15 research outputs found

    Comparison of IT Neural Response Statistics with Simulations

    Get PDF
    Lehky et al. (2011) provided a statistical analysis on the responses of the recorded 674 neurons to 806 image stimuli in anterior inferotemporalm (AIT) cortex of two monkeys. In terms of kurtosis and Pareto tail index, they observed that the population sparseness of both unnormalized and normalized responses is always larger than their single-neuron selectivity, hence concluded that the critical features for individual neurons in primate AIT cortex are not very complex, but there is an indefinitely large number of them. In this work, we explore an “inverse problem” by simulation, that is, by simulating each neuron indeed only responds to a very limited number of stimuli among a very large number of neurons and stimuli, to assess whether the population sparseness is always larger than the single-neuron selectivity. Our simulation results show that the population sparseness exceeds the single-neuron selectivity in most cases even if the number of neurons and stimuli are much larger than several hundreds, which confirms the observations in Lehky et al. (2011). In addition, we found that the variances of the computed kurtosis and Pareto tail index are quite large in some cases, which reveals some limitations of these two criteria when used for neuron response evaluation

    The Topology and Geometry of Neural Representations

    Full text link
    A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.Comment: codes: https://github.com/doerlbh/TopologicalRS

    The speed of sight : neural correlates of perceptual reports in RSVP

    Get PDF
    Macaque monkeys were presented with continuous rapid serial visual presentation (RSVP) sequences of unrelated naturalistic images at rates of 14ms/image to 222ms/image, while neurones that responded selectively to complex patterns (e.g. faces) were recorded in the anterior superior temporal sulcus (STSa). Stimulus selectivity was preserved for 65% of these neurones even at surprisingly fast presentation rates (14ms/image=72images/s). Such rapid processing constrains theories of visual processing. Five human subjects were asked to detect or remember specific images in the RSVP sequences under equivalent conditions. Their performance in both tasks was above chance at all rates (14-11lms/image). The neurometric performance of single neurones was quantitatively comparable to the psychophysical performance of human observers and responded in a similar way to changes in presentation rate. Large sections (51 or 93ms) of the stimulus presentation duration in the RSVP sequences were then replaced with gaps of blank screen. This manipulation affected neither the neurometric performance of single neurones nor the recognition performance of human observers. This indicates that in STSa neural persistence after a stimulus has been turned off is quantitatively identical to the response that occurs if the stimulus stays on for up to 93ms longer: a neural correlate of human visual persistence. This maintained performance in judging the identity of a stimulus is surprising considering how different sequences with and without gaps appeared to the observers: introducing gaps as short as 23ms consistently created a perception of flicker. Together these findings indicate that the perception of stimulus identity is dissociated from other aspects of perception such as flicker, and that the responses of STSa cells are a neural correlate of visual identity perception but not of other aspects of visual perception such as flicker

    A PROBABILISTIC APPROACH TO THE CONSTRUCTION OF A MULTIMODAL AFFECT SPACE

    Get PDF
    Understanding affective signals from others is crucial for both human-human and human-agent interaction. The automatic analysis of emotion is by and large addressed as a pattern recognition problem which grounds in early psychological theories of emotion. Suitable features are first extracted and then used as input to classification (discrete emotion recognition) or regression (continuous affect detection). In this thesis, differently from many computational models in the literature, we draw on a simulationist approach to the analysis of facially displayed emotions - e.g., in the course of a face-to-face interaction between an expresser and an observer. At the heart of such perspective lies the enactment of the perceived emotion in the observer. We propose a probabilistic framework based on a deep latent representation of a continuous affect space, which can be exploited for both the estimation and the enactment of affective states in a multimodal space. Namely, we consider the observed facial expression together with physiological activations driven by internal autonomic activity. The rationale behind the approach lies in the large body of evidence from affective neuroscience showing that when we observe emotional facial expressions, we react with congruent facial mimicry. Further, in more complex situations, affect understanding is likely to rely on a comprehensive representation grounding the reconstruction of the state of the body associated with the displayed emotion. We show that our approach can address such problems in a unified and principled perspective, thus avoiding ad hoc heuristics while minimising learning efforts. Moreover, our model improves the inferred belief through the adoption of an inner loop of measurements and predictions within the central affect state-space, that realise the dynamics of the affect enactment. Results so far achieved have been obtained by adopting two publicly available multimodal corpora

    La reconnaissance visuelle Ă  travers le temps : attentes, Ă©chantillonnage et traitement

    Full text link
    La reconnaissance visuelle est un processus temporel : d’abord, l’information visuelle est reçue sur notre rétine de manière continue à travers le temps; ensuite, le traitement de l’information visuelle par notre cerveau prend un certain temps à s’effectuer; finalement, notre perception est toujours fonction autant des expériences acquises dans le passé que de l’input sensoriel présent. Les interactions entre ces aspects temporels de la reconnaissance sont rarement abordées dans la littérature. Dans cette thèse, nous évaluons l’échantillonnage de l’information visuelle à travers le temps pendant une tâche de reconnaissance, comment il se traduit dans le cerveau et comment il est modulé par des attentes spécifiques. Plusieurs études indiquent que nos attentes modulent notre perception. Comment l’attente d’un objet spécifique influence nos représentations internes demeure cependant largement inconnu. Dans le premier article de cette thèse, nous utilisons une variante de la technique Bubbles pour retrouver avec précision le décours temporel de l’utilisation d’information visuelle pendant la reconnaissance d’objets, lorsque les observateurs s’attendent à voir un objet spécifique ou non. Nous observons que les attentes affectent la représentation de différents attributs différemment et qu’elles ont un effet distinct à différents moments pendant la réception d’information visuelle. Dans le deuxième article, nous utilisons une technique similaire en conjonction avec l’électroencéphalographie (EEG) afin de révéler pour la première fois le traitement, à travers le temps, de l’information reçue à un moment spécifique pendant une fixation oculaire. Nous démontrons que l’information visuelle n’est pas traitée de la même manière selon le moment auquel elle est reçue sur la rétine, que ces différences ne sont pas explicables par l’adaptation ou l’amorçage, qu’elles sont d’origine au moins partiellement descendante et qu’elles corrèlent avec le comportement. Finalement, dans le troisième article, nous approfondissons cette investigation en utilisant la magnétoencéphalographie (MEG) et en examinant l’activité dans différentes régions cérébrales. Nous démontrons que l’échantillonnage de l’information visuelle est hautement variable selon le moment d’arrivée de l’information sur la rétine dans de larges parties des lobes occipitaux et pariétaux. De plus, nous démontrons que cet échantillonnage est rythmique, oscillant à diverses fréquences entre 7 et 30 Hz, et que ces oscillations varient en fréquences selon l’attribut échantillonné.Visual recognition is a temporal process: first, visual information is continuously received through time on our retina; second, the processing of visual information by our brain takes time; third, our perception is function of both the present sensory input and our past experiences. Interactions between these temporal aspects have rarely been discussed in the literature. In this thesis, we assess the sampling of visual information through time during recognition tasks, how it is translated in the brain, and how it is modulated by expectations of specific objects. Several studies report that expectations modulate perception. However, how the expectation of a specific object modulates our internal representations remains largely unknown. In the first article of this thesis, we use a variant of the Bubbles technique to uncover the precise time course of visual information use during object recognition when specific objects are expected or not. We show that expectations modulate the representations of different features differently, and that they have distinct effects at distinct moments throughout the reception of visual information. In the second article, we use a similar method in conjunction with electroencephalography (EEG) to reveal for the first time the processing, through time, of information received at a specific moment during an eye fixation. We show that visual information is not processed in the same way depending on the moment at which it is received on the retina, that these differences cannot be explained by simple adaptation or repetition priming, that they are of at least partly top- down origin, and that they correlate with behavior. Finally, in a third article, we push this investigation further by using magnetoencephalography (MEG) and examining brain activity in different brain regions. We show that the sampling of visual information is highly variable depending on the moment at which information arrives on the retina in large parts of the occipital and parietal lobes. Furthermore, we show that this sampling is rhythmic, oscillating at multiple frequencies between 7 and 30 Hz, and that these oscillations vary according to the sampled feature
    corecore