131 research outputs found

    Natural Image Statistics for Digital Image Forensics

    Get PDF
    We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness

    Machine learning based digital image forensics and steganalysis

    Get PDF
    The security and trustworthiness of digital images have become crucial issues due to the simplicity of malicious processing. Therefore, the research on image steganalysis (determining if a given image has secret information hidden inside) and image forensics (determining the origin and authenticity of a given image and revealing the processing history the image has gone through) has become crucial to the digital society. In this dissertation, the steganalysis and forensics of digital images are treated as pattern classification problems so as to make advanced machine learning (ML) methods applicable. Three topics are covered: (1) architectural design of convolutional neural networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model classification, and (3) real-world tampering detection and localization. For covert communications, steganography is used to embed secret messages into images by altering pixel values slightly. Since advanced steganography alters the pixel values in the image regions that are hard to be detected, the traditional ML-based steganalytic methods heavily relied on sophisticated manual feature design have been pushed to the limit. To overcome this difficulty, in-depth studies are conducted and reported in this dissertation so as to move the success achieved by the CNNs in computer vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a proposed CNN architecture incorporating the domain knowledge of steganography and steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN is currently one of the best classifiers against steganography. Camera model classification from images aims at assigning a given image to its source capturing camera model based on the statistics of image pixel values. For this, two types of statistical features are designed to capture the traces left by in-camera image processing algorithms. The first is Markov transition probabilities modeling block-DCT coefficients for JPEG images; the second is based on histograms of local binary patterns obtained in both the spatial and wavelet domains. The designed features serve as the input to train support vector machines, which have the best classification performance at the time the features are proposed. The last part of this dissertation documents the solutions delivered by the author’s team to The First Image Forensics Challenge organized by the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. In the competition, all the fake images involved were doctored by popular image-editing software to simulate the real-world scenario of tampering detection (determine if a given image has been tampered or not) and localization (determine which pixels have been tampered). In Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector equipped with PatchMatch as a fast approximate nearest neighbor searching method were developed to identify duplicated regions within images. With these tools, the author’s team won the runner-up prizes in both the two phases of the Challenge

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    PrObeD: Proactive Object Detection Wrapper

    Full text link
    Previous research in 2D2D object detection focuses on various tasks, including detecting objects in generic and camouflaged images. These works are regarded as passive works for object detection as they take the input image as is. However, convergence to global minima is not guaranteed to be optimal in neural networks; therefore, we argue that the trained weights in the object detector are not optimal. To rectify this problem, we propose a wrapper based on proactive schemes, PrObeD, which enhances the performance of these object detectors by learning a signal. PrObeD consists of an encoder-decoder architecture, where the encoder network generates an image-dependent signal termed templates to encrypt the input images, and the decoder recovers this template from the encrypted images. We propose that learning the optimum template results in an object detector with an improved detection performance. The template acts as a mask to the input images to highlight semantics useful for the object detector. Finetuning the object detector with these encrypted images enhances the detection performance for both generic and camouflaged. Our experiments on MS-COCO, CAMO, COD1010K, and NC44K datasets show improvement over different detectors after applying PrObeD. Our models/codes are available at https://github.com/vishal3477/Proactive-Object-Detection.Comment: Accepted at Neurips 202

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    Image statistical frameworks for digital image forensics

    Get PDF
    The advances of digital cameras, scanners, printers, image editing tools, smartphones, tablet personal computers as well as high-speed networks have made a digital image a conventional medium for visual information. Creation, duplication, distribution, or tampering of such a medium can be easily done, which calls for the necessity to be able to trace back the authenticity or history of the medium. Digital image forensics is an emerging research area that aims to resolve the imposed problem and has grown in popularity over the past decade. On the other hand, anti-forensics has emerged over the past few years as a relatively new branch of research, aiming at revealing the weakness of the forensic technology. These two sides of research move digital image forensic technologies to the next higher level. Three major contributions are presented in this dissertation as follows. First, an effective multi-resolution image statistical framework for digital image forensics of passive-blind nature is presented in the frequency domain. The image statistical framework is generated by applying Markovian rake transform to image luminance component. Markovian rake transform is the applications of Markov process to difference arrays which are derived from the quantized block discrete cosine transform 2-D arrays with multiple block sizes. The efficacy and universality of the framework is then evaluated in two major applications of digital image forensics: 1) digital image tampering detection; 2) classification of computer graphics and photographic images. Second, a simple yet effective anti-forensic scheme is proposed, capable of obfuscating double JPEG compression artifacts, which may vital information for image forensics, for instance, digital image tampering detection. Shrink-and-zoom (SAZ) attack, the proposed scheme, is simply based on image resizing and bilinear interpolation. The effectiveness of SAZ has been evaluated over two promising double JPEG compression schemes and the outcome reveals that the proposed scheme is effective, especially in the cases that the first quality factor is lower than the second quality factor. Third, an advanced textural image statistical framework in the spatial domain is proposed, utilizing local binary pattern (LBP) schemes to model local image statistics on various kinds of residual images including higher-order ones. The proposed framework can be implemented either in single- or multi-resolution setting depending on the nature of application of interest. The efficacy of the proposed framework is evaluated on two forensic applications: 1) steganalysis with emphasis on HUGO (Highly Undetectable Steganography), an advanced steganographic scheme embedding hidden data in a content-adaptive manner locally into some image regions which are difficult for modeling image statics; 2) image recapture detection (IRD). The outcomes of the evaluations suggest that the proposed framework is effective, not only for detecting local changes which is in line with the nature of HUGO, but also for detecting global difference (the nature of IRD)

    Selection of Robust and Relevant Features for 3-D Steganalysis

    Get PDF
    While 3-D steganography and digital watermarking represent methods for embedding information into 3-D objects, 3-D steganalysis aims to find the hidden information. Previous research studies have shown that by estimating the parameters modelling the statistics of 3-D features and feeding them into a classifier we can identify whether a 3-D object carries secret information. For training the steganalyser such features are extracted from cover and stego pairs, representing the original 3-D objects and those carrying hidden information. However, in practical applications, the steganalyzer would have to distinguish stego-objects from cover-objects, which most likely have not been used during the training. This represents a significant challenge for existing steganalyzers, raising a challenge known as the Cover Source Mismatch (CSM) problem, which is due to the significant limitation of their generalization ability. This paper proposes a novel feature selection algorithm taking into account both feature robustness and relevance in order to mitigate the CSM problem in 3-D steganalysis. In the context of the proposed methodology, new shapes are generated by distorting those used in the training. Then a subset of features is selected from a larger given set, by assessing their effectiveness in separating cover objects from stego-objects among the generated sets of objects. Two different measures are used for selecting the appropriate features: Pearson Correlation Coefficient (PCC) and the Mutual Information Criterion (MIC)
    corecore