1,246 research outputs found

    Performance Modelling and Measurements of TCP Transfer Throughput in 802.11based WLANs

    Get PDF
    The growing popularity of the 802.11 standard for building local wireless networks has generated an extensive literature on the performance modelling of its MAC protocol. However, most of the available studies focus on the throughput analysis in saturation conditions, while very little has been done on investigating the interactions between the 802.11 MAC protocol and closed-loop transport protocols such as TCP. This paper addresses this issue by developing an analytical model to compute the stationary probability distribution of the number of backlogged nodes in a WLAN in the presence of persistent TCP-controlled download and upload data transfers. By embedding the network backlog distribution in the MAC protocol modelling, we can precisely estimate the throughput performance of TCP connections. A large set of experiments conducted in a real network validates the model correctness for a wide range of configurations. A particular emphasis is devoted to investigate and explain the TCP fairness characteristics. Our analytical model and the supporting experimental outcomes demonstrate that using default settings for the capacity of devices\u27 output queues provides a fair allocation of channel bandwidth to the TCP connections, independently of the number of downstream and upstream flows. Furthermore, we show that the TCP total throughput does not degrade by increasing the number of wireless stations

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Router-based network traffic observation by terminal sliding mode control theory

    Get PDF
    Since the early days of the Internet, network traffic monitoring (NTM) has always played a strategic role in understanding and characterizing users’ activities. Nowadays, with the increased complexity of the Internet infrastructure, applications, and services, this role has become more crucial than ever. The aims of NTM are mainly focused on the three improvements, which include the quality of service (QoS) of the network, optimization of resource usage, and enhancement of security in computer networks. Specifically speaking, firstly, network conditions can be recognized by the network manager with NTM scheme. It provides the complete details about the QoS of networks, such as bandwidth, throughput, propagation delay, link availability, jitter, server memory, database space and etc. Secondly, with NTM being implemented at network nodes, i.e., network gateways, such as routers, or network links, the network traffic that is traversing the network is under online observation. Thereby, the network utilization can be improved by optimizing the resource usage to avoid the network congestions. Thirdly, unauthenticated service or approaches to the server will be identified by regularly monitoring the traffic. The network convention and statistics about the traffic will be known easily which helps to troubleshoot the network. Security events will also be investigated and the entry of the user will be maintained for responsibility. The work in this thesis focuses on the development of an intelligent real-time dynamic router-based network traffic observation (RNTO) by using the terminal sliding-mode theory. The RNTO technique is applied at network gateways, i.e., routers, to estimate the status of the traffic flows at the router level. The aims of the proposed RNTO technique is to estimate the traffic states, such as queue length (QL)in router buffer, average congestion window size (ACwnd), and the queuing dynamics of the additional traffic flows (ATF). The main contributions of the work can be broadly categorized into four parts. First, the problem of router-based network traffic monitoring is formulated as an observer design by using TSM theory for RNTO applications. The proposed TSM observer in the research is a network-based monitoring, which is implemented into the network gateways, i.e., network routers. Different from the static network traffic monitoring methods, the TSM observer is designed by using control methods based on the fluid-flow mathematical model, which represents the traffic dynamics of the interactions in a set of TCP traffic flows through network routers. By considering the time delay and stochastic properties in the data transmission network, the sliding-mode observation strategy is proposed with its high robustness with system parameter uncertainties as well as the external disturbance rejection. Given the natural weakness of chattering in sliding mode control signal, which can affect the system state, the chattering avoiding technique of the proposed TSM observation was utilized by using a smooth control signal for estimating the abnormal dynamics. It does not need any low-pass filler, which will lead to a phase leg. In addition, for the stochastic dynamics of the network traffics, fast transient convergence at a distance from and within a close range of the equilibrium of the traffic dynamics is essential to quickly capture traffic dynamics in network systems. Thus, a fractional term has been considered in the TSM for faster convergence in system states to efficiently estimate the traffic behaviors. Second, the issue of internal dynamics in network observation system is studied by proposing a novel full-order TSM strategy to speed up the convergence rate of the estimation error. In the RNTO scheme, the precise estimation for ACwnd is needed to estimate the queuing dynamics of ATF. However, the estimation error for ACwnd is not available and it converges to origin asymptotically, which results in a long response time in estimation. The proposed novel TSM observer has been designed to drive the estimation error for ACwnd to a defined known area in the finite-time, which can be calculated. Thereby, the estimation error of ACwnd can converge to origin asymptotically within the defined area. This strategy has shortened the response time and improves the estimation accuracy. This further improves the estimation accuracy for ATF. The comparative studies are conducted to evaluate the performance. Third, the issue of algorithm-efficient RNTO is investigated by considering an event triggered sliding-mode observer to reduce the computational load and the communication burden. Instead of the time-driven observation scheme, the control of the sliding mode observer is formulated under the event triggered scheme. The control of the observer is designed to be smooth and is directly applied to estimate the dynamics of the additional traffic flows. The event triggered observation algorithms is developed to reduce the computational load of the network router and the communication resource of output link in the network. Fourth, the problem of global RNTO is addressed by developing a fuzzy TSM observer by using fuzzy theory to achieve global operation under network uncertainties. The existing RNTO schemes are based on the linearization of a certain network conditions, i.e., a fixed number of TCP connections, which is a constant value N. Given the network suffers from time-varying fading, shadowing and interference and the data rate changes over time, the current methods proposed so far might not effectively and accurately monitor and estimate the traffic dynamics under network uncertainties. The T-S fuzzy models are used to model the traffic dynamics of the time-varying data changes in network link resources, i.e. the time-varying number of TCP sections, N(t) in a mathematical model. Based on the T-S fuzzy models, the fuzzy terminal sliding mode observer is established by using the fuzzy logic theory to estimate the states of the network traffic to achieve the global observation performance under the network uncertainties. In the fuzzy terminal sliding mode observer, the control signal is designed to be continuous for application of estimating the additional traffic flows without the low-pass filter. To evaluate the proposed RNTO technique, the networking simulator tool Network Simulator II (NS-II) has been used. The proposed RNTO algorithms are coded and implemented into network routers in NS-II. Numerous simulation scenarios are considered and performed. The comparative studies are also conducted by analyzing the NS-2 results. The results have demonstrated the effectiveness and efficiency of the proposed RNTO algorithms

    Transport protocols for multi hop wireless networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards an interactive framework for robot dancing applications

    Get PDF
    Estágio realizado no INESC-Porto e orientado pelo Prof. Doutor Fabien GouyonTese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Telecomunicações. Faculdade de Engenharia. Universidade do Porto. 200

    A distributed intelligent network based on CORBA and SCTP

    Get PDF
    The telecommunications services marketplace is undergoing radical change due to the rapid convergence and evolution of telecommunications and computing technologies. Traditionally telecommunications service providers’ ability to deliver network services has been through Intelligent Network (IN) platforms. The IN may be characterised as envisioning centralised processing of distributed service requests from a limited number of quasi-proprietary nodes with inflexible connections to the network management system and third party networks. The nodes are inter-linked by the operator’s highly reliable but expensive SS.7 network. To leverage this technology as the core of new multi-media services several key technical challenges must be overcome. These include: integration of the IN with new technologies for service delivery, enhanced integration with network management services, enabling third party service providers and reducing operating costs by using more general-purpose computing and networking equipment. In this thesis we present a general architecture that defines the framework and techniques required to realise an open, flexible, middleware (CORBA)-based distributed intelligent network (DIN). This extensible architecture naturally encapsulates the full range of traditional service network technologies, for example IN (fixed network), GSM-MAP and CAMEL. Fundamental to this architecture are mechanisms for inter-working with the existing IN infrastructure, to enable gradual migration within a domain and inter-working between IN and DIN domains. The DIN architecture compliments current research on third party service provision, service management and integration Internet-based servers. Given the dependence of such a distributed service platform on the transport network that links computational nodes, this thesis also includes a detailed study of the emergent IP-based telecommunications transport protocol of choice, Stream Control Transmission Protocol (SCTP). In order to comply with the rigorous performance constraints of this domain, prototyping, simulation and analytic modelling of the DIN based on SCTP have been carried out. This includes the first detailed analysis of the operation of SCTP congestion controls under a variety of network conditions leading to a number of suggested improvements in the operation of the protocol. Finally we describe a new analytic framework for dimensioning networks with competing multi-homed SCTP flows in a DIN. This framework can be used for any multi-homed SCTP network e.g. one transporting SIP or HTTP

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Design and control of components-based integrated servo pneumatic drives

    Get PDF
    On-off traditional pneumatic drives are most widely used in industry offering low-cost, simple but flexible mechanical operation and relatively high power to weight ratio. For a period of decade from mid 1980's to 1990's, some initiatives were made to develop servo pneumatic drives for most sophisticated applications, employing purpose-designed control valves for pneumatic drives and low friction cylinders. However, it is found that the high cost and complex installation have discouraged the manufacturer from applying servo pneumatic drives to industrial usage, making them less favourable in comparison to their electric counterpart. This research aims to develop low-cost servo pneumatic drives which are capable of point-to-point positioning tasks, suitable for applications requiring intermediate performance characteristics. In achieving this objective, a strategy that involves the use of traditional on-off valve, simple control algorithm and distributed field-bus control networks has been adopted, namely, the design and control of Components-based Integrated Pneumatic Drives (CIPDs). Firstly, a new pneumatic actuator servo motion control strategy has been developed. With the new motion control strategy, the processes of positioning a payload can be achieved by opening the control valve only once. Hence, lowspeed on-off pneumatic control valves can be employed in keeping the cost low, a key attraction for employing pneumatic drives. The new servo motion control strategy also provides a way of controlling the load motion speed mechanically. Meanwhile, a new PD-based three-state closed-loop control algorithm also has been developed for the new control scheme. This control algorithm provides a way of adapting traditional PID (Proportional Integral Derivative) control theories for regulating pneumatic drives. Moreover, a deceleration control strategy has been developed so that both high-speed and accurate positioning control can be realised with low cost pneumatic drives. Secondly, the effects of system parameters on the transient response are studied. In assisting the analysis, a second order model is developed to encapsulate the velocity response characteristics of pneumatic drives to a step input signal. Stability analyses for both open loop and closed-loop control have also been carried out for the CIPDs with the newly developed motion control strategy. Thirdly, a distributed control strategy employing Lon Works has been devised and implemented, offering desirable attributes, high re-configurability, low cost and easy in installation and maintenance, etc to keep with the traditional strength for using pneumatic drives. By applying this technology, the CIPDs become standard components in "real" and "virtual" design environments. A remote service strategy for CIPDs using TCP/IP communication protocol has also been developed. Subsequently a range of experimental verifications has been carried out in the research. The experimental study of high-speed motion control indicates that the deceleration control strategy developed in the research can be an effective method in improving the behaviour of high speed CIPDs. The verification of open loop system behaviour of CIPDs shows that the model derived is largely indicative of the likely behaviour for the system considered, and the steady state velocity can be estimated using the Velocity Gain Kv. The evaluation made on a pneumatically driven pick-and-place machine has also confirmed that the system setup, including wiring, tuning, and system reconfiguration can be achieved in relative ease. This pilot study reveals the potential for employing CIPDs in building highly flexible cost effective manufacturing machines. It can thus be concluded that this research has developed successfully a new dimension and knowledge in both theoretical and practical terms in building low-cost servo pneumatic drives, which are capable of point-to-point positioning through employing traditional on-off pneumatic valves and actuators and through their integration with distributed control technology (LonWorks) by adopting a component-based design paradigm
    corecore