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ABSTRACT 

IMAGE STATISTICAL FRAMEWORKS FOR 
DIGITAL IMAGE FORENSICS 

by 
Patchara Sutthiwan 

The advances of digital cameras, scanners, printers, image editing tools, smartphones, 

tablet personal computers as well as high-speed networks have made a digital image a 

conventional medium for visual information. Creation, duplication, distribution, or 

tampering of such a medium can be easily done, which calls for the necessity to be able 

to trace back the authenticity or history of the medium. Digital image forensics is an 

emerging research area that aims to resolve the imposed problem and has grown in 

popularity over the past decade. On the other hand, anti-forensics has emerged over the 

past few years as a relatively new branch of research, aiming at revealing the weakness of 

the forensic technology.  

These two sides of research move digital image forensic technologies to the next 

higher level. Three major contributions are presented in this dissertation as follows.  

First, an effective multi-resolution image statistical framework for digital image 

forensics of passive-blind nature is presented in the frequency domain. The image 

statistical framework is generated by applying Markovian rake transform to image 

luminance component. Markovian rake transform is the applications of Markov process 

to difference arrays which are derived from the quantized block discrete cosine transform 

2-D arrays with multiple block sizes. The efficacy and universality of the framework is 

then evaluated in two major applications of digital image forensics: 1) digital image 

tampering detection; 2) classification of computer graphics and photographic images. 



 

Second, a simple yet effective anti-forensic scheme is proposed, capable of 

obfuscating double JPEG compression artifacts, which may vital information for image 

forensics, for instance, digital image tampering detection. Shrink-and-zoom (SAZ) attack, 

the proposed scheme, is simply based on image resizing and bilinear interpolation. The 

effectiveness of SAZ has been evaluated over two promising double JPEG compression 

schemes and the outcome reveals that the proposed scheme is effective, especially in the 

cases that the first quality factor is lower than the second quality factor.  

Third, an advanced textural image statistical framework in the spatial domain is 

proposed, utilizing local binary pattern (LBP) schemes to model local image statistics on 

various kinds of residual images including higher-order ones. The proposed framework 

can be implemented either in single- or multi-resolution setting depending on the nature 

of application of interest. The efficacy of the proposed framework is evaluated on two 

forensic applications: 1) steganalysis with emphasis on HUGO (Highly Undetectable 

Steganography), an advanced steganographic scheme embedding hidden data in a 

content-adaptive manner locally into some image regions which are difficult for 

modeling image statics; 2) image recapture detection (IRD). The outcomes of the 

evaluations suggest that the proposed framework is effective, not only for detecting local 

changes which is in line with the nature of HUGO, but also for detecting global 

difference (the nature of IRD).  
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CHAPTER 1 

INTRODUCTION 

 

This chapter presents the problem statement, background and the outline of this doctoral 

research. Firstly, the motivation and objectives are introduced. Secondly, passive-blind 

detection framework is discussed. Thirdly, the contributions of this dissertation are 

summarized. Finally, the outline of this dissertation is presented.   

 

1.1 Motivation and Objectives 

The capability that one can generate and manipulate a digital image as well as pass its 

visual information on to others via any kind of networks has been drastically increased, 

obviously bringing about many benefits to humankind yet potentially causing harm if 

ever such information is distorted. Therefore, the interest in and the necessity of claiming 

authenticity and originality of digital image have increased remarkably which led to the 

emergence of the research area of digital image forensics over the past decade. 

According to the Air Force Research Laboratory [1], “digital data forensics refers 

to analysis that gathers evidence of data composition, origin, pedigree, etc.” Digital 

image forensics, a branch of digital data forensics, is a broad research area focusing on 

the investigation of the authenticity, origin, and processing history of digital images, 

which spans a variety of related applications such as image steganalysis, image tampering 

detection, classification of computer graphics and photographic images, camera 

identification, double JPEG detection, image recapture detection and so on.  
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As sophisticated as digital image forensic schemes have been designed, they 

usually exhibit some shortcomings. That is, the performance of such schemes would drop 

generally seriously under some attack or circumstances. Digital image anti-forensics is a 

relatively new branch of research aiming at revealing the drawback of existing forensic 

schemes. The knowledge gained by this study is fruitful to the next generation of digital 

image forensic schemes. In other words, digital image anti-forensics is the key to a more 

robust forensic scheme which can potentially be rendered real-world applications. 

In what follows, the brief introductions to a few chosen forensics application are 

to be discussed. 

 
1.1.1 Image Tampering Detection 

Digital visual information in the form of digital images and videos is becoming popular 

and important as broadband infrastructure and digital technology are growing. As such, 

how individuals perceive visual media is of importance and could play an important role 

in shaping their society; as a result, the need for digital image tampering detection has 

been arisen. There have been many real-life examples of the usage of image tampering to 

mislead society. Figure 1.1 depicts a recent example of it. 

 

 
Figure 1.1  Example of real-life tampered image. (left) Prokhorov next to Navalny in the 
authentic image; (right) Navalny next to Berezovsky in the tampered image (adapted 
from [2]). 
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The Guardian reported on 9 January 2012 [2] that a faked picture of Aleksei 

Navalny, an activist, next to Boris A. Berezovsky, an exiled financier, was distributed in a 

Russian newspaper. The driving force behind the creation of this tampered image, as 

shown in Figure 1.1 (right), was to defame political enemies.  

There is a wide variety of methods to forge digital images, the simplest among 

which could be a naïve cut-and-paste operation, also known as image splicing, simply 

taking a portion of an image and puts it onto either the same or another image. Whenever 

any post-processing such as in [3], [4] is further applied to image splicing, such a digital 

image forgery operation is generally defined by the term “image tampering.”  

Image tampering detection is undoubtedly more challenging than image splicing 

detection, since those post-processing techniques make image tampering much less 

perceptible to human eyes. However, the trace left behind by the editing remains 

detectable by computer. Therefore, the objective of image tampering detection is to 

distinguish between tampered and authentic images.  

 
1.1.2 Classification of Computer Graphics and Photographic Images 

Computer graphics (CG) have become more and more photorealistic due to the 

advancement made in rendering software. As a result, it has become very much difficult 

for people to visually differentiate them from photographic images (PG).  

 According to [5], in April 2002, the US Supreme Court overthrew the 1996 Child 

Pornography Prevention Act (CPPA) extending the existing federal criminal laws against 

child pornography to include certain types of “virtual porn.” That is, “virtual” or 

“computer-generated” minor fictitious child porn images are constitutionally protected. 
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High photorealistic CG may be used as either a convincing form of image forgery 

or a replacement of hard-oriented scene in movie production; consequently, classifying 

CG from PG appears to be an important task in providing court evidence for child 

pornography, image forgery detection, and benchmarking the rendering software.  

 
1.1.3 Double JPEG Compression Detection 

JPEG (Joint Photographic Experts Group) compression provides a means to store digital 

images using less physical storage than it would have been required without data 

compression. Presently, saving digital images in JPEG format is a common practice.  

When an uncompressed image is JPEG compressed, the resultant compressed 

image is technically called singly compressed; however, the situation in which a singly 

compressed image has been compressed one more time happens frequently. This calls for 

an effective means of distinguishing between singly and doubly compressed images 

(double JPEG compression detection) which reveals image processing history (one of the 

goals of digital image forensics). 

 
1.1.4 Image Steganalysis 

More than a decade, data hiding has become an important research area. Information can 

be hidden into digital media, for instance, audio signals, images, as well as videos, either 

noticeably or unnoticeably to human perception. The application of data hiding can 

mainly be categorized into digital watermarking and steganography. 

Two main applications of digital watermarking are for copy right protection and 

authentication while that of steganography is for covert communication which requires 
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that the cover media embedded with secret messages be as similar to the original cover 

media as possible. 

USA Today reported on 5 February 2001 [6] that Osama bin Laden and his 

associates were using steganography to hide essential information of terrorist plots on 

sport chat rooms as pornographic pictures on many web sites. This is one of the 

compelling forces behind the increasing popularity of steganalysis. 

Image steganalysis is the art and science of detecting secret messages embedded 

by using any steganography. Image steganalysis can be considered as a branch of digital 

image forensics, which has relatively longer history. Most of early steganographic 

schemes globally embed information throughout a cover image, but these days, more 

advanced steganographic schemes such as HUGO (Highly Undetectable Steganography) 

[7] are more powerful in the sense that they tend to hide information in a given cover 

image locally, in particular, in some regions of the cover image which are difficult to 

model statistical changes. Therefore, early steganalysis schemes fail to detect stego 

images generated by recent steganographic schemes. Such state-of-the-art steganography 

then calls for more advanced steganalysis schemes. 

 
1.1.5 Image Recapture Detection 

The security system of next generation mobile device, ATM machine, and so on, may be 

enhanced by incorporating face verification system. Some companies, for instance [8, 9], 

have already incorporated face verification system into their products. It is not difficult to 

foresee that such a security system could be easily fooled around by faked identity which 

can be of a form of printed face images of authorized person. It is also possible to use 

recaptured images to mislead image tampering detection scheme to classify tampered 
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images as authentic images. Consequently, image recapture detection (IRD) schemes, 

which differentiate real-scene images from recaptured ones, have been called for. 

 

1.2 Passive-Blind Detection 

Detection methodologies in digital image forensics can be mainly bifurcated as follows: 

1) active [10] detection; 2) passive [11] detection. Active detection detects the 

authenticity of digital watermark embedded before the reception of images. The greatest 

constraint of the implementation of this method is that it requires built-in standardized 

watermarking functionality in image capturing devices which has not yet become a 

reality.  

Contrary to active detection, passive detection is unfettered by any required prior 

knowledge of images, solely exploiting the knowledge of images themselves. In digital 

image forensics, passive detection is without doubt overshadowing active detection and is 

only the detection methodology in this doctoral dissertation. 

The key mechanism of digital image forensics under passive-blind framework in 

this dissertation is a combined usage of image statistical features and machine learning. 

Represented in the form of vector of length relatively much smaller than the total number 

of image pixels, image statistical features compactly represent the underlying image 

properties. Effective image statistical features should be able to statistically reveal the 

fundamental differences between different classes of images, and the effectiveness of 

image statistical features can be evaluated by any classifier such as Fisher’s linear 

discriminant (FLD), support vector machines (SVM), and so on. That is, the emphasis of 

this doctoral research is to find effective image statistical features rather than to develop 
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classifiers. The forensic applications presented throughout this doctoral research work are 

formulated as binary classification problems where instances of interest are bifurcated 

into two different classes: positive and negative.  

In this dissertation, the performance of a classification system is determined by 

true positive rate (TP rate), true negative rate (TN rate) and accuracy (AC). TP rate is the 

percentage of the positive instances correctly classified, TN rate being the percentage of 

negative instances correctly identified. AC is percentage of all the instances correctly 

classified.  

 

1.3 Contribution of This Dissertation 

This dissertation carries out three major contributions as follows: 

1) An efficient multi-resolution image statistical framework in the frequency 

domain based on Markovian rake transform (MRT). The efficacy of MRT framework has 

been evaluated on digital image tampering detection as well as classification of computer 

graphics and photographic images. 

2) An effective anti-forensic scheme capable of obfuscating double JPEG 

compression. Shrink-and-zoom (SAZ) attack, the proposed scheme, is the application of 

image resizing and bilinear interpolation. The efficacy of SAZ has been evaluated over 

two promising double JPEG compression schemes.  

3) A novel textural image statistical framework in the spatial domain. The 

proposed framework employs local binary pattern (LBP) operators to model image 

statistics on  a variety of residual images. The implementation of the proposed framework 

allows both single- or multi-resolution approaches. The efficacy of the proposed 
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framework has been evaluated on steganalysis with emphasis on HUGO (Highly 

Undetectable Steganography) and image recapture detection (IRD).  

 

1.4 Dissertation Outline 

Chapter 2 introduces the MRT framework and its application on digital image tampering 

detection on a public large-scale dataset as well as details the required dataset adjustment 

procedure.   

 Chapter 3 presents a scheme classifying computer graphics from photographic 

images based on compressed-domain techniques. The first technique utilizes Markovian 

features derived from JPEG coefficients of multiple color channels. The color channel 

selection is done according to correlation analysis. In the second technique, image 

features are generated by applying boosting feature selection on the features obtained 

using the first technique. The third technique is based on MRT framework. 

 Chapter 4 introduces SAZ attack, an anti-forensic technique based on the 

application of image re-sizing and bilinear interpolation, to suppress double JPEG 

compression artifacts and mislead two prominent double JPEG compression detection 

schemes. 

 Chapter 5 introduces textural image statistical framework, which employs LBP to 

model image statistics on a bunch of residual images, to solve steganalysis problem based 

entirely on HUGO. Many residual images discussed in this chapter are considered high-

order and are generated using some textural image techniques such as Laws’ mask, 

Markov Random Field neighbor, and clique. 
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 Chapter 6 applies a small portion of textural image statistical framework 

intensively discussed in Chapter 5 to IRD application.  

 Chapter 7 gives a summary of this dissertation and points out to some potential 

future research work.  
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CHAPTER 2 

IMAGE TAMPERING DETECTION 

 

An effective framework for passive-blind color image tampering detection is presented. 

The proposed image statistical features are generated by applying Markovian rake 

transform to image luminance component. Markovian rake transform is the applications 

of Markov process to difference arrays which are derived from the quantized block 

discrete cosine transform 2-D arrays with multiple block sizes. The efficacy of thus 

generated features has been confirmed over a recently established large-scale image 

dataset designed for tampering detection, with which some relevant issues have been 

addressed and corresponding adjustment measures have been taken. The initial tests by 

using thus generated classifiers on some real-life tampered images available in the 

Internet show signs of promise of the proposed features as well as the challenge 

encountered by the research community of image tampering detection.  The related works 

were published in [12, 13]. 

 

2.1 Introduction 

An old saying, “Don’t judge a book by its cover,” has its root dating back before the 

Digital Revolution. Undeniably, however, image tampering is emphasizing the importance 

of this everlasting adage in modern society as splicing is a common way to distort 

semantic content of an image, which could lead the public into misbelieving the veracity 

behind the scene. 



11 
 

 

43 

In this research work, image tampering is defined as any intentional alteration to a 

digital image in order to change its semantic meaning, i.e., malicious attacks.  A cut-and-

paste technique is fundamental to image tampering in both printed and digital media.  

Such a technique takes a portion of an image and puts it onto either the same or 

another image. A cut-and-paste operation, also known as image splicing, is still the 

modus operandi in image tampering in digital images. However, the naive nature of 

image splicing often leaves noticeable trace on spliced images usually in terms of sharp 

boundaries of changed regions in such images owing to abrupt changes in pixel values. 

Advancement in digital image processing has put image tampering into a more 

challenging stage. Less perceptible tampered images have been made possible by 

applying some image processing to spliced images, e.g., with some post-processing 

further applied to spliced image, such an operation is generally less identifiable to human 

beings than image splicing. Often, image tampering artifacts are so imperceptible that 

human eyes can hardly capture them; therefore, it is more reliable to detect tampered 

images using a computing machine. 

A number of passive image tampering detection methods have been proposed 

over the past several years. Ng et al. [14] analyzed the presence of the abrupt changes of 

pixel values in spliced image and utilized higher order statistics along with bicoherence 

of images to form image features. Johnson and Farid [15, 16] proposed a method to 

detecting image tampering which relies primarily on the lighting inconsistency in an 

image. The downside to their method is that it is not capable of detecting tampered 

images created by two images taken under virtually the same or rather similar light 

conditions. Hsu and Chang [17] employed geometric invariants and camera characteristic 
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consistency to interactively detect spliced images. Fu et al. [18] constructed image 

features for image splicing detection from Hilbert-Huang transform and moment of 

characteristic function of wavelet sub-bands. In Chen et al. [19], image features are 

derived from 2-D phase congruency and statistical moments of characteristic function. 

The natural image model in [20] consists of statistical features extracted from a test 

image and its corresponding 2-D arrays generated by applying multi-size block discrete 

cosine transform (MBDCT) to the test image. The statistical features are formulated by 

the combination of moments of characteristic functions of wavelet sub-bands and Markov 

transition probabilities of difference 2-D arrays. Dong et al. [21] considered the 

discontinuity of image pixel correlation and coherency caused by splicing as keys 

observation. The statistical features [21] are extracted from image run-length 

representation and image edge statistics. Farid [22] proposed a scheme to detect 

tampering based on different JPEG compression quality. The drawback of this scheme is 

that it is effective for the case that the tampered region has been compressed with lower 

quality than its host image. Qu et al. [23] proposed a technique to detect image splicing 

from image statistics extracted from sharp boundary left by image slicing; the scheme is 

likely to fail to detect tampered images with the boundaries of tampered regions blurred 

or undergone some kind of post-processing technique. Dirik and Memon [24] explored 

artifacts left by Color Filter Array (CFA) for image tampering detection. This scheme is 

not effective when tampered images have been created from images taken from some 

specific sensor which does not leave CFA artifacts. Wang et al. [25, 26] derived image 

statistical features in the spatial domain; in [25], image features are extracted from 

occurrence matrices of pixels in edge images; in [26], low-dimensional image features 
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are formulated from the stationary distribution of transition probabilities of pixels in edge 

images. Sutthiwan et al. [12] presented a natural image model formulated from transition 

probability matrices of thresholded difference MBDCT arrays and from edge statistics of 

reconstructed images.   

Currently, there are two image datasets for tampering detection evaluation 

available to the public [27, 28]. The Columbia Image Splicing Detection Evaluation 

Dataset [27] consists of 933 authentic and 912 spliced grayscale image blocks of size 

128×128 pixels. In [14, 18, 19, 21, 29], the efficacies of image features have been 

evaluated over [27], and the image statistical model in [29] has achieved the relatively 

highest detection rates (91%). The Institute of Automation at Chinese Academy of 

Science (CASIA) constructed color image tampering detection evaluation datasets. 

CASIA Tampered Image Detection Evaluation Database (CASIA TIDE) [28] contains 

two versions of dataset: CASIA TIDE v1.0, a small-scale dataset, and CASIA TIDE v2.0, 

a large-scale dataset. The image features proposed in [12, 20, 25, 26] have been evaluated 

over [28] with rather high detection accuracy rates (all above 90% and even as high as 

99%); however, the high detection rates turn out to be not truthful because the dataset 

[28] inherits some statistical artifacts other than what caused by image tampering, which 

is to be illustrated later in this chapter.  

This chapter introduces an effective scheme for passive-blind image tampering 

detection under a machine learning framework to distinguish tampered images (positive 

instances) from authentic images (negative instances). The proposed image statistical 

features are built upon the analysis of changes of the distribution of block discrete cosine 

transform (BDCT) coefficients of images. It is conjectured that no matter how profoundly 
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image tampering has been done, tampered regions are unnatural, exhibiting irregularity 

causing image statistical properties to deviate from those of natural images. This 

irregularity may be deemed as noise locally added to the host image (an authentic image). 

The aforementioned noise may be viewed in the spatial domain, as unnatural changes of 

pixel values along tampered region(s); in the frequency domain, such a noise may be 

viewed as alteration in the distribution of BDCT coefficients. 

A great diversity of host images, pasted image fragments, image tampering 

operations yields complicated changes in the correlation pattern of block DCT 

coefficients. In [20, 29-31], the utilization of block discrete cosine transform with 

multiple block sizes (MBDCT) has been brought into play under the assumption that a set 

of BDCT coefficient arrays collectively generated by MBDCT would reflect such 

changes more effectively than a single-block-size BDCT array. That is, the utilization of 

multiple block sizes in BDCT would likely enhance the image tampering detectability. 

Since this idea is analogous to a rake receiver in radio technology which makes use of 

multiple antennae to mitigate multipath fading to improve the information reliability of 

received signals, the term “rake transform” (originally from [31]) has been used to 

represent the MBDCT. 

The proposed image statistical features employ rake transform to capture the 

complicated noise introduced by image tampering with various frequencies. Correlation 

modeling of BDCT coefficients of the resultant arrays of rake transform has been done by 

a one-step first-order Markov process. Therefore, the proposed method is referred to as 

Markovian rake transform. Although rake transform has been used in image feature 

derivation in [20, 29-31],  this chapter written based on [12, 13] presents rake-transform 
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based features strictly derived exclusively from Markov process for the first time. That is, 

it utilizes part of the general framework in [29]. The efficacy of image features is 

evaluated with support vector machines (SVM) over the adjusted CASIA TIDE v.2.0, in 

which, prior to feature extraction, the images in the dataset have undergone some pre-

processing to alleviate non-intrinsic artifacts to ensure a fair performance evaluation.  

 

2.2 Markovian Rake Transform 

Markovian rake transform (MRT) applies Markov process (MP) to difference arrays 

derived from the arrays generated by rake transform. The proposed image statistical 

features in this chapter differ from those in [20, 29-31] in the following: 1) features are 

exclusively generated from the application of MP, which is of second-order statistics; 2) 

three block sizes utilized are 4×4, 8×8, and 16×16. MRT framework can be viewed as a 

multi-resolution approach based on [32]. 

 
2.2.1 Difference MBDCT Arrays (DMBDCT) 

The n×n block discrete transform of an image f(x,y) of size Su×Sv results in a 2-D array of 

the same size as the input image with each consecutive and non-overlapping n×n block 

filled up with corresponding block discrete cosine transform (BDCT) coefficients. Rake 

transform uses a set of different block sizes for BDCT; however, the transform using 

each block size takes place independently, resulting in multiple BDCT coefficient arrays.  

To suit these coefficients to MP modeling, they have to be quantized to integers. 

For block size 8×8, JPEG coefficients are directly utilized not only because of the wide 

usage of JPEG images but also because of the superior image tampering detectability of 

its MP features; BDCT coefficients resulting from other block sizes are rounded to the 
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nearest integer in this work. A side benefit of the utilization of JPEG coefficients for 

block size 8×8 is the reduction in computational complexity. Note that an uncompressed 

image should be JPEG compressed with quality factor equal to 100 before feature 

derivation. 

In MP feature formation [32], the magnitude of quantized BDCT coefficients are 

taken as input to the process, and in very much the same way, defined are the arrays 

containing the magnitude of quantized BDCT coefficients as MBDCT arrays. 

Effective image statistical features should form distinguishable patterns among 

different classes with as little influence of image content as possible. Such an influence 

is, to a certain extent, removed by using difference MBDCT 2-D arrays in feature 

formation; consequently, transitional characteristics within image are boosted 

considerably. 

Let Fn(u,v), u ϵ {0,1,…,Su-1}, v ϵ {0,1,…,Sv-1}, denote each of MBDCT arrays 

generated from a given image with block size n×n, n ϵ N. Note that u and v are discrete 

variables in the frequency domain of horizontal and vertical axes, respectively. 

Intuitively speaking, the transitional characteristics extracted from such difference 

arrays in horizontal and vertical directions are more informative than those extracted 

from diagonal difference arrays. In feature formation, only the difference arrays in 

horizontal and vertical directions are therefore used to keep feature dimensionality not 

too high. a set of difference arrays of interest derived from MBDCT arrays is denoted as 

DMBDCT arrays, each of which reads:    
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Dh(u,v;n) = Fn(u,v) – Fn(u+1,v)          (2.1) 
 
 
 

             Dv(u,v;n) = Fn(u,v) – Fn(u,v+1)         (2.2) 

 

u ϵ {0,1,…,Su-2}and v ϵ {0,1,…,Sv-2}; the difference arrays in horizontal and vertical 

directions are denoted by Dh(u,v;n) and Dv(u,v;n), respectively. 

 
2.2.2 Thresholding 

In [32], it is shown experimentally that the distribution of the elements of the difference 

arrays derived from JPEG coefficient arrays follows the generalized Laplacian 

distribution which implies high correlation among these elements. The fact that the 

distribution these elements are highly dense in the vicinity of zero value brings 

legitimacy of a thresholding technique which sets the values of such elements falling out 

of the interval [-T, T ] to –T or T, correspondingly. 

The experiment on part of the dataset [28] unveils that the distributions of the 

elements of the difference arrays not only of JPEG coefficients but also of integer-

rounded coefficients resulting from n×n BDCT arrays, n = 2, 4, 16, 32, also follow the 

generalized Laplacian distribution. 

The selection of a threshold value T is a subjective issue, critical to feature 

dimensionality. With a larger T, more energy of the distribution is captured, more 

powerful resulting features tend to be, and however the dimensionality of features is 

higher. A reasonable T should capture sufficient image statistics and yield adequately 

discriminative correlation pattern; in other words, it should provide a suitable balance 

between feature dimensionality and classification performance. 
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Table 2.1  Mean (%) Numbers of Elements of Horizontal Difference 2-D Arrays  
 

n 2 4 8 16 32 
Mean 59.34 85.90 87.64 96.85 97.02 

 
 

The statistics in Table 2.1 are computed from authentic images in [28] when T is 

set to four. For the balance of detection accuracy and computational efficiency, T = 4 is 

chosen to be used in MP feature formation of all the block sizes of interest because for 

most block sizes it encloses much of the energy of the distributions as well as yields 

fairly well-performed MP features. Some statistics are shown in Table 2.1. 

 
2.2.3 Transition Probability Matrix 

Correlation patterns of DMBDCT arrays can be modeled by a first-order Markov process 

and characterized by transition probability matrices (TPMs). In this chapter, the elements 

of DMBDCT arrays in the horizontal and vertical directions are correlation measured by 

using a one-step TMP [33], provided that the correlation between two elements with 

more than one element apart is relatively low. 

 

 

Figure 2.1  Block diagram of generic Markovian rake-transform based feature 
construction. 
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Each element of these TPMs associated with the difference arrays in horizontal 

and vertical directions is defined by (2.3) and (2.4), respectively. 
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where i, j ϵ Z s.t. –T ≤ i, j ≤ T; δ(x) equals one if the statement x is true, or zero otherwise; 

δ(x,y) equals one if both of the statements x and y are true, or zero otherwise.  

To summarize, the elements of TPMs form MP features, and per block size, the 

dimensionality of MP features is a function of a threshold value T: 2×(2T + 1)2. If µN is 

the cardinality of a set of block size N, the dimensionality of MRT features generated 

with a fixed T is 2µN×(2T + 1)2. A block diagram of generic Markovian rake-transform 

based feature construction is depicted in Figure 2.1. 

 

2.3 Image Dataset and Necessary Pre-Processing 

The official release of CASIA TIDE [28] took place in January 2010. Its official website 

contains a description of the design principles as well as the structure and image formats. 

In this section, the relevant description of the dataset is firstly presented. Two issues with 

the dataset are then pointed out, and finally some necessary pre-processing procedures 

are described.   
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2.3.1 Official CASIA TIDE Dataset Description 

According to the official web site released in January 2010, CASIA TIDE v1.0 [28] 

contains 800 authentic images and 925 spliced images of uniform size, 384×256 pixels. 

These 1,725 images are in JPEG format. All authentic images are divided into eight 

categories: scene, animal, architecture, character, plant, article, nature and texture. 

CASIA TIDE v2.0 [28] contains 7,491 authentic images and 5,123 tampered 

images of different sizes varying from 240×160 to 900×600 pixels and with different 

quality factors. Each of these 12,323 images is in one of the following three formats: 

JPEG, BMP, and TIFF. Indoor category was added into dataset construction. Post-

processing such as blurring was applied after crop-and-paste operation by using Adobe 

Photoshop. 

In both CASIA TIDE v1.0 and v2.0 [28] authentic images from all categories 

were randomly selected to be used in the generation of tampered images which was 

involved not only cut-and-paste operation but also some geometric transformations, e.g., 

resizing and rotation. Adobe Photoshop was the tool used to create all the tampered 

images. 
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Figure 2.2  Examples of authentic images (all in the top row) and their forgery counter 
parts (all in the bottom row) [28].  
 

2.3.2 Two Issues 

Note that both the experiments in [20] over CASIA TIDE v1.0 [28] and in [12] over 

CASIA TIDE v1.0 and v2.0 [28] were conducted based on the information available at 

the initial release of the datasets. In August and September 2010, some technical 

discussions with the authors of CASIA TIDE v1.0 and v2.0 datasets [28] revealed some 

information which had not explicitly been included in the official dataset description on 

the website.  

The information is mainly with the following two issues: 1) the JPEG 

compression applied to authentic images is one-time less than that applied to tampered 

images; 2) for JPEG images, the size of chrominance components of 7,140 authentic 

images is only one quarter of that of 2,061 tampered images. Obviously, these uneven 

processing procedures lead to additional statistical artifacts to that caused by image 

tampering. This explains very high detection rates reported in the literature recently, 

including [12, 20, 25, 26]. 
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2.3.3 Keeping Same Number of JPEG Compressions Applied to Tampered and 
Authentic Images 
 
It is known that Adobe Photoshop defines its own proprietary JPEG compression 

algorithm. For instance, Impulse Adventure [34] reveals that in JPEG compression, 

Adobe Photoshop defines its quality range from zero to 12 rather than from zero to 100 as 

in the standard JPEG compression. 

In CASIA TIDE v.2.0 [28], most of the authentic images are from CorelDraw 

Image Database, the rest are either downloaded or captured by digital cameras, and there 

are only 54 BMP images among all the authentic images; Adobe Photoshop was used to 

create 5,123 tampered images, 3,059 of which were saved in TIFF and 2,064 of which 

were saved in JPEG. 

 Among all the tampered images saved in JPEG by Adobe Photoshop, about 100 

such images were saved with image quality  12, about 10 such images were saved with 

image quality  nine, and more than 1900 such images were saved with image quality 

eight (which is approximately equivalent to the quality factor  84 [34] in the standard 

JPEG compression). 

Considering that one or more authentic images were used as the input to create 

tampered images, it is most likely that those tampered images saved in JPEG have 

undergone one more time JPEG compression than the authentic images in JPEG, given 

that the chance of a tampered image having been created by using all BMP images is 

relatively rare. To assuage the side effect on classification performance owing to the 

difference in the number of JPEG compressions between authentic images and tampered 

images, Matlab is used for standard JPEG compression to lessen the influence of the 

difference in the number of JPEG compressions by the following procedure: 1) re-
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compress 7,437 JPEG authentic images with quality factor = 84 (approximately 

equivalent to eight in Photoshop); 2) JPEG compress 3,059 TIFF tampered images by 

Matlab with quality factor = 84; 3) leave 2,064 JPEG tampered images untouched. After 

the completion of the above-described measures, randomly selected 5,000 pairs of 

authentic images and tampered images are used for the experiments to be discussed in 

Section 2.4.  

 
2.3.4 Keeping Same Treatment to Chrominance Channels 

When an image saved in JPEG at image quality seven and higher by Adobe Photoshop, 

there is no sub-sampling in image chrominance components, hence, encoding a larger 

array of color component than what standard JPEG compression does. That is, image 

chrominance components of most of these tampered images have not undergone sub-

sampling. As a result, most tampered JPEG images in CASIA TIDE [28], color channel 

selection for feature extraction must be handled with care to circumvent any preferential 

treatment of color component. 
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Figure 2.3  Relative sizes of JPEG coefficient arrays: (a) with chrominance sub-sampling 
(4:2:0); (b) without chrominance sub-sampling (4:4:4). 

 

As can be seen in Figure 2.3, the size of JPEG coefficient arrays of chroma 

channels (Cb and Cr) with sub-sampling is only one-fourth of that of no sub-sampling.  

In this subsection, a simple experiment is presented to show the difference in 

image statistical properties that the chrominance component with and without sub-

sampling can bring out. The three-step outline of the experiment is as follows.  

First, ucid00017.tif, randomly selected from UCID dataset [35], is compressed 

into J1 by standard compression (4:2:0) with quality factor equal to 95. J1 is further 

compressed into J2 by Adobe Photoshop with image quality equal to 11. According to 

[34], in Adobe Photoshop, JPEG compression with image quality = 11 is virtually 

equivalent to standard JPEG compression with quality factor = 95; their major difference 
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lies in chrominance sub-sampling: J1 has been chrominance sub-sampled by a factor of 

two while J2 has not. 

Second, the edge images of each component in YCbCr color space of J1 and J2 are 

generated according to the process described in Figure 2.4 in which the edge detector 

calculates the horizontal difference array of an input image.  

Third, for each edge image, first four order statistics of pixel intensities are 

computed and tabulated in Table 2.2. Note that µ stands for mean, σ2 for variance, γ1 for 

skewness, γ2 for kurtosis. 

 

 
Figure 2.4  Block diagram of edge image generation. 
 
 
Table 2.2  Image Statistics of the Edge Images Generated from ucid00017.tif 
  

Channel Image µ σ2 γ1 γ2 
Y J1 11.96 197.09 2.39 11.04 
 J2 11.90 195.22 2.34 11.11 

Cb J1 0.87 1.35 2.85 18.55 
 J2 1.20 3.60 4.42 37.62 

Cr J1 0.79 1.03 2.16 11.70 
 J2 1.17 2.89 3.20 19.80 

 

In Table 2.2, J1 is the JPEG compressed version by using Matlab, and J2 is 

obtained by JPEG compressing J1 with an almost equivalent quantization step using 

Adobe Photoshop image without chrominance sub-sampling. For details refer to the 

outline of experiment presented prior to Figure 2.4. Figure 2.5 displays J1 and J2 

generated from the test image and their corresponding edge images. Note that all the edge 

images are logarithm transformed to enhance edge visibility. 
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The following conclusions can be drawn from Table 2.2 and Figure 2.5 on the 

obtained statistical properties of edge images: 1) for the first and second order statistics 

derived from image luminance (Y), they are, in any case, all highest among three 

channels: and all four order statistics of both JPEG images are close; 2) the first four 

order statistics of edge images from image chrominance (Cb or Cr) derived from J2 are 

significantly different from those from J1; 3) the major objects in the image are more 

discernible in the edge images derived from Cb or Cr than those from Y. 

In this experiment, a given image has not yet gone through any tampering. 

Instead, it has gone through common image processing operations, i.e., compression and 

color channel processing. On the one hand, chrominance component sub-sampling has 

been done to the image as shown in (a), (c), (e), (g); on the other hand, no chrominance 

component sub-sampling has been so as shown in (b), (d), (f), (h). It is shown that the 

first four order statistics of the edge information from chroma channels of these two 

images are rather different. This experiment could partly explain the high detection rates 

reported [25, 26] by image features extracted from image chrominance, which is much 

higher than that from Y component.  For image feature extraction in CASIA TIDE v.2.0 

[28], Y channel in which no bias in color information presents between Matlab and 

Photoshop software has been chosen as the only input.  
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Figure 2.5  Comparison among edge images. (a) Image J1; (c), (e), and (g) are the 
corresponding edge images of Y, Cb, and Cr of (a), respectively; (b) Image J2; (d), (f), 
and (h) are edge images of (b) from Y, Cb, and Cr, respectively.  
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2.4 Experimentation 

In tampering detection, tampered and authentic images are considered positive and 

negative instances, respectively. Throughout all the experiments in this chapter, the 

support vector machines (SVM) are employed, the Matlab codes of which are available at 

[36], with degree two polynomial kernel.  The results reported in Tables 2.3 and 2.4 are 

the average detection rates of 20 independent iterations of SVM classification with 

random data partition (five-sixths for training and one-sixth for testing).  There is no 

performance comparison the performance by using the proposed features with that 

reported in [25, 26] because the reported classification performances there are inaccurate, 

owing to the two facts analyzed in Section 2.3. As discussed in Section 2.3, some 

measures have been taken to suppress the unsolicited artifacts in CASIA TIDE v.2.0. 

before using it to evaluate the proposed features as well as the features in [29] for 

performance comparison. 

   
2.4.1 Empirical Model Validation and Classification Performance 

In model validation, hierarchical search is employed to determine a proper choice of 

block sizes to be used in the generation of Markovian rake-transform (MRT) features 

through some possible combinations of set N = {2, 4, 8, 16, 32}. For all block sizes, the 

threshold value T = 4 is chosen, resulting in the dimensionality of features associated 

with an individual block size equal to 162.  

It is obvious from the information contained in Table 2.3 that the MP features 

generated with block sizes 2×2 and 32×32 perform poorly. This fact eventually led to the 

exclusion of these two block sizes out of the choice. Table 2.4 shows the performances of 

MRT features generated with all the possible combinations of the leftover block sizes. 
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To conclude, a set of block sizes {4×4, 8×8, 16×16} is recommended for MRT 

feature formation for tampering detection over CASIA TIDE v2.0 [28]. This is not only 

because the information shown in Table 2.4 suggests itself but also because some 

extended experiments reveals that adding more block sizes into the suggested 

combination barely improves the performance of the resultant MRT features, while 

increases feature dimensionality and the computational complexity. The proposed 486-D 

features are abbreviated in this chapter as MRT-486 while 266-D features in [29] as 

MBDCT-266. 

 
Table 2.3  Detection Rates of Individual MP Features 
 

n 2 4 8 16 32 
TP Rate 66.99% 69.10% 63.05% 64.03% 65.78% 
TN Rate 69.05% 73.16% 91.49% 84.20% 64.59% 

AC 68.02% 71.13% 77.27% 74.12% 65.18% 
Dimensionality 162 162 162 162 162 

 
 
Table 2.4  Detection Rates of MRT Features 
 

n 4,8 4,16 8,16 4,8,16 
TP Rate 68.19% 71.48% 66.75% 72.43% 
TN Rate 89.41% 82.27% 90.28% 87.05% 

AC 78.80% 76.87% 78.51% 79.74% 
Dimensionality 324 324 324 486 

 

Depicted in Figure 2.6 are the receiver operating characteristic (ROC) graphs 

along with their corresponding areas under curve (AUCs) of the three classification 

systems built from individual MP features generated by using one of the three block sizes 

constituting the suggested combination as well as that built from MRT-486. Not only 

ROC graphs but also AUCs indicate the improvement in the ability of classifier trained 

by the proposed MRT features over those trained by individual MP features. 
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Figure 2.6  ROC graphs and AUCs of MRT-486 (solid line) and of the three associated 
individual MP features. 

 

MBDCT-266 features are also evaluated over the adjusted dataset under the same 

classification setting, and the performance comparison is presented in Table 2.5 and 

reveals that the proposed MRT-486 features perform slightly better than MBDCT-266 

features. Although the classification performances between MRT-486 and MBDCT-266 

features do not differ significantly, the advantage of MRT-486 over MBDCT-266 

features is its much lower computational complexity which is reflected in the required 

time to compute a feature vector. In HP Pavilion dv6930us, less than two seconds are 

required to compute an MRT-486 feature vector whereas more than 26 seconds are 

needed in the generation of an MBDCT-266 feature vector. 

  



31 
 

 

43 

Table 2.5  Performance Comparison of MRT-486 and MBDCT-266 
 

Feature Type MRT-486 MBDCT-266 
TP Rate 72.43% 75.83% 
TN Rate 87.05% 83.12% 

AC 79.74% 79.48% 
Dimensionality 486 266 

 
 
2.4.2  Illustration of Feature Separability between Tampered and Authentic 
Images 
 
Figure 2.7 depicts feature separability of MRT-486 on 2-D projection. Principle 

Component Analysis (PCA) is employed in the feature vector projection.  

 

 
Figure 2.7  PCA 2-D projection of MRT-486. 
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2.5 Tests on Real Images Outside the Dataset 

Practical value of any classification system is desirable, and tests on instances outside the 

dataset used could be one of the ways to evaluate such value. The 20 classifiers resulting 

from the 20 independent iterations of SVM classification are used to test some authentic 

images and tampered images outside the dataset. These images were downloaded from 

the Photo Tampering through History [37], exemplifying image tampering in real life. 

The majority voting from the 20 classifiers is used to derive a decision on these images. 

Basically the ground truth of such images is available, i.e., it is known whether a test 

image is authentic or tampered. However, in most cases, no explicit knowledge on how 

and where image tampering has been done can be obtained. 

 

 
Figure 2.8  Examples of real-life tampered images. In the top row: (a)-(b): (a) the 
authentic image of Israel air raid on Lebanon; (b) the authentic image of George W. 
Bush. In the bottom row (c)-(d): (c) the forgery counterpart of (a) ; (d) the forgery 
counterpart of (b). (adapted from [37]). 
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Table 2.6  Test Results on Figure 2.8  

Figure Type P N Final Decision 
2.8a Authentic 0 20 Authentic 
2.8b Authentic 20 0 Tampered 
2.8c Tampered 19 1 Tampered 
2.8d Tampered 20 0 Tampered 

 

In Table 2.6, P (tampered) and N (authentic) are the numbers of trained classifiers 

that decide a given test image as authentic image and tampered, respectively. Among 

more than twenty collected images from outside the dataset, the accuracy is far falling 

behind that of the tests over images inside the adjusted CASIA TIDE v.2.0 [28]. Figure 

2.8 and Table 2.6 detail the testing results of four test images outside the dataset.  

 

2.6 Discussion and Conclusions 
 
In this chapter, an image statistical framework in the frequency domain based on 

Markovian rake transform (MRT) is introduced on image luminance. The MRT applies 

Markovian process to difference 2-D arrays independently derived from block discrete 

cosine transform with multiple block sizes. MRT framework is a sub-framework within 

the general natural image framework proposed in [29].  

The efficacy of image features is assessed over 5000 image pairs from CASIA 

TIDE v.2.0 [28], a large-scale dataset with some particular measures taken to eliminate 

unsolicited artifacts left during the JPEG compression. The analysis and procedure 

adopted are presented in Section 2.3. 

The proposed MRT features of size 486, abbreviated as MRT-486, consists of 

Markov process based features generated with three different block sizes: 4×4, 8×8 

(utilizing JPEG coefficients), and 16×16. Image luminance is chosen for feature 
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extraction because it does not suffer from any uneven treatment applied to color 

information.  

Although the dimensionality of MRT-486 seems high, they actually require 

relatively low computational time because only rather simple operations are involved in 

feature extraction. The average time of feature extraction on HP Pavilion dv6930us with 

un-optimized Matlab codes for one image over the dataset is less than 2 seconds, while 

that of the features in [29] is more than 26 seconds. 

Even with low complexity, MRT-486 perform fairly well, the accuracy of almost 

80% over 5,000 pairs of authentic and tampered images randomly drawn from the 

adjusted CASIA TIDE v.2.0 after careful adjustments. The area under ROC curve (AUC) 

is about 0.87. Moreover, the proposed features outperform any combination of MP 

features, provided that the number of block sizes utilized in MRT is less than or equal to 

three. Such distinction in the performance of the proposed MRT features is shown 

graphically in the ROC graphs in Figure 2.6. 

The tests on images outside the dataset used, although the success rate is still far 

from satisfactory, unveil the practicality of the proposed natural image model to a certain 

extent. This indicates that image tampering detection is still encountering enormous 

challenges, especially of the tests on real-life tampered images.  
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CHAPTER 3 

CLASSIFICATION OF 
COMPUTER GRAPHICS AND PHOTOGRAPHIC IMAGES 

 

In this chapter, three frequency-domain image features are introduced to identify 

computer graphics by employing second-order statistics of the frequency domain to 

capture the significant statistical difference between computer graphics and photographic 

images. The first kind of features relies on Markov statistic modeling on JPEG 

information from multiple color channels in YCbCr color space. The second kind of 

features utilizes Boosting Feature Selection (BFS) to reduce the dimensionality of the 

first kind of features without sacrificing the machine learning based classification 

performance. The third kind of features utilizes Markovian Rake Transform (MRT) 

features introduced in Chapter 2. The empirical validation reveals that features derived 

from a combination of two block sizes and from Y channel perform better than those 

derived by the first and second techniques. This experimental result confirms the 

universality as well as the validity of MRT framework. The related works were published 

in [38, 39].  

 

3.1 Introduction 

Computer graphics (CG) have become more and more photorealistic due to the 

advancement made in rendering software. As a result, it has become very much difficult 

for people to visually differentiate them from photographic images (PG). 

Therefore, high photorealistic CG may be exploited as either a convincing form of 

image forgery or a replacement of hard-oriented scene in movie production; 
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consequently, identifying CG appears to be an important task in both image forgery 

detection and a benchmark for rendering software. From a practical point of view, an 

automatic classification system is certainly more suitable and realizable to deal with this 

issue than human inspection which is hard to reach high accuracy, confidence and 

reliability in identifying high photorealistic CG. 

The objective of this research is to develop a statistical model-based approach to 

automatically discriminate CG from PG. The effectiveness of the image feature vector is 

then evaluated by the classifier in the machine learning (ML) framework. 

In the literatures, several classification systems based on different types of image 

features have been reported. Ianeva et al. [40] modeled characteristics of cartoon plays a 

crucial role in classifying cartoons, a particular type of CG. The features are extracted 

from the color saturation, color histogram, edge histogram, compression ratio, pattern 

spectrum and the ratio of image pixels with brightness greater than a threshold, resulting 

in the image feature vector of size 108. S. Lyu and H. Farid [41] utilized image 

decomposition based on separable quadrature mirror filters (QMFs) to capture 

regularities inherent to photographic images. Half of features, of size 36, are derived from 

the first four order statistics of horizontal, vertical and diagonal high-frequency sub-

bands. The other half of features is collected from the same four statistics of the linear 

prediction error for the high-frequency coefficients. The total number of features is 72 per 

RGB color channel, yielding a grand total of 216 features. Ng et al. [42] proposed to use 

192 geometry features extracted by analyzing the differences existing between the 

physical generative process of computer graphics and photographic images and 

characterized by differential geometry and local patch statistics. Chen et al. [43] used 
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moments of characteristic functions of wavelet sub-bands are used with HSV and YCbCr 

[44] color models. Each color component image is decomposed into three levels using 

Haar wavelet. At each level i, i = 1, 2, 3, there are four sub-bands (LLi, HLi, LHi, HHi). 

Totally, there are 13 sub-bands involved in the feature extraction if the component image 

itself is deemed to be a sub-band at level zero. For each sub-band, the first three moments 

are computed, resulting in 39 features. In addition to the component image, its prediction 

error image is applied to the same process to reduce the influence of image content, so a 

total of 78 features are the output of a color component. Both two and three color 

component images are used and reported in [43, 44] which correspond to 156 and 234 

features, respectively. 

 

3.2 JPEG-based Markovian Features 

There are fundamental boundaries between CG and PG: first of all, fewer colors are 

contained in CG; secondly, in texture area CG are smoother in color than PG; in CG, the 

changes in color intensities from one region to another are more abrupt than those in PG; 

last but not least, edge and shade of CG hold different characteristics from PG. These 

different image properties are well reflected in the frequency domain. Under these 

circumstances plus the fact that most of images are in JPEG format, the utilization of the 

TPM derived from applying MP to model difference JPEG 2-D arrays are proposed to 

formulate the distinguishing features, which is a second order statistic by its nature. The 

statistical image features discussed in this section is a variation of the steganalyzer in 

[32].  
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3.2.1 JPEG 2-D Array  

Owing to wide availability of JPEG images, JPEG 2-D array [32] can be considered as an 

appropriate input of feature formation. For a given image, this 2-D array has the same 

size as the given image with each consecutive and non-overlapping 8×8 block filled up 

with the corresponding quantized block DCT (BDCT) coefficients. The absolute value of 

each coefficient is measured and used to form the 2-D array shown in Figure 3.1 which is 

called JPEG 2-D array in this sequel.        

   

 

Figure 3.1  Sketch of JPEG 2-D array [32]. 
 

3.2.2 Difference JPEG 2-D Array 

The influence by the content of various images on CG classification can be reduced 

largely by using difference JPEG 2-D array [32] which reveals transitional characteristics 

of image contents. 

Denote the JPEG 2-D array generated from a given image by F(u,v),  u = 0, …, 

Su-1,  v = 0, …, Sv-1, where Su is the size of the 2-D array in horizontal direction and Sv is 

the size of such an array in vertical direction. As mentioned before, only the difference 
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arrays along horizontal and vertical directions are utilized here and such difference arrays 

are formulated as mathematically described in Equations 3.1 and 3.2. 

 

Fh(u,v) = F(u,v) – F(u+1,v)         (3.1) 
 

 
Fv(u,v) = F(u,v) – F(u,v+1)         (3.2) 

 
 
 
where u = 0, …, Su-2, v = 0, …, Sv-2, and Fh(u,v) and Fv(u,v) denote the difference 2-D 

arrays along the horizontal and vertical directions, respectively.  

 
3.2.3 Thresholding Difference JPEG 2-D Array 

A statistical analysis reported in [32], for a different scenario though, has shown that the 

distribution of the elements of the difference JPEG 2-D arrays is Laplacian-like, 

concentrated on zero. This fact leads to the legitimacy of applying a thresholding 

technique, which sets the difference values falling out of the interval [-T,T] to -T or T, 

correspondingly.  

Due to the fact that the experimental work in [32] was conducted on more than 

7,000 images, the selection of T there, would statistically be meaningful in the image set 

used in this research work. Hence, T = 4 is chosen which only about 8% of the elements 

of difference JPEG 2-D arrays are out of interval [-4,4]. Therefore, with this selected 

threshold, reasonably sufficient statistical properties of images are captured with 

manageable computational complexity, which will become clear in Section 3.2.4. 
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3.2.4 Transition Probability Matrix 

It is well known that MP is a statistical tool to model the correlation between elements on 

an array, and the associated TPM can characterize MP. In this work, difference JPEG 2-D 

arrays in vertical and horizontal directions are modeled by MP. There are so-called one-

step TPM and n-step TPM [33]. Due to the fact that the correlation between two elements 

separated by more than one element is low, to maintain manageable computational 

complexity, the one-step TPM is employed in this work, and its graphical representation 

is shown in Figure 3.2.  

 

 
Figure 3.2  Formation of transition probability matrices (adapted from [32]). 

 
 

The elements of these two matrices associated with the horizontal and vertical 

difference 2-D arrays are given by 
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where m,n ϵ {-T,…,0,…,T}, the summation range for u and v is respectively from zero to 

Su-2 and from zero to Sv-2, and 
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In sum, the feature vector of dimensionality (2T + 1)× (2T + 1)×2 is formulated 

per input channel. With T = 4, 162 features are generated per color component. The 

feature construction procedure is summarized in Figure 3.3. 

 

 
Figure 3.3  Block diagram of feature formation.  
 

3.2.5 Correlation Analysis Among Color Components 

Simple analysis is taken and reveals an interesting fact about the correlation among the 

features generated from different color components. The correlation level is measured by 

the correlation coefficient ρx,y [33] between two random vectors x and y whose expected 

values are µx and µy and standard deviations are σx and σy, respectively. 
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Table 3.1  Average Correlation Coefficient Values of Feature Vectors  
 

Channel Combination CG PG 
Y,Cb  0.60 0.66 
Y,Cr  0.61 0.67 
Cb,Cr 0.95 0.95 

 

Note that the order of feature vectors in ρ does not affect its value. Statistics 

shown in Table 3.1 are computed from randomly selected 1,000 CG and 1,000 PG. It 

implies that features derived from Cb and Cr components are much more strongly 

correlated than any other combinations of two components: 1) Y and Cb; 2) Y and Cr. 

This fact, along with the intensive experiments confirms that using all of features 

constructed from three color components does not improve the feature effectiveness 

significantly but rather increases computational complexity drastically. In the image 

feature extraction process, Y and Cb channels are therefore selected, having the least 

correlation in pair-wise feature vectors and resulting in 324-D feature vector. However, it 

is empirically observed that the degree of correlation between features from Y and Cb are 

generally close to that between features from Y and Cr; therefore, it is also legitimate to 

choose Y and Cr combination for feature extraction. 

 

3.3 Boosting Feature Selection 

It is well known that discrete AdaBoost [45], a learning algorithm, enhances binary 

classification performance. The logic behind this algorithm is to combine a set of weak 

classifiers (weak learners) to form a strong classifier in a weighted manner.  
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Given a set of training data (x1, y1),  …  , (xm, ym) with a variable of the feature 

vector xm and its corresponding label ym ϵ {−1, 1} , where m = 1, … , M. ( +1 denotes the 

positive samples and -1 the negative ones), one can define: 

 

∑
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The outline of discrete AdaBoost algorithm is as follows: 

1. Start with weights ωi = 1/N, i = 1, …, N.  

2. Repeat for m = 1, …, M.  

2.1 Fit the classifier  fm(x) ϵ {-1,1} using weights ωi on the training data. 

2.2 Compute errm = Eω[1(y≠fm(x))] and then cm = log[(1- errm )/errm] 
 

2.3 Set ωi ← ωi ∙exp[cm∙1(yi≠fm(xi))], i = 1, …, N, and re-normalize it so that 

∑ =i i 1ω . 

3. Output the classifier ∑ =
M
m mm xfcsign 1 )]([ . 

Tieu and Viola [46] introduced BFS algorithm combining AdaBoost and 

ensemble feature selection together. The effective features for classification are 

distinctively selected on the basis of lowest weighted error errm for the given weighted 

ωi. As the weight changes, different input variables are selected for the current classifier 

fm(x). Mathematically, one can denote: 

 

fm(x) = βmb(x,γm)          (3.8) 
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where βm is a multiplier and γm is the order of dimensionality of x in the whole input 

vector, and b(.) denotes the mth column of the input feature vector. In [46], it is stated that 

one can solve for an optimal set of parameters through a “greedy” forward stepwise 

approach with updates which can be mathematically defined as in Equation 3.9. 

 

2
1,

)];()([minarg},{ yxbxFyE mmm βγβ
γβ

−−← −       (3.9) 

 
 
for m = 1, 2, … , M in cycles until convergence, where {βm, γm}, m = 1, …, M-1, are fixed 

at their corresponding solution values at earlier iterations in the algorithm. After several 

iterations, a powerful classifier could be produced using only a portion of all input 

variable. 

 

3.4 Image Dataset 

Computer graphics (CG) are collected from [47, 48] where more than 50 pieces of 

rendering software, e.g., 3D Studio Max, After Effects and AutoCad, were used to 

generate CG. For photographic images (PG), a small portion of the image sets are also 

from [49] while the majority is gathered by the previous members of Prof. Yun Shi’s 

research group. There are totally 3,000 CG and 3,000 PG. The Q-factors of PG range 

from 75 to 100 and those of CG from 65 to 98. 
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Figure 3.4  Examples of computer graphics in the dataset.  
 

 
Figure 3.5  Examples of photographic images in the dataset.  

 

 

 
3.5 Experimentation 

In this section, three kinds of image features generated are evaluated over the same 

dataset which allows a direct comparison among the features of interest.  

The first kind of features is 324-D Markovian features, denoted as MP-324, 

derived from JPEG information (single BDCT) and two color channels as described in 

Sections 3.2.  

The second kind of features is formed by applying Boosting Feature Selection 

(BFS) to MP-324 to select 150 features as the number of selected features is empirically 
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found to be optimal within the searching range. The second kind of features is then 

denoted as MPBFS-150.  

The third kind of features is derived based on Markovian Rake Transform (MRT) 

framework discussed in Chapter 2. By brute force searching, the best combination of 

block sizes {4×4, 16×16} can be determined which also results in the feature 

dimensionality of 324. It is also experimentally found that increasing the number of block 

sizes used to form feature barely improves classification performance. This type of 

features, denoted as MRT-324, is extracted only from Y channel in order to control the 

feature dimensionality not to be too high.  

Support vector machines (SVM) [36] with RBF kernel is used to evaluate these 

three types of features. The kernel parameters are determined by coarse-grid searching 

with six-fold cross validation. The SVM classifiers are trained independently for 20 runs. 

Each run, 2500 pairs are randomly selected for training and the leftover 500 pairs for 

testing. The average detection rates are shown in Table 3.2. Note that in this chapter 

computer graphics and photographic images are considered positive and negative 

instances, respectively.  

 
Table 3.2  Performance Comparison of MP-324, MPBFS-150, and MRT-324 

Feature Type MP-324 MPBFS-150 MRT-324 
TP Rate 93.65% 93.72% 96.61% 
TN Rate 94.72% 94.68% 95.88% 

AC 94.19% 94.20% 96.25% 
Dimensionality 324 150 324 
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3.6 Discussion and Conclusions 

In this chapter, three different kinds of features based on the application of Markov 

process in the frequency domain are introduced to identify computer graphics from 

photographic images.  

The first kind of features (MP-324) are derived by applying Markov process (MP) 

to model difference JPEG 2-D arrays along horizontal and vertical directions. The 

distinguishing features are derived from all elements in one-step transition probability 

matrices (TPM) which characterize the MP. Applying the MP additionally to difference 

JPEG 2-D arrays along major and minor diagonal directions and deriving features from 

two-step or multiple-step TPM would increase classification performance at the expense 

of computational complexity. The correlation analysis in Section 3.2.5 suggests that MP 

features from two chroma channels are highly correlated which is undesirable, so it is 

legitimate to select only one chroma channel (Cb or Cr) together with image luminance 

(Y) for feature extraction. In this work, the combination of Y and Cb is selected due to the 

lowest average correlation coefficients of the extracted features.  

The second kind of features is derived by applying Boosting Feature Selection 

(BFS) technique to select some effective features. The resultant classification 

performance remains the same, even though feature dimensionality has been greatly 

reduced. It is extensively empirically found that BFS can hardly boost the classification 

performance of many frequency-domain Markovian-based features. Consequently, if the 

number of training patterns is sufficient, it is not recommended to employ BFS or any 

other feature reduction techniques that do not enhance the classification performance as 

such techniques themselves increase the computational complexity. 
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The third kind of features is derived based on Markovian Rake Transform (MRT) 

framework introduced in Chapter 2. MRT features of size 324, abbreviated as MRT-324, 

are derived from using two different block sizes: 4×4 and 16×16. MRT-324 is 

remarkably more effective than MP-324 and MPBFS-150. Both MP-324 and MPBFS-

150 are actually derived based only on a single block-size DCT while MRT-324 is on 

multiple-block-size DCT. In a nutshell, the experimental work in this chapter confirms 

not only the universality but also the effectiveness of MRT framework over MP 

framework. 
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CHAPTER 4 

ANTI-FORENSICS OF 
DOUBLE JPEG COMPRESSION DETECTION  

 

In Chapter 4, a simple yet effective anti-forensic scheme capable of misleading double 

JPEG compression detection techniques is presented according to [50]. Based on image 

resizing with bilinear interpolation, the proposed operation aims at destroying JPEG grid 

structure while preserving reasonably good image quality. Given a doubly compressed 

image, the proposed attack modifies the image by JPEG decompressing, shrinking and 

zooming the image with bilinear interpolation before JPEG compression with the same 

quality factor as used in the given image. The efficacy of the proposed scheme has been 

evaluated on two prominent double JPEG detection techniques and the outcome reveals 

that the proposed scheme is mostly effective, especially in the cases that the first quality 

factor is lower than the second quality factor. The related work was published in [50]. 

 

4.1 Introduction 

The advances of digital cameras as well as image editing tools have made digital images 

new form of statue of memory. Duplication, distribution, or tampering of such media can 

be easily done which calls for the necessity to be able to trace back the authenticity or 

history of media. Digital image forensics is a branch of research that aims to resolve the 

imposed problem. As sophisticated as digital image forensic schemes have been designed 

on the one hand, there are weak points of such schemes on the other hand. Over the past 

few years, anti-forensics has emerged as a relatively new branch of research. It aims at 
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revealing the weakness of forensic technology and this may lead to improve the next 

generation of such a technology.  

Double JPEG compression detection has been of great significance to digital 

image forensics, especially to image steganalysis and tampering detection. Its goal is to 

distinguish between JPEG images compressed once and those compressed twice. In this 

chapter, an anti-forensic technique is introduced and its effectiveness is evaluated on two 

highly effective double JPEG compression schemes. 

Stamm et al. [51] proposed an anti-forensic scheme to hide evidence of JPEG 

compression by adding adjustable noise to DCT coefficient of JPEG compressed images 

and removing blocking artifacts was proposed. It has been shown that the anti-

forensically modified images have statistical properties close to those of uncompressed 

images. Stamm et al. [52] proposed de-blocking operation on top of the scheme 

introduced in [51] to fool forensic schemes that rely on the evidence of JPEG 

compression. Stamm et al. [53] also indicated that the proposed scheme could potentially 

mislead double JPEG compression schemes and extensively presented the afore-

mentioned anti-forensic schemes.  

 

4.2 Double JPEG Compression Detection 

Double compression artifacts, also known as double quantization (DQ) artifacts, can be 

effectively traced by analyzing the statistical properties of DCT coefficients and are 

characterized by peak-and-valley pattern in a JPEG mode histogram. According to 

Popescu [54], double compression introduces periodic peak artifacts to a JPEG mode 

histogram when the ratio of second quantization step (q2) over the first one (q1) is not an 
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integer; otherwise, the mode histogram of singly compressed and doubly compressed 

images would be indistinguishable. In JPEG compression, the expected quality of 

compressed images is user-defined and defined by a quality factor (QF) which is  an 8×8 

matrix filled up with 64 quantization steps; therefore, in the generation of a doubly 

compressed image, a pair of first quality factor (QF1) and second quality factor (QF2). 

The aforementioned condition of periodic artifacts implies that the detection of double 

JPEG compression of doubly compressed images generated by QF1 = QF2 is intrinsically 

undetectable with this approach. Note that some new strategy has made this detection 

doable [55]. 

Several double JPEG compression detection schemes have been adopted under 

the passive-blind framework; however, in this chapter, two rather efficient schemes are 

picked up to be attacked: 1) Chen et al. [56] proposed 324-D feature vector derived from 

applying Markov process to horizontal, vertical, major diagonal and minor diagonal 

difference JPEG 2-D arrays. Herein, the 324-D feature in [56] is abbreviated as MP-324. 

Owing to the limitation in the size of image dataset to be used, MP-324 is modified by 

ignoring the features generated from both diagonal difference arrays which results in the 

feature dimensionality reduction from 324 to 162. The modified feature scheme is 

therefore abbreviated as MP-162. The efficacy of image features have been evaluated by 

Support Vector Machine [36]; 2) Bin et al. [57] utilized the probabilities of the first digit 

of 20 quantized JPEG AC modes to form a 180-D feature vector which is abbreviated in 

this chapter as MBFDF. The effectiveness of image features is assessed by Fisher’s 

Linear Discriminant (FLD). 
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Per pair of the first quality factor (QF1) and the second quality factor (QF2), both 

double JPEG compression detection schemes are re-evaluated using the corresponding 

classification settings over 1,338 pairs of singly and doubly compressed images in gray-

scale of size 384×512 (landscape) or 512×384 (portrait). These images are created from 

UCIDv2 [35], an uncompressed image dataset, with a pair of first and second quality 

factors (QF1, QF2) = (a, b) where a ≠ b. The quality factors considered in this chapter are 

50, 60, 70, 80, and 90. Over the generated dataset, for both schemes, classifiers are 

independently trained and tested for 20 times and the average detection accuracies are 

reported. Per iteration, SVM [36] with random data partition (five-sixths for training and 

one-sixth for testing) has been employed to re-evaluate MP-162 on the generated dataset, 

the results of which are tabulated the result in Table 4.1. To re-evaluate MBFDF, FLD 

with randomly selected 1138 images for training and the 200 images for testing has been 

employed for 20 independent runs, the results of which appear in Table 4.2. Note that the 

re-evaluated detection rates slightly differ from what have been reported in [56] and [57] 

potentially because of: 1) different dataset, different random partition, and different 

features, for MP-162; 2) different random partition, for MBFDF. 

 
Table 4.1  Detection Accuracies of MP-162 

QF1/QF2 50 60 70 80 90 
50 - 100.00% 100.00% 100.00% 100.00% 
60 99.93% - 100.00% 100.00% 100.00% 
70 99.98% 100.00% - 100.00% 100.00% 
80 99.91% 99.64% 100.00% - 100.00% 
90 99.98% 99.96% 99.62% 99.62% - 
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Table 4.2  Detection Accuracies of MBFDF 

QF1/QF2 50 60 70 80 90 
50 - 100.00% 100.00% 100.00% 100.00% 
60 100.00% - 100.00% 100.00% 100.00% 
70 100.00% 100.00% - 100.00% 100.00% 
80 99.93% 99.63% 100.00% - 100.00% 
90 99.88% 99.93% 99.98% 99.95% - 

 

 
4.3 Shrink-and-Zoom Attack (SAZ) 

Obfuscating DQ artifacts is central to anti-forensics. Such deliberate attacks have created 

credibility gap on many forensic schemes that rely upon the trace of DQ artifacts, for 

example, image tampering detection schemes derived from the DCT domain; however, in 

this anti-forensic work, the attention is limited to misleading double compression 

detection schemes of interest in the belief that the generalization of the attacks could be 

extended to other related forensic applications.  

In this chapter, a simple attack on doubly compressed images which effectively 

fools double JPEG compression detection schemes is proposed. The rationale behind the 

attacks is to disrupt JPEG grid structure. The original concept is from steganalysis [58] in 

which the JPEG grid structure of a given JPEG image has been destroyed by calibration 

attack which follows the following procedures: 1) decompress a given JPEG image ; 2) 

crop four rows and four columns; 3) re-compress the cropped image with the same QF 

previously used. Although it has been proven that calibration can effectively reduce DQ 

artifacts, the inconsistency in image size caused by image cropping would leave an 

observable trail of image modification. In this dissertation, shrink-and-zoom (SAZ) attack 

is proposed on a doubly compressed image to suppress DQ artifacts while to maintain the 
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original image size as well as to preserve good image quality. The procedure of SAZ 

attack on a given doubly compressed image is as follows: 

1. JPEG decompressing a given doubly compressed image. 

2. Shrinking the image of size X by Y to sX by sY, where s is the degree of 
shrinkage and 0<s<1. 
 

3. Zooming the shrunk image back to its original size X by Y. In this work s = 
0.9 and bilinear interpolation are recommended.   
 

4. JPEG compressing the resultant image in Step 3 with QF2. 

The strategy for disrupting JPEG grid structure employed in SAZ attack is 

basically double image resizing. Image resizing involves interpolation to estimate pixel 

values of the location previously non-existent. Even though there are many interpolation 

algorithms, bilinear interpolation is chosen because it not only retains reasonably good 

image quality but also powerfully attacks double compression detection schemes. 

Although image resizing has been mentioned in [59] as an alternative way to destroy 

JPEG grid structure, to the best knowledge, there is no anti-forensic scheme reported that 

this technique can fail double JPEG compression detection schemes. 

It has experimentally been observed that the degree of shrinkage(s) and choice of 

interpolation have a strong connection with the effectiveness of DQ artifact elimination 

and image quality. Generally speaking, the smaller the s is, the worse the quality of anti-

forensically modified image and the more severe the attack become; however, beyond 

some certain s, the effectiveness of the attack improves little while the image quality of 

the attacked image degrades greatly. 
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4.3.1 Image Quality Measurement (PSNR) 

One of the ultimate goals of anti-forensic schemes is to preserve the visual quality of the 

image to be attacked. Usually expressed in terms of logarithmic decibel, peak signal-to-

noise ratio (PSNR) has been widely used as a measure on image quality of reconstruction 

of lossy image and is defined as a function of mean squared error (MSE) of two m×n 

gray-scale images I and J. Either I or J is a noisy approximation of the other. Note that in 

the experimental setting presented in this chapter, anti-forensically modified images is 

considered as a noisy approximation of doubly compressed images which is considered 

as a reference image.  
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MaxI is the maximum pixel value of the image, e.g., in this chapter, eight bits are used to 

represent one pixel, MaxI is 255. 
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Figure 4.1  Comparison between doubly compressed image and its SAZ attacked image. 
(left) Doubly compressed image generated from ucid01248 using (QF1, QF2) = (60, 80); 
(right) The anti-forensically modified image generated from SAZ with s = 0.9 and 
bilinear interpolation. The PSNR (dB) between two images is 35.97 dB (the left picture 
was used as a reference image).  
 

 
Figure 4.2  Mode histograms generated from the two images in Figure 4.1. 

 

Throughout this chapter, the image ucid01248 in the UCID [35] dataset is used in 

the demonstrations of the proposed anti-forensic techniques which depict the 
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effectiveness of the techniques in terms of visual quality preservation and DQ artifact 

elimination capability. In Figure 4.1, not only the visual difference between the two 

images in the figure is virtually indiscernible subjectively but also the quantitative 

difference measure between the two images is quite acceptable. The histogram in Figure 

4.2 (left) has a peak-and-valley pattern (DQ artifacts) caused by double JPEG 

compression while  Figure 4.2 (right) contains no such a DQ artifacts associated with 

double JPEG compression which indicate that SAZ suppresses DQ artifacts to a 

considerable degree at a given pair of quality factors. Consequently, SAZ is capable of 

destroying DQ artifacts while preserving decent visual quality of the resultant anti-

forensically modified images. 

 
4.3.2 Evaluation on Anti-Forensic Scheme 

In double JPEG compression detection, doubly compressed images are considered 

positive instances, while singly compressed ones are considered as negative instances. 

True positive (TP) rate is the percentage of doubly compressed images correctly 

classified, while true negative (TN) rate is the percentage of singly compressed images 

correctly classified. To evaluate the effectiveness of the proposed anti-forensic scheme, 

the key measure is the rate at which a classifier, trained for detecting double JPEG 

compression, classifies the anti-forensically modified images as doubly compressed 

images; the lower the more powerful of the proposed anti-forensics scheme, The 

evaluation process can be briefly described as follows: 1) conduct SAZ attack on a given 

doubly compressed image; 2) extract image feature vector; 3) feed it to the corresponding 

20 trained classifiers. Table 4.3 shows the relationship between s, average PSNR, TP 

rates after SAZ attack on doubly compressed images generated from the UCID [35].  
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 Table 4.3  Average PSNR, TP Rate after SAZ Attack versus s 
 

s 0.998 0.9 0.5 
PSNR (dB) 35.21 32.38 28.58 

TP Rate (MP-162) 48.40% 33.74% 21.90% 
TP Rate (MBFDF) 19.50% 12.40% 8.60% 

 
 

Note that the average PSNR in dB is calculated by averaging the PSNR before 

converting it to dB. Table 4.3 reveals that smaller s brings about more effective attack 

while decreases the average PSNR (dB). To maintain acceptable image quality, s = 0.9 is 

chosen.  

 
Table 4.4  True Positive Rates of MP-162 

QF1\QF2 50 60 70 80 90 
50  - 100.00% 100.00% 100.00% 100.00% 
60 99.87%  - 100.00% 100.00% 100.00% 
70 99.87% 100.00% -  100.00% 100.00% 
80 100.00% 99.60% 100.00% -  100.00% 
90 99.96% 99.96% 99.42% 99.64% -  

 
 

Table 4.5  True Positive Rates of MP-162 after SAZ Attack with s = 0.9 

QF1\QF2 50 60 70 80 90 
50  - 0.13% 0.00% 0.00% 0.00% 
60 1.26% -  0.00% 0.00% 0.00% 
70 30.09% 19.10%  - 0.13% 0.00% 
80 33.77% 38.21% 6.05%  - 0.13% 
90 100.00% 99.78% 99.55% 9.87% -  

 
 
The average TP rates before SAZ attack are reported in Tables 4.4 and 4.6 in 

comparison with the corresponding average TP rates after SAZ attack in Tables 4.5 and 

4.7. From Tables 4.4 to 4.7, it is noticeable that SAZ is more effective to mislead the 

trained classified when QF1<QF2 than when QF1>QF2. The intuitive explanation of this 
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phenomenon is discussed in Section 4.3.3 along with a quantitative measure to support 

the claim. 

The effectiveness of SAZ is confirmed by the low TP rates after SAZ attack as 

shown in Tables 4.5 and 4.7. In all cases, SAZ almost perfectly attacks the upper triangle 

of the tables where QF1 < QF2; however, in the lower triangle of the tables where QF1 > 

QF2, SAZ is less effective. This phenomenon can be intuitively explained by the 

following reasons: 1) when QF1 < QF2, DQ artifacts are so obvious that SAZ can 

powerfully distort the statistical properties of the doubly compressed images; 2) when 

QF1 > QF2, DQ artifacts exist less severely, hence being more difficult for SAZ to distort 

the statistical properties of such doubly compressed images. 

 
Table 4.6  True Positive Rates of MBFDF 

QF1\QF2 50 60 70 80 90 
50  - 100.00% 100.00% 100.00% 100.00% 
60 100.00% -  100.00% 100.00% 100.00% 
70 100.00% 100.00% -  100.00% 100.00% 
80 99.85% 99.40% 100.00% -  100.00% 
90 99.75% 99.85% 99.95% 99.90%  - 

 
 
Table 4.7  True Positive Rates of MBFDF after SAZ Attack with s = 0.9 

QF1\QF2 50 60 70 80 90 
50 - 1.00% 0.00% 0.00% 0.00% 
60 10.55% - 0.20% 0.00% 0.00% 
70 30.80% 17.95% - 0.00% 0.00% 
80 1.60% 41.20% 10.00% - 0.00% 
90 90.65% 26.80% 14.80% 3.20% - 
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4.3.3 Statistical Deviation by SAZ 

The statistical changes in feature level introduced by SAZ are measured by comparing 

two statistical parameters K and L whose calculation is depicted in Figure 4.3 and values 

are tabulated in Tables 4.8 to 4.11. To calculate K and L, a singly compressed image with 

QF2 is used as a reference image. K is the L1 distance between feature vectors extracted 

from a given doubly compressed image and the reference image, while L is the L1 

distance between feature vectors extracted from the anti-forensically modified image and 

the reference image. That is, K represents the change with respect to the reference image 

in feature-level introduced by double compression, K introducing the change with respect 

to the reference image in feature-level introduced by SAZ. Mean values of K and L are 

tabulated in Tables 4.8 to 4.11. 

When QF1 < QF2, L is much less than K which means that SAZ moves the 

statistical properties of the anti-forensically modified images closer to their 

corresponding singly compressed versions (the reference images). When QF1 > QF2, L is 

generally close to K which means that SAZ slightly distort the statistical properties of the 

anti-forensically modified images. SAZ is therefore generally less effective under this 

situation. The amount of difference between K and L indicates the degree of statistical 

deviation introduced by SAZ. 
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Figure 4.3  Block diagram of statistical deviation measure.  
 
 
Table 4.8  Means of K of MP-162 
 

QF1\QF2 50 60 70 80 90 
50 -  2.97 11.14 13.26 18.26 
60 1.82 -  5.39 14.85 16.05 
70 1.79 1.57 -  4.40 15.06 
80 1.45 1.24 1.89  - 11.82 
90 0.30 0.44 0.36 1.02 -  

 
 

Table 4.9  Means of L of MP-162 
 

QF1\QF2 50 60 70 80 90 
50 -  1.98 2.97 3.80 4.73 
60 1.41 -  2.40 2.95 4.41 
70 1.97 1.54 -  2.36 3.98 
80 1.59 1.44 1.61  - 3.03 
90 1.27 1.35 1.51 1.73 -  

 
 

Table 4.10  Means of K of MBFDF 
 

QF1\QF2 50 60 70 80 90 
50  - 5.44 21.57 23.42 21.62 
60 3.59 -  7.61 22.20 22.71 
70 3.10 4.30  - 11.18 21.14 
80 2.79 1.52 4.08 -  18.08 
90 0.80 1.14 1.26 1.59 -  
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Table 4.11  Means of L of MBFDF 
 

QF1\QF2 50 60 70 80 90 
50  - 3.49 4.96 4.86 4.57 
60 4.03  - 3.01 4.07 4.54 
70 4.76 4.47  - 3.45 4.31 
80 3.20 3.95 4.35 -  3.17 
90 3.40 3.57 3.37 3.39  - 

 

 

4.4 Alternatives to SAZ 

As mentioned in Section 4.3.1, the ultimate goal of the anti-forensic scheme proposed in 

this dissertation is to disrupt JPEG grid structure. It has been shown in Sections 4.3.2 to 

4.3.3 that SAZ, based on image resizing, is one of effective methods; however, it is 

beneficial to point out, although without large-scale empirical validation, a few other 

methods that could possibly be also effective in JPEG grid disruption. 

First, image rotation is able to disrupt JPEG grid structure as also having been 

pointed out in [59]; however, this operation is not recommended because of the following 

reasons: 1) image rotation would require image cropping to eliminate artificial image 

boundary and result in the inconsistency between image sizes; 2) image rotation would 

make the spatial coordinate of the anti-forensically modified image nonaligned with the 

corresponding doubly compressed image which leads to unacceptably low PSNR. 

Second, low-pass filtering can be considered as an equivalent operation of SAZ. 

There are of course various ways to apply low-pass filter to an image (pixel values 

outside the image boundaries are zero-order-hold interpolated); for the sake of simplicity, 

a 3×3 mean filter is chosen to apply to a given doubly compressed image and then JPEG 

compress the filtered image with QF2.  
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Figure 4.4  Comparison between doubly compressed image and its low-pass filtered 
image. (left) Doubly compressed image generated from ucid01248 using (QF1, QF2) = 
(60, 80); (right) The anti-forensically modified image generated by convoluting a 3×3 
mean filter on the doubly compressed image. PSNR (dB) between two images is 34.57 
dB (the left picture was used as a reference image).  
 

 

 
Figure 4.5  Mode histograms generated from the two images in Figure 4.4. 
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Figures 4.4 and 4.5 confirm the effectiveness of the usage of a low-pass filter not 

only to preserve image quality but also to eliminate DQ artifacts; under the same 

circumstances, the resultant PSNR suggests that image quality retained by convoluting a 

3×3 mean filter to the corresponding doubly compressed image is slightly worse than that 

retained by SAZ. It is visually noticeable that the obtained anti-forensically modified 

image in Figure 4.4 (right) is a little more blurry than that in Figure 4.1 (left). This is, 

however, in no ways, a definite conclusion as other choices of low-pass filter may bring 

off a higher PSNR.  

Third, intensity transformations, such as histogram equalization and logarithmic 

transformation, can also destroy DQ artifact. Such transformations globally change the 

relationship among pixel intensity in the given image; in some sense, depending on the 

degree of change introduced to a compressed image, such operations create a seemingly 

new uncompressed image with similar visual semantic content with virtually no DQ 

artifacts. In Figures 4.6 and 4.7, the effectiveness of applying histogram equalization to 

the given doubly compressed image is demonstrated. As expected, PSNR of the two 

images in Figure 4.6 is unacceptably low, only 10.63 dB, but DQ artifacts have been 

removed to some extent as shown in Figure 4.7. Although intensity transformation may 

work very effectively in hiding the traces of DQ artifacts, this approach is not 

recommended as it is most likely to yield a noticeably change in the attacked images. 
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Figure 4.6  Comparison between doubly compressed image and its histogram-equalized 
image.  (left) Doubly compressed image generated from ucid01248 using (QF1, QF2) = 
(60, 80); (right) The anti-forensically modified image generated by conducting histogram 
equalization. PSNR (dB) between two images is 10.63 dB (the left picture was used as a 
reference image).  

 
 
 
 

 
Figure 4.7  Mode histograms generated from the two images in Figure 4.6. 
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4.5 Discussion and Conclusions 

4.5.1 SAZ in a Nutshell 

In this chapter, an anti-forensic operation capable of misleading two highly effective 

JPEG double compression detection schemes [56] and [57] is proposed.  There are two 

ultimate goals of anti-forensic schemes: 1) image quality preservation; 2) obfuscating 

forensic artifacts. The proposed attack relies upon image resizing with bilinear 

interpolation and is called shrink-and-zoom (SAZ). The efficacy of SAZ is assessed by 

the rate at which a classifier, trained for double JPEG compression detection, classifies 

anti-forensically modified images as doubly compressed images. That is, the lower such a 

rate, the more powerful the attack is. To operate SAZ, the scaling factor s is the key 

parameter that controls not only the image quality but also TP rates after the attack. s = 

0.9 which yields a reasonable balance between PSNR and TP rates after the attack. 

The performance gap between TP rates between before and after SAZ attack also 

indicates how effective the attack is; that is, the lower TP rate after the attack than TP rate 

before the attack, the more effective the attack is. Although in most cases, the TP rates 

after the attack are lower than those before the attack, it has been observed that TP rate 

after the attack is slightly higher than TP rate before the attack for only two combinations 

of QF1 and QF2 and in such cases the attack can be deemed ineffective.  

 To explain the situations in which SAZ brings forth a lower TP rate after the 

attack than before the attack and those in the opposite situations, PCA 2D projections of 

some representative cases are depicted in Figures 4.8 and 4.9: 1) MP-162 features of 

(QF1, QF2) = (60,80) of which TP rate after the attack = 0% while TP rate before the 
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attack = 100%; 2) MP-162 features of (QF1, QF2) = (90, 50) of which TP rate after the 

attack = 100% and TP rate before the attack = 99.96%.  

In Figure 4.8, the scatter plot of the projection of MP-162 features extracted from 

corresponding anti-forensically modified images is very much closer to that from singly 

compressed images; that’s, in feature space, SAZ moves the statistical properties of anti-

forensically modified images much closer to those of singly compressed images. On the 

other hand, in Figure 4.9, the scatter plot of the projection of MP-162 features extracted 

from corresponding anti-forensically modified images is closer to that from doubly 

compressed; in more details, SAZ, under this circumstance, moves the statistical 

properties of anti-forensically modified images further away from those of singly 

compressed images. The relationship between TP rates before and after the attack implies 

the direction toward which SAZ moves the statistical properties of features, while the 

difference between K and L define the degree of statistical deviation SAZ brings forth.  

 
4.5.2 Connection between Anti-Forensic Schemes of Double JPEG Compression 
Detection and the Practicality of Image Tampering Detection Schemes 
 
Image tampering detection has been a hot research topic over the past few years. Many 

such schemes, such as [20], [12], and [13], have been proposed to measure irregularity 

caused by image tampering from observed JPEG coefficients and evaluated over some 

public datasets, e.g., [27] and [28]. These schemes generally perform fairly well within 

the datasets used; however, its practicality is still questionable as it has been reported in 

[13] that the accuracy of testing real-life tampered images, of which the ground truths are 

known but the processing histories done to the images are not, collected from the Internet 
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on the classifiers trained over [28] is much lower than that evaluated by using the testing 

images in the used dataset. 

What has been presented all along this chapter could partly explain why image 

tampering detection schemes derived from JPEG coefficients have performed poorly in 

reality. Assuming no further malicious attack, image resizing and image rotation seem to 

be frequent choices of non-malicious image processing operation that makes a given 

image suitable for being displayed in an Internet browser while image enhancement 

operations like histogram equalization as well as low-pass seem to be done relatively 

much less. However, any of such non-malicious image operations is likely to be applied 

to any digital image before its distribution over the Internet and it can potentially 

obfuscate the traces of tampering artifacts left in the JPEG coefficients. In other words, 

for compressed domain methods, tampered images generated from JPEG images are 

susceptible to many common image processing operations; consequently, the practicality 

of such methods is limited. SAZ as well as some other methods discussed in Section 4.4 

is most likely to be able to confuse image tampering detection schemes that rely on JPEG 

information. 
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Figure 4.8  PCA 2D projection of MP-162 features of (QF1,QF2) = (60,80). 
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Figure 4.9  PCA 2D projection of MP-162 features of (QF1,QF2) = (90,50). 
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CHAPTER 5 

TEXTURAL FEATURES FOR STEGANALYSIS 

 

It is observed that the co-occurrence matrix, one kind of textural features proposed by 

proposed by Haralick et al. [60], has played a very critical role in steganalysis. On the 

other hand, the data hidden in the image texture area has been known difficult to detect 

for years, and the modern steganographic schemes tend to embed data into complicated 

texture area where the statistical modeling becomes difficult. Based on these 

observations, in this chapter, the textural features from the rich literature in the field of 

texture classification are studied for further development of the modern steganalysis. As a 

demonstration, a group of textural features, including the local binary patterns, Markov 

neighborhoods and cliques, and Laws’ masks, have been selected to form a new set of 

19,593 features, which are used with the FLD-based ensemble classifier to steganalyze 

the BOSSbase. The related work is to be published in [61]. 

 

5.1 Introduction 

Steganography and steganalysis are a pair of modern technologies that have been moving 

ahead swiftly in the last decade. The conflicting between these two sides is a driving 

force for the rapid development. That is, each side learns from its counterpart. From the 

modern steganalysis point of view, Avcibas et al. [62] introduced the machine learning 

framework, consisting of statistical features and classifier for the first time. Lyu and Farid 

[63] proposed the first four statistical moments of wavelet coefficients and their 

prediction errors of nine high frequency sub-bands from three-level decomposition are 
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used to form a 72-D feature vector for SVM classification for steganalysis. Harmsen [64] 

proposed the steganalysis method based on the mass center of histogram characteristic 

function has shown improved effectiveness in steganalysis. Xuan et al. [65] utilized a 

framework combining wavelet decomposition and moments of characteristic functions. 

To break steganographic schemes with popularly used JPEG images as carriers, such as 

OutGuess, F5 and Model-based steganographic schemes, Fridrich [59] used a group of 23 

features, including both the first and second order statistics, have been used together with 

a calibrate technique. Sullivan et al. [66] firstly utilized Markov process for steganalysis. 

How to handle the high dimensionality of elements in the transition probability matrix 

resultant from the application of Markov process has been studied in Zou et al. [67], for 

the spatial domain and in [32] for the JPEG domain (frequency domain). In Pevny et al. 

[68], both the first and the second order Markov models, called SPAM, have been 

established to detect the more advanced steganographic scheme known as LSB matching. 

As expected, there is no end in the competition between steganography and steganalysis 

just like mouse versus cat. A modern steganographic scheme, named HUGO (Highly 

Undetectable Steganography) [7], has been developed so as to fail the SPAM by taking 

high order difference into consideration in its data embedding. Steganalytic methods [69-

71] have been reported to break HUGO. In Gul and Kurugollu [71], image features are 

extracted via applying high-pass filters to the image, followed by down-sampling, feature 

selection, and some optimization technique. Depending on the chosen parameters, the 

feature dimensionalities range from more than one hundred to more than one thousand; 

with a linear classifier, the detection accuracies of the generated features on BOSSbase 

0.92 [72, 73] (the dataset established for the HUGO competition.) range from 70% to 



73 
 

 

43 

more than 80%. In Fridrich el al. [69, 70], the difference arrays from the first-order up to 

the sixth-order are all used for feature extraction in addition to other newly designed 

features, resulting in the total number of features as high as 33,963. Because of the high 

feature dimensionality, an ensemble classifier using Fisher’s Linear Discriminant (FLD) 

has been developed and utilized. These novel measures result a detection rate of 83.9% 

on BOSSbase 0.92 [72, 73] at the embedding rate of 0.4 bits per pixel (bpp). 

What described above is by no means a complete review of this active research 

field in steganalysis. For instance, the recent technologies of steganography and 

steganalysis in the JPEG domain have not been discussed here, which however have 

shown the same pattern of competition among these two areas. The observation from the 

above-discussion is that the modern steganalysis has made rapid progress in the past 

decade, so does modern steganography. 

 
5.1.1 Image Dataset and Classifiers 

Throughout this chapter, the image dataset BOSSbase 0.92 [72, 73], which is the standard 

dataset for HUGO steganalysis evaluation, will be used for all the experiments including 

empirical validations. The dataset consists of 9,074 gray-scale uncompressed images.  An 

example of a pair of stego and cover images is shown in Figure 5.1. The stego images are 

generated by HUGO at 0.4 bpp with default parameters. Features extracted from the 

dataset are evaluated in the same random partition. That is, for each training and testing 

phase, randomly selected 8,094 patterns are for training and the 1,000 left for testing.  

For some small-scale empirical validation, FLD is employed; however, for some 

large-scale empirical validations, FLD-based ensemble classifiers [69, 70] is used 

instead. For the ensemble classifiers, dred (the dimensionality of random selected feature 
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sub-set) and L (the number of base learners) are involved in the determination of final 

accuracy which is computed based on majority voting rule. A proper choice of the two 

parameters can be obtained by brute force searching. In this chapter, dred ϵ {1,800 2,400 

2,800} and L ϵ {1, 2, …, 101}. 

The final FLD-based ensemble accuracy of the whole feature set, including some 

small-scale empirical validations, is evaluated over 12 independent runs of classification 

while some large-scale empirical validations over three independent runs.   

 

 
Figure 5.1  Example of stego (left) and cover (right) images [72, 73]. 
 

5.1.2 Milestones of Textural Features 

In this chapter, a different look at steganalysis is taken from the texture classification 

point of view. Texture classification is one of the major applications in texture analysis 

which has a long rich history. There are a variety of statistical methods in texture 

classification, some of which have been successfully used in the early days of 

steganalysis. Among such methods, histogram and its moments are considered the first-

order statistics in which no spatial relationship among pixels is taken into account.  
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According to the highly cited (as of February 2012, having been cited almost 7,000 times 

according to Google) paper by Haralick et al. [60] in 1973, “context, texture, and tone are 

always present in the image, although at times one property can dominate the other,” 

“texture is an innate property of virtually all surfaces.” In [60], the co-occurrence matrix, 

the second-order statistics in which the spatial relationship between two pixels is 

considered, has been proposed as textural features for image classification. Since then it 

has been one of the most widely used statistical methods for various tasks in pattern 

recognition.  

Now the thought in [60] is further extended. The modern steganography hides 

data into a cover image. That means the original texture of cover image has been 

modified somehow after data embedding even though the change is small. Therefore 

many technologies developed for texture images classification are reasonably expected to 

be usable for steganalysis. In addition, it has been reported that the data hidden inside the 

texture images are difficult to be detected, for instance, by Bohme [74], in other words, 

the texture images are suitable for steganography, consequently the steganalysis on 

texture images is challenging, and some efforts have been made, for instance, Chen el al. 

[75]. Therefore, it becomes clear that the technologies developed for texture images 

classification should be able to play an important role in modern steganalysis. 

In 1976, Weszka et al. [76] presented a comparative study on the performance of 

three major kinds of textural features in terrain classification. The study reveals that the 

first-order statistics of the absolute gray difference performs comparably with co-

occurrence matrix. Both of the afore-mentioned methods outperform the Fourier power 

spectrum. In 1992, Ohanian and Dubes [77] conducted a comparative study on the 
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performance of four types of features in texture classification: Markov Random Field 

parameters, multi-channel filtering features (wavelet transform), fractal-based features, 

and co-occurrence features. The study shows that the co-occurrence features perform the 

best among the four types of features. That is why co-occurrence matrix has been an 

attractive choice for texture classification and related applications. 

In fact, there are many tools developed for texture classification that can be 

borrowed to use for steganalysts in addition to co-occurrence matrix (transition 

probability matrix can be shown equivalent to the co-occurrence matrix under certain 

condition which has been used in steganalysis). Specifically, by taking a close look at the 

techniques used in texture classification, for instance, according to [78], Markov random 

fields (MRF) and others which belong to the technologies suitable for stationary texture 

images may be useful for steganalysis. In the category of non-stationary texture images, 

there are Laws’ masks, local binary patterns (LBP), and others. 

These thoughts are the motivation to investigate new steganalysis technologies. 

First the LBP technologies [79, 80], respectively proposed in 1996 and 2002, is 

examined. In this popular technology (as of February 2012 [80] has been cited almost 

1900 times according to Google), the pixels in the entire image (or in the area of 

interesting) are examines. For each considered pixel, the LBP opens, say, a 3×3 

neighborhood surrounding it. Then the gray-value of each of the eight neighbor pixels is 

compared with that of the central pixel. If the gray-value of a neighbor pixel is smaller 

than that of the central pixel, a binary zero is recorded for this pixel; otherwise, a binary 

one is recorded; thus resulting a string of eight binary bits, each being either zero or one. 

This procedure is conducted for each pixel of the given image. If one chooses a 
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sequencing among these eight binary bits assigned to the eight-neighbors, one then obtain 

a corresponding eight-bit binary number. Applying this procedure to all pixels, eight-bit 

binary numbers can be derived, specifically one for each pixel of the image under 

consideration (pixel values outside the image boundaries are zero-order-hold 

interpolated). Since any eight-bit binary number corresponds to a specific decimal 

number in a range from zero to 255, clearly, the histogram of all of the decimal numbers 

thus formulated consists of 256 bins. The distribution of this type of histogram bins’ 

values is chosen to characterize the given image. Since it is obtained from each individual 

pixel through comparing it with its local neighbor pixels, this type of histogram is 

expected to be suitable for texture classification; in this case, for steganalysis.  

Note that there are several different ways to generate the histogram. A popular 

way of LBP technology used in texture analysis ends up with only 59 bins for the 3×3 

neighborhoods described above. That is, the statistics shows that there are many very 

sparse bins among the 256 bins. Some of these 256 bins are merged so as to result in only 

59 bins without losing much information in classification. In order to achieve rotation 

invariance, the following procedures are taken. That is, a unit circle is considered from 

the central pixel with a radius being one; hence, the gray values of four corner pixels of 

this 3×3 block are determined by interpolation.  

Furthermore, the LBP technology can be employed in a multi-resolution manner. 

That is, in addition to a neighborhood of 3×3, one can also consider neighborhood of 5×5 

and/or 7×7. It is shown in [80] that multi-resolution does help in texture classification. In 

addition to the linear binary patterns just discussed, the LBP scheme also considers 

“contrast” by introducing another quantity called variance. That is, if for the case of 3×3 
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square neighborhoods, the mean average of the eight surrounding pixels’ gray-value is 

first calculated, followed by the calculation of the local variance with respect to the 

central pixel’s gray-value. For detail of the LBP technologies, readers are referred to [79, 

80]. 

As an exercise, these textural features are applied to steganalyzing HUGO stego 

dataset [72, 73] designed for the BOSS contest.  A steganalyzer with 19,593 features 

derived from the textural features is constructed. Instead of co-occurrence matrix, 

employed are LBP features (59-D, corresponding to the above mentioned 59 bins, used 

for some filtered 2-D array, and 256-D (256 bins) used for others) and variance features 

derived from the multi-resolution way. In addition, Laws mask and the mask and cliques 

associated with Markov Random fields [78] are utilized.  The classifier utilized is the 

FLD-based ensemble classifier, reported in [69, 70]. The achieved average detection rate 

is 82.60% on BOSSbase 0.92 [72, 73]. While the first-stage work has been positive, more 

works need to be done to further move this investigation ahead. It is hope that a different 

angle to view and handle steganalysis has been opened by this study. 

 

5.2 Image Statistical Measures 

Advanced steganographic schemes such as HUGO [7] tend to embed data into cover 

image locally into some selected regions so as to make the image statistical modeling 

difficult, especially into highly texture regions. Intuitively, this small local change should 

be efficiently captured by some image operators which emphasize on modeling 

microstructure image properties. In this chapter, the local binary pattern (LBP) operators 
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[79, 80], which have been popularly used in texture classification arena, are introduced as 

a potential statistical image modeling for steganalysis. 

 
5.2.1 Local Binary Pattern 

Ojala et al. [79] proposed LBP to model the statistics of a texture unit defined within a 

neighborhood of, say, 3×3 pixels. Each of eight neighboring pixels of a 3×3 

neighborhood is thresholded by the gray value of its central pixel to form an eight-bit 

binary pattern. Figure 5.2 depicts a 3×3 neighborhood employed in the calculation of the 

original LBP in which gc is the center pixel and gp, p = 0,2,…,P-1, where P is the number 

of neighboring pixels and equal to eight in this case, representing the neighboring pixels. 

Generalized to different P values and correspondingly defined neighborhoods, Equations 

(5.1) and (5.2) express the formulation of LBP mathematically.  

 

 
Figure 5.2  3×3 neighborhood. 

 
 
 

    ∑ −

=
−=

1

0
2)(P

p
p

cp ggsLBP                    (5.1) 

 
 
 

    



>
≤

=
0,0
0,1

)(
x
x

xs                       (5.2) 

 
 
 



80 
 

 

43 

Consequently, a histogram of 256 bins is formulated as a texture descriptor which 

represents vital information about spatial structure of image texture at microscopic level. 

The basic LBP is denoted as LBP8. 

 

 
Figure 5.3  Circular symmetric neighbor sets (adapted from [80]).  
 

 
In [80], Ojala et al. reported that LBP operators could achieve rotation invariant 

property after some manipulation. In this version of LBPs, the local neighborhood is 

circularly defined as shown in Figure 5.3 in which the pixel values of the neighbors 

falling outside the center of the pixel grids are estimated by interpolation. The 

computation of LBP values still follows Equations (5.1) and (5.2). Rotation invariant and 

uniformity mappings are introduced. The authors classify LBP into two categories as 

shown in Figure 5.4: “uniform” (top row) and “non-uniform” (bottom row) patterns. 

Uniform patterns have the number of binary transitions between zero (black dot) and one 

(white dot) over the whole neighborhood circle less than or at most equal to two while the 

patterns whose number of such transitions is greater than two are considered as non-

uniform. In texture classification, uniform patterns often occupy the majority of the 

histogram which makes merging non-uniform patterns into the same bin legitimate. This 

pattern merging is simply called uniformity mapping (or u2 mapping), reducing the 
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number of bins in a histogram from 256 to 59 bins. This type of LBP descriptor is 

denoted as LBPP,R
u2 where P defines the number of neighbor pixels, R the radius of the 

circular symmetric neighborhood and u2 uniformity mapping. 

 

 
Figure 5.4  Examples of uniform patterns (all in the top row) and non-uniform patterns 
(all in the bottom row) (adapted from [80]).  
 

 
The authors also suggested a feasibility of enhancing texture classification 

performance by incorporating multi-resolution approach.  

Note that in this chapter only P = 8 is utilized in order to keep feature 

dimensionality manageable and that the circular symmetric neighbor inscribed within 3×3 

square neighborhood when R = 1, 5×5 when R = 2, and 7×7 when R = 3. 

 
5.2.2 Contrast Measure 

In some applications, the performance of LBP can be enhanced by the use of a local 

contrast measure [80]. In this chapter, local contrast is measured in a 3×3 square 

neighborhood and as a result a variance image can thus be formed. The contrast measure 

on square 3×3 neighborhood is denoted as VAR8 and is defined as follows. 
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It has been observed empirically that LBP features extracted from some variance 

images can enhance the detectability of the proposed steganalyzer. 

To demonstrate the effectiveness of LBP operators in steganalysis, some simple 

testing scenarios are constructed to compare the performance of features derived from 

LBP operators with those from co-occurrence matrix. Here a set of features on the first-

order horizontal residual images generated by filtering images in BOSSbase 0.92 [72, 73] 

with the operator [-1 1] is used. 

To derive feature using co-occurrence matrix along horizontal direction, the 

residual images are first thresholded with T = 4 which results in the feature 

dimensionality of 81 [67, 68]. The corresponding feature dimensionalities of LBP8, 

LBP8,1
u2 (i.e., as introduced, eight neighbor elements in total, radius being one, u2 

mapping applied), LBP8,2
u2 and LBP8,3

u2 are 256, 59, 59, and 59, respectively. FLD is 

employed with 12 independent runs. 

 
Table 5.1  Comparative Performance Study of Co-Occurrence and LBP Features from 
Horizontal Difference Array 
 

Type I II III IV 
TP Rate 57.48% 56.61% 64.53% 61.56% 
TN Rate 51.46% 56.98% 65.20% 61.15% 

AC 54.47% 56.80% 64.87% 61.36% 
Dimensionality 81 59 256 177 

 
 

In Table 5.1, type I stands for features derived by using co-occurrence matrix 

formulated along horizontal direction, II by LBP8,1
u2, III by LBP8 and IV by LBP8,1

u2 

+LBP8,2
u2 +LBP8,3

u2. 

The comparative performance is shown in Table 5.1 where the statistics shows 

that: 1) features generated from LBP8 are much more powerful than those from co-
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occurrence matrix but with a higher dimensionality; 2) features generated from LBP8,1
u2 

perform slightly better than those from co-occurrence matrix although they are of lower 

dimensionality; 3) multi-resolution approach improves the performance of LBPP,R
u2 

scheme while it keeps dimensionality manageable. 

Instead of using co-occurrence matrix, in this chapter statistical image features are 

formulated based solely on LBP operators. In so doing, an LBP operator is applied to a 

set of residual images, each of which reveals artifacts associated with steganography in a 

different way.  

 

5.3 Content-Adaptive Prediction Error Images 

Small perturbation to cover image caused by steganographic schemes may be considered 

as a high frequency additive noise; as a result, eliminating low-frequency representation 

of images before feature extraction process would make the resulting image features 

better represent the underlying statistical artifacts associated with steganography. With 

the modern steganographic schemes such as HUGO [7], it is intuitive that the prediction 

error images (also referred to as residual images) generated in a content-adaptive manner 

would effectively reveal such artifacts caused by data embedding. In this chapter, I is 

denoted as image, R as residual image, and Pred(I) as corresponding predicted image. 

Predicted images here are calculated based on some relationship within a predefined 

square neighborhood. Mathematically, R can be expressed in Equation 5.4. 

 
 

  R = I – Pred(I)                (5.4) 
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In this subsection, the following two major kinds of content-adaptive residual 

images are proposed. The first kind is generated based on the proposed prediction scheme 

modified based on [81], while the second kind is generated based on a collection of 

median filters. 

 
5.3.1 Local Successive Prediction Error Image  

Shi et al. [82] utilized the predication scheme [21] in the proposed steganalyzer. A 

modified prediction scheme based on [21] is adopted in this chapter to better reveal 

steganographic artifacts utilizing a 3×3 neighborhood to formulate the prediction error. 

Since the application is not coding, it is free to manipulate the prediction scheme. That is, 

the prediction scheme [81] is employed in a 2×2 neighborhood but in a different way; 

that is, with a fixed reference pixel (a pixel to be predicted), the 2×2 neighborhood has 

been rotated for four times to cover a 3×3 neighborhood, each rotation yielding one 

predicted value of the reference pixel. The final predicted value is the average of these 

four predicted pixel values. Figure 5.5 and Equation 5.5 describe the prediction process. 

Note that the four-time rotations of the 2×2 neighborhood to form four 2×2 

neighborhoods  are the contribution of Licong Chen. 

 

 
Figure  5.5  Four 2×2 neighborhoods used to predict the center pixel of a 3×3 
neighborhood. 
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The empirical validations to be shown in Tables 5.2 are based on 12 independent 

runs of FLD over the dataset. Table 5.2 shows that features extracted from residual 

images generated by this proposed scheme in which Pred(I) = (x̂1+ x̂2+ x̂3+ x̂4)/4  are 

more discriminative than those used in [82] in which Pred(I) = x̂1.  

 
Table 5.2  Performance Comparison of Features from Prediction Error Images 
 

 
 

 

                         
Much of image content has been removed by the proposed scheme; however, the 

influence of image content can be further reduced by successive application of this 

scheme. In this chapter, PEn is denoted as a prediction error image generated by applying 

the proposed scheme to the original input image for n multiple times. 

 
5.3.2 Median-Filter-Based Prediction Error Images  

Spatial filters have been widely used as low-pass filters. Much of their applications are 

for image denoising. It is therefore intuitive to generate residual images by using median 

filters to compute predicted images. That is, a median filtered image is subtracted from an 

original image, thus generating a prediction error image. In this chapter, a set of median 

filters of three different sizes, 3×3, 5×5, and 7×7, is used to calculate predicted images. 

Pred(I) in Equation (5.4) is defined by the output of applying a median filter defined here 

Prediction Scheme Original [81] Proposed 
AC 60.18% 61.29% 

Dimensionality 59 59 
Descriptor LBP8,1

u2 LBP8,1
u2 
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to a given input image I. Figure 5.6 depicts symbolic representations of pixel locations in 

three different sizes of square neighborhoods while Table 5.3 shows the pixel locations to 

be involved in the local median calculations. 

 

 
Figure 5.6  Symbolic representations of pixel locations used in the creation of median-
filter-based prediction error images. (a) 3×3, (b) 5×5, and (c) 7×7 neighborhood. 

 

Table 5.3  Configuration of Median Filters Employed in Generating Median-Filter-Based 
Prediction Error Images 

Mask size Filter number Pixel locations used in computing median image 
3×3 1 w11, w13, w22, w31, w33 

2 w12, w21, w22, w23, w32 
 

5×5 
1 w12, w14, w21, w22, w24, w25, w33, w41, w42, w44, w45, 

w52, w54 
2 w11, w13, w15, w31, w33, w35, w51, w53, w55 
3 w13, w22, w23, w24, w31, w32, w33, w34, w35, w42, w43, 

w44, w53 
 
 
 
 

7×7 

1 w12, w13, w15, w16, w21, w22, w23, w25, w26, w27, w31, 
w32, w33, w35 
w36, w37, w44, w51, w52, w53, w55, w56, w57, w61, w62, 
w63, w65, w66 
w67, w72, w73, w75, w76 

2 w14, w22, w24, w26, w34, w41, w42, w43, w44, w45, w46, 
w47, w54, w62 
w64, w66, w74 

3 w11, w13, w15, w16, w31, w33, w35, w37, w44, w51, w53, 
w55, w57, w71 
w73, w75, w77 

4 w14, w23, w24, w25, w32, w33, w34, w35, w36, w41, w42, 
w43, w44, w45 
w46, w47, w52, w53, w54, w55, w56, w63, w64, w65, w74 
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5.4 Residual Images Based on Laws’ Masks 

It is always feasible to extract image features from a more favorable SNR image which is 

less influenced by image content. Note that stego-noise is the signal considered here. The 

residual images in this portion are computed by applying high-pass filters to the given 

image in the spatial domain. Some residual images in this part are also generated in a 

content-adaptive manner by incorporating two non-linear operators, minimum and 

maximum in order to catch the desired artifacts.  

This part of image statistical features is formulated by two major set of 1-D 

spatial high-pass filters. The first set of high-pass filters is Laws’ masks [18] which are of 

odd sizes (three, five, and seven), while the other set which contains even-tap high-pass 

filters (two, four, and six) have been adopted in this doctoral research.  

As shown in Table 5.4, F4 and F6 are generated by convolving the mask [-1 1], 

popularly used in steganalysis and denoted by F2 in this chapter, with S3 and E5, 

respectively, which are shown in Table 5.4. 

 
Table 5.4  High-Pass Filters Employed in the Creation of Residual Images in Section 5.4 
 

Category Number of Taps Name Filter 
 
 
 
 

Laws’ Masks 

3 Edge 3 (E3) [-1 0 1] 
Spot 3 (S3) [-1 2 -1] 

 
5 

Edge 5 (E5) [-1 -2 0 2 1] 
Spot 5 (S5) [-1 0 2 0 -1] 

Wave 5 (W5) [-1 2 0 -2 1] 
Ripple 5 (R5) [1 -4 6 -4 -1] 

 
 
7 

Edge 7 (E7) [-1 -4 -5 0 5 4 1] 
Spot 7 (S7) [-1 -2 1 4 1 -2 -1] 

Wave 7 (W7) [-1 0 3 0 -3 0 1] 
Ripple 7 (R7) [1 -2 -1 4 -1 -2 1] 

Oscillation 7 (O7) [-1 6 -15 20 -15 6 -1] 
 

Even Taps 
2 Filter 2 (F2) [-1 1] 
4 Filter 4 (F4) [1 -3 3 -1] 
6 Filter 6 (F6) [1 -3 2 2 -3 1] 
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For a given filter, five different residual images can be generated as follows: 1) Rh 

by applying a filter in the horizontal direction; 2) Rv by applying a filter in the vertical 

direction; 3) Rhv by applying a filter in the horizontal direction and then in the vertical 

direction in a cascaded manner; 4) Rmin = min(Rh, Rv, Rhv); 5) Rmax = max(Rh, Rv, Rhv). 

 

5.5 Residual Images Based on Markov Neighborhoods and Cliques 

Markov Random Field (MRF) has been widely used in texture classification, 

segmentation and texture defect detection [78]. Based on Markov condition, a 

neighborhood, called Markov neighborhood, can be constructed, into which the Markov 

parameters can be assigned as weights. These neighborhoods are characterized by a 

group of pixels with a variety of orientations often symmetrically inscribed within a 

square window of odd size. They are hence tempting choices for advanced steganalysis. 

In this doctoral research, the immediate application of Markov neighborhood is for high-

pass filtering instead of texture classification. As a result, there is no need to strictly rely 

on Markov condition and parameters. Figure 5.7 represents the masks used to generate 

residual images described in this portion. Note that the mask in Figure 5.7 (e) is derived 

from Figure 5.7 (d) in this chapter.  

In addition to Markov neighborhoods, cliques, portions of Markov neighbors, are 

proposed to use as high-pass filters. Cliques used in this research work are shown in 

Figure 5.8. The artifacts caused by steganalysis, reflected in residual images and obtained 

by applying these cliques are more localized than those caught by applying Markov 

neighborhood because of their small sizes. Thus, the detectability of the proposed 

steganalysis scheme has been enhanced.  
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Figure 5.7  High-pass filters based on Markov neighborhoods. 

 

 
Figure 5.8  High-pass filters based on cliques. 
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5.6 Feature Construction and Experimentation 

After the discussion of a variety of features made in Sections 5.2 to 5.5, one can observe 

that there are multiple ways to construct a feature set for steganalysis. An effective 

combination of features with a dimensionality of 19,593 is formulated based on the 

description in Sections 5.2 to 5.5. It is by no means to claim that this is the best possible 

combination of features in the proposed framework. Evaluated by FLD-based ensemble 

classifier with 12 independent runs, the proposed combination of features attains the 

average ensemble TP rate = 82.71%, TN rate = 82.50%, and AC = 82.60% at dred = 2,800 

and L = 65. 

 
5.6.1 Feature Construction  

The details of the proposed combination are summarized in Table 5.5. 

 
Table 5.5  Details of the Proposed Feature Set 
 

Features 
Described  
in Section 

 
LBP Operators  

 
Comments 

 
 

5.3 

Multi-resolution 
LBP: 

LBP8,1
u2 

+LBP8,2
u2 

+LBP8,3
u2 

(177-D features 
extracted from 
each residual 

image) 

Successive prediction error PEn (n = 1 to 5) 
(PEs) (885 features) and their variance images 
(VARpe) (885 features) 
Median-filter-based prediction error (MEDpe): 
all residual images were generated according to 
Table. 2 (1,593 features) 

 
5.4 

All the residual images were generated 
according to Table 5.3. (LMbased) (12,390 
features) 

 
 

5.5 

The original LBP 
(LBP8) 

(256-D features 
extracted from 
each residual 

image) 

 
All the residual images are generated according 
to Figures 5.7 (MN7) (1,792 features) and 5.8 
(CL8) (2,048 features).  
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5.6.2 Empirical Validations on PEs and VARpe Features  

Simple scenarios are used to validate the concept of successive prediction error images, 

contrast measure, and multi-resolution approach. In this sub-section, FLD has been 

employed for 12 independent runs. 

 
Table 5.6  Empirical Validations on PEs and VARpe 
 

Residual PE1 PE1-
PE2 

PE1-
PE3 

PE1-
PE4 

PE1-
PE5 

PEVAR1-PEVAR5 

AC 61.29% 66.96% 68.49% 70.00% 70.78% 73.12% 76.55% 
D 59 118 177 236 295 590 1,770 
R 1 1 1 1 1 1 1, 2, 3 

 

All the LBP operators used to construct features in Table 5.6 are based on 

uniformity mapping with P = 8 and different combination of R’s.  D stands for feature 

dimensionality. Note that the last column in Table 5.6 represents the multi-resolution 

setting of LBP operators (LBP8,1
u2+ LBP8,2

u2+ LBP8,3
u2). In Table 5.6, PE1-PE5 and 

PEVAR1-PEVAR5 means that PE1 to PE5 and PE1 to PE5 together with their variance 

images are used as inputs to LBP operators, respectively. The statistics shown in Table 

5.6 reveals the successive applications of the prediction error schemes, contrast measure, 

and multi-resolution approach of LBP have all contributed to enhance the detection 

accuracy. 

 
5.6.3 Empirical Validations on Individual Type of Features  

The individual performance of each type of features is evaluated in this sub-section. All 

types but LMbased is evaluated by using FLD while LMbased by using FLD-based 

ensemble classifiers. The average accuracies are computed over three independent runs of 

chosen classifier. 
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Table 5.7  FLD Accuracies of PEs, VARpe, MEDpe, MN7, and CL8 
 

Feature Type PEs VARpe MEDpe MN7 CL8 
AC 74.78% 68.05% 66.78% 71.08% 71.57% 

Dimensionality 885 885 1,593 1,792 2,048 
 

 Evaluated by FLD-based ensemble classifiers with three independent runs, the 

accuracy (AC) of LMbased is 81.88% at dred = 2,800 and L =  89.  

 
5.6.4 Empirical Validations on Feature Elimination 

In order to validate whether or not each type of features are essential to the final accuracy 

of the whole feature set, the performances of the whole feature sets as well as the whole 

feature sets with each individual type of features dropped out are evaluated and shown in 

Table 5.8.  Note that each performance is evaluated over three independent runs of FLD-

based ensemble classifier. 

 
Table 5.8  Performance on Feature Elimination 
 

Feature Set Dimensionality AC dred L Δ 
Whole 19,593 83.27% 2,800 95 0.00% 
Whole - PEs 18,708 82.82% 2,800 35 -0.45% 
Whole - VARpe 18,708 82.75% 2,800 73 -0.52% 
Whole - MEDpe 18,000 82.85% 2,800 67 -0.42% 
Whole - LMbased 7,203 81.42% 1,800 49 -1.85% 
Whole - MN7 17,801 83.02% 2,800 59 -0.25% 
Whole – CL8 17,545 82.85% 2,800 29 -0.42% 

 
  

The statistics in Table 5.8 reveals that each type of the proposed features is 

essential to the final accuracy. That is, the final accuracy decreases upon the absence of 

each type of features. The degree of contribution among all types of features can be 

ranked in descending order as follows: LMbased, VARpe, PEs, MEDpe (tied with CL8), 

and MN7. Note that it is very difficult to make a significant progress when more than 
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80% of detection accuracy has been attained. Therefore, only a fraction of percentage 

gained in the detection accuracy by some set of features matters in detection HUGO with 

high fidelity. 

 

5.7 Discussion and Conclusions 

The fact that a few powerful textural features, e.g., the transition probability matrix 

resulted from Markov process model, the co-occurrence matrix, and gray level run-length 

[21] have been successfully utilized in modern steganalysis, is the motivation to study 

more on textural features. 

 Two observations to be described lead to the increase in motivation. One 

observation made five to seven years ago [74, 75] is that steganalysis becomes more 

difficult if the data are hidden inside the texture images. Another recent observation is 

that steganalysis encounters challenge if the data are hidden in the area where statistical 

modeling is difficult. These are the key reasons to learn from the rich literatures in the 

field of texture classification to further enhance the steganalysis capability. 

In this doctoral research, the first-stage study and investigation along this line are 

reported, specifically, on the potentials of local binary patterns (LBP) [79, 80] in 

steganalysis. These well-known techniques are inspired by Haralick et al.’s well-known 

co-occurrence matrix. In this LBP technique each pixel is compared with its neighbor 

pixels. Depending on if the neighbor pixel’s gray value is larger or smaller than the 

central pixel’s gray value or not, a binary zero or one is assigned to this neighboring 

pixel. This process is conducted for each pixel in a given image (or a region of interest). 

All of bins of the resultant histogram are used as LBP features. Furthermore, a multi-
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resolution structure can be constructed by using multi-size neighbor, e.g., 3×3, 5×5 and 

7×7. In addition to the LBP, the variance generated from the local neighborhood can also 

be used to characterize the contrast of the local region of, say, 3×3. This work has 

verified that the LBP, variance and multi-resolution do work well in steganalysis. In the 

test presented in Table 5.1, it is shown that even with 59 features the LBP outperform the 

co-occurrence matrix with 81 features in the BOSSbase 0.92 [72, 73] (In all experiments, 

the stego images are generated by HUGO at 0.4 bpp with default parameters). As to use 

the 256 bins or the 59 bins (the latter results from the so-called uniform mapping) in 

steganalysis, it depends. The experimental works have demonstrated that the selection of 

256 bins often perform better than 59 bins if the feature dimensionality is low. As the 

dimensionality increases, this may change. Hence in this work both 256 bins and 59 bins 

are used for different kinds of features and scenarios. 

Prior to further summarizing this work, it is essential to bring one point to 

readers’ attention. That is, Avcibas et al. [83] proposed a steganalysis scheme which 

employs 18 binary similarity measures on the seventh and eighth bit planes in an image 

as distinguishing features. Instead of comparing, say, in a 3×3 neighborhood, the eight 

neighboring pixel values with the central pixel value to produce an eight-bit binary 

number so as to establish a histogram of 256 bins for classification, the authors [83] 

simply use the two least significant bit-planes in a given image without binarization. 

Furthermore, the bit corresponding to the central pixel position is included to formulate a 

nine-bit string, thus resulting in a histogram of 512, instead of 256, bins. One more 

difference is that the 59 and/or 256 features as suggested in the LBP technologies [79, 80] 

are used in this work, while the authors [83] compute four binary similarity measures on 
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the resulting 512-bin histograms [83] as features for steganalysis. Consequently, one 

should not consider the scheme in [83] as an application of the LBP technology. 

Markov neighborhoods with Markov parameters utilized in Markov Random 

Field as shown in Figures 3.53, 3.60 and some of their cliques shown in Figure 3.68 in 

[78] have been studied in this chapter. Many of them with some addition as shown in 

Figures 5.7 and 5.8 have been used in the proposed steganalysis scheme.  

Among Laws’ masks as shown in Figures 4.126, 4.127 and 4.128 in [78], all the  

masks that are considered low-pass filters are excluded. Instead only the masks, which 

are considered high- pass filters, are used. To construct the even-number masks to boost 

steganalyzing capability, the well-known [-1 1] mask is used as a two-tap mask to 

convolute with the S3 (one kind of Laws’ mask), i.e., [-1 2 -1] to form by the four-tap 

mask. The six-tap mask is formulated in the similar fashion. The experimental works 

have verified the contribution made by these masks.  

Intensive studies as well as experiments leads to the achieved average detection 

accurate rate of 82.60% in the BOSSbase 0.92 [72, 73]. This has indicated that the 

proposal to utilize techniques developed in the field of texture classification for 

steganalysis is effective.  

This piece of work, however, may not present the optimal feature set construction 

for steganalysis on HUGO. It may be possible to construct a more effective set of feature 

along the line of the proposed framework; additionally, the framework itself may be 

enhanced either by adding some new elements on or dropping some existing ones out. 

Last but not least, some feature selection techniques should be investigated to reduce the 

number of features which may, as a result, boost the performance of the scheme.  
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CHAPTER 6 

IMAGE RECAPTURE DETECTION 

 

This chapter presents an effective method for image recapture detection. The proposed 

scheme is developed based in the knowledge obtained in the study of textural features 

heavily discussed in Chapter 5. The effectiveness of the proposed method is then 

evaluated over a public dataset for smartphone image recapture detection evaluation. The 

outcome of the evaluation reveals that the proposed methods perform better than the 

related prior art.    

 

6.1 Introduction 

Nowadays, digital cameras are ubiquitous as they have been integrated in smartphones, 

tablet computers, laptop computers, or even ATM machines. One of side benefits of the 

ubiquity of digital camera is the potential to strengthen the security system of various 

systems especially in terms of face authentication. Some companies, for instance [8, 9], 

have already realized the potential of face authentication system and established face 

recognition based access control system. 

Along the afore-mentioned side benefits comes the possible threat of faked 

identity attack in which recaptured face photo could be used to fool around the security 

system. As a result, image recapture detection (IRD) technology, which aims at 

differentiating real scenes from the recaptured images, has been called for to protect such 

systems. 
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Ng et al. [42] proposed to use geometry features to differentiate photographic 

images from computer graphics. Part of computer graphics used in the experiment in [42] 

was recaptured from an LCD screen; therefore, the effectiveness of geometry features 

also implies their discriminability between photographic and recaptured images. Yu et al. 

[84] devised a feature from the underlying statistical difference between photographic 

and recaptured images from the specularity component. Gao et al. [85] proposed an IRD 

scheme utilizing a general physical model developed based on several image properties 

such as the contextual background information, the spatial distribution of specularity, the 

image gradient, the color information as well as contrast, and the blurriness measure. Gao 

et al. [86] later released I2R Open Dataset for Smart-phone Recaptured Images [87], a 

smartphone image dataset for IRD, and re-evaluated the image features in [42, 85, 88, 89] 

over the newly constructed dataset in order to draw a fair comparison among different 

kinds of image features.  

Cao and Kot [90] proposed three types of features to distinguish real-scene 

images from images recaptured from LCD screens over the closed dataset specifically 

constructed. The first type of features is based on multi-resolution local binary pattern 

(LBP) [80]. The details of LBP operators are briefly described in Chapter 5 and the 

generic notation of LBP descriptor is LBPP,R
mapping where P and R is the number of 

neighbor pixels and the radius of the circular symmetric neighborhood, respectively. The 

LBP-based features in [90] is extracted directly from the input image and derived entirely 

using rotation invariant and uniformity mapping or “riu2” and consist of the following 

combination of four LBP operators: LBP8,1
riu2, LBP16,2

riu2, LBP24,3
riu2, and LBP24,4

riu2. 

Such four LBP operators result in 80-D features, denoted as MRLBP-80, which yield the 
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detection accuracy of 99.1%. In the second type of features, per color channel in RGB 

space, the mean and standard deviation of the absolute Haar wavelet coefficients from 

high-frequency sub-bands (HL, LH, HH) of the first three levels are computed as 

distinguishing features. All three channels are then used to form 54 features which yield 

the detection accuracy of 98.9%. The third type of features is designed based on color 

anomalies introduced in recaptured images and consists of 21 features which yield the 

detection accuracy of 82.60%. Such features are a collection of various image properties 

including three average pixel values, three pair correlations, three neighbor distribution 

centers of mass, three pairs energy ratios [91]  from the RGB color space and nine color 

moments from HSV color space [92].  

 

6.2 Image Features 

In this chapter, an effective scheme based textural features is proposed for IRD based on 

a combined usage of Laws’ mask and single-resolution LBP operator which have 

intensively discussed in Chapter 5.  

 
6.2.1 Residual Image 

It is well known that effective image features should be barely influenced by image 

content, and a common effective means of eliminating image content is to apply a high-

pass filter onto a given image. 

   In this research, a 3×3 high-pass filter is proposed to use to remove image 

content from the input image before feature extraction. The 3×3 high-pass filter is 

denoted by WS3 formulated by Spot 3 (S3), a three-tap Laws’ mask [78], is proposed to 

use. The formulation of WS3 is given in Equation 6.1. R(x,y), the resultant residual image 
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obtained by filtering the input image luminance I(x,y) with WS3, can be expressed in 

Equation 6.2. Note that R(x,y) can also be found by applying S3 in the horizontal 

direction onto I(x,y) and then in the vertical direction in a cascaded manner. 
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   R(x,y) = WS3 * I(x,y)         (6.2) 

 
 

where * denotes spatial filtering operator. 

 
6.2.2 Local Binary Pattern Features 

High-pass filtering an image luminance results in a residual image which is a 

representation of a statistical spatial noise pattern. Such a pattern depends little to image 

content and is vital information to IRD.  To find a compact representation of such pattern 

for IRD, local binary pattern (LBP) is employed to model the spatial noise statistics and 

the normalized LBP histogram is used as distinguishing features. 

The proposed features, relying on uniformity mapping or “u2” which is found to 

be generally more powerful in this application than “riu2,” are derived by applying 

LBP8,1
u2 onto a residual image R(x,y). As discussed in Chapter 5, the output of LBP8,1

u2 is 

59-bin histogram; mathematically, the sum of the frequency of occurrence of all the bins 

depends on image sizes. Since the sizes of real-scene and recaptured images in the dataset 

[87] to be used for IRD evaluation are different, the resultant histogram is then 
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normalized such that the sum of the frequency of occurrence of all the bins equals to one 

in order to suppress the influence of different image sizes to classification performance. 

All the elements of normalized LBP histograms are finally used to form 59-D features for 

IRD. 

In this research work, the proposed features, denoted as LMLBP-59 and depicted 

in Figure 6.1, as well as MRLBP-80, the relevant features in [90],  are evaluated over the 

publicly available dataset [87]. Note that all the LBP histograms used to form MRLBP-80 

are also normalized in the fashion as in LMLBP-59. 

 

 
Figure 6.1  Block diagram of LMLBP-59 feature extraction process. 

 

 
6.3 Image Datasets 

There is currently only one public dataset [87] indirectly related to image recapture 

detection. In [87], real-scene images are taken using either a smartphone camera at VGA 

resolution or a high-end DSLR (Digital Single-Lens Reflex) camera. The cameras built-in 

the following three smartphones are used: Acer M900, Nokia N95, and HP iPAQ hw 

6960. There are also three different DSLR cameras used which are Nikon D90, Canon 

EOS 450D, and Olympus E-520. 

Real-scene images captured by using a DSLR camera were displayed on an LCD 

display or on a printed medium and then recaptured using the same camera having used 

in capturing the real-scene images. That is, recaptured images are the fruit of the 
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reproduction process recently described. There are three different kinds of LCD displays 

involved in the creation of the dataset: Dell 2007FP LCD screen (1600×1200 pixels), 

Acer M900 smartphone screen, and iPhone 3GS smartphone screen. For the printing 

reproduction process, some real-scene images are printed either on A4-size plain paper, 

4R glossy, or matte photo by using any of the following printers: HP CP3505dn laser 

printer and Xerox Phaser 8400 ink printer. In the dataset creation, some post-processing 

operations are then applied to resultant recaptured images from the reproduction process. 

The dataset comprises four sub-datasets: 1) Real-Scene Dataset (for Recaptured Dataset 

A); 2) Recaptured Dataset A; 3) Recaptured Dataset B; 4) Recaptured Dataset C. The 

brief dataset details are presented in Section 6.3.1. 

 
6.3.1 Real-Scene Image Dataset 

Since the creators of the dataset [87] focus on the application of IRD in smartphones, the 

Real-Scene Dataset is then generated entirely using smart-phone cameras. There are 

totally 1,094 real-scene images. 

 

 
Figure 6.2  Examples of images in Real-Scene Dataset [87]. 
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6.3.2 Recaptured Dataset A 

Each image contains recaptured image roughly at the center portion and real environment 

background along its borders. There are 1,137 images in total. 

 

 
Figure 6.3  Examples of images in Recaptured Dataset A. (left) Recaptured image from 
an LCD Screen; (right) recaptured image from a printed medium [87]. 

 
 
6.3.3 Recaptured Dataset B 

The images in Recaptured Dataset A are cropped by using Matlab to remove the real 

environment background. This post-processing makes the size of a recaptured image 

dependent on the recaptured image portion present in the corresponding image in 

Recaptured Dataset A.  There are 1,765 recaptured images in total. 

 

 
Figure 6.4  Examples of images in Recaptured Dataset B (no real-scene environment) 
[87]. 
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6.3.4 Recaptured Dataset C 

In total, 587 recaptured images are cropped to remove the real environment scene and 

then homography transformed. 

 

 
Figure 6.5  Examples of images in Recaptured Dataset C (cropped and homography 
transformed) [87]. 

 

 
6.4 Experimentation 

The initial work on IRD in [86] reports the performance of four statistical images features 

[42, 85, 88, 89] on Recaptured Datasets A, B, and C. The average detection accuracy 

over the whole dataset is 78.49% for [89], 85.26% for [42] , 84.28% for [85], and 74.84% 

for [88].  

In [86], real-scene images are post-processed for the evaluation in Recaptured 

Datasets B (cropping to match the image sizes) and C (cropping and homography 

transforming); however, the post-processed real-scene images are not publicly available 

in [87] and can hardly be generated in the exact same way. This is not only because of the 

post-processing but also of the unavailability of real-scene images taken by using DSLR 

cameras. Moreover, the post-processing in [86] are likely to introduced some non-
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intrinsic artifacts to real-scene images which is viewed, in this research work, as an 

alteration in the definition of real-scene images. Recaptured Dataset A is, however, 

excluded from the evaluation in this research work as the recaptured images in the dataset 

are mixed with the real-scene images which, in some aspect, may be considered 

irrelevant to the very nature of IRD.  

 In this research work, original real-scene images in Real-Scene Dataset are then 

used to for the evaluation of LMLBP-59, the proposed scheme, in comparison with 

MRLBP-80 [90]. Note that the usage of normalized LBP histogram in the generation of 

LMLBP-59 and MRLBP-80 can substitute the post-processing on real-scene images used 

to evaluate Recaptured Dataset B in [86] as it eliminates the influence of image size on 

the classification.  

The way of training and testing image formulation in this work can still be 

deemed as the exact representation of IRD problem although in a different scenario from 

that in [86]. Therefore, the obtained results are by no means to directly compare with 

those reported in [86]. 

Support vector machines (SVM) [36] are employed with RBF kernel for 10 

independent run with random data partition (four-fifths for training and one-fifth for 

testing). Optimal kernel parameters are obtained by coarse grid searching with five-fold 

cross validation. The average detection accuracies of MRLBP-80 and LMLBP-59 are 

shown in Tables 6.1 and 6.2. Note that recaptured and real-scene images are considered 

positive and negative instances, respectively. 
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Table 6.1  Detection Rates of Real-Scene Dataset and Recaptured Dataset B 
 

Feature Type MRLBP-80 LMLBP-59 
TP Rate 94.39% 96.01% 
TN Rate 88.40% 95.98% 

AC 92.09% 96.00% 
Dimensionality 80 59 

  
 

Table 6.2  Detection Rates of Real-Scene Dataset and Recaptured Dataset C 
 

Feature Type MRLBP-80 LMLBP-59 
TP Rate 89.49% 92.99% 
TN Rate 96.58% 98.31% 

AC 94.11% 96.46% 
Dimensionality 80 59 

 

 
6.5 Discussion and Conclusions 

In this chapter, a compact and effective set feature is proposed for image recapture 

detection (IRD) based on the textural feature framework successfully applied to solve 

advanced steganalysis problem in Chapter 5. Of 59-D, the proposed features are 

generated from a given image luminance by the application of Laws’ mask to remove the 

influence of image content and local binary pattern (LBP) operator to model image 

statistics. 

 The LBP operator used in the generation of the proposed 59-D features is a 

single-resolution approach based on uniformity mapping (u2) and can be described in the 

LBP notation as LBP8,1
u2.  The proposed features, consisting of 59 features and denoted 

as LMLBP-59, are directly compared with MRLBP-80, 80-D LBP features proposed in 

[90] formulated in a multi-resolution approach using four different kinds of LBP 

operators all with rotation invariant and uniformity mapping (riu2): LBP8,1
riu2, LBP16,2

riu2, 

LBP24,3
riu2, and LBP24,4

riu2. 
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 The outcome of the evaluation reveals that LMLBP-59, although of less 

dimensionality, performs better than MRLBP-80 remarkably, which implies the 

combined usage of the proposed high-pass filtering technique and LBP with u2 mapping 

is more powerful than the only usage of LBP with riu2 mapping under this circumstance. 

The phenomena that LBP features generated from u2 mapping on residual images is 

stronger than those from riu2 have also been observed in other scenarios such as in 

steganalysis. 



107 
 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

This dissertation presents two image statistical frameworks, one in the frequency domain, 

the other in the spatial domain. The construction of an image statistical feature set is 

viewed as an open process. That is, some elements in the framework of interest can be 

mixed together to form an effective set of image statistical features for a specific 

application. Each of the two frameworks is found effective in two digital image forensic 

applications. In total, four digital image forensic problems are investigated in this 

dissertation. The pitfalls of related JPEG-domain (frequency-domain) techniques are 

intensively investigated by the anti-forensic tools proposed in this doctoral research work 

which reveals some vital implicit information on the practicality of digital image 

tampering detection schemes in the JPEG domain. The knowledge gained by anti-

forensic research in this dissertation is potentially fruitful to the design of the next 

generation of digital image forensic schemes.   

Markovian rake transform (MRT), the frequency-domain image statistical 

framework, employs block discrete cosine transform in a multi-resolution way as well as 

Markov modeling. MRT framework, a sub-framework within the general natural image 

framework proposed in [29], is effective in both digital image tampering detection and 

classification of computer graphics and photographic images. The attempts to test real-

life tampered images collected from the Internet are made to study the reliability of the 

digital image tampering detection schemes discussed in this doctoral research as well as 

its potentiality in being rendered a practical application. The outcomes of such testing 
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suggest a low degree of reliability of the proposed schemes, thus limiting the practicality 

of the schemes. One of the possible explanations could be because of the utilization of 

first order difference which appears to make the statistical features much influenced by 

image contents. Another possible explanation is to be discussed below. 

The endurance of irregularities in the JPEG domain is studied in a relatively 

simple scenario. That is, a few proposed attacks, based on non-malicious common image 

processing operations, are individually applied to doubly JPEG compressed images in 

order to learn the endurance of double compression (DQ) artifacts characterized by a 

peak-and-valley pattern in a JPEG mode histogram. The consequence of such attacks, in 

general, is the suppression of DQ artifacts. It is well known that irregularities in the 

frequency domain left by tampering operation on compressed images are vital 

information for detection tampered images and that non-malicious common image 

operations such as image resizing are frequently applied to digital images including 

tampered ones before distribution; as a result, the JPEG-domain artifacts caused by image 

tampering can hardly be relied upon which limits the practicality of digital image 

tampering detection schemes in the JPEG domain. 

 The spatial-domain image statistical framework is proposed based on several 

textural operators. The key mechanism of the framework is the application of local binary 

pattern (LBP) [79, 80] operators to model local image statistics. LBP may be viewed as a 

simplified version of the eighth-order co-occurrence matrix which makes it generally 

more powerful than the co-occurrence matrix popularly used in forensic research area. 

Effective features should be less influenced by image contents, so LBP [79, 80] operators 

are applied to a number of residual images, many of which are generated by popular tools 
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in texture analysis such as Laws’ mask, Markov Random Field neighborhoods, and 

cliques. Most of the resultant residual images are considered higher-order, having little 

influence of image contents. The textural feature framework is found effective on 

steganalysis on HUGO (Highly Undetectable Steganography) [7] which embedded 

hidden messages locally into image regions difficult to model statistics and image 

recapture detection (IRD). The localization capability of LBP-based features is confirmed 

in the steganalysis problem while the effectiveness of such features is also present in the 

application like IRD in which the difference in the underlying image statistics between 

different classes is considered homogenous. It is therefore expected that the proposed 

textural feature framework can be effectively utilized for many other digital image 

forensic problems such as classification of computer graphics and photographic images, 

digital image tampering detection, and so on. However, a better way to construct a 

feature set as well as some feature selection techniques should be investigated; 

additionally, the framework itself may be enhanced by either adding some new elements 

on or dropping some existing ones out. 

The ultimate goal of digital image forensic research is certainly to move the 

development of digital forensic schemes onto the practical level, in other words, to render 

real-life applications with high fidelity. To achieve such a goal, such schemes must be 

robust against various kinds of attacks, especially against non-malicious common image 

processing operations. Therefore, the study on the robustness of image statistical features 

should be emphasized along the line of the development of digital forensic schemes.  
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