99 research outputs found

    Multiconsensus control of homogeneous LTI hybrid systems under time-driven jumps

    Get PDF
    In this paper, we consider a network of homogeneous LTI hybrid dynamics under time-driven aperiodic jumps and exchanging information over a fixed communication graph. Based on the notion of almost equitable partitions, we explicitly characterize the clusters induced by the network over the nodes and, consequently, the corresponding multi-consensus trajectories. Then, we design a decentralized control ensuring convergence of all agents to the corresponding multi-consensus trajectory. Simulations over an academic example illustrate the results

    IMPROVEMENT OF POWER QUALITY OF HYBRID GRID BY NON-LINEAR CONTROLLED DEVICE CONSIDERING TIME DELAYS AND CYBER-ATTACKS

    Get PDF
    Power Quality is defined as the ability of electrical grid to supply a clean and stable power supply. Steady-state disturbances such as harmonics, faults, voltage sags and swells, etc., deteriorate the power quality of the grid. To ensure constant voltage and frequency to consumers, power quality should be improved and maintained at a desired level. Although several methods are available to improve the power quality in traditional power grids, significant challenges exist in modern power grids, such as non-linearity, time delay and cyber-attacks issues, which need to be considered and solved. This dissertation proposes novel control methods to address the mentioned challenges and thus to improve the power quality of modern hybrid grids.In hybrid grids, the first issue is faults occurring at different points in the system. To overcome this issue, this dissertation proposes non-linear controlled methods like the Fuzzy Logic controlled Thyristor Switched Capacitor (TSC), Adaptive Neuro Fuzzy Inference System (ANFIS) controlled TSC, and Static Non-Linear controlled TSC. The next issue is the time delay introduced in the network due to its complexities and various computations required. This dissertation proposes two new methods such as the Fuzzy Logic Controller and Modified Predictor to minimize adverse effects of time delays on the power quality enhancement. The last and major issue is the cyber-security aspect of the hybrid grid. This research analyzes the effects of cyber-attacks on various components such as the Energy Storage System (ESS), the automatic voltage regulator (AVR) of the synchronous generator, the grid side converter (GSC) of the wind generator, and the voltage source converter (VSC) of Photovoltaic (PV) system, located in a hybrid power grid. Also, this dissertation proposes two new techniques such as a Non-Linear (NL) controller and a Proportional-Integral (PI) controller for mitigating the adverse effects of cyber-attacks on the mentioned devices, and a new detection and mitigation technique based on the voltage threshold for the Supercapacitor Energy System (SES). Simulation results obtained through the MATLAB/Simulink software show the effectiveness of the proposed new control methods for power quality improvement. Also, the proposed methods perform better than conventional methods

    Developing reliable anomaly detection system for critical hosts: a proactive defense paradigm

    Full text link
    Current host-based anomaly detection systems have limited accuracy and incur high processing costs. This is due to the need for processing massive audit data of the critical host(s) while detecting complex zero-day attacks which can leave minor, stealthy and dispersed artefacts. In this research study, this observation is validated using existing datasets and state-of-the-art algorithms related to the construction of the features of a host's audit data, such as the popular semantic-based extraction and decision engines, including Support Vector Machines, Extreme Learning Machines and Hidden Markov Models. There is a challenging trade-off between achieving accuracy with a minimum processing cost and processing massive amounts of audit data that can include complex attacks. Also, there is a lack of a realistic experimental dataset that reflects the normal and abnormal activities of current real-world computers. This thesis investigates the development of new methodologies for host-based anomaly detection systems with the specific aims of improving accuracy at a minimum processing cost while considering challenges such as complex attacks which, in some cases, can only be visible via a quantified computing resource, for example, the execution times of programs, the processing of massive amounts of audit data, the unavailability of a realistic experimental dataset and the automatic minimization of the false positive rate while dealing with the dynamics of normal activities. This study provides three original and significant contributions to this field of research which represent a marked advance in its body of knowledge. The first major contribution is the generation and release of a realistic intrusion detection systems dataset as well as the development of a metric based on fuzzy qualitative modeling for embedding the possible quality of realism in a dataset's design process and assessing this quality in existing or future datasets. The second key contribution is constructing and evaluating the hidden host features to identify the trivial differences between the normal and abnormal artefacts of hosts' activities at a minimum processing cost. Linux-centric features include the frequencies and ranges, frequency-domain representations and Gaussian interpretations of system call identifiers with execution times while, for Windows, a count of the distinct core Dynamic Linked Library calls is identified as a hidden host feature. The final key contribution is the development of two new anomaly-based statistical decision engines for capitalizing on the potential of some of the suggested hidden features and reliably detecting anomalies. The first engine, which has a forensic module, is based on stochastic theories including Hierarchical hidden Markov models and the second is modeled using Gaussian Mixture Modeling and Correntropy. The results demonstrate that the proposed host features and engines are competent for meeting the identified challenges

    Communication security of autonomous ground vehicles based on networked control systems: The optimized LMI approach

    Get PDF
    The paper presents a study of networked control systems (NCSs) that are subjected to periodic denial-of-service (DoS) attacks of varying intensity. The use of appropriate Lyapunov–Krasovskii functionals (LKFs) help to reduce the constraints of the basic conditions and lower the conservatism of the criteria. An optimization problem with constraints is formulated to select the trigger threshold, which is solved using the gradient descent algorithm (GDA) to improve resource utilization. An intelligent secure event-triggered controller (ISETC) is designed to ensure the safe operation of the system under DoS attacks. The approach is validated through experiments with an autonomous ground vehicle (AGV) system based on the Simulink platform. The proposed method offers the potential for developing effective defense mechanisms against DoS attacks in NCSs

    Methods to Attack and Secure the Power Grids and Energy Markets

    Get PDF
    The power grid is a highly complex control system and one of the most impressive engineering feats of the modern era. Nearly every facet of modern society critically relies on the proper operation of the power grid such that long or even short interruptions can impose significant economic and social hardship on society. The current power grid is undergoing a transformation to a Smart Grid, that seeks to monitor and track diagnostic and operational information so as to enable a more efficient and resilient system. This significant transformation, however, has made the grid more susceptible to attacks by cybercriminals, as highlighted by several recent attacks on power grids that have exposed the vulnerabilities in modern power systems. Motivated by this, this thesis aims at analyzing the effect of three classes of emerging cyberattacks on smart grids and a set of possible defense mechanisms to prevent them or at least reduce their damaging consequences in the grid. In the first part of the thesis, we analyze the security of the power grid against the attacks targeting the supervisory control and data acquisition (SCADA) network. We show that the existing techniques require some level of trust from components on SCADA system, rendering them vulnerable to sophisticated attacks that could compromise the entire SCADA system. As a viable solution to this issue, we present a radio frequency-based distributed intrusion detection system (RFDIDS) that remains reliable even when the entire SCADA system is considered untrusted. In the second part of the thesis, we analyze the performance of the existing high-wattage IoT botnet attacks (Manipulation of Demand IoT (MaDIoT)) on power grids and show they are ineffective in most of the cases because of the existence of legacy protection schemes and the randomness of the attacks. We discuss how an attacker can launch more sophisticated attacks in this category which can cause a total collapse of the power system. We illustrate that by computing voltage instability indices, an attacker can find the appropriate time and locations to activate the high-wattage bots, causing (with very high probability) a complete voltage collapse and blackout in the bulk power system; we call these new attacks MaDIoT 2.0. We also propose novel effective defenses against MaDIoT 2.0 attacks by modifying the way classical protection algorithms work in the power networks. In the third part of the thesis, we discuss how an smart attacker with access to high-wattage IoT botnet can indirectly manipulate the energy prices in the electricity markets. We name this attack as Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high-wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. We discuss a set of effective countermeasures to reduce the possibility and effect of such attacks.Ph.D

    Development and Validation of a Proof-of-Concept Prototype for Analytics-based Malicious Cybersecurity Insider Threat in a Real-Time Identification System

    Get PDF
    Insider threat has continued to be one of the most difficult cybersecurity threat vectors detectable by contemporary technologies. Most organizations apply standard technology-based practices to detect unusual network activity. While there have been significant advances in intrusion detection systems (IDS) as well as security incident and event management solutions (SIEM), these technologies fail to take into consideration the human aspects of personality and emotion in computer use and network activity, since insider threats are human-initiated. External influencers impact how an end-user interacts with both colleagues and organizational resources. Taking into consideration external influencers, such as personality, changes in organizational polices and structure, along with unusual technical activity analysis, would be an improvement over contemporary detection tools used for identifying at-risk employees. This would allow upper management or other organizational units to intervene before a malicious cybersecurity insider threat event occurs, or mitigate it quickly, once initiated. The main goal of this research study was to design, develop, and validate a proof-of-concept prototype for a malicious cybersecurity insider threat alerting system that will assist in the rapid detection and prediction of human-centric precursors to malicious cybersecurity insider threat activity. Disgruntled employees or end-users wishing to cause harm to the organization may do so by abusing the trust given to them in their access to available network and organizational resources. Reports on malicious insider threat actions indicated that insider threat attacks make up roughly 23% of all cybercrime incidents, resulting in $2.9 trillion in employee fraud losses globally. The damage and negative impact that insider threats cause was reported to be higher than that of outsider or other types of cybercrime incidents. Consequently, this study utilized weighted indicators to measure and correlate simulated user activity to possible precursors to malicious cybersecurity insider threat attacks. This study consisted of a mixed method approach utilizing an expert panel, developmental research, and quantitative data analysis using the developed tool on simulated data set. To assure validity and reliability of the indicators, a panel of subject matter experts (SMEs) reviewed the indicators and indicator categorizations that were collected from prior literature following the Delphi technique. The SMEs’ responses were incorporated into the development of a proof-of-concept prototype. Once the proof-of-concept prototype was completed and fully tested, an empirical simulation research study was conducted utilizing simulated user activity within a 16-month time frame. The results of the empirical simulation study were analyzed and presented. Recommendations resulting from the study also be provided

    SoK: Design, Vulnerabilities and Defense of Cryptocurrency Wallets

    Full text link
    The rapid growth of decentralized digital currencies, enabled by blockchain technology, has ushered in a new era of peer-to-peer transactions, revolutionizing the global economy. Cryptocurrency wallets, serving as crucial endpoints for these transactions, have become increasingly prevalent. However, the escalating value and usage of these wallets also expose them to significant security risks and challenges. This research aims to comprehensively explore the security aspects of cryptocurrency wallets. It provides a taxonomy of wallet types, analyzes their design and implementation, identifies common vulnerabilities and attacks, and discusses defense mechanisms and mitigation strategies. The taxonomy covers custodial, non-custodial, hot, and cold wallets, highlighting their unique characteristics and associated security considerations. The security analysis scrutinizes the theoretical and practical aspects of wallet design, while assessing the efficacy of existing security measures and protocols. Notable wallet attacks, such as Binance, Mt. Gox are examined to understand their causes and consequences. Furthermore, the paper surveys defense mechanisms, transaction monitoring, evaluating their effectiveness in mitigating threats

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks
    • …
    corecore