodes take the difference

(i.e. Load index - AvgLoad) between these two variables, and depending on the sign

of the difference, decide if to give out or receive from its neighbours. Specifically,

a negative value means that the compute-node contains less than average vehicles

and therefore needs to expect from its neighbours while a positive value means

that the compute-node has got vehicles in excess of the expected average and

therefore needs to give out the excess to its neighbours. The interesting thing

is that if a compute-node does not have enough to give out, it does not need to

process anything. Rather, it should wait to receive whatever the neighbors have

to give it. The algorithm is iterative until an optimal solution is achieved.
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3.11. Chapter Summary

This chapter presented the parallelization of Madcity traffic simulation using

the concept of Lane Cut Point (LCP). This was followed by the synthesis of 4

dynamic load balancing algorithms with the parallel traffic simulation. From the

implementation point of view, the following conclusions were made about the

algorithms:

1. MaS algorithm is easier to design and implement than the diffusion.

This is especially true in terms of the communication structure of the

algorithms. For diffusion, designing the communication structure is

a bit more challenging because since there is no master controller, a

communication deadlock can easily arise.

2. From Madcity parallel simulation point of view, both are easy to invoke

as the synchronization points provide a natural clean point to initiate

load balancing. However, in MaS, program control and coordination is

handled by one master process and therefore simpler. Program control

and coordination is more difficult in diffusion since control is handled

individually. Program control and coordination need to be handled

correctly otherwise the program could result in communication deadlock.

3. The designs follow the 5 phases of a generic load balancing algorithm. One

of the algorithms, whose work transfer calculation is central is called MaS

to denote master slave. Also designed is a diffusion algorithm with a local

work transfer calculation.
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Chapter 4
Experimental Results and Discussions

4.1. Chapter Overview

In this chapter, dynamic load balancing (DLB) was studied using the imple-

mentations of the algorithms described in the previous chapter. Following the

design and implementations of the algorithms, experiments were designed to

study the algorithms. It is interesting to note that a load index and a profitability

determination algorithms can only be tested within a full dynamic load balancing

algorithm and not individually.

The objectives of this study are:

• To study the effect of load unevenness on parallel road traffic simulation

• To compare the performances of the simulation synthesized with DLBs and

the simulation without DLB

• To study the performances of the BCA, ECA, BDA, EDAG algorithms and
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compare them with each other to ascertain the degree of performances of

the new algorithms.

• To study the scalability of the algorithms in terms of:

DLB overhead, Run-time and Quality of load balance

The experiments seek to answer such questions as:

• How does simulations with PD compare to simulations without PD on

various compute-node configurations for MaS?

• How does simulations with PD compare to simulations without PD on

various compute-node configurations for diffusion?

• How does vehicles load index compare with response time load index for

MaS? In other words, how does BCA compare to ECA?

• How does vehicles load index compare with response time load index for

diffusion? In other words, how does BDA compare to EDAG?

• How does vehicles load index of MaS compare with vehicle load index of

diffusion? In other words, how does BCA compare to BDA?

• How does response time load index of MaS compare with response time

load index of diffusion? In other words, how does ECA compare to EDA?

4.2. Definition of Performance Metrics

To understand the discussion of the experimental results, it would be useful to

define the performance metrics that are used in the discussions. The parallel

programs are evaluated with the following parameters:

Load index (Li): is used to characterize the load on the whole system.

Previous measurement studies show that the run-time of the simulation is
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proportional to the number of vehicles, hence, suggests itself as a good load index.

The run-time of the simulation is also affected by the size of the network, that is,

the total number of junctions and roads in the network, but the major factor is

the number of vehicles in the simulation. Since a load index was designed in this

thesis, the load of a compute-node refers to either its total number of vehicles in

the simulation or the response time of a simulation time step.

Speedup (S): This is defined as the ratio of the time taken by the execution

of the sequential program (ts) to that of the parallel program (tp). That is,

S = ts
tp

(4.1)

For n processors, the maximum theoretically achievable speedup is n.

Efficiency (E): Another important parallel processor measure is efficiency,

defined as the ratio of speedup (S) to the number of processors (n). It is a

measure of the time that the processors spend on the actual computation. That

is,

E = S

n
(4.2)

The maximum theoretically achievable efficiency is 100%. Actually, available

parallelism (p) within an application may be smaller than the number of

processors (n) used. In such cases, no matter how large n is, the maximum

speedup cannot exceed p. Theoretically achievable maximum speedup and

efficiency is rarely achieved in practice. This is because some costs are involved

in realizing parallel processing. The first reason is that the inherent parallelism

of the application constrains the maximum potential speedup: some applications

are better suited to parallel processing than others and some applications are not

suitable for parallelism at all. The other reasons were discussed in section §3.6.

Run-time ( t): Here, run-time is defined as the total time it takes the

application to complete its execution. The time at the beginning and end of
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the simulation are recorded. Then the start time was subtracted from the end

time to give the simulation run-time. One of the overall aims of load balancing

is to improve the run-time of the parallel simulation, and hence the run-time of

the application serves as a good performance index.

Load Evenness Index (σ): It is important to characterize load evenness

because this is used to compare the effectiveness of the load balancing algorithms,

later in the thesis. The question is, how is load evenness or load unevenness

measured? Technically speaking, the load of a system is fully balanced if the load

on every compute-node is equal to the average load in the system. It can therefore

be deduced that the closer the load of every compute-node to the average load in

the system, the better balanced is the system. The reverse is also true, that is,

the greater the difference between the average load and the load of each of the

compute-nodes, the greater the load unevenness.

In this thesis, load evenness is defined using the mathematical formula

provided in [24]. It is measured by the relative standard deviation (σ) of the

load of all the N system compute-nodes, normalized to the average system load

(µ). Mathematically, this is expressed as follows:

σ = 1
µ

√∑N
i=1 (Li − µ)2

N
(4.3)

Where (Li) is the load index of the ith system compute-node and (µ) is defined

as:

µ = 1
N

N∑

i=1
Li (4.4)

From this equation, the load of the system is evenly balanced if σ is 0 and

the degree of unevenness increases as σ increases to infinity. To measure load

evenness, first, the road network is partitioned and secondly, the load distributions

of the various partitions are used to calculate σ, in the above formulas.
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4.3. The Experimental Road Network

The road network used for most of the experiments is called the Manhattan road

network. This is a regular grid-like mesh network comprising of junctions and

roads. The size of the road networks may differ but the characteristic of the

networks remain the same. The advantage of using this type of road network is

that the Manhattan road network generator (discussed in section §3.5.2) can be

used to produce sufficiently big road networks of this kind which are suitable for

the parallel programming experiments conducted in this thesis.

Madcity can simulate real life road network such as the map of London, for

example, but realistic road networks are not used simply because of the difficulty

in obtaining the road network data from the respective bodies that own the

Geographical Information Survey (GIS) data, and also the difficulty in converting

the data into the acceptable Madcity format. Because of this, the only real road

network data that has been prepared for Madcity is the Hyde network shown in

Figure 3.2. This is the road network for simulating the town of Hyde in Greater

Manchester, UK, that was obtained in a collaborative research project. The

network is sufficient for sequential experiments but does not present enough load

for parallel experiments.

For the experiments in this thesis, it does not make any difference between

using synthetic or real road networks. All that is required is a road network

that is capable of delivering enough load to experiment with the dynamic load

balancing algorithms designed in this thesis. The road network that was used

most often can accommodate a total of 25280 vehicles given an average of 5056

vehicles per compute-node on a 5-node configuration. The road networks were

constructed with various degrees of load evenness ranging from σ = 0.27 to σ =

1.65.
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4.4. The Experimental Design Methodology

The parallel simulator was evaluated through a series of experiments in which the

run-time of the serial and parallel versions of the program were measured. Most of

these experiments were carried out on the Mut cluster (ref section §3.3) and others

on Carmen cluster (ref section §3.4), using the Manhattan road network, a regular

grid-like mesh road network. This is a linear road network consisting of junctions.

Junctions are connected with each other by a minimum of 2 roads and maximum

of 4 roads. The partitioning is either linearly vertical or linearly horizontal. Linear

vertical partitioning is illustrated in Fig. 3.4 and linear horizontal partitioning is

illustrated in Fig. 3.5. The linear partitioning implies that every partition has 2

neighbours. Traditionally, in the Madcity simulation, each road has one vehicle

at the beginning of the simulation but as many vehicles as the road can contain

can be put on the road, if desired. This has a direct effect of increasing the load

of the simulation.

The mesh-like nature of the Manhattan network is coupled with a synthetic

traffic pattern where vehicle routes are sampled from a normalized random

number generator. The experiments were performed on 1 compute-node (the

sequential Madcity version) and the parallel Madcity version on varying number of

compute-nodes. An important part of the experimental design is the preparation

of the road networks. A graph partitioner utility (ref section §3.5.2 ) that is

written for this purpose was used. The program takes arguments such as the

desired size of the network and the number of partitions and then partitions the

graph accordingly. The summary of the experimental procedures are:

• Use a program called the Manhattan network generator to draw and

partition the road network into sub-networks. This is a web-based Java

program that takes as input the size of the road network, the number of

partitions, the nature of the partitions (horizontal or vertical) and produces

a well partitioned ‘.net’ file that can be executed on different compute-nodes
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on the cluster.

• Configure PVM parallel environment on the Cluster with sufficient number

of compute-nodes required for the execution of the parallel program. The

number of compute-nodes configured equals the number of partitions in the

road network to ensure a one-one mapping of partition to compute-node.

• Run the parallel program and on completion, record the execution time/mean

response time of the program.

4.5. The Experimental Results and Discussions

Experiments were performed to study the behaviours of the parallel simulator and

the load balancing algorithms under a variety of conditions. First, the effect of

partition load evenness on the performance of the parallel simulation was studied.

Then the performance improvement achieved by the load balancing algorithms

were studied by comparing parallel simulation with and without load balancing

algorithms. Profitability determination (PD) was then studied by comparing

simulations with and without PD for both MaS and diffusion algorithms. The

performances of load indexes were also studied by comparing vehicles load index

with response time load index. And finally, the scaling efficiency of the algorithms

were studied.

It was first important to establish a performance baseline of the parallel

simulator without the DLB in order to compare with the results of the DLBs.

Also studied was the performance of a manually balanced network. In each of

the experiments therefore, 3 measurements were taken:

1. The run-time of the manually balanced network (MB-noDLB)

2. The run-time of the parallel simulator without DLB (Sim-noDLB)

3. The run-time of the parallel simulatior with DLB (Sim-DLB)
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In every experiment, the vehicle distributions before and after the load

balancing operation were recorded. The manually balanced network (MB-

noDLB) gives an indicative measure of the performance of the dynamic load

balancing algorithms since the simulator starts with a network that is balanced

right from inception. It is assumed that in comparing the above 3 networks, the

MB-noDLB network would give the best performance, followed by Sim-DLB and

then Sim-noDLB. The expected performance graph in terms of the run-time is

illustrated in Fig. 4.1. Note that these are only estimated values and not based

on experimental results.
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Figure 4.1: Expected Simulation Run-time of Different Simulation Scenarios (estimated values)

The expectations are that the run-time of the dynamic load-balancing

algorithm would be close to that of MB-noDLB algorithm. However, the two

may not be the same because of dynamic load balancing overheads, which is not

present in the static case.
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Synthetic static network files were created with arbitrary load imbalances

ranging from 10% to 70% imbalances. That is, the experiments start with

initially unbalanced networks. The experiments were designed with a simplified

network model in which individual imbalances arise, one after another, with each

imbalance confined to a single computer. The aim is to study the performances

of the algorithms under varied network imbalance scenarios.

The run-time and vehicle distributions before and after every DLB experiment

were measured so as to calculate the quality of load balance. Quality of load

balance is the measure of the ‘balancedness’ of the network. It is helpful for

calculating the % improvement of the load imbalance after DLB operations.

Quality of load balance was discussed further in section §4.2.

4.5.1. Effect of Load Evenness on Parallel Traffic Simulation

The purpose of this experiment is to study the effect of load evenness on the

performance of parallel traffic simulation. The measures of performance here

are run-time, speedup and efficiency. Various road networks were created using

Manhattan network generator tool, described in section §3.5.2. The load on

individual compute-nodes were manually adjusted to reflect load imbalance. For

example, in experiment 1 of table 4.2, node 1 has 430 vehicles, node 2 has 580

vehicles, node 3 has 580 vehicles, node 4 has 580 vehicles and node 5 has 6230

vehicles. Different load situations were also created for experiments 2 to 8 as

indicated in the table. Degrees of load evenness were calculated using the relative

standard deviation method of equation 4.3 in section §4.2.

In these experiments, the road network with the highest degree of evenness

has a standard deviation of 0.04. Note that a perfectly even network has a

theoretical standard deviation of 0. However, the best achievable road network in

the experiments has a standard deviation of 0.04. This is because of performance

design constraints, such as minimizing partition edges and hence communication
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No of Vehicles No of Junctions No of Roads No of partitions Time steps
8400 225 840 5 5000

Table 4.1: Description of the Road Network

No of Node 1 Node 2 Node 3 Node 4 Node 5 Load
Expts (vehicles) (vehicles) (vehicles) (vehicles) (vehicles) Evenness (σ)

1 430 580 580 580 6230 1.35
2 430 580 580 1160 5650 1.19
3 430 580 580 1740 5070 1.04
4 430 580 580 3480 3330 0.84
5 430 580 1740 2900 2750 0.62
6 1010 1160 1160 2320 2750 0.42
7 1010 1740 1740 1740 2170 0.22
8 1590 1740 1590 1740 1740 0.04

Table 4.2: Calculation of Load Evenness for Different Experiments

overhead, discussed in §3.6. Similarly, the network with the smallest degree of

load evenness has a standard deviation of 1.35 (These are shown in table 4.2).

The lower limit of σ = 0.04 and upper limit of σ = 1.35 are due to practical

constraints. All experiments were performed on a 5 compute-node network with

5 partitions on the Mut cluster. The full network description is shown in Table

4.1 and the load distributions for each experiment are shown in table 4.2.

Analysis of Experimental Results

The experimental results are presented in Fig. 4.2 and 4.3. Fig. 4.2 shows the

variation in simulation run-time plotted against load evenness. The results show

that as load evenness (σ) increases, simulation run-time increases approximately

linear. The best achievable run-time is when σ= 0.04. However, interpolating

the line graph on a straight line cuts the y-axis at run-time = 25 secs (see fig.

4.2), representing the case of σ = 0, the theoretical perfectly even network. The

difference of 3 seconds between the interpolated value (25 secs) and the real value

(28 secs) reveals at a glance that load evenness affects the performance of the

experiment. Also, the case of σ = 0 is the best run time value that the load

balancing algorithms could aim to achieve but in reality, it is impossible due to
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Figure 4.2: Effect of Load Evenness on Parallel Simulation Runtime.

inherent parallel simulation overheads.

Fig. 4.3 shows corresponding speedup against load evenness. These results

clearly show that load unevenness significantly reduces the performance of parallel

traffic simulations. For example, on 5 compute-nodes, the theoretical maximum

speedup is 5 but a speedup of 2.7 is achieved on the 0.04 load evenness and

1.4 on 1.35 load evenness, representing parallel computational efficiency of 54%

and 34% respectively. A significant 20 percentage-point performance difference

corresponds to nearly a 60% worsening compared with the almost perfectly even

network. Two questions arise from these results.

1. Why is the speedup of evenly partitioned network better than the speedup

of the uneven network? and

2. Why is the theoretical maximum speedup not achieved in the almost
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Figure 4.3: Effect of Load Evenness on Parallel Simulation Speedup

perfectly even network?

The answer to the first question is that in the implementation of the parallel

simulation, global barrier synchronization is employed (as described in section

§3.6.4) and all the processes wait at each global synchronization point until the

last compute-node has reached the point. In a system with an uneven load, the

wait time of the processors is likely to be longer than when the load is even.

The last processor to reach the synchronization point is the one with the biggest

load; the greater the load evenness, therefore, the longer the wait time at the

synchronization point.

On the second question, the performance shortfall is due to the communication

and computation overheads on parallel performance as discussed in section

§3.6.3. The best case of 54% parallel efficiency has an overhead of 46%, which

is rather large on 5 compute-nodes, but the question of whether this trend

continues in bigger networks and larger compute-nodes will be investigated in
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later experiments.

Conclusion

In conclusion, for a network of 5 compute-nodes, load evenness generally affects

the performance of parallel traffic simulations. The greater the degree of load

unevenness, the worse the performance of the system. For example, the network

with (σ) = 0.04 gives a significant 20 percentage-point improvement over the

network with (σ) = 1.35. These results are indicative of a need to investigate the

corrective effect of load balancing algorithms in parallel simulation on 5 compute-

nodes. In later experiments the investigations will be explored on bigger compute-

nodes.

4.5.2. Profitability Determination Experiments

Since the overheard of dynamic load balancing is its major disadvantage, reducing

the overhead would be beneficial to the overall performance of the system. A

method is hereby proposed whereby some aspects of the load balancing algorithm

such as the PD is performed off line.

As discussed in section 3.7.3, pdthreshold is dependent on such factors as:

• size of the road network

• number of compute-nodes used

• and degree of load evenness

As a result of the above factors, for every road network that would be used

in the experiments, the first step is to determine pdthreshold in equation 3.5 and

also since pdpercentage in equation 3.6 is not known, it has to be determined by

experimentation. Experiments were performed on Carmen cluster using different
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Figure 4.4: Finding pdpercentage for MaS algorithms on 5 compute-nodes.

values of pdpercentage whereby pdpercentage was varied between 10% and 50% (i.e,

10, 20, 30, 40, 50) as shown in Fig. 4.4. The experiments were conducted for two

different time steps and it was observed that the run-time reduced as pdpercentage
increases from 10% to 30%, after which it started to rise again. This means

that for this road network, run-time is lowest at pdpercentage = 30% for both time

steps. In order words, 30% of load above the average load (pdpercentage) gives the

best performance for this road network. x is measured by using equation 3.4

where AvgLoad is subtracted from the load of the most loaded compute-node (i.e

x = nodemostloaded − AvgLoad).

The PD relation of equation 3.5 therefore becomes:
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Algorithm 10: The Pofitability Determination(PD)Algorithm
Input: Set of tasks and compute-nodes

Output: Profitability Determination

if x ≥ AvgLoad× 0.3 then1

perform DLB2

end3
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Figure 4.5: Comparing different periodic values.

A critical parameter in any periodic load balancing algorithm is setting the

‘right’ period. In figure 4.5, three experiments were performed with three

different periodic values of load balancing (200, 500 and 1000). The value 200,

for example, means that load balancing is performed every 200 time steps. For

122



4.5. The Experimental Results and Discussions

these experiments, the results are best at period = 200 and worst at period =

1000. The results show that as the period of load balancing is made bigger, the

run-time of the simulation increases. This is because longer period means that

load imbalance is prolonged before correction and hence its adverse affect on the

performance of the system. For this network, simulation period performs best at

200 but would differ from network to network. Just like in the case of PD, this

value would be influenced by such factors as;

• size of the road network

• number of compute-nodes used

• the total simulation time steps

• degree of load evenness

This means that no single periodic value is appropriate for all road networks

and situations. The value differs for every road network setup, but there exist an

optimum period that gives the best results. This increases the controllable factors

in performing periodic load balancing experiments. Apart from setting the right

value of PD threshold, for example, the period also need to be determined prior

to experiments.

The interesting observation in this regards is that PD helps in eliminating the

importance of setting the right period. This is because no matter how short or

long the period of load balancing is, PD ensures that load balancing is performed

only if it is advantageous to perform load balancing.

Comparing Simulation with PD and Simulation without PD of MaS and Diffusion

Algorithms

In Fig. 4.6, a simulation with profitability determination (PD) was compared with

another simulation in which the PD was turned off, using VLI, for a MaS and
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Figure 4.6: Comparing simulation with PD and simulation without PD of MaS and Diffusion
Algorithms.

diffusion algorithms. For a simulation of 5000 time steps, periodic load balancing

was performed every 200 time steps.

Four(4) comparisons are made from Fig. 4.6 as discussed below:

1. MaS with PD and MaS with no PD (MaS(PD)and MaS(noPD))

It can be seen in the figure that the simulation with PD performs better

than simulation without PD for all the experiments considered. This is

expected because when PD is turned off, the simulation balances the load

at every 200 time steps when dynamic load balancing routines are called.

This kind of simulation lacks the intelligence to know if it is profitable to

balance the load or not. As a result, load balancing overheads are incurred

at every periodic load balancing operation. The simulation with PD has

the intelligence to determine when it is profitable to load balance or not.

As a result, it attempts to balance the load only when it is profitable hence
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reducing some load balancing overhead.

2. Diffusion with PD and Diffusion with no PD(Diffusion(PD)and Diffu-

sion(noPD))

It can be seen in the figure that the simulation with PD performs better

than simulation without PD for all the experiments considered. However,

the difference between the two is not as huge as the the case of MaS

above. While PD helps in reducing the runtime of the simulation, PD added

another overhead to the Diffusion and as such the overall improvement is

not as good as in the case of MaS.

3. MaS with PD and Diffusion with PD (MaS(PD) and Diffusion(PD))

Algorithms

In comparing MaS(PD) and Diffusion(PD), MaS(PD) performs better than

Diffusion(PD) in all situation. This shows that global PD fits perfectly into

the architecture of MaS. In the case of diffusion algorithm, it is like adding

an additional overhead to the overall runtime of the algorithm and hence

performance is lower than MaS.

4. MaS with noPD and Diffusion with noPD(MaS(noPD) and Diffusion(noPD))

Algorithms

Comparing the runtime of MaS (noPD) and Diffusion (noPD) algorithms,

it is observed that diffusion performs better than MaS in all cases. This is

attributed to the overhead of MaS which is incurred at every load balancing

step, in the absence of PD. In diffusion algorithm, the overhead is less and

hence diffusion outperforms MaS.

In summary, it means that when the right period is set, MaS outperforms

diffusion but when load balancing is repeated at every period, MaS performs

worse than diffusion. This all has to do with the architecture of the two

algorithms in relation to their load balancing overheads.
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4.5.3. Load Index Experiments

Measuring the Resource Load (RL)

As stated in section 3.7.1, RTLI is a measure of both the application(AL) load

and the resource load(RL). While the measurement of AL was discussed in section

3.5, the measurement of RL is discussed in this section. Resource load (RL) is

defined as the total load on the system (LoadTotal) minus the research Madcity

application load (LoadMadcity). In other words, it comprises of all the running

processes on the system minus the load due to Madcity.

RL = Loadtotal − Loadmadcity (4.5)

CPU utilization was monitored by the Unix/Linux utility called ‘Top’. Top

provides an ongoing look at processor activity in real time and has additional

functions that can save snapshots of Top results to a file and give the average

summary of the resulting file, including information such as CPU, memory, and

swap. In this way, analysis can be performed on the resource of interest.

RTLI is primarily designed for a heterogeneously-loaded distributed platform.

To simulate such a platform, different compute-nodes were loaded with different

levels of synthetic load with a Unix/Linux utility called ‘Stress’. Stress is a utility

that can be used to put a system under a varying amount of load by varying the

command line parameters.

In preliminary experiments done on a single core CPU, monitored with top, it

was observed that when 2 instances of Stress are run, the system allocates 50% of

CPU to each instance of Stress. When 4 instances are run, the system allocates

25% to each instance. Similarly, in a multicore CPU, load is distributed to the

processors in equal measure. For example, if 4 processes are sent to a quad core

CPU, each CPU would have one process each. If 6 are sent, 2 CPUs would have
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2 processes each and 2 CPUs would have one process each. Similarly, when an

instance of Madcity research traffic simulator is run alone, the CPU is allocated

100% to it. When this is run at the same time with other instances of Stress,

it is expected that the CPU is allocated fairly equally between the instances of

Madcity and Stress tool. For example if 3 instances of Stress and 1 instance of

Madcity are run, ideally, the CPU should be allocated in 4 parts of 25% each.

For the experiments reported in this section, which were performed on 5

compute-nodes, below are the load distribution of Stress on 4 compute-nodes.

The 1st compute-node has no instance of stress running.

compute-node 2:

stress --cpu 4 --io 4 --vm 8 --vm-bytes 512M &

compute-node 3:

stress --cpu 8 --io 8 --vm 8 --vm-bytes 512M &

compute-node 4:

stress --cpu 12 --io 12 --vm 8 --vm-bytes 512M &

compute-node 5:

stress --cpu 16 --io 16 --vm 8 --vm-bytes 512M &

where:

--cpu N spawn N workers spinning on sqrt()

--io N spawn N workers spinning on sync()

--vm N spawn N workers spinning on malloc()/free()

--vm-bytes B malloc B bytes per vm worker (default is 256MB)

Note the following:

• —cpu 16 means that 16 instances of stress are running. Each compute-

node is a quad-core CPU meaning that each CPU is allocated 4 instances

of stress. This is to ensure that whichever CPU Madcity application runs,

since Madcity cannot be restricted to a particular CPU, it would be running
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data 1 data 2 data 3 data 4 data 5 Average
% % % % % % CPU Utilization

Node 1 96.4 97.0 98.0 98.3 98.1 97.56
Node 2 29.5 30.4 30.6 29.6 30.4 30.1
Node 3 27.1 27.4 26.5 26.8 27.4 27.04
Node 4 21.7 21.9 21.7 20.7 21.6 21.52
Node 5 15.3 15.5 15.3 14.9 15.0 15.2

Table 4.3: Table showing % CPU Utilization of Madcity on a heterogeneously loaded platform

on a slowed CPU.

• —io 16 behaves similar to cpu.

• It was observed that allocating more than 8 to the VM or allocating more

than 512M to vm-bytes killed the compute-node so these were the maximum

values used. These restrictions has to do with the maximum memory

available in the compute-node

With this distributions, experiments were conducted with serial Madcity, on

1 compute-node, to know how much percentage the CPU allocates to Madcity.

The compute-node was loaded, in turn, with Stress utility and then readings of

the Madcity percentage CPU utilization were recorded with a Linux/Unix utility

called ’ps’. ps has the capability to read the % CPU utilization of a process when

passed the process id of the process. 5 readings were taken at intervals and then

the average calculated. These are tabulated in Table 4.3. The table shows that

the compute-node dedicated about 98% of CPU to Madcity on compute-node 1,

30% on compute-node 2, 27% on compute-node 3, 23% on compute-node 4 and

15% on compute-node 5. The remaining percentages were taken by the resource

load.

These experiments were as expected. This generally means that a heterogeneously-

loaded platform can be simulated by varying instances of Stress running on the

system though the actual percentage allocated to Madcity need to be verified by

experimentation.
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Comparing Vehicles Load Index (VLI) and Response Time Load Index (RTLI) of

Centralized (MaS) Algorithm
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Figure 4.7: Comparing Response Time load Index (RTLI) and Vehicle Load Index (VLI) of
Centralized (MaS)Algorithm.

Load index can not be run as a stand alone component but as part of a load

balancing algorithm. The comparison here is between Basic Centralized Algo-

rithm with global PD (BCAPD) and Extended Centralized Algorithms(ECA).

The main objective here is to compare a MaS algorithm with vehicles load index

with another MaS algorithm with a response time load index. Experiments were

conducted on 5 compute-nodes of the Carmen cluster. The results are shown in

Figure 4.7. In one set of experiments, stress utility were run at background to

simulate variable system load in a heterogeneous environment, as explained in

the section above. The other set of experiments were run in a normal cluster

environment. In Figure 4.7 the former is identified as external load while the

latter is identified as no external load.

In the experiments with no external load, the vehicles load index performed
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better than the response time load index by about 15%. This is because in a

homogeneous cluster environment, vehicles load index is sufficient as load index.

Response time load index presents extra overhead of converting from the response

time load index to vehicles which gives vehicles load index an advantage. In the

experiments with external load, the vehicles load index still performs better than

the response time load index but the difference in run-time in this case is smaller.

The difference is 4% as against the 15% in the above case. This shows that as

the environment moves towards a heterogenous environment, response time load

index shows a qualitative evidence that it improved in performance compared to

the vehicles load index, when used in centralized algorithm.

Using the same road network in the above experiments, the experiments were

repeated on Mut cluster and results are in Fig. 4.8. External loads are easier

to manage here since the compute-nodes has only one processor each. Here

experiments were done with the following features:
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Figure 4.8: Comparing RTLI and VLI of Centralized (MaS)Algorithm.on Mut Cluster.

1. A statically balanced network with no DLB (MB-noDLB)
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2. A manually unbalanced network and no DLB (SIM-noDLB)

3. A manually unbalanced network, no external load but DLB for both RTLI

and VLI (SIM-DLB)

4. A manually unbalanced network with external load distributed in random

(SIM-DLB-EXTLOAD1)

5. A manually balanced network with external load distributed in an organized

way (i.e big AL on compute-nodes with high RL) (SIM-DLB-EXTLOAD2)

In the first 2 set of experiments, there is no difference in performance between

RTLI and VLI. This is expected as both DLBs are turned off. This experiments

only help to show that the two algorithms, BCA and ECA, are the same and the

only difference between then is the load index.

When experiments were done on a homogeneous platform (i.e no external

load), VLI performed better than RTLI. Again, this is expected as these are the

same results obtained on Carmen cluster. It confirms the fact that VLI performs

better in a homogeneous system

When external load were introduced in a random way with no regards to which

compute-node were simulating high vehicles, VLI still performs better than RTLI.

But, the difference in performance between RTLI and VLI is very little.

When external load were introduced in a controlled way such that compute-

nodes with RL are also the compute-nodes with high AL, the two algorithms

performed the same. This further supports the fact that the strength of RTLI is

in a heterogeneously-loaded platform.

Conclusions

For the experiments conducted using 2 different clusters under varying ranges of

heterogeneously- loaded platforms, the results indicate that VLI performs best in
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a homogeneous platform. This is due to the simplicity of VLI. It is quite simple

to measure and no additional overhead are introduced due to load collection. For

RTLI, the overhead of converting load from RTLI into an equivalent number of

vehicles also add to its overhead in a homogeneous platform. In a heterogeneously-

loaded platform however, vehicles load index is incapable of properly quantifying

the load of the system and hence its performance starts slowing down while RTLI

keeps improving. The result of a properly quantified load helps RTLI improve

in performance. Both results confirm that RTLI shows a qualitative evidence

of improved performance compared to the vehicles load index, when used in a

heterogeneously-loaded platform.

Comparing Vehicles Load Index (VLI) and Response Time Load Index (RTLI) of

Diffusion Algorithm
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Figure 4.9: Comparing Response Time load Index (RTLI) and Vehicle Load Index (VLI) of
Diffusion Algorithm.

The comparison here is between BDA with global PD (BDAPD) and EDAG

algorithms. BDA has profitability determination so that only the load indexes

can be compared with each other. The results are shown in Figure 4.9. The
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results follow the same pattern as the MaS algorithms i.e vehicles load index

still performed better than response time load index in all cases. Also, response

time load index showed a qualitative evidence that it improved in performance

compared to the vehicles load index, when used in distributed algorithm.

However, the percentage differences in performance between the two load indexes,

in both set of experiments, were wider than those in MaS algorithm. 18% for

no external load and 8% for external load as against 15% and 4% respectively

for MaS. In all the experiments conducted, MaS always performed better than

diffusion. These experiments followed the same pattern. One of the reasons is

that MaS algorithms better suite the properties of SPMD algorithms that has

master slave structure.

Comparing RTLI of Extended Centralized Algorithm (ECA) and Extended Diffu-

sion Algorithm with Global PD (EDAG)
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Figure 4.10: Comparing RTLI of Extended Centralized Algorithm (ECA) and Extended
Diffusion Algorithm with Global PD (EDAG).

133



4.5. The Experimental Results and Discussions

The main objective here is to compare the performances of the 2 extended

algorithms of MaS and diffusion, both using RTLI load index. 2 experimental

sets (with external load and with no external load) were conducted on 5

compute-nodes of the Mut cluster. The results are shown in Figure 4.11. In

both experimental sets, the MaS algorithm performed better than the diffusion

algorithm by about 9% in the case of no external load and 17% in the case of

external load.

Comparing VLI of Basic Centralized Algorithm (BCA) and Basic Diffusion

Agorithm (BDA)
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Figure 4.11: Comparing VLI of Basic Centralized Algorithm (BCA) and Basic Diffusion
Agorithm (BDA).

The main objective here is to compare the performances of the 2 basic

algorithms of MaS and diffusion, both using VLI load index. Experiments were

conducted on 5 compute-nodes of the Mut cluster. The results are shown in

Figure 4.11. In both environments, the MaS algorithm performed better than

the diffusion algorithm by about 6% in the case of no external load and 14% in
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the case of external load.

The superiority of MaS to diffusion algorithm in both experiments is because

it is observed that MaS fits into the structure of SPMD applications better than

diffusion. Also, it is better and quicker in making load balancing decisions because

it has a global view of the system. It can be concluded from these results that

MaS better suits SPMD applications.

Performance Comparison of 2 Basic and 2 Extended Algorithms of MaS and

Diffusion Algorithms
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Figure 4.12: Comparing 2 Basic and 2 Extended Algorithms of MaS and Diffusion Algorithms.

These experiments compared the performance improvements of 2 basic and 2

extended load balancing algorithms of MaS and diffusion, on 5 compute-nodes.

Performance is measured in run-time. The data for these experiments are the

same as for the last 2 experimental discussions. There are 2 sets of experiments,
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one set with no external load and the other set with external load. The run-

times of the different simulations were measured and plotted in Figure 4.12. In

each of the 2 sets of experiments, MaS with VLI had the lowest run-time. In

experimental set 1, this was followed by diffusion (VLI). This implies that VLI

outperformed RTLI in all the experiments in experimental set 1 for both MaS

and diffusion. In experimental set 2 however, the best two performances were for

MaS in both VLI and RTLI. This means that MaS outperformed diffusion in all

the experiments in experimental set 2. The fact that MaS (RTLI) outperformed

diffusion (VLI), in the second set of experiments, means that as the experiments

move to a heterogeneous-like environment, the advantages of RTLI over VLI

becomes apparent. Also, in the second set of experiments, comparing the lowest

run-time with the highest run-time, MaS VLI showed a percentage difference

of 26% over diffusion RTLI while in the first set of experiments, the percentage

difference was 30%. The 26% and 30% variations between the best performance

and the worst performance in both cases was considered significant. However, the

4% reduction in the heterogeneous-like environment again showed the strength

of RTLI in a heterogeneous environment. This is indicative of the fact that in a

truly heterogenous environment, the performance difference between RTLI and

VLI would be minimal and hence insignificant.

Performance Comparison of 2 Load Balancing Algorithms(Basic Diffusion Algo-

rithm with global PD(BDAPD) and Basic Centralized Algorithm with global PD

(BCAPD)

This experiment aimed to measure the performance improvement achieved by

the 2 regular load balancing algorithms, MaS and diffusion, on 5 compute-

nodes. Performance is measured in 2 ways: run-time and quality of load evenness

achieved. The experiments were performed on the following scenarios: a road

network of 0.04 initial load evenness without load correction ("initially even,

uncorrected"); a road network of 1.35 initial load evenness without load correction

("initially uneven, uncorrected"); and a road network of 1.35 initial load evenness
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No of Vehicles No of Junctions No of Roads No of partitions Time steps
8400 225 840 5 5000

Table 4.4: Description of the Experimental Road Network for 5 Compute-nodes

employing 2 different load balancing algorithms: MaS and diffusion ("initially

uneven, corrected"). The run-times of the different simulations were measured

and the performance improvements calculated for the 2 algorithms. The full

network description, which is the same for all the scenarios, is shown in Table

4.4.

Analysis of Experimental Results
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Figure 4.13: Description of Load Distribution for the Experiments

The experimental results measuring the run-time of the simulation experi-

ments are presented in Fig. 4.13. The first observation in Fig. 4.13 is that for
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networks initially uneven (σ = 1.35), both DLB algorithms provided substantial

improvements over the uncorrected system.

With a load evenness of 1.35, the road network was designed in such a way

that one of the compute-nodes was heavily loaded, and the run-time without

load balancing increased. When load balancing is turned on, a 53% reduction of

simulation run-time in MaS and 51% reduction for diffusion are achieved. The

DLB algorithms were applied at the start of the simulation, bringing the system

into balance very quickly as seen in Table. 4.6. In the table, with an initial load

unevenness of 1.35, MaS reduced it to 0.38 while diffusion reduced it to 0.50.

The initiation of load balancing at start of simulation rather than later in

the simulation is to minimize the effect of prolonged load unevenness. Fig. 4.14

shows the effect of delayed load correction on the performance of the system. In

the graph, there was a performance improvement of 47% when load balancing

was carried out at the beginning of simulation (time step 0) rather than close

to the end of the simulation (time step 4000). As can be seen in the graph,

this is a linear graph showing the increase of simulation run-time as the load

balancing initiation time increases. This shows that leaving the load uncorrected

for a longer period leads to performance degradation.

It is interesting to note in Fig. 4.13 that the performance of both the two

corrected systems and the initially even, uncorrected systems are almost the same

(as predicted in section §4.1). The initially even, uncorrected system provides the

best performance in this case (57% improvement), followed by MaS algorithm

(53% improvement) and then diffusion algorithm (51% improvement) compared

with the initially uneven, uncorrected case. The initially even, uncorrected

network (σ = 0.04) provides the best performance because it is (almost) perfectly

balanced throughout and there is no run-time overheads introduced by load

balancing. However, the fact that MaS algorithm is very slightly, only 2%

better than diffusion is interesting because it has been widely assumed that in

distributed systems, centralized solutions are undesirable because they tend to
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Simulation Timestep at DLB Initiation 

Figure 4.14: Performance of Simulation at Different Initiation of MaS Algorithm

create performance bottlenecks. However, if the inter-processor communication

is relatively efficient (which is true in this experiments because of the Infiniband

fabric [69][70]) the centralized approach to work transfer calculation is simple and

efficient. The 2 percentage-point difference is not very significant but whether this

difference would improve on larger networks is to be explored in later experiments.

Another reason that MaS ’s performance was better than diffusion is that

with the MaS algorithm, excellent work transfer calculation decisions, based on

complete system information are achieved, unlike diffusion, which is only aware

of the load of its neighbours. This is why MaS had a better quality of load

balance than diffusion (see table 4.6). Table 4.5 shows the load distributions

of different simulation scenarios (without and with DLB experiments) and Table

4.6 shows the quality of load balance for the corresponding simulation scenarios.

In Table 4.5, the order of the load distributions correspond to the order of the
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Uneven load Diffusion MaS Initially balanced
Uncorrected

ILD FLD ILD LDAD FLD ILD LDAD FLD ILD FLD
430 427 430 3330 3238 430 1590 1551 1590 1520
580 545 580 1160 1165 580 2900 2808 1740 1679
580 591 580 1160 1174 580 1160 1170 1740 1777
580 544 580 1160 1214 580 1160 1213 1740 1789
6230 6293 6230 1590 1609 6230 1590 1658 1590 1635

Table 4.5: Load (vehicles) Distribution of Simulations with and without DLB. ILD (Initial Load
Distribution), FLD (Final Load Distribution), LDAD (Load Distribution After DLB).

Uneven load Diffusion MaS Initially balanced
Uncorrected

ILE FLE ILE LEAD FLE ILE LEAD FLE ILE FLE
1.35 1.37 1.35 0.50 0.47 1.35 0.38 0.35 0.04 0.04

Table 4.6: Quality of Load Balancing with and without DLB. ILE (Initial Load Evenness), FLE
(Final Load Evenness), LEAD (Load Evenness After DLB).

compute-nodes in which the network partitions were executed.

The Quality of load balance (σ) of Table 4.6 are presented graphically in

Fig. 4.15. With the initial load evenness of σ=1.35, diffusion reduced it to σ

=0.50 whileMaS reduced it to σ= 0.38, representing a load evenness improvement

of 62% and 71% respectively, after load balancing. It is observed that none of

the algorithms is able to achieve the load evenness of the manually balanced

network of σ =0.04 due to performance design constraints, such as minimizing

partition edges and hence communication overhead, as discussed in section 3.5.

As simulation progresses and vehicles migrate from one partition to another, the

load distribution changes. Hence, load distributions and the values of σ at the

end of the simulation for the 3 experiments (σ = 0.47 for diffusion, σ = 0.35 for

MaS, and σ= 0.06 for even, uncorrected networks) differ slightly from the initial

conditions after the DLB operations. Similarly, the final state of the uneven,

uncorrected network remains uneven (σ = 1.37). This suggests that the load

has not changed much at all throughout the experiments. Since performance

is directly linked to load evenness, the performance of MaS is thus better than

diffusion, as confirmed by the run-time performance.
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Figure 4.15: Comparison of Load Evenness(σ) of Simulation with and without DLB. ILE (Initial
Load Evenness), FLE (Final Load Evenness), LEAD (Load Evenness After DLB).

Conclusion

Load balancing is capable of improving the run-time performance and load

evenness of an unbalanced system on a 5 compute-node processor system, when

load balancing is initiated once, at start of simulation. MaS reduced load evenness

from 1.35 to 0.38 while diffusion reduced load evenness from 1.35 to 0.50. In all

the experiments, the performance of an almost perfectly evenly balanced system

(0.04 evenness) road network is best because it does not have the overheads

associated with run-time of dynamic load balancing. In the experiments, MaS

achieved a 53% improvement of simulation run-time while diffusion achieved a

51% improvement, when both algorithms were applied to a 1.35 load evenness

network. The 2 percentage point difference suggests that MaS is slightly better

than diffusion algorithm for this set of experiments. It was observed that
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load distribution remained fairly constant throughout the simulation, after load

balancing at the start of the simulations.

4.5.4. A Study of the Scalability of the Load Balancing Algorithms (Basic

Diffusion Algorithm with global PD(BDAPD) and Basic Centralized

Algorithm with global PD (BCAPD)

In the previous section, the impact of DLB on 5 compute-nodes were studied. This

section studied the impact of DLB on higher number of compute-nodes ranging

from 10 to 25 compute-nodes. The purpose of the experiments was to study

the scalability of the load balancing algorithms. Scalability is measured in terms

of DLB overhead, run-time and the quality of load balance. For an algorithm

to be scalable, the performances should be relatively stable as the number of

compute-nodes and/or problem size increases.

The efficiency of scalability is an important factor of load balancing algo-

rithms. The ability of an algorithm to execute on numerous processors without

performance degradation (i.e. performance independent of both system and

load size) is an ideal characteristic of any load-balancing algorithm. A scalable

algorithm must be both efficient in execution time and the quality of load balance

for high degrees of parallelism and large number of compute-nodes. For n

number of computational load and p number of processors on which the unit

of computation must be executed, scalability efficient implies that the total time

taken to execute DLB should be negligible for small values of n and grow no

faster than O(p) for large values of n and p [4].

Generally, diffusive algorithms are known to be more scalable than global

algorithms [51][46]. The argument for lack of scalability of global method is due

to the fact that as the number of compute-nodes increases, the communication

overhead between the compute-nodes and the central compute-node presents a

bottleneck. This is not the case with diffusion algorithms because regardless of
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No of No of No of Time steps
Vehicles Junctions Roads
9800 2500 9800 5000

Table 4.7: Description of the Experimental Road Network for 10-25 Compute-nodes

No of NoDLB MaS Diffusion
nodes Runtime (sec) Runtime DLB Runtime DLB

(sec.) Overhead (sec.) Overhead
10 137.29 71.5 1.22 74.65 1.41
15 132.50 64.45 1.73 61.47 1.62
20 118.43 54.84 2.12 47.8 1.92
25 109.49 43.87 2.67 40.32 2.38

Table 4.8: Run-time Overhead of the Load Balancing Algorithms

the number of compute-nodes, every compute-node only communicates with its

immediate neighbours.

The experiments were designed with a simplified network model (Table. 4.7)

in which individual imbalances arise, one after another, with each imbalance

confined to a single computer. In real applications this simplified model may

not be realistic but suitable to create synthetic experimental load imbalance (in

real life, imbalances may arise on several computers simultaneously, as a result

of several unrelated events, or as a result of a single event that involves several

computers). The size of the road network and hence the load was kept constant

for all the experiments. In this way, the behaviours of the simulation on various

compute-nodes can be compared with each other.

Discussion of the Results

In these experiments, the focus is on the effect of cluster scale on the performance

of both algorithms (MaS and diffusion). Four levels of cluster scale (10, 15, 20,

25) and three sets of empirical measurements are reported and discussed. The

first experiment discusses the impact of cluster scale on DLB overhead. The

second set of experiments discusses the impact of scalability on the quality of

load balancing. The third set of experiments discusses the effect of cluster scale
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on the run-time of the simulation.

Effect of Scalability on DLB Overhead
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Figure 4.16: Comparisons of the Overhead of MaS and Diffusion Algorithms

Fig. 4.16 shows the different values of DLB overhead on a cluster scale of 10,

15, 20 and 25 compute-nodes. It was observed that for the two algorithms, there

was linear increase in the DLB overhead as the number of cluster compute-nodes

increased from 10 to 25 compute-nodes. These results were expected because as

the number of compute-nodes increased, more communication and computation

was required to achieve load balance. As the cluster scaled from 10 to 25 compute-

nodes, the overhead increased by 1.45 representing a 118% increase for MaS

and 0.97 representing a 68% increase in overheads for diffusion. The increase in

overhead from one cluster scale to another was smaller for MaS except on 10
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No of Nodes MaS (FLE) Diffusion (FLE) ILE
10 0.08 0.09 2.41
15 0.29 0.37 2.63
20 0.34 0.35 2.62
25 0.15 0.15 2.45

Table 4.9: Quality of Load Balancing(σ) of MaS and Diffusion. ILE (Initial Load Evenness),
FLE (Final Load Evenness.)

compute-nodes. For example, the increase from 10 to 15 compute-nodes, 15 to 20

compute-nodes and 20 to 25 compute-nodes were 0.51 (41%), 0.39 (22%) and 0.57

(25%) respectively for MaS and 0.21 (14%), 0.30 (18%), 0.46 (23%) for diffusion.

The comparatively lower percentage increase for diffusion means that diffusion is

more scalable than MaS.

It is interesting to note from Fig. 4.16 that diffusion showed higher overhead

than MaS at 10 compute-nodes but on higher compute-nodes, its overhead was

comparatively lower. Similar result pattern was observed on 5 compute-nodes

in the previous section showing that MaS performed better at lower compute-

nodes. In both algorithms, the major overhead of the two algorithms come from

communication overhead of the load evaluation calculation. It would be observed,

as discussed in section §3.6.3, that both algorithms in order to estimate the

profitability of the algorithms, first of all perform a global communication to

ensure that the master process receives the load of every compute-node. At

this stage, the master process computes for profitability determination. If it is

profitable to balance the load however, MaS goes straight ahead to analyse the

load gradient. Diffusion on the other hand, broadcast to all the compute-nodes

to inform them of the load profitability decision. At this stage, all the compute-

nodes engage in an individual load calculation and then proceed to the next stage

of the calculations.
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 Figure 4.17: Comparisons of the Quality of Load Balancing(σ) of MaS and Diffusion
Algorithms. ILE(Initial Load Evenness), FLE(Final Load Evenness)

Effect of Scalability on the Quality of Load Balancing (σ)

A critical factor affecting the effectiveness of load balancing algorithms is the

quality of load balancing achieved. This is designated σ as discussed in section

§4.2. The ideal value is zero, even if this is almost impossible to achieve in reality.

However, the aim is to achieve a value as close to zero as possible. The quality

of load balancing was calculated for the experiments and Table 4.9 summarizes

the results. These figures are plotted in Fig. 4.17. For these set of results,

the initial load evenness(ILE) was significantly reduced after the application

of DLB algorithms on all the compute-nodes were considered. For example,

on 10 compute-nodes, σ was improved from 2.41 to 0.08 representing a 97%

improvement for MaS. Similarly, there was a 96% improvement on 10 compute-
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nodes for the diffusion. Comparing the 2 algorithms, MaS showed slightly better

σ on most of the compute-nodes though the differences were not considered

significant. In most cases, the quality of load balance reduced as the cluster

scaled from 10 to 25 compute-nodes though this is not a consistent pattern. It

was concluded from the significant improvement in the quality of load balance

of the 2 algorithms observed on all the compute-nodes that the algorithms are

scalable.

Effect of Scalability on the Run-time of the Algorithms
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Figure 4.18: Comparisons of the Run-time of MaS and diffusion Algorithms and Simulation
with no DLB.

For a fixed load size, the run-time of both algorithms reduced as the cluster

scaled from 10 to 25 compute-nodes. The reduction in run-time is one of the

advantages of parallel processing because as more compute-nodes are added to
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No of MaS Diffusion
nodes Improvement equivalent Improvement equivalent

over No DLB % improvement Over No DLB % improvement
10 52.68 42 49.53 40
15 55.38 46 58.36 49
20 58.96 52 66.00 58
25 62.01 59 65.56 62

Table 4.10: Effect of DLB on Run-time of the Simulation

solve the same problem, each processor has less load and hence less time is

required to compute the problem. However, except for experimental purposes,

the load is usually increased as the cluster scales to bigger compute-nodes. In this

way, more resources are deployed to compute bigger problems which is the aim of

parallel processing. The effect of run-time on the scalability of the algorithms are

presented in Fig. 4.18. In both cases, the run-time of the simulation without DLB

was higher than the run-time of the 2 algorithms. Table 4.10 (values are calculated

from Table 4.8) shows the run-time improvement and the corresponding % run-

time improvement as a result of the application of DLB algorithms. On 10

compute-nodes, the run-time was reduced by 52 seconds representing a 42%

improvement for MaS. Similarly, diffusion was reduced by 50 seconds showing

a 40% improvement in run-time. In the table, a significant reduction in run-

time was observed on all the compute-nodes showing that DLB has performance

advantages even on higher compute-nodes. The ability of the algorithms to run

on various number of high compute-nodes also shows that both algorithms are

scalable in terms of the run-time.

It was observed that at 10 compute-nodes, diffusion showed higher run-time

values than MaS (this trend was also observed in the last experiments on 5

compute-nodes), while at higher compute-nodes (15, 20 and 25), diffusions showed

lower values than MaS. This means that diffusion is better scalable than MaS

because as the number of compute-nodes increased, the run-time of diffusion

was comparatively lower than MaS. Again, this confirms to the theoretical

expectations discussed in the introductory section that diffusion is more scalable

than MaS.
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Conclusion

The previous section (Effect of Load Evenness on Parallel Traffic Simulation)

studied the impact of DLB on 5 compute-nodes and concluded that further

experiments would study the effect of DLB on higher number of compute-nodes.

The scalability experiments in this section studied the effect of DLB on higher

number of compute-nodes ranging from 10 to 25 compute-nodes. The study

showed that DLB is capable of improving the performance of parallel simulation

on higher number of compute-nodes. Also, both algorithms exhibited good

scalability, at least up to the number of compute-nodes considered.

Several features of the impact of cluster scale on the performance of the

algorithms were identified. Firstly, load balancing overheads were generally higher

as the cluster scale increased. Secondly, for the experiments and the cluster

scale considered, the quality of load balancing (σ) of the simulation significantly

improved as a result of the DLB algorithms. Thirdly, the run-time of the

algorithms decreased as more compute-nodes were used to execute the given

problem. This shows that the algorithms are equally capable of executing on

higher number of compute-nodes. In comparing the two algorithms, based on

the experimental results, it can be observed that diffusion shows slightly better

scalability than MaS.

On all the compute-nodes, the performances of the 2 algorithms are very

competitive. Though MaS showed comparatively better performances on

lower compute-nodes (5 and 10) while diffusion showed comparatively better

performances on higher compute-nodes (15-25), these differences are considered

insignificant. These are only indicative of the performance trend of the algorithms

as they scale to even higher compute-nodes.
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4.6. Chapter Summary

In this chapter, dynamic load balancing was studied using Madcity parallel traffic

simulation. Performance evaluation of the parallel simulator was also studied.

The parallel Madcity was optimized with four dynamic load-balancing algorithms

and their performances evaluated. The work is concentrated on the cost of load

evaluation strategy and the scalability of the algorithms.

Some of the factors that affect load-balancing performances were studied. It

was found that load balancing has a profound impact on the system behaviour.

Under load balancing, the performances of all hosts, even those originally with

heavy loads improved under effective load balancing. This is very encouraging

and shows when the compute-nodes balance the load with each other, the overall

efficiency of the simulation is improved.

The important results from this study include:

• Load balancing reduced the run-time of the parallel application under a

wide range of load imbalance.

• Generally, MaS showed better performance at low number of compute-

nodes (5 and 10 compute-nodes) while diffusion performed better as

the cluster scaled to larger number of compute-nodes (15-25 compute-

nodes). Apart from scalability, from the research results presented, the

two are competitive in their performances. These results are indicative of

performance trend on higher cluster scale.
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Chapter 5
Contributions to Knowledge and Final

Remarks

5.1. Chapter Overview

In the previous chapters, dynamic load balancing has been studied in a number of

different compute-nodes using experimental implementations and measurements.

With the observations made from the case studies, the following remarks can be

made.

In a distributed memory parallel processing platform such as the Mut

cluster (the experimental platform), load balancing can improve performance

significantly as reported in the experiments performed. For the algorithms

studied, the loads of the hosts were made quite even by load balancing, hence,

improving the performance of the system. The impact of load balancing on

individual hosts is found to be quite uniform since the cluster is homogeneous.
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5.1. Chapter Overview

Experiments were performed to study load balancing algorithms/methods

developed in this thesis. For profitability determination (PD) algorithm,

experiments were first performed to establish an optimum threshold value for

profitability determination. This value is called PDthrehold. This was subsequently

used in the load balancing decisions of the algorithms. Experiments were

performed with and without PD routines to know if PD helps in load balancing

algorithms. It was observed that in both cases of MaS and diffusion algorithms,

simulations using PD outperformed simulations without PD. Global profitability

determination has a general view of the load distribution in the system. Hence,

PD makes intelligent choice when it is profitable to perform load balancing and

thereby eliminate unnecessary DLB overheads.

Two load indexes were also compared with each other, the vehicles load

index (VLI) and the response time load index (RTLI). The vehicles load index

outperformed the response time index in most situations especially when the

system is homogeneous. The experiments were repeated in a heterogeneously-

loaded platform. In this platform, vehicles load index still outperformed response

time load index but the difference between the two were closer than in the first

case. The advantage of vehicles load index is mainly because of the simplicity of

using vehicles as load index. The response time load index incurred additional

overheads in converting between RTLI and vehicles. However, the fact that

response time load index showed improvement in the heterogeneously-loaded

platform environment is encouraging. This shows that as the environment moves

towards a heterogenous platform, response time load index shows a qualitative

evidence of improvement in performance compared to the vehicles load index, for

both MaS and diffusion.

Generally, it was observed that the MaS algorithms performed better than

diffusion in all cases. These are due to the following reasons:

• In the case of MaS algorithm, the decision-making compute-node have a

view of the entire system such that work transfer calculations were quicker
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and better in quality. This subsequently lead to performance improvement.

Work transfer calculation in diffusion was local such that it was harder to

reach a global balanced view of the system. The quality of load balance was

also less that that of the MaS because the compute-nodes only balanced

their lodes with their neighbours.

• Both MaS and SPMD utilized master slave communication pattern. That

is, MaS fitted naturally into the SPMD parallel traffic simulation. This

gave MaS an advantage over diffusion whose structure was inherently

distributed.

5.2. Contributions to Knowledge

• Design of an adaptive load index and a Profitability determination algo-

rithms

A simple adaptive load index was designed using the time per simulation

time step (response time load index) per vehicle. This implicitly took

into consideration the load of the application (vehicles) and the hardware

utilization of the platform (e.g. CPU percentage utilization, memory, and

network backbone etc) making it adaptive to the hardware platform.

Similarly, considering the fact that dynamic load balancing incurs its

own overhead, profitability determination is an essential part of any load

balancing algorithm because it ensures that load balancing is performed

only when it is profitable to do so. A global profitability determination

was designed which was based on the most loaded compute-node in the

system. The algorithm uses a sorting method to determine the most loaded

compute-node and then makes decisions based on this. It is sometimes

wise to allow some degree of load imbalance. Therefore, the profitability

algorithm ensures that load balancing is performed only when the degree of

imbalance is more then a certain degree of imbalance (PDthreshold), which
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is determined prior to running the simulation.

• Design of a centralized load balancing algorithm called MaS

In centralized algorithms, load balance advice is estimated by the central

compute-node based on the overall load distribution and then distributed

to the participating compute-nodes who perform local load adjustments. In

some algorithms, the most loaded compute-node can give load directly to

the least loaded compute-node to balance the load in the system. In other

algorithms, load can only ‘diffuse’ from the most loaded compute-node to

the least loaded compute-node through its neighbours. This method ensures

that the boundary partitions between the neighbours are well preserved

which in turn reduces the communication overhead.

The problem with this method is that at the time the participating compute-

nodes receive the load balance advice, some compute-nodes don’t yet

necessarily have enough load to meet the requirements of the load to give to

its neighbours. Thus the compute-nodes are sometimes required to give out

what they don’t yet have. Such compute-nodes need to wait and receive

enough load from the overloaded neighbours through the neighbours before

they have enough to give out. The design in this thesis solved this problem

by ensuring that the compute-nodes give out their load only when they have

received sufficient load from the neighbours.

In calculating the load to transfer, it starts with the most loaded compute-

node. Once load has been recalculated, it reorders the load and then goes

to the most loaded processor. This process is repeated until the load

is balanced, all in one time step. The design of the load evaluation is

enforced in the load migration stage in which the decision-making processor

supervises the load migration procedure by handling control to the most

loaded compute-node in each load migration stage. This ensures that

compute-nodes have enough load before they are allowed to give out load to

their neighbours. A unique feature of the design is that all these operations

happen in one time step of simulation. The algorithm uses a response time
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load index as well as a profitability determinant based on the most loaded

compute-node in the system, which were all designed in this thesis.

5.3. Remarks on Future Work

Load balancing is a research topic with many dimensions, and involves a

large number of research issues. The problems believed to be of fundamental

importance to parallel traffic simulation, as observed in the literature review,

were studied. This work is the first in which suitable load balancing algorithms

for traffic simulation and their performances were studied. The work may be

extended in a number of directions.

1. Load balancing was mainly treated as a performance optimization research

and studied on a relatively small number of compute-nodes compared to

the sizes of recent clusters. More experiments on the scalability of the

algorithms would need to be done with higher number of compute-nodes.

2. The research hardware platform is considered homogeneous. Though

heterogenous environments were simulated in this research, a logical

extension of this work (especially for response time load index) would be

to experiment on a heterogeneous platform such as the Grid. Another

advantage for the grid platform is that as microscopic traffic simulations get

more complex with the inclusion of other modules such as the Intelligent

Transport Systems (ITS), more hardware research platforms would be

needed and the grid provides such a platform.

3. More features and comparisons of the different designed algorithms need to

be studied. For example, different heterogeneously-loaded platform can be

simulated so that more studies can be done on the algorithms. A different

set of experiments could be studied using randomly generated load.

4. A wide range of applicable algorithms revised in the literature review still
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remains to be studied. Research effort into the study and comparisons of

the performances of other algorithms such as dimension exchange, gradient

model, etc should be carried out.
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