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Introduction 
Imagine you are in your car driving to meet a friend at a restaurant you 

have never been to before. As an experienced driver, you don’t need 

to deliberately direct your gaze. Instead, your attention is automatically 

drawn to crossings far off in the distance, other moving vehicles, and 

relevant road signs. Without having to assert effort, your brain 

suppresses details in your immediate surroundings to enhance 

relevant information. When you arrive at the restaurant, you swiftly 

search through the crowd of strangers, assessing whether everyone is 

your friend within a fraction of a second. Your brain effortlessly 

evaluates each person with templates in your memory, first on crude 

features such as hair colour or height, and for anyone who fits these 

criteria, assessment is carried out on finer facial features. With our 

ability to use logical inferences based on experience we build 

templates of a target, which we use to efficiently scan through our 

environment. Regardless of how mundane this everyday task might 

seem; its completion requires several fundamental computational 

problems to be overcome. When driving a car and when searching a 

crowded room, you need to selectively enhance and suppress visual 

information, as processing all information equally is an inefficient use 

of resources. It can take several hundred milliseconds to fully process 

a complex natural scene (Kar et al., 2019), meaning that the 

processing of several visual objects must be happening in parallel. To 

add to this complexity, humans are continuously updating their goals 

(first, search for the bar across the whole room, then search for a 

person at the bar) based on information we are gaining within each 

moment. In this dissertation, I will address how the brain organizes 

information into categories, how items that are processed in parallel 

can interfere with each other, and at what levels of processing these 

interferences occur.  

 

https://paperpile.com/c/f4Eg4x/Jrgn
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Even though between 20% and 30% of the cortex is dedicated to vision 

(Essen, 2003), our visual perception is not a veridical representation 

of the objective world. We fail to observe most of the enormous 

information flow present in our environment. While this may seem like 

a shortcoming, this failure to process information can be considered 

advantageous. Humans have evolved an impressive set of tools that 

enable us to quickly sift through the massive amount of data 

surrounding us, picking out and acting on what is most important. We 

can rapidly isolate important regions in our visual field and allocate 

additional resources, i.e., attend to that specific area (Posner et al., 

1980). In our daily life, we take this ability for granted and it is easy to 

forget how impressive this achievement is. Combined, the hypothetical 

situation above illustrates a grand performance, which encompasses 

object recognition, saccade planning, working memory updating, goal 

definition, and integration with memories, held together by a 

sophisticated attentional system. Our environment constantly 

bombards us with information, and one of the most daunting tasks of 

the brain is to select the relevant information and filter out noise (i.e., 

signals that are non-informative for our task goals). This selection 

process is not without biases. The Baader-Meinhof phenomenon (or 

the frequency illusion) nicely illustrates how selective attention biases 

our perception in daily life. For example, have you ever learned a new 

word and then suddenly seen this word everywhere you look? In 

reality, you have been walking around all your life with this word 

frequently reaching your retina but not reaching your conscious 

awareness. What are the factors that lead us to become consciously 

aware of a specific stimulus? Are these factors all just related to our 

task-goals or are there stimuli that we inherently treat differently? Is it 

possible to manipulate our perceptual system in such a way that we 

are more likely to perceive certain objects? These are pertinent 

questions we need to answer to build a comprehensive theoretical 

framework of perception. 

 

https://paperpile.com/c/f4Eg4x/YeOK
https://paperpile.com/c/f4Eg4x/43vB
https://paperpile.com/c/f4Eg4x/43vB
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Object recognition and representation 

Humans can classify and act upon objects within a fraction of a second 

(Kirchner & Thorpe, 2006). In fact, a mere 13-millisecond exposure of 

a visual scene is enough for us to retain the information in neural 

constellations so we can process the semantic meaning (Broers et al., 

2018). Visual information is first received and processed in the retina, 

located at the innermost part of the eye. Here, spatial resolution is 

highest in the fovea and strongly declines toward the periphery of the 

visual field (Daniel & Whitteridge, 1961). The retina consists of rods 

and cones, two types of photoreceptors that provide vision in dim light 

and photopic (colour) vision, respectively (Bowmaker & Dartnall, 

1980). The simplicity of this retinal setup comes with a few 

computational problems. For example, since the retina lies like a flat 

sheet in the back of the eye, the information reaching our brain is by 

nature two-dimensional, the brain, therefore, needs to infer depth. 

Another problem is that the same object can produce an immense 

variation in appearance depending on viewing angle (Logothetis & 

Steinberg, 1996). Therefore, to perceive the environment coherently it 

is necessary for the brain to construct view-invariant object 

representations without causing a combinatorial explosion in the 

number of cells required. To solve these problems, neurons with the 

same response properties are not randomly distributed throughout the 

visual system. Instead, neurons in the early visual cortex are organised 

retinotopically, which means that neurons' spatial organisation in the 

cortex corresponds to the locations in the visual field. Following the 

retinotopic organisation, bundled neurons in the early visual cortex 

respond to low-level stimulus features such as orientation (Swindale 

et al., 1987), spatial frequency (Tootell et al., 1981), and colour (Tootell 

et al., 2004). These features are later combined into more complex 

representations further along the visual stream, which runs from the 

most posterior to the anterior part of the brain (Figure 1). An influential 

idea of the visual system is the two-streams hypothesis (Goodale & 

Milner, 1992; Ungerleider & Mishkin, 1982) which posits that as 

information exists the occipital pole there is a partitioning of processes 

into the dorsal and ventral visual stream. A simplified description is that 

the dorsal stream encodes spatial properties such as size and location 

https://paperpile.com/c/f4Eg4x/jI6M
https://paperpile.com/c/f4Eg4x/9dBy
https://paperpile.com/c/f4Eg4x/9dBy
https://paperpile.com/c/f4Eg4x/bNca
https://paperpile.com/c/f4Eg4x/4kCZ
https://paperpile.com/c/f4Eg4x/4kCZ
https://paperpile.com/c/f4Eg4x/xDXE
https://paperpile.com/c/f4Eg4x/xDXE
https://paperpile.com/c/f4Eg4x/qlOT
https://paperpile.com/c/f4Eg4x/qlOT
https://paperpile.com/c/f4Eg4x/YYlI+xKGN
https://paperpile.com/c/f4Eg4x/YYlI+xKGN
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(known as the “where”-stream) and the ventral stream encodes the 

identity of an object (known as the “what”-stream). However, the two 

streams are not independent, but characterized by many reciprocal 

connections (Budisavljevic et al., 2018; Cloutman, 2013; Zhong & 

Rockland, 2003) and informational integration between the streams is 

thought to happen at several levels, including continuous cross-talk 

between the streams (Budisavljevic et al., 2018; van Polanen & 

Davare, 2015), and shared target regions in frontal areas 

(Rauschecker & Scott, 2009), which in turn may facilitate integration 

through recurrent feedback loops (Cloutman, 2013). Despite this 

interconnectedness between the two streams, the predominant 

interest in the field of visual cognition has been with the ventral visual 

stream. This is presumably since within the ventral visual stream, 

specifically the human inferior temporal cortex (ITC, Figure 1), 

researchers have found patches of category-specific areas. For 

example, there are patches within the ITC that respond to places 

(Epstein et al., 1999), faces (N. Kanwisher et al., 1997), bodies 

(Downing et al., 2001), and 3D (Janssen et al., 2000); and the more 

posterior the patch, the more invariant the responses are to viewing 

angle (Bao et al., 2020). One recently proposed mechanism for these 

patches is that they are an emergent property of the evolutionary 

pressure of metabolic constraints, where it is more energy efficient to 

organise neurons responding to similar objects adjacent to each other 

to shorten the length of the axons in the lateral connections between 

them (Lee et al., 2020). Nevertheless, the behavioural relevance of 

this category-dependent organisation is a topic of active debate in the 

field of neuroscience, and answers to questions regarding the 

relationship between object representations and behaviour could help 

researchers understand the underlying mechanisms for these 

emergent structures. 

 

https://paperpile.com/c/f4Eg4x/MObE+XDMg+kfy0
https://paperpile.com/c/f4Eg4x/MObE+XDMg+kfy0
https://paperpile.com/c/f4Eg4x/kfy0+7v7B
https://paperpile.com/c/f4Eg4x/kfy0+7v7B
https://paperpile.com/c/f4Eg4x/BM8x
https://paperpile.com/c/f4Eg4x/XDMg
https://paperpile.com/c/f4Eg4x/bvV3
https://paperpile.com/c/f4Eg4x/i9as
https://paperpile.com/c/f4Eg4x/vHD4
https://paperpile.com/c/f4Eg4x/nMM1
https://paperpile.com/c/f4Eg4x/t5fc
https://paperpile.com/c/f4Eg4x/a764
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Figure 1. A) Approximate anatomical divisions within the ventral visual 

stream. V1 (red) is the first cortical area to receive visual input. Information is 

then passed on to V2-V3-V4-V5 (green) before it reaches ITC (blue). B) 

Ventral view of the brain. Known areas that respond selectively to certain 

categories of visual stimuli. More patches are known to respond to faces, 

scenes and bodies, however, these locations are the most studied. C) 

Representational depiction of visual features processed at different stages. 

Early in the visual processing, simple features such as contrast and 

orientation are processed (left), later, more complex features are processed 

(middle) and eventually category-specific responses are found in the ITC 

(right). Colours of the underlying bars are reflecting areas as shown in A. 

 

Animacy and behaviour 

One of the most notable functional divisions in ITC is between animate 

and inanimate objects. Here, researchers have found a continuum 

from the medial to the lateral, where the more animate an object is, the 

more lateral in the ITC is its representation encoded (Sha et al., 2015). 

Behavioural studies have shown that humans performing visual 

search are quicker to find animals compared to non-animals (Jackson 

https://paperpile.com/c/f4Eg4x/zcd2
https://paperpile.com/c/f4Eg4x/LNcN
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& Calvillo, 2013), better at remembering words describing animals 

(Nairne et al., 2013), and that animals seem to have privileged access 

to our conscious perception (Guerrero & Calvillo, 2016; Lindh et al., 

2019). This division makes sense from an evolutionary perspective 

given how important it is to monitor potential threats such as predators 

in our surroundings. New et al. (2007) showed that subjects were 

quicker at detecting non-human animals than vehicles in a change 

detection task. The authors argued that if visual expertise was driving 

performance, we should predict the opposite - that is, that vehicles 

would be more quickly detected due to their prevalence in everyday 

life compared to exotic animals. This led New and colleagues to 

propose the “animate monitoring hypothesis”, emphasising the 

evolutionary relevance of detecting animals for ancestral hunter-

gatherer societies. This idea of an innate predisposition for detecting 

animals has been further corroborated by the existence of animate/in-

animate distinct regions in the ventral visual stream in both sighted and 

congenitally blind subjects (Mahon et al., 2009). 

 

The specific representational relationship between animals and non-

animals in late visual areas seem to dictate how efficiently they are 

being processed. For example, (Carlson et al., 2014) trained a support 

vector machine (SVM) on voxels within the ITC to classify whether a 

presented stimulus was an animal or not. The resulting “confidence” 

of the classifier for each image was used as a measure of how much 

of an animal an object was according to the voxel wise activation in 

ITC. This “confidence” was later shown to correlate with reaction time 

in a speeded judgement task, with animals higher on the animal 

spectrum leading to faster response times. This study supports the 

notion that representations in visual areas are meaningful for 

behaviour and the representations we extract through multivariate 

approaches reflect information used in decision making 

(Grootswagers et al., 2018). One of the key questions in this 

dissertation is regarding how different semantic categories, eliciting 

grouped patches of activation throughout the visual stream, affect 

conscious awareness. I address this question directly in chapter 2 and 

further explore a more general mechanism for this in chapter 3 and 

chapter 4.  

https://paperpile.com/c/f4Eg4x/LNcN
https://paperpile.com/c/f4Eg4x/697x
https://paperpile.com/c/f4Eg4x/wTqZ+IFnO
https://paperpile.com/c/f4Eg4x/wTqZ+IFnO
https://paperpile.com/c/f4Eg4x/n3zo
https://paperpile.com/c/f4Eg4x/B7eE
https://paperpile.com/c/f4Eg4x/Uqfy
https://paperpile.com/c/f4Eg4x/eBj7
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Convolutional neural networks 

In the field of computational vision, the difficulty of turning pixels into 

view-invariant categorical representations has not been eluded. 

Computational scientists have attempted for decades to develop 

algorithms that can detect and classify objects in natural images, with 

a wide range of biologically inspired and more statistically based 

methods. This has been such a prominent problem in the field that it 

has inspired the annual ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) (Russakovsky et al., 2015), which consists of a 

large open data set of manually annotated natural scenes. The 

challenge is to construct computational models that classify objects 

within natural scenes into 1000 different categories. In 2012, 

(Krizhevsky et al., 2012) entered the competition using a deep 

convolutional neural network (DCNN, Figure 2) leading to a turning 

point for large-scale object recognition (this network has later been 

named AlexNet as a homage to the first author Alex Krizhevsky). 

Despite the fact that neural networks have been present since the 

1980s (Fukushima, 1980), they have been deemed computationally 

intractable for many decades due to the large amount of parameters 

(AlexNet has 61 million parameters!), giving preference to less 

complex models such as Fisher vectors (Sanchez & Perronnin, 2011) 

and Support Vector Machines (SVM) (Anthony et al., 2007) for object 

classification. However, with the recent advances in GPUs, optimised 

for fast matrix calculations, Krizhevsky and colleagues were the 

undisputed winners of the 2012 competition, inspiring DCNNs to 

completely dominate the competition the following years. The 

architecture of DCNNs (Figure 2) is biologically inspired in that they 

consist of several hierarchical layers, equipped with “neural” units that 

either are activated or not depending on their input. Information is fed 

through each layer before reaching the final output layer, reminiscent 

of the brains’ ventral visual stream in which information propagates 

through visual areas V1/V2/V3/V4 to ITC (Figure 1). The main 

revelation underpinning these models is that the progressive build-up 

in invariance properties of neural responses along the ventral visual 

https://paperpile.com/c/f4Eg4x/ASKt
https://paperpile.com/c/f4Eg4x/dwZZ
https://paperpile.com/c/f4Eg4x/WIge
https://paperpile.com/c/f4Eg4x/JQhI
https://paperpile.com/c/f4Eg4x/Kik2
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stream could be approximated by a series of convolutions (multiplying 

areas of the image with learned filters) and local pooling operations 

(non-linearly combining the output of these filters). In the case of 

AlexNet (Krizhevsky et al., 2012), this network consists of eight layers 

where the first five layers are convolutional layers preserving 

retinotopical information (Figure 2). In each layer, each convolution is 

pooled into smaller representations, successively decreasing the 

retinotopic information. The last three layers are fully connected layers 

where retinotopical information is lost, giving way to view-invariant 

representations of high-level visual features. Even though AlexNet 

now has been surpassed in terms of classification accuracy by more 

complex models, it strikes a good balance between architecture-

complexity and performance and is still widely used as a model of the 

human visual system. 

 

 

 
Figure 2. Pictorial representation of the AlexNet architecture. AlexNet 

consists of five convolutional layers and three fully connected layers. The 

input image is fed into layer 1 (Conv1), and after a series of operations, 

information is fed forward to the next layer. Each convolutional layer consists 

of a bank of learned filters, that iteratively convolve separate parts of the 

image to estimate the presence of progressively more abstract visual 

features. In the fully connected layers, “retinotopical” information is lost and 

general view-invariant features are processed. Eventually, information 

reaches the response layer (FC8) where each node represents a category. 

The node with the highest activity becomes the network's best guess of what 

object is present in the image. 

 

The emergence of DCNNs sparked interest in comparing the internal 

representations produced within these models with the 

representations of stimuli at different stages of the ventral visual 

https://paperpile.com/c/f4Eg4x/dwZZ
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stream. Despite the fact that the main engineering purpose of DCNNs 

was to solve object recognition, initial computational neuroscience 

work showed that AlexNet fit activity in the ITC significantly better than 

any other commonly used vision model (Khaligh-Razavi & 

Kriegeskorte, 2014). A series of consecutive studies further showed 

that the hierarchical order of the layers in DCNNs corresponds 

progressively to brain data along the ventral visual stream (Cichy et 

al., 2016; Eickenberg et al., 2017; Güçlü & van Gerven, 2014; Yamins 

et al., 2014) and the evolving representations over time (Cichy et al., 

2016; Greene & Hansen, 2018). With the development of DCNNs 

came an increase in depth, with DCNNs winning the ILSVRC using 

>150 layers (He et al., 2016). Interestingly, even though increased 

depth has led to a lower error rate in image classification, to such a 

degree that the interest for ILSVRC has stagnated, initial studies did 

not show that the VGG-net (Simonyan & Zisserman, 2014), with its 19 

layers, exhibited a better goodness-of-fit to the brain compared to the 

relatively parsimonious AlexNet (Abbasi-Asl et al., 2018). However, 

later studies have confirmed that increased depth (Kar et al., 2019) 

and recurrent connections (Kar et al., 2019; Kietzmann et al., 2019), 

increasing the depth of processing without adding more layers, 

substantially improves the model’s ability to explain variance in the 

ventral visual stream. The current challenges have been to train 

models on semantics rather than image classification with, so far, 

promising results (Devereux et al., 2018). Just like Carlson et al. 

(2014) who showed that voxel activity in the late ventral visual stream 

is relevant for decision making, DCNNs can potentially be utilised to 

predict behaviour contingent on how successfully they model the 

visual processing hierarchy in the brain. Showing that DCNNs not only 

predict brain activity but also predict behaviour in a similar way as fMRI 

and EEG, is a crucial step to validate the models. Additionally, these 

models can eventually be used to probe the human perceptual system 

non-intrusively by treating them as never-ending variations of lab 

animals (Scholte, 2018). For these reasons, another main topic of this 

dissertation is not only to compare DCNNs with brain activation but 

also to evaluate how well DCNNs can be used to predict behaviour.  

 

https://paperpile.com/c/f4Eg4x/MNJA
https://paperpile.com/c/f4Eg4x/MNJA
https://paperpile.com/c/f4Eg4x/TpDS+yvWQ+Aw7I+Vjou
https://paperpile.com/c/f4Eg4x/TpDS+yvWQ+Aw7I+Vjou
https://paperpile.com/c/f4Eg4x/TpDS+yvWQ+Aw7I+Vjou
https://paperpile.com/c/f4Eg4x/yvWQ+RKvv
https://paperpile.com/c/f4Eg4x/yvWQ+RKvv
https://paperpile.com/c/f4Eg4x/sQEu
https://paperpile.com/c/f4Eg4x/Rk3R
https://paperpile.com/c/f4Eg4x/CQHT
https://paperpile.com/c/f4Eg4x/Jrgn
https://paperpile.com/c/f4Eg4x/Ewsq+Jrgn
https://paperpile.com/c/f4Eg4x/1sqi
https://paperpile.com/c/f4Eg4x/DzLg
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Temporal Object Recognition 

Despite the computational difficulties of view-invariant object 

recognition, our ability to detect objects is remarkably fast. Broers et 

al. (2018) showed that a presentation of 13 ms per image was enough 

for their subjects to process semantic information. This impressive 

ability requires the brain to selectively process sensory inputs using a 

variety of mechanisms, collectively referred to as selective attention 

(for a recent review, see Fiebelkorn & Kastner, 2019). In early 

accounts from one of the first psychologists William James (James, 

1890), attention "is the taking possession by the mind, in clear and 

vivid form, of one out of what may seem several simultaneously 

possible objects or trains of thought. It implies withdrawal from some 

things to deal effectively with others". At its core, selective attention 

refers to both enhancing relevant information as well as filtering out 

distracting information over both space and time. Researchers have 

developed many tools designed to test selective attention at the edge 

of our abilities. One of the most prevalent tools at our disposal is the 

rapid serial visual presentation (RSVP) display, where stimuli are 

presented in a quick fashion on a screen and subjects are asked to 

detect targets within the stream. By varying the speed of presentation, 

and what type of targets are presented at what time, researchers can 

examine processes related to attention, working memory, and 

conscious perception. Two of the most common findings using this 

paradigm are known as Attentional Blink (AB) (Raymond et al., 1992) 

and Repetition Blindness (RB) (Kanwisher, 1987; Kanwisher & Potter, 

1990). These phenomena are closely related but each has important 

distinctions. Understanding these distinctions will give researchers a 

better understanding of how to optimally utilise these phenomena to 

elucidate fundamental mechanisms of human perception.  

 

In a typical AB experiment, a series of distractors are presented at a 

rate of about 10 images per second. Within the stream of distractors, 

two targets (named T1 and T2) are presented at different temporal 

positions in the stream. Each position is often referred to as lags in 

relation to T1, where the items that are immediately following T1 are 

defined as lag-1, lag-2, etcetera (Figure 3A). In trials where T2 is 

https://paperpile.com/c/f4Eg4x/ZGQC
https://paperpile.com/c/f4Eg4x/ZGQC
https://paperpile.com/c/f4Eg4x/po1P
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shown between 200-500 ms after T1 (lag-2 and lag-5, respectively 

when the speed of presentation is 10 items/s), participants show a 

clear reduction in performance (Figure 3B). This effect is abolished 

(Raymond et al., 1992), or in some cases partially (Folk et al., 2002; 

Maki & Mebane, 2006), when subjects are asked to ignore T1. This 

implies that the reason participants fail to report T2 is because of the 

attention required for T1. This phenomenon is like a blink of the mind 

caused by a lapse of attentional resources instead of a physical blink. 

One of the first, and most influential, models of the AB is the two-stage 

model (Chun & Potter, 1995). The two-stage model posits that pre-

attentive initial processing can be done in parallel, such as processing 

the visual features of both targets. However, the second stage, where 

targets are encoded into working memory and become reportable, is 

constrained by a processing bottleneck to protect stimuli from being 

overwritten. Thus, the two-stage model proposes that the first target in 

the stream needs to be encoded fully into working memory before the 

second target can be processed. In support of this model, Vogel and 

Luck (2002) showed that, while both T1 and T2 are followed by a P3, 

an event-related potential (ERP) component strongly linked to working 

memory consolidation (Başar-Eroglu et al., 2001; Dolu et al., 2005), 

the P3 following T2 was delayed, suggesting that the brain was still 

consolidating T1 at the time of T2’s presentation (Vogel & Luck, 2002).  

 

Interestingly, studies have shown that when T2 is presented 

immediately after T1, i.e., when T2 is presented at lag-1, the effect of 

the AB is eradicated (n.b., this is not always the case, for discussion 

see Visser, 2015; Visser et al., 2009). This finding has been dubbed 

“lag-1 sparing”, and although the T2 performance is almost as high on 

lag-1 as on late lags (lag-6 and upwards), it comes with order-inversion 

errors. Chun and Potter (1995) presented participants with a stream of 

symbols and asked participants to report two digits embedded within 

the stream. Participants were not instructed to report the targets in the 

correct order, however, they noticed that at lag-1, where T2 

performance was high, participants often reported T2 first, implying a 

reversal of order of the targets. Later studies have not only 

corroborated this finding but also showed extended lag-1 sparing 

where several targets in a row, without intervening masks, can be 

https://paperpile.com/c/f4Eg4x/po1P
https://paperpile.com/c/f4Eg4x/XTIh+ZWhG
https://paperpile.com/c/f4Eg4x/XTIh+ZWhG
https://paperpile.com/c/f4Eg4x/cOFn
https://paperpile.com/c/f4Eg4x/VHGB+Dtcj
https://paperpile.com/c/f4Eg4x/18PQ
https://paperpile.com/c/f4Eg4x/cOFn
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detected (Olivers et al., 2007). This extended sparing of multiple target 

detection and identification is direct evidence against the notion that 

the AB is due to a bottleneck in processing capacity as indicated by 

earlier models of the AB such as the two-stage model (Chun & Potter, 

1995). Instead, newer models of AB assume that attention is chunked 

into separate episodic events. The closing of these events can be 

prolonged as long as new targets are being presented (Wyble et al., 

2009), allowing up to 4-5 targets in a standard RSVP (Olivers et al., 

2007; Wyble et al., 2009). The idea of our perceptual reality being 

organised into separate sections of incidents is contrary to our 

introspective notion of a continuous, coherent conscious experience 

of the world, however, this idea is neither new nor without substantial 

supporting evidence, for example, see (di Lollo, 1980).  

 

 
Figure 3. Attentional Blink and Repetition Blindness. A) Typical 

RSVP setup for AB and RB. A stream of masks is shown for about 100 ms 

each. Within the stream two targets are presented, in all experiments in this 

thesis, targets are defined by being non-scrambled natural images. Subjects 

report which was the first and second target after the stream. During lag-2 

trials (Left, one intervening distractor) subjects typically show difficulties 

reporting the second target compared to lag-7 (middle, six intervening 

distractors) trials. When targets are repeated, subjects often show an 

https://paperpile.com/c/f4Eg4x/k1RZ
https://paperpile.com/c/f4Eg4x/cOFn
https://paperpile.com/c/f4Eg4x/cOFn
https://paperpile.com/c/f4Eg4x/6gmX
https://paperpile.com/c/f4Eg4x/6gmX
https://paperpile.com/c/f4Eg4x/k1RZ+6gmX
https://paperpile.com/c/f4Eg4x/k1RZ+6gmX
https://paperpile.com/c/f4Eg4x/6Rbs
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additional deficiency in reporting T2. B) A cartoon plot illustrating the typical 

AB and RB results (see for example Chun, 1997). During trials when targets 

are not repeated subjects often show a lag-1 sparing, however, this is typically 

not as prominent when targets are repeated.  

 

In normal memory tasks, the repetition of stimuli usually enhances 

memory consolidation (Gathercole, 2006). However, early on in the 

history of RSVP, a series of experiments (Kanwisher, 1987; Kanwisher 

& Potter, 1990) showed that the second occurrence of an item in a 

stream is often omitted from the report at the end of the stream, 

dubbed Repetition Blindness (RB, Figure 3A). This effect was even 

present when a word omitted from a sentence by the subject led to a 

grammatically incorrect sentence. While the original study used letters, 

digits, and symbols, RB is also found when the stimuli consist of 

objects and natural images (Buffat et al., 2013; Coltheart et al., 2005; 

Harris & Dux, 2005). Interestingly, RB does not require the repetition 

of the exact same item (Bavelier, 1994; Bavelier & Potter, 1992). Sy 

and Giesbrecht (2009) showed that when participants were asked to 

identify the emotional expression of faces, the repetition in the task-

relevant domain (i.e., two different angry faces) led to a decrease in 

T2 performance, but a repetition in gender (two female targets) did not. 

This finding was reversed when participants were asked to identify the 

sex of the target faces. Similarly, Stein et al. (2009) showed that 

emotional faces, which generally affect performance, only affected 

performance when participants were required to report on emotional 

content, i.e., when emotion was the task-relevant domain. This 

provides strong evidence for the importance of task goals in producing 

the RB effect.  

 

RB is similar to another repetition deficit, the Ranschburg effect 

(Jahnke, 1969). However, RB and the Ranschburg effect are 

differentiated on their time scale. RB is only observed when items are 

presented at a fast rate (100-180 ms per item). The Ranschburg effect, 

on the other hand, is found with a presentation rate of 1 second per 

item indicating that there is a time interval distinguishing these two 

https://paperpile.com/c/f4Eg4x/C4kV
https://paperpile.com/c/f4Eg4x/5xyu+gjWE+h39z
https://paperpile.com/c/f4Eg4x/5xyu+gjWE+h39z
https://paperpile.com/c/f4Eg4x/jYVL+mJF0
https://paperpile.com/c/f4Eg4x/CPSG
https://paperpile.com/c/f4Eg4x/kuCw
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paradigms. The RB and the Ranschburg effects are intriguing findings 

that reveal a systematic memory failure (Fagot & Pashler, 1995) at 

different processing levels. Likewise, AB and RB share many 

similarities but are also differentiated in their time scale (Arnell & 

Shapiro, 2011). While AB leads to impaired performance of T2 

reportability around 200-500 milliseconds after T1, usually with a 

sparing of the first target (i.e. lag-1 sparing), the detrimental effect of 

RB is most pronounced in the first few lags with the largest effect on 

lag-1 (Chun, 1997). However, despite the overlaps between AB and 

RB and how the AB paradigm is used in the literature to study 

attention, working memory, and conscious experience, very few 

researchers try to control for these confounds. Considering how much 

parallel information we are tasked with processing while our eyes 

quickly move around, investigating our complex surroundings, 

understanding how representations overlap at different stages of 

processing is crucial for interpreting the processes underlying our 

perceptual content.  

 

Embracing the complexity of natural images 

Historically, studies of AB and RB have mostly concerned themselves 

with simple stimuli such as digits and letters. This has its own 

advantages of maximising control over the stimuli; however, it misses 

out on the complexity offered by natural images. Recent developments 

in machine learning, such as DCNNs, have facilitated research that 

embraces the complexity of natural stimuli. Another important 

development is the increased popularity in using multivariate analysis 

tools, including representational similarity analysis (RSA; Kriegeskorte 

et al., 2008), which allows for comparing the representational 

geometries (Figure 4A) between different modalities. Put simply, RSA 

allows us to measure how distant the representation of two stimuli is 

in a certain brain region in the high-dimensional space offered by the 

voxels within the region. By doing a pairwise comparison of all possible 

stimuli combinations we achieve a representational dissimilarity matrix 

(RDM). This can be done for the different layers of a particular CNN 

architecture, which transforms the idiosyncratic organisation of 

https://paperpile.com/c/f4Eg4x/ATKY
https://paperpile.com/c/f4Eg4x/158h
https://paperpile.com/c/f4Eg4x/158h
https://paperpile.com/c/f4Eg4x/Q16m
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features from one modality to a general “representational geometry 

space”, i.e., the specific pairwise relationship between stimuli. This 

transformation not only allows for different modalities (such as brain 

representations and CNNs) to be compared directly but also allows 

them both to be used to predict behaviour in a comparable way. 

Previous studies of RB with natural images often use category as a 

proxy for similarity, where for example two faces are more similar than 

a house and a face. While this assumption is oftentimes entirely valid, 

it misses out on the nuance between and within categories, for 

example, a strong association between a picture of a golf club and a 

golf ball in a certain brain area despite a lack of any shared visual 

features. By measuring the distance (or similarity) in representation 

using multivariate distance/similarity metrics from different brain areas 

and different layers of a CNN, it is possible to appreciate the complex 

relationship between each pair of images.  

 

 
Figure 4. Representational similarity analysis and drift diffusion 

modelling. A) Pictorial representation of the creation of a representational 

dissimilarity matrix (RDM). First, images are presented to a participant or a 

vision model. Second, multivariate representations are extracted for each 
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image. Here different channels refer to dependent variables from the 

measured modality, for example voxels recorded with fMRI, electrodes from 

EEG or units from DNN. Third, a pair-wise comparison of how far away these 

representations are in high-dimensional space. One common measure of 

distance is the 1 - Pearson correlation, however, many other distance metrics 

exist. B) Illustration of what different fitted parameters of the drift diffusion 

model (DDM) correspond to. In the DDM framework, several latent 

parameters are estimated which are believed to be evident in the reaction 

time distribution of correct and incorrect trials. Evidence is accumulated over 

time for two alternatives (for example a house or a face), when evidence for 

one of the alternatives reaches a boundary, a perceptual decision is made. 

The a-parameter corresponds to the distance between the starting point and 

the decision boundary, colloquially describing the decision criterion. The v-

parameter refers to the drift rate, the steepness of the evidence accumulation 

and describes how efficiently a participant accumulates information over time. 

Other parameters are the t-parameter for non-decision time (for example 

motor responses and the time it takes a stimulus to reach cortical processing 

areas) and the z-parameter for bias (for example if a participant is more 

inclined to respond “house” over “face”). C) Cartoon distributions of reaction 

distribution if the drift rate (v-parameter) is high (top plot) or low (bottom plot). 

When drift rate is high, the reaction time distribution will shift with a higher and 

earlier mode for correct (blue) trials compared to incorrect (red) trials. In 

comparison when drift rate is low the two distributions are indistinguishable.  

 

 

In all three following chapters, we combine well-known behavioural 

RSVP paradigms, such as AB and RB, with state-of-the-art brain 

analyses and machine learning to answer three main questions. 1) 

What is the relationship between target categories and their propensity 

to be consciously accessed. 2) How does the relationship between 

targets affect performance at different levels of processing. 3) In 

addition to explaining neural data, can CNNs also be used to explain 

behaviour? In Chapter 2 we specifically ask whether categories 

grouped together in multivariate high-dimensional space in ITC are 

also differentially affected by the AB time window. Using natural 

images depicting everyday objects from several distinct categories 

known to be grouped together in high-dimensional space (Charest et 

al., 2014; Kriegeskorte et al., 2008), we show that there is an extensive 

variance between semantic categories in the AB. We further 
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demonstrate that the variance between images in AB can be predicted 

using high-level visual features, as opposed to low-level visual 

features. Finally, we show that similarities between targets in terms of 

visual features, which are not the dimension used by participants to 

report targets, increase the probability of correctly reporting T2.  

 

The finding in Chapter 2 that target similarity leads to better T2 

performance was a surprising contrast to RB which led to the 

experiment in Chapter 3, wherein we extended our analysis and 

included individual brain representations from both functional 

magnetic resonance imaging (fMRI) and electroencephalography 

(EEG). The main difference between fMRI and EEG is resolution in 

space and time. fMRI measures oxygenated blood flow in small voxels 

(volumetric pixels) and can reach millimetre precision in identifying 

which brain area is active. However, the drawback is that blood flow is 

slow, and the presentation of stimuli needs to be separated by several 

seconds to get a reasonable signal-to-noise ratio. Meanwhile, EEG 

measures electrical activity outside the scalp and is often recorded 

with a temporal precision of ~500-1000 Hz but with the caveat, the 

electrodes on top of the scalp produce an imprecise estimate for the 

origin of the signal. However, by combining both fMRI and EEG and 

designing different behavioural paradigms that let us achieve high 

signal-to-noise in both, as well as using representations in AlexNet, we 

show that when targets are similar in high-level semantic space there 

is a decrease in T2 performance. This reflects previous RB findings 

but with the important extension that the effect of similarity between 

targets is a gradient, and an exact repetition is not necessary to 

produce this behaviour. Furthermore, we show that when targets are 

similar in low-level visual features (such as in V1, the first cortical area 

to receive visual input), there is an increase in T2 performance. This 

replicates our findings from Chapter 2 and shows that target similarity 

can lead to both increased and decreased T2 performance, depending 

on the level of process in which the targets interact. To our knowledge, 

this is the first demonstration of such an RSVP effect.  

 

In the AB literature, it is well-known that some participants do not seem 

to “blink”, referred to as “non-blinkers'' (Martens & Valchev, 2009). 

https://paperpile.com/c/f4Eg4x/AuVC
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Seeing that several clinical conditions, such as ADHD (Amador-

Campos et al., 2015; Armstrong & Munoz, 2003) and schizophrenia 

(Goddard, 2004; Wynn et al., 2006), also lead to individual differences 

in the attentional blink, it is pertinent that we understand the underlying 

mechanism behind “non-blinkers''. We investigated individual 

differences by looking at overall performance for each participant and 

isolated which brain areas correlated with their performance in terms 

of similarity between image pairs. We found that participants that have 

large representational distances between images in the right 

temporoparietal junction (rTPJ) and the right inferior frontal gyrus 

(rIFG) perform significantly better at the task. These areas have been 

proposed to constitute a bottom saliency network (Corbetta et al., 

2008), and our finding corroborates this network as an important target 

for investigating idiosyncratic perceptual processing. 

 

While RB is believed to impair memory-related functions (Fagot & 

Pashler, 1995), we reasoned that the effect of V1-similarity found in 

Chapter 3 is related to processes prior to working memory updating. 

Specifically, in Chapter 4 we hypothesised that the T1-evoked 

activation in V1 would facilitate evidence accumulation rate for T2 if 

both shared similar representations, regardless of the semantic 

content of the two natural scenes. Furthermore, one of the key 

concepts of AB is the role of attending or ignoring T1. In all models of 

AB, attending T1 has a central role, and to show that target-target 

similarity to be pertinent for AB it also needs to be modulated by 

attention. To investigate this, we created a modified RSVP task where 

participants were presented with two targets and instructed to make a 

speeded judgment on whether T2 (i.e., the second target) contained 

an animal. Participants completed two blocks, one where they were 

asked to ignore the first target and one where they were instructed to 

memorise and report the first target after the stream. When using 

reaction time and accuracy for T2 as dependent variables it is common 

to look at each variable separately. However, the caveat is that there 

is a trade-off between speed and accuracy such that when participants 

are faster, they often make more mistakes. Another problem is that 

reaction time distributions are rarely normally distributed, so a point-

estimate (such as the mean) is rarely a good description of the 

https://paperpile.com/c/f4Eg4x/m2VU+vsp2
https://paperpile.com/c/f4Eg4x/m2VU+vsp2
https://paperpile.com/c/f4Eg4x/BzWQ+2Lwg
https://paperpile.com/c/f4Eg4x/HCd2
https://paperpile.com/c/f4Eg4x/HCd2
https://paperpile.com/c/f4Eg4x/ATKY
https://paperpile.com/c/f4Eg4x/ATKY
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distribution. Instead, to test our idea, we used Drift Diffusion Modelling 

(DDM) (Ratcliff & McKoon, 2008; Voss et al., 2004). DDM allows 

researchers to infer latent variables associated with the decision 

process in two-alternative forced-choice tasks. Assuming two 

boundaries (one for each alternative) with a decision value placed 

somewhere in between. This decision value will vary over time 

depending on the incoming information. The subject performing the 

task will reach a decision when the accumulated information reaches 

one of the two boundaries. By looking at the performance and the 

reaction time distribution (Figure 4B), DDM infers several latent 

variables that are associated with the decision process, such as drift-

rate (the rate of evidence accumulation over time), bias (if participants 

have a preference towards one of the two alternatives), criterion (how 

much evidence does the subject need before making a decision), and 

non-decision time (length of motor responses and encoding to working 

memory). The shape of the reaction time distribution for the two 

alternatives can be described with different values of the latent 

variables (Figure 4B). We, therefore, fit the variables in such a way 

that it describes the RT distributions in the best way where the most 

interesting variable is drift-rate. We show that V1-similarity between T1 

and T2 increases drift-rate for detecting T2 targets, lending support to 

the notion that this facilitation of T2 performance is driven by pre-

attentive processes. Importantly, we show that attending T1 is 

necessary for the effect of target-target similarity in V1 to affect T2 drift 

rate. 

 

In combination, this series of studies make use of cutting-edge 

technological advances combined with well-established paradigms to 

answer a set of questions impossible to answer just a few years ago. 

We show that the representational geometry present throughout visual 

cortices has important behavioural relevance. Semantic categories 

that are grouped together in the high-dimensional space within the 

ventral visual stream are differentially processed, where mainly 

animate objects have a higher propensity for conscious access. The 

inter-stimuli differences measured with brain imaging tools and CNNs 

provide explanations for contradictory behaviour. While the processing 

of two stimuli that share high-level, task-relevant similarities have been 

https://paperpile.com/c/f4Eg4x/py7c+XEmj
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argued to be related to memory encoding failures (Fagot & Pashler, 

1995), our findings suggest that this is related to neurally overlapping 

representations in late processing stages. In contrast, the similarity in 

low-level visual features boosts the processing speed of objects in the 

evidence accumulation stage. Furthermore, not only can CNNs predict 

neural activation, but they also successfully predict behaviour. The 

implication of this is that the representational overlap between CNNs 

and the brain is not only relevant in direct terms, but they are 

applicable in a behavioural sense, corroborating CNNs as a promising 

model of the visual system.  
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Abstract  

Conscious perception is crucial for adaptive behaviour yet access to 

consciousness varies for different types of objects. The visual system 

comprises regions with widely distributed category information and 

exemplar-level representations that cluster according to category. 

Does this categorical organisation in the brain provide insight into 

object-specific access to consciousness? We address this question 

using the Attentional Blink (AB) approach with visual objects as 

targets. We find large differences across categories in the AB. We then 

employ activation patterns extracted from a deep convolutional neural 

network (DCNN) to reveal that these differences depend on mid- to 

high-level, rather than low-level, visual features. We further show that 

these visual features can be used to explain variance in performance 

across trials. Taken together, our results suggest that the specific 

organisation of the higher-tier visual system underlies important 

functions relevant for conscious perception of differing natural images. 
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Introduction 

A long-standing question in cognitive neuroscience is how visual 

information is transformed from segregated low-level features to fully 

conscious and coherent representations. Prevailing object recognition 

models propose that rapid object identification is accomplished by 

extracting increasingly complex visual features at various 

stages/locations of the visual stream 1–3. Objects are first processed 

through a hierarchy of ventral visual areas where computations evolve 

from image feature detection, shape and part segmentation, before 

more invariant, semantic representations of the objects are 

established 4–6. Previous research has shown that animate objects are 

preferably processed in a broad range of perceptual tasks7. This led 

us to question whether or not animacy also has a preferential access 

to consciousness, and furthermore, if this could also be true for sub-

categories within the animate/inanimate distinction. 

 

Animate versus non-animate object processing has been extensively 

studied, showing distinct processing pathways throughout the visual 

stream8. Behavioural studies have shown that animate objects are 

more often consciously perceived in rapid serial visual presentations 

(RSVP)9–11, more quickly found in visual search7, elicit faster 

responses in discrimination tasks12,13, and animate words are better 

retained in working memory14. Aggregated, these findings point to a 

preferential visual processing of animate objects, most likely also 

reflected in the representational organisation of the visual stream12,13. 

However, the animate categorical division contains several sub-

categories also known to cluster together, such as scenes in the 

parahippocampal place area15, faces in the fusiform face area16 and 

body parts in the extrastriate body area17 (for review see Martin, 

200718). It remains unclear how such sub-categories also might differ 

in visual processing. We address this question by testing differences 

across several categories (i.e., fruits and vegetables, processed foods, 

objects, scenes, animal bodies and faces, human bodies, and faces), 

known to cluster together throughout the visual stream, in their 

propensity to conscious access using the Attentional Blink paradigm 

(AB)19. 
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In the AB paradigm, two targets (T1 and T2) are embedded in a rapidly 

presented stimulus stream (RSVP). The frequently replicated finding 

is a reduced ability to report T2 when it is presented in a temporal 

window of 200-500 ms after a correctly identified T1. This effect 

disappears when subjects are asked to ignore T119, indicating that the 

fundamental explanation for this effect is attentional rather than 

perceptual. Most theoretical accounts of the AB suggest a two-stage 

information-processing model20,21. First, both targets are rapidly and 

automatically processed to a high-level representational stage. This is 

followed by a capacity-limited second stage, where the percept is 

transformed into a reportable state (i.e., working memory). Neural 

findings22–26 have suggested that the AB arises at the second stage, 

after semantic processing of the object. This is in contrast to 

backwards masking, which is known to interrupt feedback loops in 

early processing27–29. Since feedback loops between visual areas are 

thought to be intact in the AB26, combined with a behavioural outcome 

that typically yields a significant number of both correct and incorrect 

trials, this paradigm is an ideal approach to investigate the bifurcation 

between conscious and unconscious visual processing.  

 

One potential problem of studying categorical differences is that many 

categories share low-level scene statistics30, which also are known to 

explain behaviour31. Consequently, an issue that must be taken into 

account is how to control for low-level scene statistics in a neurally 

plausible way. We address this issue by using a Deep Convolutional 

Neural Network (DCNN)32 which is designed in a hierarchy 

encompassing feature representations of increasing complexity, 

similar to the visual system. Recent studies using DCNNs trained to 

classify a large corpus of natural images have revealed a significant 

correspondence between DCNN layers and the visual hierarchical 

organisation in the brain both using fMRI33–36, and MEG5,37. This makes 

DCNNs attractive for modelling visual features rather than relying on 

manually labelling image features without knowing their relevant 

correspondence to the visual system.  
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Figure 1. Modulating conscious access using the Attentional Blink Paradigm. 

Due to copyright reasons, all photos except for the faces (which were 

photographed by one of the authors but have been anonymised) have been 

replaced by representational images. Eye regions are occluded above in the 

images to protect privacy but were not occluded in the experiment. A) We 

presented a rapid serial visual presentation to participants, with two targets 

(T1 and T2) following each other within a stream of distractors. On the left, 

the second target (T2) is shown 200ms after the first target (T1), and on the 

right, 800ms after the T1. In every trial, participants had to detect and later 

recall both T1 and T2 targets. B) We used a deep convolutional neural 

network (DCNN; yellow insert; 5 convolutional layers and 3 fully connected 

layers) to model the stimulus representational geometries (left) and predict 

our participants’ behaviour (right). The visual stimuli were fed into the DCNN, 

providing a hierarchical representation for each image. These unit activations 

were then analysed layer-by-layer and used to predict behaviour. 

 

The main question of the current study is if the organisation of the 

visual system promotes conscious access to certain objects more than 

to others. A priori, we had two related hypotheses: first we 

hypothesised that categories will differ in their access to 

consciousness. Our second hypothesis was that variance in conscious 
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access between image exemplars could be predicted using high-, as 

opposed to low-, level features derived from the DCNN. These two 

predictions are consistent with our current understanding of the 

categorical organisation of the ventral visual stream4,6,38,39, the high 

resemblance in representational geometry between the brain and 

DCNNs33–37, and theoretical models positing the AB as a disruption of 

late selection20,21. In addition, we explore whether trial-by-trial variance 

in performance is related to the similarity between the two targets in 

terms of visual features. We asked whether this relationship has any 

impact on conscious access and, if so, at what stage of processing do 

the two targets interact? To test this formally, we used a method called 

representational sampling, where trials of the AB are constructed with 

stimuli selected according to their location in DCNN representational 

geometries. To foreshadow, we show that there are categorical 

differences in the probability of conscious access. Differences across 

images are predicted using mid- to high-level visual features. 

Furthermore, we find a facilitating interaction effect between targets, 

increasing the probability to recover T2.  

Results 

Experiment 1 

Differences in AB magnitude as a function of category 

Participants were presented with Rapid Serial Visual Presentations 

(RSVP), consisting of scrambled masks, and two embedded targets. 

The targets were selected from a stimulus set of 48 images derived 

from 8 different categories – fruits and vegetables, processed foods, 

objects, scenes, animal bodies, animal faces, human bodies, and 

human faces. At the end of each trial, participants were requested to 

recall the first and the second target (see Figure 1A). First, we 

observed a significant AB effect using a two-tailed dependent t-test in 

T2 performance (T2 performance is always conditional on T1 correct 

trials; T2|T1) between lags (Lag 2; accuracy M = 0.704, SD = 0.041, 

Lag 8; M = 0.847, SD = 0.129, t(18) = -6.427, p < 0.001, see Fig 2A). 

We first pooled the images according to animate and inanimate 
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(excluding scenes) objects (see Table 1). Animate and inanimate 

objects have previously been shown to be differentially affected during 

the AB9–11. Similarly here, a repeated measures 2x2 ANOVA with lag 

and animacy as factors showed a main effect of lag (F(1,18) = 34.09, 

p < 0.001, η² = 0.654) and animacy (F(1,18) = 27.72, p < 0.001, η² = 

0. 606) as well as a significant interaction effect (F(1,18) = 45.63, p < 

0.001, η² = 0.606; see Fig 2B). Thus, in accordance with previous 

studies, the AB was less pronounced for animate images. For each 

sub-category (Table 2), using a repeated measures ANOVA, we 

observed a main effect of T2-lag (F(1,18)=42.87, p < 0.001, η² = 0.704) 

and category (F(7,126) = 45.49, p < 0.001, η² = 0.716), along with an 

interaction between category and T2-lag (F(7, 126) = 23.99, p < 0.001, 

η² = 0.571). Beyond the expected AB effect, the interaction effects 

reveal that different categories exhibit different attentional blink 

magnitudes (ABM; difference in performance between lag 8 and lag 

2). Separate AB effects were tested by contrasting lag 8 and lag 2 

performance within each category using a two-tailed dependent t-test 

(Fig 2C) – Fruits and Vegetables ( (18) = 6.912, p < .001), Processed 

foods (t(18) = 6.748, p < .001), Objects (t(18) = 3.003, p = .004), 

Scenes (t(18) = 8.073, p < .001), Animal bodies (t(18) = 5.259, p < 

.001), Animal faces (t(18) = 2.712, p = .007), Human bodies (t(18) = 

1.162, p = .13), Human faces (t(18) = 2.632, p = 0.008). 

 

Table 1: Mean and SDs for T2 performance for animacy. 
Animacy Mean (Lag 2) SD (Lag 2) Mean (Lag 8) SD (Lag 8) N 

Animate 0.792 0.171 0.872 0.126 19 

Inanimate 0.683 0.185 0.871 0.097 19 

 

Table 2: Mean and SDs for T2 performance for each category. 
Category Mean (Lag 2) SD (Lag 2) Mean (Lag 8) SD (Lag 8) N 

Fruits Vegetables 0.651 0.199 0.867 0.139 19 

Processed Foods 0.595 0.214 0.853 0.110 19 

Objects 0.806 0.173 0.893 0.079 19 

Scenes 0.406 0.234 0.695 0.237 19 

Animal bodies 0.642 0.232 0.822 0.159 19 

Animals faces 0.782 0.197 0.858 0.134 19 

Human bodies 0.859 0.179 0.879 0.153 19 

Human faces 0.886 0.133 0.927 0.085 19 

 



Chapter 2 

 40   

 
Figure 2. Animate objects elicit weaker attentional blink. A) The 
accuracy in detecting the second target conditional on having detected the 
first target for lag 2 and lag 8. Individual dots represent the mean performance 
for each subject, bold dots represent the mean performance across subjects, 
and error bars indicate 95% confidence interval around the mean in all plots. 
B) Performance plotted separately for animate and inanimate T2 targets. 
Attentional Blink Magnitude (ABM) is defined as the difference in performance 
between lag 8 and lag 2. Asterisk indicate significant difference in ABM 
between animate and inanimate. C) T2 performance for each category 
separately. Asterisks indicate p-values significant difference in ABM from 
zero. Two-tailed dependent t-test * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

Mid and high-level image features explain ABM variance  

For each image we extracted unit activations from all the layers 

throughout an AlexNet DCNN (see methods). For the convolutional 

layers, we averaged over the spatial domain to obtain feature 

activations. It is important to note that this DCNN was trained on 

classifying objects into categories from a different set of images than 

those presented in our experiment, and at no point was trained on the 

AB. To increase the generalization of the model fits to the test data, 

we selected informational features through a variance thresholding 
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approach. The feature selection was done by calculating the variance 

across samples in the training data (important to note that the test data 

was never part of the feature selection) and removing features with 

near-zero variance from both training and test data. The remaining 

feature activations were then applied to a cross-validated linear 

regression model aimed at predicting each image’s ABM. From these 

predicted ABMs, we can compute in each participant the mean 

absolute error (MAE). For significance testing, we permuted the image 

labels, repeated the cross-validated linear regression model, and 

computed the average MAE across subjects. We repeated this 

permutation procedure 3000 times to estimate the distribution of MAE 

under the null hypothesis that our image labels are interchangeable. 

We then compared our observed MAE (averaged across subjects) to 

this null distribution and obtained p-values. We were able to 

significantly (Bonferroni corrected alpha = 0.00625) predict the ABM 

using features derived from layer conv4 (MAE M = 0.19, STD = 0.04, 

p = 0.003), conv5 (M = 0.179, STD = 0.04, p < 0.001), fc6 (M = 0.159, 

STD = 0.033, p < 0.001), fc7 (M = 0. 1593, STD = 0.033, p < 0.001), 

and fc8 (M = 0.191, STD = 0.048, p < 0.001). To see if one layer had 

significantly lower error than any other layer, we tested the MAE for 

each pair-wise comparison of layers across subjects with a two-sided 

dependent t-test. In Fig 3B we show a summary of this result, where 

we find that Layer 7 (Fig 3C) has a significantly lower error than layer 

1 (mean difference = -0.21, t(17) = -6.14, p < 0.001), layer 2 (mean 

difference = -0.15, t(17) = -7.8, p < 0.001), layer 3 (mean difference = 

-0.16, t(17) = -10.83, p < 0.001), layer 4 (mean difference = -0.18, t(17) 

= -5.8, p < 0.001) and layer 8 (mean difference = -0.18, t(17) = -5.17, 

p < 0.001).  



Chapter 2 

 42   

 
Figure 3. DCNN activation units predict attentional blink magnitude. A) 

Permutation test distributions. Histograms show the mean absolute error 

(MAE) after averaging the prediction across participants with randomised 

image labels. Circles point to the observed MAE. The Bonferroni corrected 

alpha value for 8 tests is p < 0.00625. B) Layer by layer comparisons of MAE. 

Comparisons are done row-wise, where green indicates a lower MAE, or 

better fit, in comparison to the corresponding column. Only significant 

(Bonferroni corrected) comparisons are denoted with mean differences in 

MAE between comparisons. C) ABM per image. Due to copyright reasons, all 

photos except for the faces (which were photographed by one of the authors) 

have been replaced by representational images. Eye regions are occluded 

above in the images to protect privacy but were not occluded in the 

experiment. Black bars indicate the observed Attentional blink magnitude 

(ABM), red line is the average predicted ABM based on features from Layer 

fc7 (which outperformed all other layers, see panel B). Individual dots 

represent individual participants and error bars indicate the 95% confidence 

interval. Layer fc7 explained 46% of the variance observed. The insert panel 

shows the average predicted ABM on the y axis, and the average observed 

ABM per image, on the x axis. 
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Shared image features between targets predicts performance 

In addition to predicting the ABM for each image, we sought to better 

understand the trial-by-trial differences in the AB. For each trial, we 

correlated the two targets (T1 and T2) based on their features 

(Pearson correlation, Fig 3B) to obtain a T1-T2 similarity measure 

within each layer. We then averaged the similarity for all hit and miss 

trials for each participant and tested the difference for each layer using 

a two-tailed dependent t-test. Our test revealed a significantly higher 

representational similarity between targets in hit-trials compared to 

miss-trials for layer conv2 (Hit; similarity M = 0.375, SD = 0.008, Miss; 

M = 0.354, SD = 0.014, t(18) = 4.967, p < 0.001, Cohen’s d = 1.761), 

conv3 (Hit; M = 0.329, SD = 0.010, Miss; M = 0.299, SD = 0.016, t(18) 

= 6.273, p < 0.001, Cohen’s d = 2.130), conv4 (Hit; M = 0.257, SD = 

0.009, Miss; M = 0.244, SD = 0.012, t(18) = 3.505, p = 0.003, Cohen’s 

d = 1.258), conv5 (Hit; M = 0.131, SD = 0.007, Miss; M = 0.119, SD = 

0.011, t(18) = 3.311, p = 0.004, Cohen’s d = 1.233), fc6 (Hit; M = 0.023, 

SD = 0.002, Miss; M = 0.018, SD = 0.004, t(18) = 4.009, p = 0.001, 

Cohen’s d = 1.520), fc7 (Hit; M = 0.026, SD = 0.003, Miss; M = 0.021, 

SD = 0.005, t(18) = 3.189, p = 0.005, Cohen’s d = 1.093), fc8 (Hit; M 

= 0.139, SD = 0.013, Miss; M = 0.104, SD = 0.022, t(18) = 6.134, p < 

0.001, Cohen’s d = 1.864; Fig 4B). This suggests that the ongoing 

visual processing of T1 can lower the conscious access threshold for 

T2, if T2 shares visual features with T1. This was true for all layers 

except for layer 1. 
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Figure 4. DCNN representational distance and target similarity 

explain trials of the AB. A) Depiction of analysis procedure. For each 

layer, DCNN representations are extracted for each image. These feature 

activations were then compared for all image pairs (Pearson correlation), to 

estimate the similarity between pairs. Due to copyright reasons, all photos 

except for the faces (which were photographed by one of the authors) have 

been replaced by representational images. B) Mean similarity between T1 

and T2, based on feature activation of each layer, for lag-2 missed and hit 

trials separately. Separate dots represent single subjects. The mean similarity 

across subjects is represented by a large black diamond and black bars 

denote 95% confidence interval. Two-tailed dependent t-test * = p < 0.05, ** 

= p < 0.01, *** = p < 0.001. 
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Experiment 2 

Constructing AB trials using representational sampling 

The finding that T1-T2 similarity influences T2 performance prompted 

us to design a follow-up study. We sought to investigate the causal 

effect of target-target similarity by manipulating the targets’ category 

and feature similarity. We developed a procedure called 

representational sampling, which first characterises a variety of 

stimulus response profiles, and samples a subset of stimuli tailored for 

our experiment. We used unit activations from layer 5 (see methods 

for rationale) of the DCNN as stimulus response profiles. We 

measured these unit activations on 250 images, derived from 

ImageNet40, to yield 16 images as our T2s; in turn chosen to represent 

four categorical groups equally (mammals, insects, vehicles, and 

furniture). For each image we then selected two T1s based on 

category (same or different) and similarity within layer 5 (similar or 

dissimilar), resulting in eight T1s per T2. This allowed us to examine 

the specific contribution of high-level feature similarity and category 

membership separately. We presented these four conditions to 24 new 

participants in an AB task similar to that of Experiment 1. 

 

 

Table 3: Mean and SDs for T2 performance in experiment 2. 

T2|T1  

Category  Similarity  Mean  SD  N  

Same   Similar   0.85  0.10  
2

4  
 

   Dissimilar   0.81  0.09  
2

4  
 

Different   Similar   0.82  0.08  
2

4  
 

   Dissimilar   0.74  0.12  
2

4  
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Table 3 shows the group means of T2 performance for each of the four 

conditions. The probability of correctly reporting T2 was the highest 

when T1 came from the same category and had similar visual feature 

activation in layer 5 of the DCNN (M = 0.849, SD = 0.097). In contrast, 

the lowest probability of correctly reporting T2 was observed when T1 

came from a different category and was dissimilar (M = 0.741, SD = 

0.123). A 2x2 (Category by Similarity) repeated measure ANOVA 

showed a significant main effect for both category (F(1,23) = 20.68, p 

= <.001, η2 = 0.473) and similarity (F(1,23) = 45.468, p = <.001, η2 = 

0.664), as well as an interaction effect (F(1,23) = 5.413, p = 0.029, η2 

= 0.191). The larger effect size for the similarity factor indicates that 

visual features over semantic relevance determine behaviour. 

 

Figure 5. Target similarity between T1 and T2 explains T2 

performance. A) Representational sampling was used to construct trials of 

experiment 2. Each of the sixteen T2s were either preceded by a T1 from the 

same/different category and similar/dissimilar in representational space within 

layer 5 of the DCNN. To ensure that participants did not use low-level 

statistics (such as colour) when reporting the targets, we switched the 

response menu to a semantic task. B) Behavioural results from experiment 2. 

Our results show that features similarity explain a significant portion of T2 

performance. Individual dots correspond to individual subjects. Error bars 

indicate the 95% confidence interval. Statistics were performed using a 

repeated measures ANOVA (see results). * = p < 0.05, ** = p < 0.01, *** = p 

< 0.001. 
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Discussion 

We investigated the effect of category membership and image 

features on conscious access using natural images in the Attentional 

Blink19 paradigm (Fig 1A and B). By testing images spanning several 

categories we first show a clear division in performance between 

animate and inanimate objects, where animate objects reveal a 

reduced AB caused by the processing of the T1 (Fig 2B), in line with 

previous reports9,10. We further show that this bias is not only 

expressed between this super-ordinate division, but also extends to 

various sub-categories. Using a DCNN to model the stimulus visual 

features, we show that mid- and high-level features in natural images 

(Fig 3) regulate the AB magnitude. In addition, we show that target-

target similarity (Fig 4 and 5) interacts with target selection, providing 

a mechanistic explanation of the AB phenomenon and of conscious 

access in object recognition.  

 

Previous studies have shown differences between categories in the 

AB, most extensively between animate and inanimate objects9–11,41. 

The animacy bias in visual processing has been attributed to 

evolutionary relevance, as opposed to visual expertise, reflected in its 

importance for ancestral hunter-gatherer societies (The animate 

monitoring hypothesis)42. Evidence for this hypothesis comes from a 

wealth of behavioural studies showing that animate objects are more 

quickly and more often detected in different types of attentional 

tasks7,42. Likewise, animate and inanimate objects are distinctly 

represented throughout the ventral visual stream8,43, which has been 

argued to be an evolutionary phenomenon and not contingent on 

visual experience44. In our current study, we find that the AB 

magnitude (ABM – performance difference between Lag-8 and Lag-2) 

is larger for inanimate objects, similar to Guerrero and Calvillo 

(2016)10. The finding by Guerrero and Calvillo has been contested by 

Hagen and Laeng (2017)11 who showed that animate objects are 

simply reported more often, but that the ABM is unaffected. Our results 

argue against the findings of Hagen and Laeng and, more importantly, 

reveal that differences in AB magnitude exist in a myriad of sub-

categories. Here we examine a significant number of categories, which 
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are known to cluster throughout the visual cortex. We show a high 

variance in the effect of the AB across categories (Fig 2C), implying 

that distinctive sub-categories have special privilege in the path to 

conscious access. One possible mechanism for categorical 

differences in conscious access can be related to the findings of 

Carlson et al. (2014)12, who showed that animate objects that are 

neurally coded as more animate (as assessed by a decoding scheme) 

in the human analogous of inferior temporal cortex (hIT) are more 

quickly categorised as animate in a speeded discrimination task. 

Translated to our task, this would mean that certain categories are 

more distinctly represented, with less representational overlap to other 

images, leading to more robust processing of these categories. It is 

important to note that by looking at the differences between Lag-8 and 

Lag-2, effectively baselining each image with its own Lag-8 

performance, our results cannot be explained by differential effects of 

masking. Importantly, this implies a dissociation between attentional 

relevance and conscious access, since it would be reasonable to 

assume that attentional relevance would affect Lag-2 and Lag-8 

equally.  

 

The finding that the ABM varies across categories (Fig 2C) is hard to 

interpret without properly examining image features of different 

complexities. Many semantic categories share low-level statistics30,31 

and, without delving further than categorical membership, one cannot 

disentangle at which level of processing the differences occur. The 

prediction of ABM across visual objects achieved by modelling DCNN 

unit activations from the mid to late layers explained a large proportion 

of AB variance across images (~46% of the variance in layer fc7, Fig 

3C). This implies that the bottleneck produced by the AB is due to late 

visual processing and probably reflects the particular categorical 

organisations within higher-tier visual areas. This relationship between 

neural representation of images and behavioural outcomes is 

supported by recent work showing that the particular representational 

organisation in late visual areas predicts certain behavioural 

measures, such as reaction time12,13,45. This ‘conceptual’ approach to 

conscious access promotes a more fundamental view to how visual 
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consciousness might operate by focusing on the organisation of the 

visual system rather than on top-down mechanisms. 

 

Our experiments further enabled us to explore the importance of T1-

T2 similarity. Only a handful of studies have investigated target-target 

similarity in the context of AB9,41,46–48. In one of the earliest attempts to 

study target-target similarity and its effect on T2 performance, Awh et 

al. (2004)46 concluded that similarity between targets is detrimental to 

T2 reportability. This led to the multiple-resource channel hypothesis 

(MRCH)46. According to the MRCH, two targets (T1 and T2) can be 

processed in parallel, but only if their visual features are different 

enough to be processed through distinct feature channels. While a few 

following studies have corroborated this notion41,47,48, our study reveals 

that similarity is beneficial for performance. The difference in results 

might be explained by the way we define similarity by image features. 

Previous studies used categorical membership as a proxy to similarity, 

and thus it is possible that our findings reflect a facilitation effect not 

found in the previous studies (but see9). Importantly, while visual 

features function as stepping stones toward semantic meaning, it is 

unclear that such visual features would be maintained in working 

memory in our paradigm. Task-relevant similarity (i.e. the semantic 

content stored in working memory necessary to successfully carry out 

the task) between targets has been shown to be key for inducing a 

larger blink48. We would argue that the visual features within the DCNN 

models processes that precede working memory representations. As 

such, the target-target similarity rather enhances visual processing of 

T2, leading to a more probable recovery. The combined findings of all 

these studies highlight a relatively unexplored aspect of AB, where the 

relationship between the targets might play a significant role in 

explaining many AB phenomena. Further questions could be explored 

using a combination of brain measures to determine representational 

similarity within subjects, which might potentially also explain 

individual differences in performance.  

 

In conclusion, we present compelling evidence that there are 

categorical differences in conscious access in object recognition. 

Specifically, we present findings that attribute differences in conscious 
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access between image exemplars to difficulties in representational 

readouts of features in higher-tier visual areas. This visual feature-

related bias is reflected in a stable functional organisation, where fine-

grained category distinctions have a larger impact on conscious 

access than previously believed. Moreover, we point to a more 

dynamic way in which the context (i.e. the similarity between T1 and 

T2) biases the probability for a target to be consciously perceived. In 

summary, our findings suggest that object categories and high-level 

visual features constrain conscious perception of natural images. 

Methods 

Experiment 1 

Participants 

Twenty participants (19 females; age range: 19-22; mean = 20.1 ± 1.2) 

were recruited for the study. We excluded two participants due to 

incomplete data. One additional participant was excluded for the 

image-by-image analyses due to lack of trials where T2 was correct 

for one image after filtering for T1 correct. All participants provided and 

signed informed consent and were rewarded for their time via course 

credits or financial compensation (at the standard rate of £7/h). All 

participants had normal or corrected-to-normal vision, and no known 

history of neurological disorders. The Ethical Review Committee of the 

University of Birmingham approved the experiment. 

Procedure 

Participants viewed visual objects in a rapid serial visual presentation 

(RSVP), and were asked to detect two targets (T1 and T2) embedded 

into a stream of distractors (Fig 1A). Following the stream, a response 

menu was presented for T1, which included the T1 and two foils, and 

the participant had to identify the target with a button press. A similar 

response menu was then presented to identify the T2. The foils in the 

menu always belonged to the same category as the targets (Fig 1A, 

right panel). 
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Design and Stimuli 

Participants were seated 60 cm away from a Stone monitor (60Hz 

refresh rate), and stimuli covered 5 degrees of visual angle centrally 

on a grey background. Stimulus presentation was achieved using the 

Psychtoolbox extension (version 3; Brainard, 1997) in MATLAB 2016b 

(MathWorks Inc., Natick, USA). Stimuli consisted of 48 images, 

derived from eight different categories: fruits and vegetables, 

processed foods, objects, scenes, animal bodies, animal faces, 

human bodies, and human faces (Fig 1B). It’s important to note that 

images were displayed in greyscale to reduce performance for human 

observers. To generate the items used as distractors in the stream, 

each image was divided into 5 x 5 (25 total) squares. Each square was 

then inverted and randomly assigned to a new square position. 

Following a standard Attentional Blink (AB) paradigm19, each trial 

started with 300 ms of fixation, followed by a rapid serial visual 

presentation (RSVP) consisting of 19 images. Each image was 

presented for 16.7 ms with a stimulus-onset asynchrony (SOA) of 100 

ms (Fig 1A). Embedded into the stream of distractors, two non-

scrambled targets (T1 and T2) were presented at two different lag 

conditions (Lag-2: 200ms and Lag-8: 800ms). The T1 was always 

presented as item 5 in the stream, while T2 was either presented as 

item 7 (Lag 2) or item 13 (Lag 8). Each participant completed 12 runs 

(excluding one practice run of 5 trials). Across all runs each image was 

presented 12 times as T2 for both lags, for a total of 24 repetitions per 

image, and a total of 1152 trials. All 48 images were presented on an 

equal number of trials either as T1 or as T2, randomized within blocks 

with no trial having the T1 and T2 coming from the same superordinate 

category. Importantly, the same pair of T1 and T2 was always 

presented in both the Lag-2 and Lag-8 conditions, within the exact 

same stream of distractor masks in the RSVP trial. Participants had to 

press one out of three buttons to identify the correct target from the 

foils, or a fourth button when they missed the target. The two foils 

came from the same category as the target.  
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Deep Convolutional Neural Network (DCNN) 

We employed a DCNN (AlexNet, see Fig 1C)32, implemented through 

Python and Caffe49, as a model of the visual cortex for extracting 

hierarchical visual features from our stimuli (we don’t intend the use of 

model here to mean an exact biological model, but merely to 

approximate the hierarchical architecture that is known to exist in 

both). We chose AlexNet due to its relative simplicity, compared to 

more recent DCNNs, and its well-studied relation to the human visual 

system33–36,43. AlexNet consists of eight layers of artificial neurons 

stacked into a hierarchical architecture, where preceding layers feed-

forward information to the next layer (Fig 1B). The first five layers are 

convolutional layers, whereas the last three are fully connected layers. 

While the fully connected layers (fc6, fc7, and fc8) consist of one-

dimensional arrays (sizes of 4096, 4096, and 1000 units respectively), 

the convolutional layers have the dimensionalities of: layer 1 (conv1) - 

96x55x55 (96 features, over 55 x 55 retinotopic units), layer 2 (conv2) 

– 256x27x27, layer 3 (conv3) – 384x13x13, layer 4 (conv4) – 

384x13x13, and layer 5 (conv5) – 256x13x13. For all analyses we 

averaged the values in the convolutional layers for each image over 

the spatial dimension, leaving them with the vector length of 96, 256, 

384, 384, and 256 respectively. This network was pre-trained on 1.3 

million hand-labelled, natural images (ImageNet; Russakovsky et al., 

2015) for classification into 1000 different categories (available at 

http://caffe.berkeleyvision.org/model_zoo.html), reaching near-human 

performance on image classification (Krizhevsky et al., 2012). Our test 

set of 48 images were analysed through the network, and we used the 

last processing stage of each layer as model output for further 

analyses. To keep the images as close to the training data as possible, 

and to avoid distortions of all levels of feature representations, the 

colour versions of the images were used.  

Analyses of behaviour and image features 

For each image, we calculated mean T2 accuracy at both Lag-2 and 

Lag-8 across subjects. We then computed attentional blink 

magnitudes (ABM) by subtracting Lag 2 mean accuracy from Lag 8 

mean accuracy. ABM then becomes a measure of how much the AB 

http://caffe.berkeleyvision.org/model_zoo.html)
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time window affects the recall of each image separately. In the interest 

of quantifying image features, within our DCNN, we extracted unit 

(neuron) activation patterns for each image from all the layers. For the 

first five convolutional layers, we averaged the activation over the 

spatial dimension. These activation patterns were incorporated into a 

multivariate linear regression model, with the activation patterns from 

each layer as features in the model to predict each image’s ABM within 

subjects. The prediction pipeline followed a leave-one-image-out 

procedure (i.e., train on forty-seven images and test on one left out 

image) – where, based on the training data, the features were 

thresholded to have a larger variance than 0.15, to remove near-zero-

varying features, and later standardised to unit variance with a mean 

of zero. Our choice of a threshold of 0.15 was arbitrary and had little 

to no effect when compared to only removing zero variance features. 

It’s important to note that the test data was never part of any feature 

selection, as this would constitute double dipping. All pre-processing 

and fitting procedures were implemented using Sci-kit learn50, for 

python code see [https://github.com/Charestlab/abdcnn]. 

Target-target similarity  

We further tested the effect of target-target similarity on conscious 

access. Here, we go beyond using predetermined categories as a 

proxy for feature similarity and examine the representational distance 

between images within a given layer of the DCNN. For each layer we 

calculated the Pearson correlation between all possible T1-T2 pairs 

(Fig 4A), we then averaged the similarity for hit and miss trials 

separately. This allowed us to test the difference between hit and 

misses in terms of the relationship between the targets. 

Experiment 2 

Participants 

We recruited 24 participants (Age - M= 19.38, SD = 0.95, females = 

19, males = 5) with normal, or corrected-to-normal, vision. All 

participants provided and signed informed consent and were rewarded 

for their time via course credits or financial compensation (at the 

https://github.com/Charestlab/abdcnn
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standard rate of £7/h). The experiment was approved by the ethics 

committee at the University of Birmingham. 

Procedure and stimuli 

Unless stated otherwise, all procedure and visual presentations were 

identical to Experiment 1 (see fig 5A). Sixteen images, a subset of 250 

labelled and processed images from the ImageNet database40, were 

selected as T2s. The T2s derived from four different categories 

(mammals, insects, vehicles, and furniture), and each category was 

uniformly represented in the T2 selections. Similarity between images 

was determined by their Pearson correlation coefficient within layer 5 

of the DCNN. The layer 5 was chosen because it was a high-

performing layer in the first study and to still maintain the retinotopic 

information for an additional analysis not used in this study. To model 

the layer-wise unit activations for this new set of images, we used the 

same pre-trained network (AlexNet)32 as in Experiment 1. For each T2, 

we selected two similar and two dissimilar images from the same 

category and any of the other categories as T1. This resulted in eight 

potential T1s for each T2 in a 2-by-2 factorial design (Similarity X 

Category) (Fig 5A). Each condition had the following mean Pearson 

correlation between T1 and T2, Same category/Similar layer 5 

representation (Pearson r M = 0.43, SD = 0.114), Same 

category/Dissimilar (M = 0.136, SD = 0.113), Different category/Similar 

(M = 0.337, SD = 0.114) and Different category/Dissimilar (M = -0.056, 

SD = 0.099). T1 was always placed at position 11, and T2 at position 

13 (in a RSVP of 19 items for each trial). Each block consisted of a 

presentation of each T2 paired with every possible T1, for a total of 

128 trials per block divided into 4 runs (32 trials per run). Each 

participant completed 2 blocks for a total number of 256 trials per 

session (64 trials per condition).  

Data availability 

Supplementary data associated with this article can be found, in the 

online version, at [https://github.com/Charestlab/abdcnn/].  

https://github.com/Charestlab/abdcnn/
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Code availability 

Code associated with the manuscript is available at 

[https://github.com/Charestlab/abdcnn/]. 
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Abstract 

Attention is a crucial component for our survival. By selectively 

attending to objects in our environment, we can allocate cognitive 

resources where they are needed. One way to investigate our 

attentional processing abilities is to push our senses to the limit by 

presenting consecutive stimuli at a fast pace, known as a rapid serial 
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visual presentation (RSVP). One common finding in RSVPs, is that 

when a stream of distractors has two targets embedded (T1 and T2, 

respectively), T2 is often omitted when placed 200-500 ms after T1, 

known as the Attentional Blink (AB). In a previous study we showed 

that when both targets share visual features, T2 performance is 

enhanced. This finding contrasts with repetition blindness (RB), a 

phenomenon where a direct repetition, or two targets that are similar 

in the task-relevant domain, often leads to additional impairments of 

T2 performance. One explanation to this incongruence could be 

related to how similarity between two targets is defined. The visual 

system follows a hierarchical structure, by extracting low-level features 

first in the early visual cortex. These features are later combined and 

aid the processing of more complex features until semantic properties 

emerge. This implies that targets can be similar at many stages of 

processing and investigating how similarities of targets at different 

levels of processing affect performance can provide novel insights into 

AB and RB. In a previous study we found that similarity in visual 

features between two targets increases T2 performance, in direct 

contrast to RB. Here, we investigate this apparent conflict between our 

findings and the literature by defining similarities between targets 

using functional magnetic resonance imaging, 

electroencephalography, and a convolutional neural network. We 

show that target similarity in low-level visual features, such as in V1, 

decreases the AB magnitude which corroborates our previous 

findings. We also find that similarities in late stages of processing 

increase the AB magnitude, in line with RB findings. Furthermore, we 

also show that individual differences in performance can be explained 

by a wider representational space in the right temporoparietal junction 

and inferior frontal gyrus. These findings elucidate how object 

recognition and conscious access is shaped by attention, concurrent 

processes, and the context in which objects are presented in. We 

discuss implications and further studies.  

Keywords: Attention; Working memory; CNN; fMRI; EEG; 

Consciousness  
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Introduction 

 

Every second our brain is flooded with an overwhelming amount of 

visual information from our environment. Our eyes move quickly over 

the visual field, sampling information several times per second. 

Therefore, humans have evolved to be exceptionally quick at 

recognizing objects in natural scenes. For example, studies have 

shown that we can make a saccade towards an animal in 120 ms1 and 

extract semantic information from only 13 ms of exposure2. This rapid 

processing of objects is believed first to follow a feedforward 

hierarchical organisation3,4. Low-level image statistics are processed 

in posterior visual areas (e.g. in the primary visual cortex; V1) and 

progressively more complex visual features are then abstracted in 

multiple anterior brain areas with a distributed neural population that 

encodes semantic categories5–7. This initial forward stream is then 

followed by recurrent information from higher-tier visual areas re-

entering lower visual areas8–10 making it likely that subsequent 

fixations lead to overlapping object processing. There are several 

outstanding questions as to how the brain processes temporally 

adjacent information, especially when similar neural representations 

are evoked. Here we address several of these questions with a well-

studied task to measure temporal attention using state-of-art methods 

to extract representational similarities between image pairs from 

functional magnetic resonance imaging (fMRI), electroencephalogram 

(EEG), and a deep convolutional neural network (DCNN)11 trained on 

object categorisation. 

 

A common method to investigate temporal processing is rapid serial 

visual presentation (RSVP), where one or more targets are embedded 

within a stream of distractors. Two well-known phenomena were 

discovered using this approach, the attentional blink (AB)12 and 

repetition blindness (RB)13,14. In the AB, a lapse of attention is 

generated when the second target (T2) is presented 200-500 ms after 

the first target (T1). Due to the ongoing processing of T1, participants 

https://paperpile.com/c/SrYmpl/iTtQ3
https://paperpile.com/c/SrYmpl/lzCq4
https://paperpile.com/c/SrYmpl/UiAyy+C5n2B
https://paperpile.com/c/SrYmpl/Qw7Tq+gjkDX+y3s7b
https://paperpile.com/c/SrYmpl/Or7tj+Q6qln+W123o
https://paperpile.com/c/SrYmpl/ZW2KN
https://paperpile.com/c/SrYmpl/XOiSv
https://paperpile.com/c/SrYmpl/hnbyz+1Z5pY
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are often unable to report T215. Specifically, when subjects are asked 

to ignore T1, the T2 performance improves significantly12. This implies 

that deliberate processing of T1 interferes with T2, however, the exact 

neural mechanism by which this interference occurs is unknown. 

Similar to AB, RB describes a phenomenon where T2 is missed due 

to a repetition of the target, where theoretical accounts suggest that 

task-relevant dimensions need to be repeated for RB to occur13,16,17. 

For example, Sy and Giesbrecht showed that when gender was the 

task-relevant feature, the feature to be reported, repeating the 

emotional content (for example two happy faces) did not negatively 

affect performance. However, performance was impaired when both 

T1 and T2 were of the same gender. This implies that RB is not a low-

level repetition suppression effect evoked by an exact repetition of the 

stimulus, but rather is due to repetition in higher-level representations 

that are related to the task goals and a failure of separating targets into 

separate working memory representations. 

Interestingly, in contrast to findings from RB, Lindh et al. (2019)18 found 

that targets that share low-level visual features can be beneficial for 

reportability of T2. Previous studies that have examined target-target 

similarity have opted to use simple heuristics such as categorical 

adherence as a proxy for similarity16,19. For example, two target images 

containing horses can be similar at the level of semantics but 

depending on viewpoint they are not necessarily similar in low-level 

visual features. Therefore, these methods are likely to be limited in 

how well they can describe actual overlap in representational space in 

the brain. In contrast, Lindh et al. (2019)18 defined similarities between 

targets using different layers of a deep convolutional neural network 

(DCNN)11. This DCNN was trained on object categorisation within 

natural images, which have been shown to lead to a remarkable 

similarity in representational geometry to the human inferior temporal 

cortex20, with early and late layers of the DCNN corresponding to the 

posterior-anterior hierarchical ordering found in the visual system21–24. 

The usage of the DCNN and the complexity of the scenes could 

provide a different continuum of image similarity, which had not been 

considered before. In a multi-target RSVP where several objects are 

processed simultaneously, it is inevitable that the processing of these 

https://paperpile.com/c/SrYmpl/c9WFN
https://paperpile.com/c/SrYmpl/XOiSv
https://paperpile.com/c/SrYmpl/hnbyz+9fmS7+b1eK
https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/9fmS7+YucRn
https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/ZW2KN
https://paperpile.com/c/SrYmpl/rfttV
https://paperpile.com/c/SrYmpl/935As+FGRg7+284Ev+VQRZ2
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targets interact at some level within the visual hierarchy. Given that AB 

seems to be driven by deliberate processing of T112, one contributing 

process could be an interaction between the two targets. Studying 

target-target similarity at different processing levels in the human brain 

could thus provide insights in how overlapping target representations 

affect conscious access to visual stimuli.  

 

To fill this gap in our knowledge, we examine to what extent 

representational similarity between targets affects reportability. We 

define similarity using a broad spectrum of modalities, including fMRI, 

EEG, and DCNN. Critically, all three modalities provide a hierarchical 

account of object processing: brain activity patterns can reflect 

increasing complexity in space (fMRI; with a posterior-to-anterior 

gradient) and in time (EEG), and in units (DCNN) as the latter respond 

to increasingly complex features with increasing network depth, with a 

gradient from low-level features to high-level features across layers. 

This allows an examination of the full breadth of possible target-target 

representational relationships to an unprecedented degree. In the 

present research we ask how (1) target-target similarity correlates with 

behavioural performance trial-by-trial, (2) how overall similarity affects 

AB magnitude for an image and (3) how representational similarity can 

be used to explain individual differences in AB. To foreshadow, our 

results merge previous incongruent findings in regards to RB13,16,25, 

where target-target similarity leads to an impairment of performance, 

and to the conclusions drawn by Lindh et al. (2019)18, where target-

target similarity improves performance. We show that similarity in low-

level visual features enhances the probability of successful report, 

while representational overlap in late processing stages leads to an 

attenuation of conscious access to a second target occurring 200 ms 

after the first. Importantly, this analysis explains significant variance in 

both trial-by-trial performance and differences in AB magnitude 

between images. These results are stable to a large degree regardless 

of if we use fMRI, EEG or the DCNN to define target-target similarities. 

We also find that individuals who have larger distances in the 

representational space of images in the right temporoparietal junction 

(rTPJ) and right inferior frontal gyrus (rIFG), two brain areas commonly 

https://paperpile.com/c/SrYmpl/XOiSv
https://paperpile.com/c/SrYmpl/hnbyz+LUzoo+9fmS7
https://paperpile.com/c/SrYmpl/26nqV


Chapter 3 

 64   

associated with working memory updating26, show less of an AB 

impairment. 

 

 
Figure 1. Predicting conscious access from pattern-similarity estimates. 

Different stages of processing for each image were captured using fMRI, EEG 

and a deep convolutional neural network. We extracted the pairwise 

comparison for all images and used these similarity values to relate to 

conscious access in three different levels of analysis: lag-2 performance, 

attentional blink magnitude per image, and individual differences in conscious 

access performance.  

Results 

Previous studies have shown that similarities between T1 and T2 can 

both facilitate18 and impede conscious access 13,14,16,19,25. An important 

difference between these studies involves the level of complexity used 

in defining similarity. For example, the improved performance of the 

T2 report was shown using visual features derived from a DCNN while 

(visual features in contrast to semantic information). To investigate the 

role of target-target similarity in conscious access we used multivariate 

representations of images in fMRI, EEG and DCNNs, providing a 

precise account of similarity at various levels of description (Figure 1). 

Specifically, we test whether similarity in early- (V1, early EEG time 

points and early DCNN layers) vs late-object processing stages 

https://paperpile.com/c/SrYmpl/3EH8I
https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/9fmS7+LUzoo+YucRn+hnbyz+1Z5pY
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(ventral stream, late EEG time points and late DCNN layers) yields 

different accounts of the role of target-target similarity for conscious 

access. Participants (n=16) viewed natural scenes depicting visual 

objects (animate and inanimate objects) in four sessions of EEG while 

performing an attentional blink task (Figure 2A). Whole-brain fMRI (3T, 

3mm3 ; TR=0.764s; multi-band 4) data were collected in two separate 

sessions, while participants performed a simple working memory task 

(Figure 2B). The DCNN was a convolutional neuronal network with 5 

convolutional layers and 2 fully connected layers trained on object 

recognition11. Critically, the same natural scenes were used in the fMRI 

and EEG experiments, and modelled through the DCNN, enabling the 

use of RSA for comparisons to the attentional blink behavioural data.  

 

 

 

Figure 2. A) Attentional Blink (AB) paradigm. Targets (T1 and T2) were 

embedded in a rapid serial visual presentation of scrambled mask distractors. 

We manipulated two lags of the AB. For Lag 2 trials, the T2 was presented 

200ms following T1 and the two targets were separated by 1 distractor. For 

Lag 7 Trials, T2 was presented 700ms after T1 (with 6 distractors in between). 

Participants then had to report the identity of both targets. The behavioural 

performance for lag-2 and lag-7 shows a significant difference in T2 

performance between the two lags, indicative of an AB effect. B) The working 

https://paperpile.com/c/SrYmpl/ZW2KN
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memory task in the scanner. Participants performed a simple memory task 

while we collected brain activity patterns using fMRI. Each trial started with 2-

10 seconds of fixation, followed by a brief presentation of an image (0.7 

seconds), a 4.5-second-long retention period and finally a response menu 

where participants were asked whether or not the word shown corresponded 

with the centrally positioned object in the image. We observed no significant 

difference between the memory performance between the scanning sessions 

indicating that participants could reliably do the task in both sessions. 

Attentional Blink behaviour 

The attentional blink task consisted of a rapid serial visual 

presentation, where two target images were embedded in a stream of 

scrambled distractors. Each session consisted of 8 blocks of 120 trials. 

Each trial started with 1.25 seconds of fixation, followed by a stream 

of 19 images in rapid succession (one frame every 16.7 ms). Within 

the stream, the two targets (T1 and T2) were presented at either 200 

ms (Lag-2) or 700 ms (Lag-7) apart. The residual 17 images were 

mask distractors constructed by combining random images (see online 

methods). Participants showed a higher T2 performance at lag 7 (M = 

0.93, SD = 0.068) than at lag 2 (M = 0.823, SD = 0.05, t(15) = -7.79, p 

< 0.001, Figure 2A), indicating the commonly found attentional blink 

effect (Figure 2). In the scanner, participants completed a working 

memory task (Figure 2B), specifically designed for the low temporal 

resolution of fMRI. We used this task to characterise object 

representations from early visual perception to conscious access, 

emulating the stages of processing known in the attentional blink task 

but with a temporal resolution that leads to better SNR in fMRI. To 

avoid fatigue and discomfort, the ethical committee of University of 

Amsterdam allows for a maximum of 90 minutes in the scanner per 

session. Therefore, we divided up our working memory task in the 

scanner into two 1-hour sessions with 1 hour rest in between. We 

observed no difference in performance between session 1 (M = 0.96, 

SD = 0.04) and session 2 (M = 0.95, SD = 0.06, t(16) = 0.75, p = 0.46, 

Figure 2B). 
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EEG decoding of attentional blink targets 

Before measuring target-target similarity based on the scalp activity in 

the EEG trials, we trained a shrinkage linear discriminant classifier27 to 

decode the identity of the targets presented in the attentional blink. We 

used a k-fold cross-validation procedure applied to each EEG time-

point separately. The classifier was trained on T1 trials, where there is 

the least disruption of the EEG signals, and tested on either the T1, T2 

presented at lag 2, or T2 presented at lag 7 (see online methods). We 

trained and tested the linear classifier across all possible pairs of 

conditions that we presented as targets in the AB, and here we report 

the average decoding accuracy across all pairs (see Supplementary 

Figure 1). The topographies elicited by the attentional blink targets 

provided enough representational detail to decode the identity of the 

targets in all conditions of the AB in a time-window starting at around 

80 ms until around 650 ms post-target onset. Moreover, we observed 

significantly greater decoding accuracies for the T2 presented at lag 7 

(in contrast to the T2 presented at lag 2) between ~160 ms and 620 

ms post-target onset.  

 

Target-target similarity explains intertrial differences in T2 

performance 

For each trial, we calculated the representational pattern similarity 

between T1 and T2 in the spatial (fMRI), hierarchical (DCNN) and 

temporal (EEG) domain (Figure 3A). Using 40 natural images that 

could either be the T1 or the T2, but without ever repeating the same 

image twice, we end up with 780 different T1-T2 combinations. For 

each participant, we binned the trials into 20 bins based on the 

similarity between T1 and T2. Then we averaged the T1-T2 similarity 

and the hit-rate within each bin and correlated the two measures for 

each participant independently using Pearson’s correlation. We tested 

the resulting correlation coefficients against 0 using a two-tailed one-

sample T-test. For fMRI, we found that trial performance and T1-T2 

similarity in V1 showed a significant positive correlation (M = 0.039, 

SD = 0.037, t(15) = 3.927, p = 0.002), while Ventral Stream (M = -

0.076, SD = 0.054, t(15) = -5.342, p < 0.001) showed a significant 

https://paperpile.com/c/SrYmpl/6v6KE
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negative correlation. In EEG, a cluster-level permutation test (5000 

permutations, t-threshold for defining clusters = 3) revealed a 

significant negative correlation around ~200 ms, peak correlation was 

at 196 ms, with M = -0.503, SD = 0.215, in line with late processing 

and confirming the finding in late visual areas in fMRI. Similar to V1 in 

fMRI, in early layers of the CNN we find that target-target 

representational similarity correlated positively for layer 1 (M = 0.103, 

SD = 0.064, t(15) = 6.042, p < 0.001). However, we do not find that 

later layers show an opposite effect, as with high-level processing 

areas of the brain. All p-values are FDR corrected for multiple 

comparisons. In regard to our fMRI results, we recognize a 

discrepancy between the EEG (showing similar results as the Ventral 

Stream ROI using fMRI) and the DCNN (analogous to the V1 result 

using fMRI). In combination, our fMRI results suggest that low-level 

interaction of the targets increases the probability of T2 to be perceived 

while high-level representational overlap interferes with the processing 

of T2. While the EEG data confirmed the late processing interference, 

the CNN data confirmed the early process facilitation of T2. 
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Figure 3. fMRI, DCNN and EEG results. Early and late processing of objects 

is presented for all modalities - V1, layer 1 and early EEG time points reflect 

early processes while ventral stream, layer 8 and late EEG time points reflect 

late processes. A). Lag-2 T2 performance and T1-T2 similarity correlations. 

Left, V1 and ventral stream, capturing low-level and high-level visual 

processing respectively. When T1 and T2 are similar in V1, we see an 

increased ability to recover T2. This is contrasted when T1-T2 are similar in 

higher visual areas, i.e. ventral stream. Middle, layer 1 of the DCNN show the 

same results as V1 with the fMRI data. However, layer 8 does not replicate 

the reverse effect as seen in the ventral stream. Right, EEG time series. T2 

performance has a negative correlation with target-target similarity during 

120ms-300ms, mirroring the results of the negative behavioural effect of 

target-target similarity found in the ventral stream. B) Image specific 

Attentional Blink Magnitude (ABM: lag 7 performance - lag 2 performance) 

correlates with an image’s overall similarity to all other images. Left, fMRI 

results show that images that are in general similar to other images in V1 

show a lower ABM, while images that are in general similar to other images 

in the ventral stream have larger ABM. Middle, DCNN results show identical 

patterns for layer 1 and layer 8 as with fMRI. Right, EEG results mirror the 
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result of the ventral stream in fMRI and layer 8 in the DCNN with images that 

are generally like other images at around 120-300 ms show a larger ABM. 

Shaded areas indicate 95% confidence interval. The black bar denotes time 

point clusters significant from zero. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 

 

Overall image distinctiveness as an explanation for differences in 

ABM 

Building on the finding that target-target similarity affects T2 

processing, we set out to investigate if the representational 

distinctiveness of an image can explain why some images seem to be 

more sensitive to the AB window (i.e., the temporal window at which 

conscious access to the T2 is impaired). To test this, we calculated the 

Attentional Blink Magnitude (ABM) for each image by comparing the 

performance at lag-7 to the performance at lag-2. This way we are 

baselining each image with its performance outside the AB window, 

which sets this measurement apart from simply looking at lag-2 T2 

performance as in the previous section. Based on pattern 

representations for each ROI in fMRI, a time point in EEG, and a layer 

of CNN, we calculated the average similarity of one image in respect 

to all other images (Figure 3B). This yielded one value per image, 

indicating how similar this image is overall to the rest of the data set. 

We then correlated the average similarity with the ABM for each image 

within participants and tested the correlation coefficient against zero 

using a one-sample T-test. In accordance with the previous analysis, 

we find a positive correlation between overall distinctiveness and ABM 

in V1 (M = 0.056, SD = 0.081, t(15) = 2.683, p = 0.026), indicating that 

images that are generally similar to other images in V1 show less of 

an ABM. Conversely, we find robust positive correlations in the ventral 

stream (M = -0.111, SD = 0.167, t(15) = -2.570, p = 0.027). In EEG, a 

cluster permutation test (5000 permutations, t-threshold for cluster 

definition = 3) showed that images that are generally similar to other 

images in a time window between ~150 – 210 ms (peak time = 188 

ms, M = 0.248, SD = 0.091) exhibit a larger ABM (Figure 3B), 

consistent with when late visual processing is predicted in higher-order 

processing brain areas. We tested the layers 1 and 8 (representing 

initial low-level and later more category related visual features) in the 
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CNN with the same methods as the ROIs in fMRI. Identically to fMRI, 

we find a negative correlation between average similarity and ABM in 

layer 1 (M = -0.150, SD = 0.147, t(15) = -3.963, p = 0.003), while layer 

8 (M = 0.114, SD = 0.130, t(15) = 3.398, p = 0.008) showed a positive 

correlation. All p-values are corrected for multiple comparisons using 

FDR. Even though ABM is a different measure than T2 performance 

in lag-2, these results mirror each other since a low ABM score is 

equivalent to better performance while a low T2 performance in lag-2 

is indicative of a bad performance. 

 

Individual differences in conscious access 

One question that has intrigued researchers in attention literature is 

the finding that some participants don’t exhibit an AB28–30 (Figure 4A). 

Importantly, looking at individual differences has been argued to be a 

promising method to understand the processes underlying the AB28. 

Here we investigated the notion of representational richness as a 

factor in explaining the large variability between subjects in the typical 

AB task. Specifically, we tested the overall similarity between all 

objects for a given region of the brain related to participants ABM. 

Here, a large representational richness would be reflected in large 

differences in the neural representations between objects. Using a 

searchlight procedure on the fMRI data, iterating over each brain voxel 

as a centre for a sphere, we averaged the representational similarities 

(measured using Pearson’s correlation) for all pairwise comparisons 

of the activity patterns elicited by our object stimuli. This average 

representational similarity score provided a representational richness 

index in each spherical searchlight for each participant. Across 

participants, for each sphere, we correlated the representational 

richness indices to the participants’ ABM. The searchlight revealed five 

main clusters positioned on the right hemisphere of the brain (Figure 

4, MAX R = 0.78; MNI 1, 36, 30; see supplementary table 1 for all 

regions and MNI coordinates, False Discovery Rate cluster forming 

threshold = 0.01, cluster threshold = 20). Specifically, we found that 

participants with more representational richness in the right 

temporoparietal junction (rTPJ) and right inferior frontal gyrus (rIFG) 

https://paperpile.com/c/SrYmpl/PHP8s+nzCuo+WdjNK
https://paperpile.com/c/SrYmpl/PHP8s
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are more vulnerable to the attentional blink, and conversely, 

participants with rich and decodable representations in this network 

perform better in the AB (Figure 4). This network is primarily known for 

its putative role in bottom-up saliency26, but has also been specifically 

noted in the AB31–34.  

 

 
Figure 4. Individual differences. A) (left) Example participants in the 

attentional blink task. The blue line shows the performance of a typical 

“blinker” participant, and the orange line shows the performance of a typical 

“non-blinker” participant. The right panel shows the multidimensional scaling 

projection on a two-dimensional plane of the representational dissimilarity 

matrix measured in a temporoparietal junction region of interest in each 

participant. Blue circles indicate animal and red circles indicate a non-animal. 

B) We performed a searchlight analysis to relate individual differences in 

representational richness to participants’ performance in the attentional blink. 

In each volumetric spherical searchlight, we measured Pearson’s correlation 

between the average representational distance and the attentional blink 

magnitude measured from each participant. The resulting correlation map 

https://paperpile.com/c/SrYmpl/3EH8I
https://paperpile.com/c/SrYmpl/EgAhL+61Ofx+Wm5zz+biYJy
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was corrected for multiple comparisons using a False Discovery Rate 

procedure (cluster forming threshold = 0.01, cluster threshold = 20). The 

searchlight analysis revealed a right-lateralized distributed network of cortical 

areas, including anterior inferotemporal cortex, temporoparietal junction, 

supramarginal gyrus, and inferior frontal cortex where the representational 

richness of a participant predicts that participant’s performance at the 

attentional blink task.  

 

Discussion 

In the current study we measured brain activity from functional 

magnetic resonance imaging and electroencephalography to 

investigate conscious access in object recognition. Specifically, we 

measured representational geometries at various levels of processing 

using representational similarity analysis (RSA) applied to fMRI data 

(using V1 and the ventral stream ROIs as representative of “early” and 

“late” visual processing respectively) and EEG data (at different 

moments in time following target presentation). We further completed 

this analysis framework with RSA applied to layers of a deep 

convolutional neural network. We tested the hypothesis of a 

relationship between target similarities and conscious access in the 

attentional blink. Previous work has established that similarity between 

T1 and T2 in a RSVP can lead to both increased18 or 

decreased13,14,16,19,25,35 likelihood of consciously perceiving the second 

target. We show that these two effects are dependent on where in the 

hierarchical stage of processing the targets are interacting. Critically, 

we show that our representational similarity framework can be used to 

explain three core components of conscious access in object 

recognition. First, we show that low-level and high-level similarities 

between T1 and T2 across trials predicts the likelihood of detecting the 

second target in opposite directions, where similarity in V1 increases 

T2 performance while similarity in the late ventral stream decreases 

T2 performance (Figure 3A). Second, image-specific brain activity 

patterns account for the attentional blink variability across stimulus 

conditions (Figure 3B). Third, representational richness measured in 

a core network involved in bottom-up attention explains individual 

https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/Ce2nr+1Z5pY+hnbyz+9fmS7+LUzoo+YucRn
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differences in conscious access. Altogether, our results provide a 

comprehensive view of the underlying mechanisms supporting 

conscious access in object recognition at the levels of processing in 

the brain. 

 

In the decades-long history of rapid serial visual presentation (RSVP) 

research, two main phenomena have been established: the attentional 

blink (AB) and repetition blindness (RB). The AB12 is by far the most 

prominent of these two, with hundreds of papers being published 

every year either using the AB as a method to induce failures to report 

T2 or to understand the mechanism underlying AB. The AB is defined 

as the inability to perceive a second target (T2) in a stream of 

distractors when the first target (T1) precedes it by 200-500 ms. On 

the other hand, RB14 is defined as when subjects are unable to 

recollect the second target if it is a repetition of the first target. This 

effect has later been extended to not necessarily be a repetition of the 

exact same stimuli, but has also been shown to be present when two 

words are homophones (e.g. allowed/aloud), when two words from 

different languages describe the same concept (e.g. Caballo/Horse)36, 

two visual objects from different angles25 and rotated images37. These 

studies indicate that it is not the perceptual similarities between targets 

that impede performance, but rather semantic relationships related to 

the task. In fact, task-relevance has been shown to be imperative for 

the repetition blindness effect16,17, implying that this is a working 

memory related phenomenon and not perceptual. Conversely, we 

have shown in a previous study18 that similarity between targets can 

also be beneficial for performance. In this current study, we explain 

the discrepancies between earlier findings by first showing that trials 

where T1 and T2 have a similar multivariate representation in V1 and 

the first layer of the DCNN also lead to a higher probability of 

successful T2 report (Figure 4A). This effect could not be found in the 

temporal EEG data, which might reflect difficulties in differentiating 

these early signals from other perceptual processes. However, we 

would argue that this is a reliable finding considering that we find this 

effect in two out of three modalities (fMRI and DCNN) and that we 

https://paperpile.com/c/SrYmpl/XOiSv
https://paperpile.com/c/SrYmpl/1Z5pY
https://paperpile.com/c/SrYmpl/9oVl
https://paperpile.com/c/SrYmpl/LUzoo
https://paperpile.com/c/SrYmpl/xbfK
https://paperpile.com/c/SrYmpl/9fmS7+b1eK
https://paperpile.com/c/SrYmpl/26nqV
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have found a similar effect in a previous study using a DCNN18. 

Second, we find that similarities between T1 and T2 in the ventral 

stream and EEG time-points between 120-290 ms has a detrimental 

effect on T2 performance (Figure 4A). This is in line with earlier 

findings of RB13,14,35, however, to the best of our knowledge we are the 

first to connect similarities of brain representations to this specific 

effect. Sy and Giesbrecht (2009) showed that this repetition effect is 

dependent on task-relevance by demonstrating that subjects are less 

likely to remember that T2 was a male if T1 also was a male face, but 

only when this was the to-be-reported dimension. Since our 

experiment has semantic task-demands, it corroborates the notion 

that T1-T2 similarities in later stages interfere with T2 working memory 

updating. While RB has been described as an inability to individualize 

a separate episodic token for T2 when it is similar to T114 and 

computational models of AB38,39 have proposed that T2 is being 

attenuated to protect the target to be reported (i.e. the working memory 

representation of T1) it is unclear as to why T1-T2 similarity in low-

level visual features would lead to larger probability of perceiving T2. 

Previous studies have shown a delayed working memory engagement 

of T2 at short lags40,41, indicating that the T2 representation lies 

dormant until resources are freed up and working memory can be 

engaged to encode T2. If the T2 neural trace must be maintained 

within lower-level visual areas until WM resources are freed up, 

recurrent information from higher-order processing of T1 might 

interfere with the T2 pattern. Considering the fragility of the percept, 

this interference would logically be more severe if the two targets are 

very different at this stage of representation. In other words, there 

might be a cost associated with having ambiguous information 

represented in lower-level visual areas, however, further studies are 

needed to answer this. Aggregated, our data support the notion of 

repetition blindness, where target-target similarities in representational 

space during late stages of processing affect T2 performance 

negatively, while a shared representational space between targets in 

early visual processing is beneficial for T2 performance. 

 

Previous studies have shown that certain types of stimuli are less 

https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/1Z5pY+hnbyz+Ce2nr
https://paperpile.com/c/SrYmpl/1Z5pY
https://paperpile.com/c/SrYmpl/njd8+CvoF
https://paperpile.com/c/SrYmpl/b4W47+Y1mLC
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affected by the AB window. For example, the AB can be modulated by 

animacy18, emotional content17, and by attentional biases such as 

gambling-related stimuli in gamblers42. Following our finding that T1-

T2 similarity at different levels of processing affect T2 performance we 

set out the test if the Attentional Blink Magnitude (ABM: T2|T1 Lag-7 

performance - T2|T1 Lag-2 performance) for one image is related to 

how similar a particular image is to all other images. By using the ABM, 

we are effectively baselining each image’s performance during lag-2 

with its performance at lag-7. This way, when comparing between 

images, we can assure that the difference between images is not due 

to variability in how our specific choice of masks interfered with the 

processing of one image. We find that the ABM of an image is 

modulated by its overall similarity to all other images (Figure 4B). 

Images that in general share a lot of low-level (V1 in fMRI and Layer 

1 of the DCNN) similarities with other images are less affected and 

images that are like other images in high-level (ventral stream in fMRI, 

120-290 ms time points in EEG and layer 8 of the DCNN) 

representations are more affected by the AB window. In addition, we 

also conducted a searchlight43 procedure which revealed an extensive 

language/reading-related network focused on the dorsal visual 

stream, the left temporal cortex, and the left inferior frontal gyrus 

(Supplementary Figure 3). Many of the areas that showed a positive 

correlation with ABM have a history in the language processing 

literature such as the Visual Word Form Area44, Wernicke's Area, and 

Broca’s Area45. Given the semantic nature of our task, these are areas 

where you would expect relevant processing for working memory 

functions and where interference of tokenization14 for T2 would occur. 

The left oriented network we found also carries resemblances to the 

semantic control/episodic network 46 and the top-down control network 

as described by Corbetta and colleagues26,47, which is proposed to 

enable selection of goal-driven stimulus processing. The overlap 

between the top-down control and semantic network implies that 

representational similarities are malleable depending on task-

demands, which is in line with previous studies showing the 

importance of task-relevance when investigating the different effects 

of target repetition16 and emotional processing17 in RSVPs. These 

findings expand on previous studies and underline the effect of 

https://paperpile.com/c/SrYmpl/26nqV
https://paperpile.com/c/SrYmpl/b1eK
https://paperpile.com/c/SrYmpl/n2lm
https://paperpile.com/c/SrYmpl/xVzG
https://paperpile.com/c/SrYmpl/zjkB
https://paperpile.com/c/SrYmpl/9tHL
https://paperpile.com/c/SrYmpl/1Z5pY
https://paperpile.com/c/SrYmpl/TT69
https://paperpile.com/c/SrYmpl/3EH8I+9071
https://paperpile.com/c/SrYmpl/9fmS7
https://paperpile.com/c/SrYmpl/b1eK
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concurrent processing of T1 on conscious perception of T2 and how it 

can explain variability in performance between different types of 

stimulus inputs.  

 

Another method that has been suggested to shed light on the 

mechanism of the AB is to evaluate individual differences in 

performance 28,29,48. Throughout the three decades of investigating the 

AB, studies have found that a significant proportion of the population 

seem almost unaffected by the AB and have thus been termed “non-

blinkers” 28,29. Investigating how these individuals differ from others is 

crucial to understand to explain the processes that underlie the AB 

phenomenon. Earlier reports on individual differences have suggested 

that non-blinkers show a faster peak of the P3, indicating that they are 

quicker to consolidate information into working memory 29. However, 

some previous research has indicated that cognitive processing speed 

is not what best describes individual differences49. For example, vocal 

naming tasks50 and fluid intelligence51 do not predict individual 

differences in ABM. On the contrary, executive control functions51,52 

and being able to filter out irrelevant stimuli53 can significantly predict 

individual differences. A larger ABM has also been observed in 

patients with lesions in the right inferior parietal lobe, overlapping with 

the right temporoparietal junction (TPJ) 54. Several studies have 

implicated the right TPJ in AB performance, where grey matter density 

in the right TPJ55, connectivity between right TPJ and inferior frontal 

gyrus31,55 and transcranial magnetic stimulation (TMS) on the right TPJ 

all modulate performance in the AB33,56. Other lesion studies of the 

right TPJ show that some patients develop visual extinction, a 

phenomenon that describes the unsuccessful perception of 

contralesionally events during competition between the two visual 

hemifields (in contrast to temporal competition) 57. That is, when one 

item is being shown in each visual hemifield, patients report no 

awareness of the item presented in the left hemifield, an effect that is 

amplified when the two targets are the same in the task-relevant 

domain 58. This post-perceptual role of the right TPJ is also noted in 

the change detection literature where semantically incongruent 

changes in a change detection task are more often detected than 

https://paperpile.com/c/SrYmpl/PHP8s+JBtP+nzCuo
https://paperpile.com/c/SrYmpl/PHP8s+nzCuo
https://paperpile.com/c/SrYmpl/nzCuo
https://paperpile.com/c/SrYmpl/9N4l
https://paperpile.com/c/SrYmpl/XT67
https://paperpile.com/c/SrYmpl/67jO
https://paperpile.com/c/SrYmpl/Uvsh+67jO
https://paperpile.com/c/SrYmpl/zW1b
https://paperpile.com/c/SrYmpl/wMZkn
https://paperpile.com/c/SrYmpl/djRg
https://paperpile.com/c/SrYmpl/djRg+EgAhL
https://paperpile.com/c/SrYmpl/Wm5zz+OFC3N
https://paperpile.com/c/SrYmpl/zCDFy
https://paperpile.com/c/SrYmpl/sXkMl
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when scene congruent items are added. Importantly, this difference 

between congruent and incongruent change detection was eradicated 

with TMS to the right TPJ59. In line with the literature, we find that 

individual differences in ABM were related to subjects' average 

representational similarity in right TPJ and right IFG (Figure 4, Table 

S2). These two areas are closely associated with the stimulus-driven 

control network as proposed by Corbetta and colleagues26,47. Rather 

than being activated by expectations, this network responds to the 

detection of task-relevant stimuli, see Corbetta et al., 2008 for 

review26. This is very similar to how the P3 has been described in the 

literature, which is one of the reasons why it has been argued that the 

P3 originates from the TPJ60. Thus, our results corroborate earlier 

findings that non-blinkers show faster working memory updating29 and 

attribute this to the separation of image representations, and therefore 

unambiguous target separation during working memory encoding, in 

the ventral attentional network26. Specifically, we argue that subjects 

who have a larger representational space for objects in this key brain 

network for working memory updating are quicker at resolving object 

identity and can consequently evade the attentional blink window. This 

argument is further supported by findings showing that the slope of the 

P3 is related to evidence accumulation61, however, future studies 

should also investigate if representational space in the ventral 

attentional network explains individual differences in evidence 

accumulation. 

In conclusion, we show that not only can representational overlaps 

explain trial-by-trial variance but also explain why some objects are 

more probable to reach conscious processing in AB. We conclude that 

target-target similarity can both have a positive and a negative effect 

on performance and this depends on the stage of processing in which 

the targets are interacting. While repetition blindness related effects 

have been studied to some extent, more research is needed in 

situations when target-target interaction leads to positive performance. 

It is unclear as to what type of processes are affected by these target 

interactions, if they are perceptual or non-perceptual by nature, and 

future studies could potentially investigate this using speeded 

judgment tasks rather than a report after the RSVP. Also, we also 

https://paperpile.com/c/SrYmpl/csikQ
https://paperpile.com/c/SrYmpl/3EH8I+9071
https://paperpile.com/c/SrYmpl/3EH8I
https://paperpile.com/c/SrYmpl/wX8zC
https://paperpile.com/c/SrYmpl/nzCuo
https://paperpile.com/c/SrYmpl/3EH8I
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propose object separation in the right ventral attentional network26 as 

a viable explanation for individual differences in the attentional blink. 

In line with recent work showing that the distances captured with 

multivariate methods using fMRI is indeed related to the decision-

function used when humans do animate/inanimate speeded 

categorisation62, we show that the representational similarities 

captured by all three of our modalities have substantial power in 

explaining variance in performance at multiple levels.  

Methods 

20 participants (mean age = 23, range = 18 to 44, 13 females) 

participated in the study. Participants completed 4 sessions of the 

attentional blink task (while we recorded EEG, see below) and two 

sessions of functional magnetic resonance imaging (fMRI). Three 

participants did not complete all conditions and were thus excluded 

from further data analyses. All participants provided informed consent 

and were compensated for their time (at the rate of €10 per hour for 

EEG, €20 per hour for fMRI, and €50 for completion for a total of €210). 

The experiment was approved by the ethics committee at the 

University of Amsterdam. 

Stimuli 

The visual objects presented in both tasks consisted of forty natural 

scene images depicting objects positioned in the centre of the image 

(twenty animals, twenty non-animals) from the ImageNet database63. 

The final set of 40 stimuli was chosen to have a proclivity for high blink 

rate in a pilot experiment (see supplementary materials). The 

experiment was programmed using Psychtoolbox Version 3 (PTB-3; 

MATLAB and Statistics Toolbox Release 2016, The MathWorks, Inc, 

Natick, Massachusetts, United States). The distractors were created 

by dividing an empty image up into a 10x10 grid (each grid cell 

containing XX pixels, equating to roughly 0.5 visual degrees) and then 

sample image information from the corresponding grid cell from a 

random image of our set. 

 

https://paperpile.com/c/SrYmpl/3EH8I
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Attentional Blink task 

Participants were comfortably sitting in front of a 19” monitor 

positioned at 60 cm. Targets and distractors were displayed in the 

centre of the screen subtending 5 degrees of visual angle on a 

constant grey background. At the beginning of each trial, participants 

attended a white fixation cross for 1.25s. This was followed by a 

stream of 19 images (17 distractors and 2 targets). Images were 

shown for 16.67 ms with a stimulus onset asynchrony (SOA) of 100 

ms. The first target (T1) was randomly presented at position 4, 5 or 6 

in the stream and the second target (T2) was presented either two (lag 

2) or seven (lag 7) items further away (Figure 1A).  

 

After each trial, participants were prompted with a response menu for 

T1 and asked to choose which of the four possible words 

corresponded to the first target (Figure 1A). Following this, a similar 

menu was displayed for T2. T1 and T2 were never the same image. 

Participants completed four sessions of approximately three hours of 

AB (including EEG preparation). Each session comprised 8 runs of 

120 trials, where each image was presented 2 times as T2 in lag 2 and 

1 time as T2 in lag 7 for a total of 96 repetitions for each image. In 

total, each participant completed 3840 trials of AB across sessions. T2 

performance was computed as a proportion of correct identification. 

Attentional Blink Magnitudes (ABM) were computed as the difference 

between T2 performance in the lag 2 and lag 7 conditions for all 

images separately. 

Working memory task 

The same natural visual objects were used in the working memory task 

completed during fMRI scanning. Images were shown with a 5 degrees 

visual angle through a back-projected screen visible via a head-

mounted mirror. The fMRI consisted of two sessions of 1 hour each 

completed within the same day with 1-hour rest in between. Within 

each session, participants completed up to 10 runs. Within each run, 

each of the forty images was displayed two times. The event-related 

design was created using optseq64, with the number of time points 

(ntp): 610, psdwin: 3.056, nsearch: 10000, nkeep: 500. Each trial 

https://paperpile.com/c/SrYmpl/k9HU4
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started with an image displayed for 500 ms followed by 4084 ms of 

retention before a word was displayed (500 + 4084 = 6 TRs with a TR 

of 764 ms). Participants were asked to respond whether the word 

corresponded to the semantic content of the image or not using the 

buttons placed under the left or right index finger. This task was 

designed to accommodate the slow BOLD response but still capture 

the working memory and conscious access components of the AB task 

a1fnd this way provides a canonical working memory representation 

of all images. Trial onsets were timed to TR onset. Fixation time 

between trials varied based on the output from optseq between 2-16 

seconds.  

fMRI acquisition 

Participants completed two sessions of fMRI on the same day with one 

hour rest in between. Each session was designed to last for an hour, 

to ensure that subjects could stay vigilant for the entire period. fMRI 

data were acquired using a Philips Achieva 3T MRI scanner and a 32-

channel SENSE head coil. A survey scan was made for spatial 

planning of the subsequent scans. After the survey scan, a 3-min 

structural T1-weighted scan was acquired using 3D fast field echo (R: 

82 ms, TE: 38 ms, flip angle: 8, FOV: 240 x 188 mm, 220 slices 

acquired using single-shot ascending slice order and a voxel size of 

1.0 x 1.0 x 1.0 mm). For the working memory task, functional T2*-

weighted sequences were acquired using single shot gradient echo, 

echo planar imaging (EPI; TR: 764 ms, TE: 27.62 ms, flip angle: 60, 

FOV: 240x240x118.5 mm, number of slices: 36, slice thickness: 3 mm, 

slice gap: 0.3 mm, voxel size: 3x3x3 mm, multi-band factor: 3), 

covering the entire brain.  

fMRI pre-processing 

fMRI data was converted to BIDS65, before being pre-processed using 

fMRIPrep66. EPI images were corrected for spatial alignment and 

normalised to the Montreal Neurological Institute (MNI) ICBM template 

space67. Top-up scans were included as an option in fMRIPrep to 

mitigate field inhomogeneities. No slice-time correction was made 

https://paperpile.com/c/SrYmpl/OazBs
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given our sub-second TR (764 ms) and multi-band acquisition 

parameters.  

fMRI analyses 

Beta weights for each stimulus condition were obtained using 

GLMdenoise68,69, implemented in MATLAB 2016b (MathWorks) and 

converted into pseudo t-statistics by dividing the betas with the pooled 

variance obtained from the bootstrapping in GLMdenoise. Regions of 

interest (ROI) were defined using the Glasser atlas parcellations 

(Glasser et al., 2017). Each ROI was registered from fsaverage to 

subject space, then transformed from surface to volume and 

registered to functional space using the warp-file provided by the 

fMRIPrep output using Advanced Normalization Tools (ANTs)70. 

Pattern similarity from each ROI was measured using Pearson’s 

correlation across all pairs of condition pseudo t-patterns. For narrative 

reasons we choose to stick with the non-inverted Pearson correlation 

which we refer to as “similarity” between two multivariate patterns (the 

1-Pearson coefficient is commonly used in RSA and is often referred 

to as a “distance”). Searchlight procedure was done using a custom 

Python script (https://github.com/Charestlab/pySearchlight) with a 

sphere of 6 voxels radius centred around every voxel. For each voxel 

position, we did a pair-wise comparison of all images using a Pearson 

correlation based on the voxels contained within the sphere. 

EEG acquisition and pre-processing 

Electroencephalographic (EEG) activity was collected with 64 scalp 

electrodes (BioSemi ActiveTwo System). EEG electrodes were 

arranged according to the International 10–10 system, in addition to 

two reference electrodes on the left and right mastoids. Eye 

movements were monitored using two electrodes placed above and 

below the pupil of the left eye. The EEG signal was recorded with a 

1024 Hz sampling rate. The data pre-processing was performed using 

mne-python 71,72. For preprocessing, data were first down-sampled to 

256 Hz and then a 0.001 Hz high-pass filter was applied. Epochs were 

defined with T2 presentation as time 0, with each epoch starting at -

800 ms and ending at +700 ms. Automatic rejection of trials was done 

https://paperpile.com/c/SrYmpl/crxLD+a4sNs
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using AutoReject73, where peak-to-peak rejection thresholds are 

determined automatically through 10-fold cross-validation using the 

built-in Bayesian optimization method for thresholding. Epochs were 

then baselined using the mean of the time window between 1900 ms 

– 1800 ms before T2 onset. This window was always within the fixation 

phase before each trial. Bad channels were defined by manual 

inspection and later interpolated over based on the nearest neighbour 

approach.  

EEG analyses 

In contrast to fMRI, where we are able to remove shared noise 

between voxels using GLMdenoise68 before correlating patterns, there 

is, to the best of our knowledge, no established method of estimating 

the noise pool for our particular EEG data set. Therefore, in order to 

obtain representational similarities in pattern representation between 

images using EEG, we trained a shrinkage (Ledoit-Wolf lemma 

shrinkage74) linear discriminant analysis (LDA, Sci-kit learn)75 classifier 

with for each pair of images, separately for each time-point. For each 

image pair, we trained on trials when these images were presented as 

T1 and time 0 was centred around the onset of T1. To evaluate an 

overall distance between images, we evaluated the performance using 

10-fold cross-validation. The resulting accuracies were then defined 

as our representational distances between each image pair. To 

conform to the similarity measure from the Pearson coefficient in fMRI, 

we inverted the decoding scores to obtain “similarity” rather than 

“distance”.  
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http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/t8dr
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
http://paperpile.com/b/SrYmpl/mm0fP
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Supplementary 

 

Supplementary Table 1. Brain clusters defined from the searchlight 

procedures on individual differences. 

 

cluster id MNI x peak MNI y peak MNI z peak 

Peak value (Pearson 

r) Volume mm aal 

1 36 30 7.8 0.77654 6771.6 Insula R 

2 63 -45 7.8 0.763386 5256.9 Temporal Mid R 

3 42 -24 54 0.722177 1930.5 Postcentral R 

4 51 -30 -8.7 0.695877 415.8 Temporal Mid R 

5 45 -27 1.2 0.663015 237.6 Temporal Sup R 

 

 

 
 

Supplementary Figure 1. Average decoding accuracy for all pairwise 

comparisons, separately T1 (green curve), T2 Lag-2 (blue curve) and T2 Lag-

7 (red curve) trials. A classifier was trained using T1 presentations when T2 



Chapter 3 

 88   

was at lag-7, to avoid any more than necessary noise, and then tested on lag-

2 trials. Green, blue and red bars denote time points where the decoding for 

T1, Lag-2 and Lag-7 (respectively) is significantly different from chance-level 

(cluster-permutation test, cluster threshold (t-value) = 3). The gray bar 

denotes time points where the decoding of lag 7 trials was significantly more 

accurate than the decoding of lag 2 trials.  

 

 
 

Supplementary Figure 2. Average decoding accuracy for all pairwise 

comparisons, separately for hit (purple) and miss (brown) trials (Lag-2). A 

classifier was trained using T1 presentations when T2 was at lag-7, to avoid 

any more than necessary noise, and then tested on lag-2 trials. In green, T1 

decoding using a 10-fold crossfold for comparison. Green, purple and brown 

bars denote time points where T1, hit and misses (respectively are significant 

from zero (cluster-permutation test, cluster threshold (t-value) = 3). The black 

bar denotes time points where hit and miss is significantly different.  
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Supplementary Figure 3. Target-target similarity in late perceptual and 

semantic brain networks is related to inflated AB magnitude. Using a whole-

brain searchlight procedure to correlate behaviour (AB magnitude) with the 

overall similarity of one image in relation to the rest of the image set, we 

identified a left hemisphere semantic brain network. Images that are like other 

images in these areas showed a significantly larger impairment within the AB 

windo



 

   

 

Chapter 4  



 
 

 91 

Attention modulates the effect of target-target 

similarity in opposite ways depending on levels 

of processing  

 
 
Authors: 
Daniel Lindh1,2,3 

Ilja G. Sligte3,4 
Kimron L. Shapiro1,2 
Ian Charest1,2 
 
Affiliations: 
1School of Psychology, Hills Building, University of Birmingham, B152TT Birmingham, 
United Kingdom 
 
2Centre for Human Brain Health, University of Birmingham, United Kingdom 
 
3Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 

1018 WT Amsterdam, The Netherlands 

4Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands 

 
Corresponding author: p.j.d.lindh@uva.nl 
 
In preparation 
 
Keywords: 
Attention, Deep Convolutional Neural Networks, Consciousness, Object recognition, 
fMRI  



Chapter 4 
 

 92   

Abstract 

When a complex natural scene is quickly presented, the human visual 

system is remarkably fast at detecting and identifying characteristics 

of the image that are diagnostic of the semantic content. To study this 

ability, researchers often use rapid serial visual presentations (RSVP), 

where a set of stimuli is presented at a high rate and participants are 

asked to detect one or several targets within a stream of distractors. 

One common finding is that when the second target (T2) is presented 

200-500 ms after the first target (T1), participants are often unable to 

report T2 correctly. However, when participants are asked to ignore T1 

and only report T2, participants are again remarkably good at reporting 

T2. This phenomenon where attending T1 attenuates T2 processing is 

called Attentional Blink. In two previous studies, we have shown that 

similarity between targets modulates the AB effect in two different 

ways depending on the level of processing targets share 

representational overlap. First, in the literature it is well known that 

repetition of targets often leads to a memory failure where T2 is 

omitted. We have previously corroborated these findings and have 

shown that T2’s that are similar to T1 in posterior parietal cortex and 

within a left semantic brain network are less often reported. On the 

other hand, we also showed that when images are similar early on in 

processing (V1) T2 performance is elevated. In the current study we 

sought to test how similarity between targets interacts with attending 

T1, one of the core components of AB. We test this using a hybrid task 

where participants were asked to either attend or ignore T1 and to 

make a speeded judgment if the T2 scene contained an animal or not. 

By modelling the reaction time distribution using drift diffusion 

modelling we find several important notions. We find that attending T1 

affects both perceptual and non-perceptual processes, undermining 

theoretical frameworks that propose a bottleneck, such as the two-

stage model of AB. We also show that attending T1 is imperative for 

the beneficial V1 similarity to affect T2 targets. These findings outline 

a series of behaviours present in humans that can be used to 

benchmark future models of attention in RSVP settings.  
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Introduction 

While exploring our surroundings, our eyes move and sample 

information at a high rate (~4-5 saccades per second). Through a 

collection of processes, often referred to as attention, our brain can 

selectively filter out noise and efficiently process important information 

that helps us navigate our complex environment. Investigations into 

how attention modulates visual representations, and how the 

processing of distinct items interact at different stages is crucial for our 

understanding of the human perceptual system. One of the most 

common paradigms to probe our ability of temporal information-

selection is a rapid serial visual presentation (RSVP). In an RSVP, one 

or several targets are embedded within a stream of distractors, often 

presented at a rate of ~10 items per second. Interestingly, when two 

targets (T1 and T2, respectively) are embedded in the RSVP, 

participants often miss T2 when it is presented 200-500 ms after T1. 

This phenomenon is known as the Attentional Blink (AB) (Raymond et 

al., 1992) and is one of the most well-studied attentional paradigms, 

with thousands of studies done since its discovery 30 years ago. One 

core aspect of the AB is that when participants are asked to ignore T1, 

reportability of T2 is high regardless of what position in the stream T2 

is presented (Dux & Marois, 2009; Raymond et al., 1992). This 

indicates that deliberate engagement with T1 is interrupting T2 

processing at some critical stage, causing participants to miss the 

second target. Most theories of AB are so-called two-stage models 

(Chun & Potter, 1995), which posit that both targets can be processed 

in parallel in an identification stage (first stage). However, by attending 

to T1 and encoding the item into working memory (the second stage), 

which is assumed to be a serial bottleneck, it is effectively interfering 

with the encoding of T2 causing participants to be unable to report T2. 

Neural evidence of these two-stage, bottleneck, models consists of 

studies showing that high-level stimulus information is still present in 

neural code (Dehaene et al., 2006; Luck et al., 1996; Marois et al., 

2004), despite participants’ inability to correctly report T2. Other 

evidence for a bottleneck account comes from (Vogel & Luck, 2002) 

who showed that masking T2, and thereby impairing T2 performance, 

leads to delayed working memory engagement. Despite all of this 

https://paperpile.com/c/RekJix/r1nr
https://paperpile.com/c/RekJix/r1nr
https://paperpile.com/c/RekJix/r1nr+LfX4
https://paperpile.com/c/RekJix/QCPZ
https://paperpile.com/c/RekJix/yQ6Y+TpjI+nzbG
https://paperpile.com/c/RekJix/yQ6Y+TpjI+nzbG
https://paperpile.com/c/RekJix/C6x0
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evidence for T1 disrupting the working memory encoding of T2, there 

is still no reason to think that T1 cannot also affect perceptual 

processes as well, however this idea has been proven harder to test. 

We attempt to test this idea by conceptualizing ideas from reaction 

time modelling and our previous findings of interaction between 

targets. 

 

In a previous study (Lindh et al., 2021) we showed that different levels 

of similarity between targets affect T2 performance in opposite ways. 

Specifically, we showed that when the two targets are similar in high-

level visual/semantic brain areas, participants are less likely to 

perceive T2. This finding is in line with another RSVP phenomena, 

known as repetition blindness (RB) (Buffat et al., 2013; Kanwisher, 

1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994). Previous 

studies have shown that RB can occur for several types of repetitions, 

for example, with direct repetitions such as “ink/ink” and “3/3” 

(Kanwisher, 1987; Kanwisher & Potter, 1990), the same objects from 

different viewpoints (Buffat et al., 2013), phonetically similar words 

such as “won/one” (Bavelier & Potter, 1992) but also in bilingual 

participants where the two targets are in different languages but have 

the same meaning, for example Caballo/Horse (MacKay & Miller, 

1994). However, in certain contexts target repetitions can also prime 

and therefore increase performance. For example, when T2 is missed 

in a three target RSVP (with T1, T2, and T3 targets), T3 no longer 

exhibits an AB but is instead primed if the missed T2 was a repetition 

(Shapiro et al., 1997). Similarly, categorical repetitions (for example T1 

and T2 both being animate objects) can also improve T2 performance 

when participants report identity (for example horse and dog) (Evans 

& Treisman, 2005). Related to this, an additional important factor is 

task-relevance - what type of information is to be encoded into working 

memory. For example, (Bavelier, 1994) showed that a picture of a sun 

(T1) induced an RB on the word “son” (T2) when the task required 

phonetic encoding. (Sy & Giesbrecht, 2009) presented participants 

with faces and asked them to either report gender or emotional 

expression. When the two target faces had the same gender there was 

a significant decrease in T2 performance, but contingent on 

participants reporting gender and not emotional expression. To most 

https://paperpile.com/c/RekJix/TA1v+nVZT+VwWH+vn65
https://paperpile.com/c/RekJix/TA1v+nVZT+VwWH+vn65
https://paperpile.com/c/RekJix/vn65+nVZT
https://paperpile.com/c/RekJix/VwWH
https://paperpile.com/c/RekJix/bM8f
https://paperpile.com/c/RekJix/iCcU
https://paperpile.com/c/RekJix/iCcU
https://paperpile.com/c/RekJix/t8pe
https://paperpile.com/c/RekJix/t8pe
https://paperpile.com/c/RekJix/VRNC
https://paperpile.com/c/RekJix/QWbi
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people familiar with priming (Schacter & Buckner, 1998), RB is 

unintuitive, but decades of research proposes that RB occurs in very 

specific contexts due to the similarity in neural codes initially used in 

short-term memory (Bavelier, 1994). 

 

Studies looking at similarities between targets often resort to using 

categories as a proxy for similarity. However, the visual system has 

been shown to follow a hierarchical structure (Felleman & Van Essen, 

1991), implying that overlap in neural representation between two 

targets can occur at multiple levels. Our previous study extended these 

ideas and showed the extent of the brain network at which similarity 

between targets is detrimental for performance, which included inferior 

temporal cortex, posterior parietal cortex, and along the left lateral 

sulcus (Lindh et al., 2021). Interestingly, in contrast to RB, we also 

showed that when targets were similar in V1, the earliest cortical 

processing stage for visual information, T2 performance instead 

increased. This increase in performance, based on low-level visual 

feature similarities, were in line with our previous study utilising a 

convolutional neural network (CNN) to define similarities (Lindh et al., 

2019). While RB has been investigated extensively (Buffat et al., 2013; 

Chun, 1997; Fagot & Pashler, 1995; Harris & Dux, 2005; Kanwisher, 

1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994), and seems 

to be related to late-stage memory functions (Bavelier, 1994; Fagot & 

Pashler, 1995), our knowledge of the enhancing effect of low-level 

visual feature similarity is limited to our own two studies. One possible 

mechanism behind enhanced performance related to target-target 

similarity in V1 is neural adaptation. Neural adaptation to recent 

stimulus history can significantly alter perception through neural 

suppression (Sawamura et al., 2006), neural enhancement (Kasper 

Vinken et al., 2017) or shifts in tuning functions (Dragoi et al., 2000). 

One of the main computational roles of neural adaptation that has 

been proposed is that it facilitates detection by increasing sensitivity to 

small changes in the environment (Clifford et al., 2007). In a recent 

study, (K. Vinken et al., 2020) showed that, after an adapter phase 

with a noise pattern, the following presentation of an object had a 

higher detection rate when the background noise was the same as 

during the adapter phase. Importantly, they continued to show that a 

https://paperpile.com/c/RekJix/lQ46
https://paperpile.com/c/RekJix/VRNC
https://paperpile.com/c/RekJix/FEGO
https://paperpile.com/c/RekJix/FEGO
https://paperpile.com/c/RekJix/FNnW
https://paperpile.com/c/RekJix/FNnW
https://paperpile.com/c/RekJix/nVZT+co4G+TA1v+OVaH+VwWH+W8Qa+vn65
https://paperpile.com/c/RekJix/nVZT+co4G+TA1v+OVaH+VwWH+W8Qa+vn65
https://paperpile.com/c/RekJix/nVZT+co4G+TA1v+OVaH+VwWH+W8Qa+vn65
https://paperpile.com/c/RekJix/co4G+VRNC
https://paperpile.com/c/RekJix/co4G+VRNC
https://paperpile.com/c/RekJix/8YDO
https://paperpile.com/c/RekJix/3lXm
https://paperpile.com/c/RekJix/3lXm
https://paperpile.com/c/RekJix/pBHf
https://paperpile.com/c/RekJix/vLkV
https://paperpile.com/c/RekJix/6uSG
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CNN with local neural adaptation implemented on a unit-level 

replicated these results, while a CNN without local adaptation was 

unable to. It is conceivable that neural representational overlap 

between two targets in V1 also leads to facilitation of object 

identification in natural scenes. Therefore, it logically follows that this 

would increase the speed of evidence accumulation, related to the 

quality of stimulus information, for target objects embedded in natural 

scenes. Here, we test this hypothesis by modelling the reaction time 

distribution of speeded judgments of T2. It is possible that target-target 

similarities at different levels are unrelated to AB. In order to 

investigate this we also manipulated attention to T1, one of the core 

ideas derived from the AB literature.  

 

In the current study, we investigate how target-target similarity affects 

processing of T2 while manipulating one of the core aspects of the AB, 

attending or ignoring T1. AB and RB are two phenomena that imply 

that when targets are presented adjacently in time, the processing of 

the targets will interact at one or several stages. How this interaction 

affects different aspects of the decision process (evidence 

accumulation) and non-decision variables is unknown. Using natural 

images from the Microsoft Common Objects in Context (COCO) image 

dataset (Lin et al., 2014) and neural data from the natural scenes data 

set (NSD) (Allen et al., 2021), we tested how attending T1, target-

target similarity, and their interaction modulated the speed of evidence 

accumulation. Given our experimental approach (Figure 1), we do not 

expect an RB effect due to the different task-demands for T1 and T2, 

however, we hypothesized that T1-T2 similarity would prime T2. This 

is in line with previous passive high-level priming findings using 

animals and vehicles (Evans & Treisman, 2005), and our own studies 

showing priming of low-level features (Lindh et al., 2019; Lindh et al., 

2021). We further predicted that if target-similarity is related to the AB 

phenomenon, we expect an interaction effect of attending to T1 and 

similarity in regards to evidence accumulation. The results reveal a 

complex relationship between target-target similarities at different 

stages of processing and attention. These findings elucidate how 

multiple items are interacting, what type of processes are being 

affected and present additional challenges for models of attention.  

https://paperpile.com/c/RekJix/bMHy
https://paperpile.com/c/RekJix/UUIE
https://paperpile.com/c/RekJix/t8pe
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Figure 1. Pictorial description of the dual task. A) Participants were 
presented with a stream of four masks (100 ms SOA) followed by T1 (200 ms), 
T2 (300 ms) and four more masks. Participants were asked to ignore T1 and 
to make a speeded judgment if an animal was present in the T2 scene. B) In 
a different session, participants were instructed to do the same as A, however, 
with the added instruction to attend T1 for the report after the stream. C) 
Example images from the NSD / COCOs data set. Top row: randomly selected 
images from the 1000 seen by all participants in the NSD dataset. 2nd row: 
The images selected to be maximally similar to the top row in V1. 3rd row: 
images that are maximally dissimilar in V1 to the top row. 4th and 5th row: 
same concept but using similarities based on AIT. 
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Methods 

Participants.  65 participants (60 female, 5 male, age M = 19.5, SD 

= 2.15, age range = 18-35) were recruited through a participant 

website hosted by the University of Birmingham. Of these, 13 were 

excluded due to sub-chance performance (≤50% accuracy on T2 

response) or zero performance due to technical difficulties. This 

resulted in a sample size of 52 participants, all of whom had provided 

informed consent anonymously, and were rewarded with 1 psychology 

course credit. All participants reported to have normal- or corrected-

to-normal vision. The experiment was approved by the ethical review 

board of the School of Psychology at the University of Birmingham.  

 

Stimuli. From the 1000 images derived from the COCOs 

dataset (Lin et al., 2014) and seen by all participants in the Natural 

Scenes Data set (NSD (Allen et al., 2021)), see estimating V1 and AIT 

similarity below), we removed all images that contained humans 

resulting in 562 potential target images. For our T2s, we randomly 

selected 50 images that contained animals and 50 images with no 

animals. We then selected T1 images such that they would represent 

a balanced variety of V1 similarities (equal selection of low/mid/high 

V1 similarity between T1 and T2, see Supplementary Figure 1 for 

distributions of similarities) for each T2, half of the T1s either contained 

animals or not. For the total of 100 T2s, each T1-T2 combination (3 

(similarity low/mid/high) x 2 (T1 animal/non-animal)) was only shown 

one trial for a total of 600 trials. Masks were made by subdividing an 

image into a 10 x 10 matrix, and for each cell we copied the content 

from the same location from a random image within the data set (see 

Figure 1A for examples). A total of 200 masks were made and for each 

trial, masks were randomly selected without replacement. Stimuli were 

presented on a grey background, and images were sized such that 

they covered one third of the screen. This data was collected online 

using the Meadows Research online platform (http://meadows-

research.com). Therefore, we could not control the distance between 

participants and their screen and opted for displaying images in the 

same size relative to the window size for each device. We argue that 

https://paperpile.com/c/RekJix/bMHy
https://paperpile.com/c/RekJix/UUIE
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since participants were only allowed to participate using a computer, 

and that we have a within-subject design, any differences between 

conditions cannot be explained by the variance of image sizes 

between participants. The task was programmed using the Python 

library PsychoPy (Peirce et al., 2019), which was converted into 

PsychoJS for the online platform. 

 

Procedure.  Due to the COVID-19 pandemic of 2020, we 

administered the task online using the Meadows Research 

(http://meadows-research.com) online platform. Each participant 

completed two sessions, one of which participants were asked to 

ignore T1 and in the other to attend T1 to report after the stream. Each 

session consisted of 600 trials, divided into 10 blocks. Each trial 

started with a central fixation cross over a grey screen for 500 ms, then 

four masks followed, presented for 100 ms immediately following each 

other. After the masks, T1 was presented for 200 ms followed by the 

presentation T2 for 300 ms followed by four masks of 100 ms SOA. 

The absence of intervening masks between T1 and T2 and the SOAs 

were chosen to optimise the influence of T1 on T2, and to ensure that 

T2 was presented long enough for it to be solved in the inferotemporal 

(IT) cortex. Previous monkey studies have shown that object 

categories within complex visual scenes can be linearly decoded in IT 

within 120-250 ms (Kar et al., 2019). Participants were instructed to 

make a speeded judgment to indicate if an animal was present in T2, 

‘Z’ for ‘Yes’ and ‘M’ for ‘No’, as soon as it was presented. In one of the 

sessions, participants were either instructed to attend or ignore T1 with 

the order of sessions counterbalanced across participants. After the 

stream of items, the true T1 image (50% of trials) or a random image 

was shown, and participants were asked to indicate if this was the T1 

or not. In the other session, participants were asked to ignore T1 and 

after the end of the stream participants were asked to press space to 

continue. For all participants, the order of session one and two was 

counterbalanced. Importantly, in our pilot studies we noticed that the 

Attend T1-condition (which included a task-switch from memorising T1 

and to convert the T2 decision into an immediate motor response, see 

figure 1B) was hard for participants to properly carry out and there was 

confusion regarding the task instructions. Therefore, before each 

https://paperpile.com/c/RekJix/twN7
https://paperpile.com/c/RekJix/0lGb
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session, participants completed two training blocks of 6 trials each. In 

the first training block, the RSVP stream was slowed down by a factor 

of ten and instructional text was presented to indicate when to react to 

T2 and whether to ignore or attend to T1. The second training block 

had the same presentation speed as the actual experiment. We found 

that this significantly increased the participants' performance on the 

real task. 

 

Estimating V1 and AIT similarity 

We estimated pairwise similarities in V1 using the Natural Scenes 

Dataset (NSD, REF). The NSD consists of 8 participants who in total 

viewed >70 000 images (1000 shared images) from the Microsoft 

COCOs dataset (Lin et al., 2014), while brain responses were 

recorded using a 7T Siemens Magnetom 48 passively-shielded 

scanner and a single-channel-transmit, 32-channel-receive RF head 

coil. Whole-brain functional data were collected with 84 axial slices, 

1.8277 mm slice thickness, 216 mm (FE) and 216 mm (PE) field-of-

view, 1600ms TR, 62° flip angle, 0.66 echo spacing, and multiband 

slice acceleration factor 3. For more details and quality testing of this 

data set, please see (Allen et al., 2021). Functional data was pre-

processed using a novel development of GLMdenoise (Charest et al., 

2018; Kay et al., 2013), which allows for single-trial beta estimations 

(https://github.com/kendrickkay/GLMdenoise). The NSD comes with a 

collection of regions-of-interests (ROIs) where the visual areas were 

hand drawn using population receptive field (pRF) data by two cortical 

surface experts. We selected our ROIs, V1 and anterior inferior 

temporal cortex (AIT), based on our previous study (Lindh et al., 2021). 

For each of the 8 participants, we computed the pairwise similarity 

between each of the 1000 shared images using Pearson correlation 

on the z-scored beta estimates for both V1 and AIT. These pairwise 

similarities were then averaged across participants, resulting in one 

1000 x 1000 representational similarity matrix. For each T1-T2 

combination, we then indexed at the appropriate row and column to 

identify their similarity coefficient. It is important to note that the 

https://paperpile.com/c/RekJix/bMHy
https://paperpile.com/c/RekJix/UUIE
https://paperpile.com/c/RekJix/cCEZ+vgSx
https://paperpile.com/c/RekJix/cCEZ+vgSx
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participants in NSD were different from the ones participating in our 

behavioural study. 

 

Behaviour 

In addition to drift diffusion modelling (DDM, see below), to describe 

the accuracy performance difference between the attend and ignore 

T1 conditions, we calculated d-prime, and criterion based on the T2 

responses. 

 

Drift diffusion modelling 

Hierarchical Diffusion Decision Modelling (HDDM; (Wiecki et al., 

2013)) implemented in Python 2.7 was used to model the reaction time 

distributions for T2 correct and incorrect responses. A hierarchical 

model controls the shrinkage of the parameter space by centring the 

individuals prior to the group mean and can thus be seen as an optimal 

combination of fixed and random effects. Therefore, HDDM is 

preferable for small sample sizes (20-100 participants) (Ratcliff & 

Childers, 2015). Similar to SDT, DDM makes assumptions based on 

popular computational decision making ideas which posit that sensory 

evidence for a decision is accumulated over time until it reaches a 

certain boundary (Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). 

Translated to our task, when T2 is presented, from starting point z 

(bias, however, we modelled correct or incorrect responses, so this 

variable was not included in our model) evidence (in favour for either 

“animal” or “no-animal”) is accumulated with drift-rate v (evidence 

accumulation) until it reaches boundary a (decision criterion, see 

Supplementary Figure 2). Another important parameter is t, or the non-

decision time parameter, which describes ancillary latent variables 

unrelated to the decision process (such as encoding to working 

memory or conversion into motor response). Similar to d-prime in SDT, 

drift rate reflects the quality of the sensory information and is directly 

related to perceptual processing (Voss et al., 2004). Therefore, our 

parameter of interest was first and foremost drift-rate v (or evidence 

accumulation speed) and how our manipulations and trial-by-trial 

https://paperpile.com/c/RekJix/yO5N
https://paperpile.com/c/RekJix/yO5N
https://paperpile.com/c/RekJix/WVbJ
https://paperpile.com/c/RekJix/WVbJ
https://paperpile.com/c/RekJix/gPsS+o1JF
https://paperpile.com/c/RekJix/1oOO
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covariates affected this metric. In a full model using both sessions, we 

first removed all responses < 100 ms (considered too fast to be a 

properly evaluated response) and then we added the following 

regressors of interest on the drift-rate parameter: 1) V1 similarity 

between T1 and T2. 2) AIT similarity between T1 and T2. 3) Attend or 

Ignore T1 condition. 4) Interaction between V1 similarity and attending 

T1. 5) Interaction between AIT similarity and attending T1. In addition, 

we also added covariates that we reasoned could potentially bias our 

results: Covariate 1) If T1 and T2 were from the same category (both 

animal/both non-animal or targets were from different categories, 

henceforth known as category congruence). Since we modelled 

correct/incorrect responses, estimating the bias (z) was not possible. 

However, for example, it is possible that the T1 animal / T2 animal 

pairs would differ from T1 non-animal / T2 animal pairs in both 

similarity and their semantic relationship and potentially confound the 

results. Covariate 2) T1 complexity. Upon visual inspection of a 

previous pilot (see Figure 1C) and further simulations (Supplementary 

Figure 3) we observed that T1 images that were “dissimilar” in V1 from 

our T2s regularly had a lower scene complexity. Scene complexity is 

known to affect performance (Seijdel et al., 2021). In the AB literature, 

T1 difficulty is well-known to affect T2 performance (Akyürek et al., 

2007) and was thus a necessary covariate. In addition, we added one 

regressor of interest for the non-decision variable t: 1) Ignore or attend 

T1. HDDM uses Markov Chain Monte Carlo (MCMC) sampling to 

estimate the latent decision parameters associated with DDM (as well 

as the coefficients for the regressor of interests and covariates for drift 

rate) by generating samples from the posterior distribution by means 

of constructing a reversible Markov-chain which is centred around its 

ground truth posterior distribution. We ran 25000 samples in total. As 

recommended when sampling with MCMC, for stable estimates, we 

burnt the first 1000 samples (discarded), resulting in 24000 samples. 

For each sample, a small step is made in parameter space from the 

current parameter position and is accepted if the probability of the new 

parameters (given our data) is higher than the previous. Therefore, the 

resulting trace for a given coefficient on drift-rate can be used in 

hypothesis testing by comparing the values against zero, however, 

note that this is different from the p-value in classical statistics. A priori, 

https://paperpile.com/c/RekJix/b8AS
https://paperpile.com/c/RekJix/eBLL
https://paperpile.com/c/RekJix/eBLL
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we decided that we would accept the H1 (there is an effect) of any 

coefficient if > 95% of the accepted posterior estimates were below or 

above zero. After running the full model, which included both sessions, 

we ran the two sessions separately using the following regressors of 

interest: 1) V1 similarity between T1 and T2. 2) AIT similarity between 

T1 and T2. We also modelled the two same covariates as described 

for the full model.  

Results 

Attending T1 does not decrease sensitivity, but impairs reaction 

time 

In the Attend T1 condition, we confirmed that participants executed the 

task properly with a high accuracy on T1 (M=89.6% correct, 

SD=6.23%, d-prime M=2.78, SD=0.689). For T2 performance we 

evaluated both d-primes for both the Attend and Ignore T1 conditions. 

We found no significant difference between the conditions in terms of 

d-prime; Ignore T1 (M = 2.50, SD = 0.72), Attend T1 (M=2.57, 

SD=0.68), t(51)=-0.95, p=0.346). The finding of no difference in d-

prime is not surprising considering the 300 ms presentation time of T2, 

10 Hz presentation rate (Shapiro et al., 2017) and masking (although 

see Nieuwenstein et al., (2009)) are crucial components for detecting 

AB effects. However, there was a significant difference in median 

reaction time between the two condition; Ignore T1 (M = 611ms, SD = 

188ms), Attend T1 (M=669ms, SD=181ms), paired t-test (t(51)=-2.29, 

p = 0.026, Cohen’s d = -0.315). See Figure 2. We further investigated 

the effect of an animal being present in T1 or not by conducting a 

repeated measures ANOVA with T1 attention (attend or ignore) and 

T1 animacy (animal present or not) as factors. For d-prime there were 

no main effect of attending T1 (F(1,51) = 0.893, p = 0.349) or T1 

animacy (F(1,51) = 0.087, p = 0.769), and further no interaction effect 

of attending T1 and T1 animacy (F(1,51) = 0.025, p = 0.874). For 

reaction time, the ANOVA confirmed the main effect of attending T1 

(F(1,51) =5.301, p = 0.025, η2 = 0.093), but with no main effect of T1 

animacy (F(1,51) = 0.145, p = 0.705) and no interaction effect (F(1,51) 

= 0.243, p = 0.624). We evaluated the convergence of the chains for 
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the different parameters through visual inspection (Supplementary 

figure 2). 

 

 

 

 
Figure 2. A) Reaction time distributions on speeded judgment for animal-
detection in T2 for the Ignore T1 (blue) and Attend T1 (red) condition. There is 
a qualitative difference between the distributions, with a larger peak for the 
Ignore T1 condition. B) D-prime (sensitivity to stimulus) for detecting animals 
in T2. No significant differsence in the two conditions. C) As implied by the 
distribution plot in A, there was a significant difference in median reaction time 
between attending and ignoring T1 conditions. With a Cohen’s d of 0.315 (see 
Attending T1 does not decrease sensitivity, but impairs reaction time under 
results), this can be considered to be a small to medium sized effect. * = p < 
0.05, ** = p < 0.01, *** = p < 0.001. 
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Attending to T1 affects drift rate in opposite directions for V1 

similarity and AIT similarity 

Note that with 24000 samples our precision is 1/24000 = 0.00004 

implying that if all the chains end up on either side of zero it can only 

be described as > 0.99996. For the full model (both sessions, Figure 

3A), the estimated decision-related DDM-parameters were the 

following: parameter a (criterion, M=1.74, SD=0.052), v (drift-

rate/accumulation speed, M=1.55, SD=0.07), t (non-decision time, 

M=0.2, SD=0.012). The estimated coefficients from the five 

regressors-of-interest on drift-rate (as ordered in Methods Drift 

diffusion modelling): 1) No main effect of V1 similarity between targets 

on drift rate (M=-0.027, SD=0.067, P(coefficient > 0) = 0.3). 2) A main 

effect of target-target similarity in AIT on drift rate (M=0.438, 

SD=0.035, P(coefficient > 0) > 0.99996). 3) Attending T1 led to a 

decreased drift rate of T2, showing that attending T1 affects perceptual 

processes (M=-0.223, SD=0.055, P(coefficient < 0) > 0.99996). 4) We 

found an interaction between attending T1 and V1 similarity, implying 

that attention to T1 is imperative for the beneficial effect of V1 similarity 

(M=0.169, SD=0.05, P(coefficient > 0) > 0.9729). 5) We also found a 

negative interaction between attending T1 and AIT similarity, which 

corroborates the notion that attending T1 increases the amount of 

interference between targets in late processing stages (M=-0.15, 

SD=0.05, P(coefficient < 0) > 0.9996). For our two covariates we got 

the following estimates: Covariate 1) A positive effect on drift rate for 

category congruence, meaning that when both targets were from the 

same category (animal or not) participants were faster at accumulating 

evidence for the correct target category (M=0.367, SD=0.013, 

P(coefficient > 0) > 0.99996). Covariate 2) A negative effect of T1 

complexity, showing that when T1 is less complex (in terms of number 

of available visual features) it interferes less with T2 processing (M=-

0.0059, SD=0.0007, P(coefficient < 0) > 0.99996). We evaluated the 

fit using the Deviance Information Criterion (DIC), deviance (the 

function of the probability density) and pD (DIC - deviance). DIC= 

30149.584, deviance = 29987.991, pD = 161.593.  
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Figure 3. Posterior probabilities of coefficients on drift rate from 24000 

MCMC samples (see methods). The posterior probabilities can be used in 

hypothesis testing by accepting any outcome that is 95% (0.95 fractional, see 

(Cavanagh et al., 2011) for similar methods) above or below 0. A) Full model 

with regression coefficients on drift rate for Attending T1, AIT similarity, AIT x 

Attending T1 interaction, V1 similarity, and V1 similarity x Attending T1 

interaction (see methods for the complementary covariates). Attending T1 

was associated with a negative coefficient on drift rate, implying that attending 

T1 reduces the speed of evidence accumulation. While the main effect AIT 

similarity increases the drift rate, V1 similarity showed no such effect. 

However, the interaction effect with attending T1 was significant for both 

levels of similarity. These interaction effects were interestingly in opposite 

directions, where attention interferes with the priming effect of AIT similarity 

but enhances the effect of V1 similarity on drift rate. B) By repeating the 

analysis on the Attending T1 condition separately, we confirm that there is a 

main effect of both AIT and V1 similarity. C) The same analysis on the Ignore 

T1 condition showed no main effect of V1 similarity on drift rate, but an effect 

of AIT similarity was present. 
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AIT and V1 similarity affect drift rate when attending to T1 

Separately for the Attend T1 condition (Figure 3B) we estimated the 

same DDM parameters as in the full model: parameter a (criterion, 

M=1.663, SD=0.057), v (drift-rate/accumulation speed, M=1.4, 

SD=0.06), t (non-decision time, M=0.28, SD=0.013). For our 

regressors of interest we estimated these coefficients on drift-rate: 1) 

Target-target similarity in V1 (M=0.123, SD=0.075, P(coefficient > 0) = 

0.95). 2) Target-target similarity in AIT (M=0.381, SD=0.036, 

P(coefficient > 0) > 0.99996). Similar to the full model, we also 

estimated these covariates: Covariate 1) Category congruence 

(M=0.367, SD=0.013, P(coefficient > 0) > 0.99996). Covariate 2) T1 

complexity (M=-0.0056, SD=0.001, P(coefficient < 0) > 0.99996). 

These results show that attention modulates the effect of similarity 

differently depending on where the two targets overlap in neural 

representation. It is important to note that we included condition 

repetition (if both targets were animate or if both were inanimate), so 

the effect AIT similarity was not just present regardless of if T1 was 

attended or not, but it cannot be explained by response bias. We 

evaluated the convergence of the chains for the different parameters 

through visual inspection (Supplementary figure 2). 

 

AIT similarity only modulates drift rate when ignoring T1 

Since we did not find any main effect of V1 similarity on drift rate, but 

there was an interaction effect with attention, we decided to analyse 

both sessions separately. We first analysed the Attending T1 condition 

(Figure 3B) and estimated the same model parameters as with the full 

model: parameter a (criterion, M=1.663, SD=0.05), v (drift-

rate/accumulation speed, M=1.407, SD=0.065), t (non-decision time, 

M=0.286, SD=0.013). We also included the same covariates as the full 

model (condition repetition and T1 complexity) and these regressors 

of interest: V1 similarity (M=0.123, SD=0.07, P(coefficient > 0 = 0.95)) 

and AIT similarity (M=0.381, SD=0.036, P(coefficient > 0 = 0.99996)). 

We then analysed the Ignore T1 condition (Figure 3C): parameter a 

(criterion, M=1.759, SD=0.054), v (drift-rate/accumulation speed, 

M=1.481, SD=0.075), t (non-decision time, M=0.211, SD=0.012). For 
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our regressors of interest we estimated these coefficients on drift-rate: 

1) Target-target similarity in V1 (M=0.021, SD=0.071, P(coefficient > 

0) = 0.62). 2) Target-target similarity in AIT (M=0.339, SD=0.031, 

P(coefficient > 0) > 0.99996). Similar to the full model, we also 

estimated these covariates: Covariate 1) Category congruence 

(M=0.0496, SD=0.016, P(coefficient > 0) > 0.99996). Covariate 2) T1 

complexity (M=-0.0058, SD=0.001, P(coefficient < 0) > 0.99996). 

Discussion 

 

The aim of the current study was to evaluate the role of target 

competition in RSVP, specifically the effect of target similarity on 

perceptual decisions in RSVPs. We presented participants with two 

targets (T1 and T2) embedded with distractors and instructed them to 

make a speeded judgment if an animal was present in T2. Participants 

in separate conditions were instructed either to ignore or to attend T1 

for a subsequent report. This allowed us to investigate how attention, 

one of the core theoretical elements of AB, interacts with target 

similarity at either the stage of V1 or AIT. It further allowed us to test 

one aspect of the most popular models of AB, the two-stage model 

(Chun & Potter, 1995), which posits that attending T1 has no effect on 

the perceptual processing of T2. Using HDDM (Wiecki et al., 2013) we 

estimated coefficients for our conditions on two latent parameters 

within DDM, i.e., drift rate (speed of evidence accumulation) and the 

non-decision variable (associated with encoding and motor response). 

We find that attention exhibits a push and pull relationship with target 

similarity, whereby attention increases the speed of evidence 

accumulation for targets that are similar in V1 while decreasing 

evidence accumulation of T2 when targets are similar in AIT (Figure 

3).  

 

In two previous studies (Lindh et al., 2019; Lindh et al., 2021), we have 

shown that target-target similarity in low-level visual features of natural 

images can enhance T2 performance in an AB task. These findings 

have been at odds with another well-known phenomena where 

repetition of a stimulus lead to impairment of reporting T2 (RB, 

https://paperpile.com/c/RekJix/QCPZ
https://paperpile.com/c/RekJix/yO5N
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(Bavelier, 1994; Buffat et al., 2013; Fagot & Pashler, 1995; Kanwisher, 

1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994)). However, 

consistent with theories of RB, we have also shown that 

representational similarity between targets in high-level visual and 

semantic brain areas is detrimental for T2 performance (Lindh et al., 

2021). RB is a counterintuitive notion, considering the robustness of 

priming phenomena (Monahan et al., 2008; Schacter & Buckner, 

1998). RB-like effects seem to depend on task-relevance (Bavelier, 

1994; Sy & Giesbrecht, 2009), where it is crucial that the two targets 

are reported on the same dimension, implicating memory failure, and 

not perceptual interference, as the underlying cause (Fagot & Pashler, 

1995). In our experiment we controlled for target-congruence (if T1 and 

T2 both contained an animal or if both did not), therefore, any effect of 

AIT similarity cannot be due to a response bias but an inherent effect 

of similarity in other high-level visual features. We show that target-

target similarity in AIT increases the drift rate for T2, regardless of 

whether participants were asked to attend or ignore T1. This was an 

expected effect based on the different task requirements for T1 and 

T2. However, a clear negative interaction effect between AIT similarity 

and attending T1 was found, indicating that attention reduces the 

priming effect of similarity in higher-tier visual areas, suggesting a 

complementary type of deficiency to RB. Furthermore, we corroborate 

our previous findings of a facilitating effect through V1 similarity on T2 

performance (Lindh et al., 2021) by showing that V1 similarity also 

increases speed of evidence accumulation. However, this effect is only 

present when participants are asked to attend T1 (Figure 3B). In the 

introduction we argued that one potential mechanism for V1 similarity 

to enhance performance is through neural adaptation. Attention is 

known to amplify neural activity (Luck et al., 1997; Posner & Gilbert, 

1999; Roelfsema et al., 1998), and attention can modify neural 

adaptation (Alais & Blake, 1999), presumably through recurrent 

mechanisms (Quiroga et al., 2019). Therefore, it is possible that 

attending T1 is necessary to increase the adaptation effects, which in 

turn leads to faster evidence accumulation if T2 shares similar scene 

statistics with T1.  

 

https://paperpile.com/c/RekJix/vn65+TA1v+nVZT+VRNC+co4G+VwWH
https://paperpile.com/c/RekJix/vn65+TA1v+nVZT+VRNC+co4G+VwWH
https://paperpile.com/c/RekJix/EzWU+lQ46
https://paperpile.com/c/RekJix/EzWU+lQ46
https://paperpile.com/c/RekJix/QWbi+VRNC
https://paperpile.com/c/RekJix/QWbi+VRNC
https://paperpile.com/c/RekJix/co4G
https://paperpile.com/c/RekJix/co4G
https://paperpile.com/c/RekJix/OKG6+uoi6+6y8g
https://paperpile.com/c/RekJix/OKG6+uoi6+6y8g
https://paperpile.com/c/RekJix/QFhG
https://paperpile.com/c/RekJix/ojvA
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It has been argued that AB and RB are two distinct phenomena (Arnell 

& Shapiro, 2011; Chun, 1997), however, our results imply that they 

might be closer to each other in certain respects. The AB typically 

requires two preconditions, lag and attention to T1. In our previous 

paper (Lindh et al., 2021) we showed that AB magnitude (ABM, 

defined as the difference in lag-7 and lag-2 performance) can be 

explained in part by the similarity between targets arising at different 

levels of processing. The task in our current experiment is neither a 

pure AB nor RB task, in the traditional sense, considering our design 

has longer presentation times with a speeded judgment on T2. 

However, this setup allowed us to test the second concept of AB, 

attention to T1, with a more sensitive measure than pure T2 

performance by instead modelling reaction time distributions together 

with accuracy. We show that the attention to T1 also modulates how 

similarity between targets affects perceptual processes associated 

with T2. This interaction with attention and evidence accumulations 

has clear consequences for many popular theories of AB. Specifically, 

most AB theories revolve around the two-stage model (Chun & Potter, 

1995; Dux & Marois, 2009). Simplified, in a two-stage model, the two 

targets are first processed, in parallel, up to a semantic level without 

interference. In the serial second stage, T1 is being consolidated into 

memory and T2 cannot be consolidated until T1 has been fully 

processed. DDM allows for an important distinction between 

perceptual decision parameters (the a, v, and z parameters) and the 

non-decision parameter t. The non-decision parameter is associated 

with auxiliary processes such as motor initiation and memory 

encoding. A strict two-stage, late bottleneck, model predicts that 

attending T1 would only affect the t-parameter, and not interfere with 

the perceptual processing of T2. While we find that attending T1 does 

affect the t-parameter, corroborating the notion of a bottleneck, we also 

find that attending T1 also affects drift rate (Figure 3). Not only is the 

main effect of attention present, but also interaction effects with both 

AIT and V1 similarity between targets. First, this implies that attending 

T1 affects both decision-related and unrelated processes, where 

attention has double negative consequences for T2 processing by 

increasing the non-decision time as well as slowing down the drift rate. 

Second, it points to a duality where attention interacts with similarity in 

https://paperpile.com/c/RekJix/OVaH+9usL
https://paperpile.com/c/RekJix/OVaH+9usL
https://paperpile.com/c/RekJix/QCPZ+LfX4
https://paperpile.com/c/RekJix/QCPZ+LfX4
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opposite directions depending on where in the visual hierarchy the 

targets share neural representations.  

 

In this study we elucidate the role of similarity between targets and 

attention in animacy detection. Looking at similarities between targets 

at different levels of processing provides a new window into 

mechanisms underlying phenomenon such as AB and RB. This 

provides further information into how processing of several targets 

interacts, depending on where in the visual hierarchy they overlap in 

representational space. We show that attending T1 interacts with how 

similarity between targets in V1 and AIT affects the speed of evidence 

accumulation of animal detection in natural scenes. Interestingly, this 

interaction goes in opposite ways for V1 and AIT, where attention is 

needed for V1 to increase evidence accumulation while attention 

suppresses the effect of AIT. Our data provides evidence that 

attending T1 disrupts T2 processing by both prolonging the non-

decision time as well as slowing down the speed of evidence 

accumulation, providing specific behaviour which can be utilized to 

evaluate future models of attentional blink. 
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Supplementary 

 

Table S1 

D-prime for attending/ignoring T1 and T1 animacy 

Attend T1 T1 animal Mean SD N 

Attend  Animal  2.453  0.646  52  

   Non-animal  2.499  0.862  52  

Ignore  Animal  2.380  0.652  52  

   Non-animal  2.397  0.960  52  
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Supplementary Figure 1. Distributions of image similarities within all 

types of conditions. No visible difference between animal and non-

animal distributions, indicating no bias between conditions. 
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Supplementary Figure 2. Posterior plots for DDM parameters. By visually 

inspecting the normal distribution of the chains one can infer that the chains 

have converged. While there is no guarantee of convergence for a finite 

sample set, ensuring that there are no drifts or jumps in the trace (the trace 

seems to overall be fluctuating over a specific value) is a good heuristic for 

convergence. Another heuristic is to ensure that the autocorrelation is 

relatively low. A) Posterior values for parameter a (threshold) indicates how 

much evidence (criterion) needed for subjects to make a decision. Top-left 

panel indicates the values for each chain, the right panel shows the 

distribution of these values. A normal distribution is indicative of converging 

chains. Bottom-left panel shows the autocorrelation. B and C shows the same 

for t (the non-decision time) and v (drift-rate). 
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Supplementary Figure 3. In a pilot study we noticed that when selecting 

image-pairs based on similarity from V1 and AIT that the T1 complexity 

became biased. As it is known that more complex T1 images (see Figure 1) 

would be processed quicker (Kar et al., 2019) we argue that this would affect 

the influence of T1 on T2 processing positively. We defined the complexity of 

an image by its average activation of the first layer of an AlexNet, where if the 

image would activate more feature units in layer 1 of AlexNet it would be 

considered more complex. To simulate the bias, we randomly selected 50 

animate and 50 non-animate hypothetical T2s and then selected T1s that 

were either similar or dissimilar in V1 and AIT. We then saved the average 

complexity of T1 for each condition. This procedure was repeated 1000 times 

to obtain a confidence interval. This simulation confirmed that when image 

pairs are selected based on V1 similarity, dissimilar T1s are less complex and 

would thus lead to a quicker T2 processing. This effect was reversed for AIT 

similar
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General discussion 
In every waking moment in our lives an immense amount of 

information reaches our sensory organs. The ability to filter out non-

essential information is crucial for preserving computational resources 

used to recognise the objects which are pertinent for our current goals. 

Decades of research has given us a good understanding of the visual 

processing stream, from the retina to early visual areas to the more 

category-dependent and view-independent representations in inferior 

temporal cortex (ITC; DiCarlo, Yoccolan, and Rust 2012). The 

realisation of this hierarchical organisation has inspired a new 

generation of computational vision models; deep convolutional neural 

networks (DCNNs; Krizhevsky, Sutskever, & Hinton 2012). These 

networks mimic the hierarchical structure seen throughout the human 

visual system and are arguably the most promising models of the 

brain's visual system to date (Khaligh-Razavi and Kriegeskorte 2014). 

In both the brain and in DCNNs, the further along the processing 

stream the more the representations become category-specific and 

view-invariant. With a large corpus emerging where networks are fine 

tuned to fit brain data even better, an increased interest is also 

surfacing to use DCNNs as models for clinical conditions (Bonnen, 

Yamins, and Wagner 2020) or to manipulate neural populations 

(Bashivan, Kar, and DiCarlo 2019). To complement this, in this thesis 

I explore the usage of the intrinsic representations within DCNNs and 

the brain to predict behaviour in rapid object recognition. However, no 

sensory stimulus is an island. The perception (and the concomitant 

neural responses) of a target is strongly dependent on both spatial 

(what surrounds the object) and temporal (what was observed in the 

past) context. Processing a stimulus in isolation is challenging enough, 

however, the complex world we live in does not provide information in 

discrete, easily distinguishable portions but rather with an abundance 

of information perpetually reaching our sensory organs. In this thesis, 

I sought to understand how object recognition, parallel processing of 

natural images and conscious access relate to each other. I evaluate 

https://paperpile.com/c/XKqO9G/sKiT
https://paperpile.com/c/XKqO9G/WvE0
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the role of the relationship between object representations, both 

between specific image pairs and between categories of stimuli, and 

the propensity for conscious access to rapidly presented natural 

scenes. With this, this thesis attempts to provide a nuanced view of 

how semantic categories and target interactions during parallel 

processing affect our ability to perceive the world. 

 

In chapter two we investigated categorical differences regarding their 

propensity of conscious access during short and challenging 

presentation rates. Previous research has indicated that animate 

objects are more efficiently processed compared to inanimate objects 

(Jackson and Calvillo 2013; Nairne et al. 2013; Guerrero and Calvillo 

2016; New, Cosmides, and Tooby 2007), and the specific 

representational geometry in the human ITC predicts how quickly an 

object is correctly identified as animate (Carlson et al. 2014). This 

implies that the categorical organisation within ITC might reflect a bias 

towards processing certain categories over others. However, beyond 

the broad category boundaries between animate and inanimate, there 

is not much knowledge regarding how more specific categorical 

groups might differ. We narrowed this gap in our knowledge by 

selecting groups of visual objects known to cluster together in a 

distributed multivariate representational code within ITC (Charest et al. 

2014). By presenting two targets (T1 and T2, respectively) embedded 

into a stream of distractors, we tested the difference in propensity for 

conscious access between semantic categories. In a typical 

Attentional Blink (AB) task, participants are impressively good at 

identifying a single target within the stream, even at very rapid 

presentation rates. However, when two targets are presented and T2 

follows T1 by 200-500 ms, participants are often unable to correctly 

report the T2 identity (Raymond, Shapiro, and Arnell 1992). We first 

show that animate objects are less affected by the AB window, 

corroborating previous evidence that animate objects are more 

efficiently processed (New, Cosmides, and Tooby 2007; Guerrero and 

Calvillo 2016; Jackson and Calvillo 2013). This finding is different from 

only detection (for example only looking at lag-2 performance) since 

we baseline each image with its performance at lag-7, meaning that 

the effect cannot be attributed to the choice of masks and their 

https://paperpile.com/c/XKqO9G/glb1+DD71+5JIj+ItVu
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influence on performance for each category. Furthermore, we show 

that there is a significant variance between smaller sub-categories 

within the animate and inanimate division, extending previous notions 

of categorical differences in visual processing. Using the hierarchical 

organisation of a DCNN we tested which type of features (derived from 

different layers of the DCNN) best predict the variance of AB 

magnitude (ABM) between images. Here, importantly, the variance in 

ABM was best predicted by high-level visual features implying that it is 

the categorical organisation, not the shared low-level visual features 

within categories, which explain the differences in processing priority. 

In an exploratory phase, we further tested how similarity between 

features in the DCNN between targets affects the T2 reportability. We 

found, contrary to the literature on repetition blindness, that similarity 

between targets is beneficial for T2 reportability. In a second 

experiment, we confirm this finding by directly creating trials where T1 

and T2 were either similar or dissimilar in terms of mid-level visual 

features, and thus directly manipulating participants' reportability 

rather than post hoc correlations. We hypothesised that our finding is 

since these visual features are not used in working memory 

consolidation of the actual object, whereas previous studies have 

shown how important task-relevance is for repetition blindness. It is 

possible that the proclivity in the literature for using simple stimuli, such 

as letters and digits, have prohibited researchers from discovering this 

effect earlier. By embracing the complexity of natural scenes with the 

usage of multivariate analysis methods and DCNNs, this enabled me 

to not only to show that categorical differences in ABM are due to high-

level visual features but also that there is an effect of similarity that 

affects T2 reportability. 

 

In the third chapter, inspired by our finding of target-target similarity 

enhancing performance, we continued to probe a conundrum of target-

target similarity. On one hand, we have a large corpus of repetition 

blindness findings, where a repetition of targets leads to an 

impediment of the T2 report. On the other hand, we note in chapter 

two an improvement of T2 reportability when targets have similar 

visual features. By utilising similarity measures between natural 

images using functional magnetic resonance imaging (fMRI), 
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electroencephalogram (EEG), and a DCNN we asked how target-

target similarity at different levels of processing affects T2 

performance. Here, we replicated repetition blindness findings and 

showed that when targets are similar in high-level visual and brain 

areas associated with semantic representations (Binder et al. 2009) 

the T2 reportability suffers. This finding extends previous experiments 

of repetition blindness and implies that overlap in neural 

representation is key to the deficiency. Prior research on repetition 

blindness has shown that an exact replication of the stimulus is not 

necessary to obtain the effect. Participants will miss the second target 

even when the two targets are represented differently, e.g., 7 and 

“SEVEN” or homophonic word pairs such as rain/reign. Indeed, these 

previous studies imply that the suppressive mechanism is not related 

to visual features per se, but to phonological overlap. However, our 

results suggest that this is only part of the story, with target-target 

similarity in several brain areas associated with high-level visual 

features, semantics as well as phonological processing all correlate 

with behaviour.  

 

We replicate our findings from chapter two to show that similarity in V1 

between T1 and T2 leads to increased T2 performance. There are 

several possible reasons for our opposing findings, where the 

similarity between targets can both increase and decrease the 

probability for correct T2 reports depending on which level the 

processing of targets is interacting. Previous research has shown that 

when T2 is preceded with a cue of the same colour, T2 performance 

is enhanced (Nieuwenstein et al. 2005), implying that T2 processing is 

susceptible to subtle priming by low-level visual features. However, 

although this finding was robust using similarities from fMRI brain data 

and DCNN, it was not reflected in similarities derived from EEG. Here, 

we would expect this to be seen in the early time points (around 100 

ms and onwards) where the initial decoding of images is often found. 

This might reflect a difficulty of extracting similarity measures from 

rapidly presented stimuli (stimuli was only shown for 16 ms) or possibly 

the difference in estimating distances (with Pearson correlation used 

in CNN and fMRI and decoding used in EEG). Furthermore, while the 

DCNN modelling successfully replicated the results of V1 similarity, it 

https://paperpile.com/c/XKqO9G/cmAN
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failed to replicate findings of impaired T2 performance for trials when 

targets were similar in high-level semantic brain areas and late 

processing stages from the EEG. This might reflect the fact that 

AlexNet is trained on object recognition, for example, to locate distinct 

visual features that represent a dog compared to a cat, rather than 

semantics, i.e., realising that a dog is related to a leash without 

displaying any similar visual features. Recent efforts to train DCNNs 

with semantics have indeed led to better fit to neural data from the late 

ventral visual stream (Devereux, Clarke, and Tyler 2018). However, 

one caveat is that many objects that we reason are semantically 

related are defined by how they are used together in action.  

 

While representational overlap in V1 and high-level visual and 

semantic brain areas seem to explain inter-stimuli and trial variance of 

ABM, we also asked if representational distinct representations could 

explain individual differences. We, therefore, ran a searchlight 

procedure where we correlated individual performance with the 

average similarity between targets based on iteratively centring a 

sphere on each voxel in the brain and including all voxels within the 

sphere in a pairwise similarity metric. We found that participants who 

perform well in the task have a larger distance between target 

representations in the right temporoparietal junction (rTPJ) and right 

inferior frontal gyrus (rIFG). These areas have previously been 

associated with a bottom-up saliency network (Corbetta, Patel, and 

Shulman 2008) and are believed to be crucial for working memory 

updating. Furthermore, recent research on individual differences has 

also highlighted rTPJ, with higher grey matter density and connectivity 

with IFG (Zhou et al. 2020). Connectivity between rTPJ and IFG has 

also been shown to be a hallmark sign for successful reports of T2 

(Gross et al. 2004). Earlier research has argued that the speed of 

encoding, indicated by an earlier P300 peak, explains why certain 

participants are so called “non-blinkers” (Martens et al. 2006). 

Therefore, it is important to note that our task in the fMRI was a slow 

working memory task, designed to achieve a high signal-to-noise ratio 

and stable representations for each image, and only several weeks 

later did participants do the RSVP task. The task in the fMRI was like 

the RSVP in the regard that participants needed to encode an image 

https://paperpile.com/c/XKqO9G/tCxv
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in working memory for several seconds, engaging attention, 

perception, and memory-related processes. However, an important 

difference is that the display time of stimuli in the fMRI task was at 700 

ms and participants had ample time to encode the natural scene and 

participants performed at the ceiling. It is then possible that this more 

distinct representation between objects in the bottom-up saliency 

network, evident when encoding slowly presented images, facilitates 

fast processing during RSVP. Further research is needed to evaluate 

this possibility. 

 

In the fourth chapter, we probed the relationship between image 

similarities and attention to T1. Within the AB, there are two main 

concepts: temporal distance between targets (i.e., lag) and attending 

or ignoring T1. In chapters two and three we focused on AB 

magnitude, the difference in T2 performance between lag-7 and lag-2. 

This is a common measure to evaluate how much performance suffers 

from being within the AB window, that is, when T2 is presented 200-

500 ms after T1. However, the reason the phenomenon was named 

“attentional” blink was due to the fact that when participants were 

asked to ignore T1, performance on T2 was improved indicating that it 

was an attention-related depletion that lead to the main effect 

(Raymond, Shapiro, and Arnell 1992). In fact, most theories of AB 

have been focused on how attending T1 affects T2 processing. To 

investigate how our findings of target-target similarity effects on T2 are 

related to attending T1 we designed a hybrid task with modulation of 

attention to T1, where participants were asked to make speeded 

judgments on whether the T2 scene contained an animal. In two 

different sessions we also asked participants to either ignore T1 or 

memorise T1 to report after the stream. This allowed us to collect 

reaction time on T2 as well as accuracy allowing for more informative 

dependent variables. We modelled several latent decision variables 

using drift diffusion modelling, where we were primarily interested in 

drift rate (speed of evidence accumulation) and non-decision time as 

a way of separating between perceptual and non-perceptual 

processing. While RB has been associated with memory failure (Fagot 

and Pashler 1995), we hypothesised that V1 similarity will prime 

perceptual processing before memory processes are engaged. 

https://paperpile.com/c/XKqO9G/u22L
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Surprisingly, we did not find a main effect of V1 similarity on drift rate, 

however, we did show a positive interaction effect between attending 

T1 and V1 similarity on drift rate. Further post-hoc analysis showed 

that target-target V1 similarity did affect drift rate, but only in the 

“attending T1”-condition. This implies that attending T1 is a necessary 

condition for V1 similarity between the targets to affect perceptual 

processing of T2. Furthermore, many models of the AB are based on 

strict bottleneck ideas, where attending T1 affects T2 processing in 

late stages after T2 has been perceptually processed. In corroboration 

of this we do find that attending T1 does, in fact, affect the non-decision 

time which is more associated with motor initiation and memory 

encoding. However, we also show that attending T1 negatively 

modulates drift rate, indicating that attending T1 both prolongs the non-

decision time and slows down drift rate. 

Neural mechanisms underlying performance modulation of 

competing stimuli 

There are two related neurophysiological ideas that are interesting 

candidates for explaining our findings of similarity between targets, 

repetition suppression and more general, neural adaptation. 

Adaptation, in the context of neural processing, refers to the idea that 

neurons that are continuously firing will gradually lower their response 

over time (Whitmire and Stanley 2016). The proposed main advantage 

of such a mechanism is that it facilitates detection of changes in the 

environment by suppressing static information flow, where activation 

based suppression would decrease the salience of recently seen 

visual features (Schwartz, Hsu, and Dayan 2007). This neural 

adaptation is increased along the visual hierarchy (Dhruv and 

Carandini 2014), implying that there are cumulative contributions at 

multiple stages. Adaptation is known to change the tuning function of 

neurons (Whitmire and Stanley 2016), referring to the sensitivity a 

neuron has for a specific feature dimension. For example, for a neuron 

that encodes orientation, it will have a preferred angle to which 

responds the most with a gradual lower response to more distant 

angles. By presenting an orientation grating stimulus of a larger angle, 

for example 45 degrees larger than its preferred angle, the tuning 

https://paperpile.com/c/XKqO9G/a6IL
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function of the neuron will shift temporarily in the opposite direction 

(Dragoi, Sharma, and Sur 2000). The timing of the following stimuli 

can drastically change if its representation is being attracted to or 

repulsed from the previous orientation (Quiroga, Morris, & Krekelberg, 

2019), i.e., biasing the perception of the second orientation away or 

towards the first orientation. This idea could potentially explain how 

similarity in low-level visual features might be beneficial when two 

targets are presented in short succession. 

 

Another interesting notion is how adaptation is used as a mechanism 

to discount the effects of visual noise. Vinken et al. (2020) presented 

participants with an adaptor image (a random noise pattern) for an 

extended time, and then superimposed a target-object using the same 

background adapter image or another noise pattern. The authors 

showed that when the object was presented with the same noise 

pattern as the adaptor image there was a significant increase in 

detection performance. By implementing a simple local “neuron” 

adaptation mechanism into an AlexNet DCNN architecture, the 

network exhibited a similar behaviour as to humans. One of the 

proposed functions for neural adaptation is that it increases our 

sensitivity to small changes in the environment, taking advantage of 

statistical regularities in image structures to optimise sensory coding 

(Schwartz, Hsu, and Dayan 2007). This idea was the rationale for why 

evidence accumulation speed might be enhanced when two targets 

share low-level similarities. By adapting to irrelevant scene statistics, 

and thus decreasing the neural response, the visual system could 

potentially be more efficient at evaluating the scene. Future work could 

attempt to model the findings reported in chapter four, with the 

interaction effect of attention and similarity, using a similar model as 

Vinken et al. (2020) together with an intrinsic attention module. At least 

on the surface, our findings in the fourth chapter reveal a seemingly 

idiosyncratic behaviour, which could imply a specific architecture and 

definite processing modules. To successfully recover these results 

using a simple local neural adaptation model would be a convincing 

finding and an inspiring start to refine models of the Attentional Blink. 
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While neural adaptation is best studied using single cell recordings, a 

related phenomenon from the fMRI literature is repetition suppression. 

Repetition suppression refers to the fact that the Blood Oxygen Level 

Dependent (BOLD) signal, or the MRI contrast of blood 

deoxyhaemoglobin, decreases in certain brain areas when an image 

is repeatedly shown. This effect distinguishes itself from neural 

adaptation since fMRI integrates signals from millions of neurons, 

where a decrease in BOLD does not necessarily relate directly to the 

lowered firing rate of single neurons. However, a recent study showed 

that the only model that captures a large variety of second order 

statistics, within fusiform face area (FFA) and V1, was a local scaling 

model which outperformed competing models such as neural tuning, 

repulsion or attraction models (Alink, Abdulrahman, and Henson 

2018). This corroborates a link in the literature between local neural 

adaptation and repetition suppression in fMRI. Like repetition 

blindness, which is a behavioural phenomenon, repetition suppression 

does not always occur. For example, in FFA, an area known to 

respond strongly to faces (Kanwisher, McDermott, and Chun 1997), 

repeating face stimuli lead to repetition suppression but only when a 

face or symbol is familiar (Henson, Shallice, and Dolan 2000). Here, a 

repetition of unfamiliar stimuli instead led to an increase of BOLD 

response. Interestingly, a similar finding has been reported for 

repetition blindness, where repetitions of known words induce an 

impairment of reporting the second target but not a repetition of 

nonsense words (Coltheart and Langdon 2003). However, due to the 

complications of capturing fMRI data together with behaviour, to the 

best of my knowledge, there are no current studies that have 

successfully shown that repetition suppression and neural adaptation 

are the main mechanisms behind the behavioural effects of repetition 

blindness. Nevertheless, they can be argued to be one of the top 

contenders and further research is needed to establish their role.  

Modelling the attentional blink 

Throughout my years of investigating object recognition and conscious 

access using the AB as a tool, I have considered many of the available 

models that strive to explain all the different findings from the AB 
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literature. A model that describes the AB behaviour would be of great 

utility, not only for understanding attention but also to inform 

researchers using AB as a tool, allowing them to design more precise 

experiments. In an attempt to make a brief summary of the best known 

models, I’ll start with the inhibition theory (Raymond, Shapiro, and 

Arnell 1992), which proposes that an attentional “gate” opens when T1 

is observed. Immediately following stimuli is suppressed (gate closed) 

to reduce confusion during feature binding. However, Chun and Potter 

(1995) showed that both perceptually and categorically defined targets 

led to a blink, showing that the AB is not due to feature binding 

problems. Chun and Potter, in their two-stage model, instead 

proposed that all targets are initially processed perceptually, but need 

to pass a capacity-limited second stage to be impervious to 

decay/overwriting. Although, this notion didn’t seem to work either. Di 

Lollo et al. (2005) showed that participants can report 3 consecutive 

targets (known as the extended lag-1 sparing), which arguably seems 

inconsistent with a capacity-limited account (Olivers, Van Der Stigchel, 

and Hulleman 2007). Di Lollo and colleagues instead proposed the 

temporal loss of control (TLC) model which posits a filter that selects 

targets and excludes distractors. A T1+1 distractor causes a disruption 

in the filter's configuration (loss of control) leading to slower processing 

of the following target. In the boost and bounce model (Olivers and 

Meeter 2008), T1 ignites an attentional “boost”, which allows the T1+1 

distractor to be processed. However, the detection of a non-target 

distractor elicits a “bounce” mechanism that inhibits T2, causing it to 

be overwritten and forgotten. In both TLC and the boost and bounce 

model the distractors are a crucial component for AB, however, the 

effect of AB has been observed even without intermediate distractors 

(Nieuwenstein, Potter, and Theeuwes 2009). Furthermore, as seen in 

our fourth chapter, where we don’t have any intermediate distractors, 

a clear deficiency can be found in the drift rate when attending T1. It 

is possible that solely considering accuracy, where you only have 

“correct” or “incorrect” responses for each trial, is not sensitive enough 

to detect the scope of processing deficiencies induced by attending 

T1.  
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My personal, probably contentious, opinion of directly modelling AB is 

that it is a backwards notion at best. The reason for this, is that I argue 

that AB is an epiphenomenon of an attentional system that has 

evolved to expect new stimuli to occur at a certain cyclic rate. One of 

the main contenders for this cyclic expectation is the fact that humans 

make about 4-5 saccades per second (or once every 200-250 ms). 

This means that every day, from the time you wake up to the time you 

go back to bed, you are continuously sampling your environment, 

processing objects at the focal point of your current fixation and 

updating your working memory. Or in other words, the precise timings 

for AB are aligned with the sampling rate to which your brain is 

adherent to every waking moment. This sampling rate of 4-5 Hertz is 

known as theta when applied to brain waves and the phase of theta 

has a crucial role in object detection. For example, when measuring 

theta in monkeys at the frontal eye fields, lateral intraparietal area, and 

the mediodorsal pulvinar, studies have found that performance is 

significantly higher when a target is presented concurrently with the 

theta phase being at its peak (for review see Fiebelkorn and Kastner 

2019). Interestingly, saccades modulate activity in thalamus 

(Leszczynski et al. 2020), early visual cortex (Purpura, Kalik, and 

Schiff 2003), as well as hippocampus (Hoffman et al. 2013). In fact, 

neurons in V1 are particularly responsive to targets presented within 

100-150 ms after a saccade (Lowet et al. 2016; Gallant, Connor, and 

Van Essen 1998), implying a reset of an attentional episode with 

expectations of incoming stimuli. A similar reset can be argued to 

relate to theta waves within the hippocampus (Lisman and Jensen 

2013), a brain area associated with episodic (or temporal) memory 

(Umbach et al. 2020). Within the hippocampus, the theta-phase has 

been theorised to support encoding at the trough and retrieval at the 

peak (Hasselmo, Bodelón, and Wyble 2002), and saccades reset the 

theta-phase, such that, at every new fixation the theta phase is at its 

peak (Hoffman et al. 2013). These studies corroborate the idea that 

saccades are central to the cyclic expectation that underlies attentional 

episodes. Attentional episodes refer to the fact that although your 

experience of the world seems continuous, the brain rather seems to 

integrate information within ‘‘volleys’’ of activity occurring in a cyclic 

manner at around 4-5 Hertz. If you hypothesise that target detection in 
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an RSVP is similar to a saccade, in the respect that it resets an 

attentional episode, then these animal studies (Lowet et al. 2016; 

Gallant, Connor, and Van Essen 1998) provide direct evidence for why 

we have lag-1 sparing and why target detection after 200-500 is 

impaired. 

 

However, in the AB literature there is little mention of the role of 

saccades when explaining why a second target presented 200-500 ms 

after a first target is missed. To the best of my knowledge, there is only 

one study that investigates the role of saccades in the AB. The authors 

of this study demonstrated an improvement of T2 performance when 

participants were asked to make a saccade directly after T1 

(Kamienkowski, Navajas, and Sigman 2012), thereby (theoretically) 

making a hard reset of the attentional episode. Therefore, I argue that 

we should not model the AB per se. Instead, we should strive to make 

models that have the same constraints as humans in terms of 

processing ability. Although our eye muscles are the fastest muscle 

movement, we are capable of, in a sense, our perception of the world 

is constrained by our actions (or ability to act). Therefore, a model with 

similar constraints, such as small focal points and a limitation to how 

fast it can make saccades to sample new information, and later trained 

to do object recognition of visual scenes could potentially be a 

promising model of AB. In fact, the idea of constraining a recurrent 

neural network with a small fovea, and the ability to sample new 

information, has been successfully implemented and trained on 

handwritten digits (Mnih et al. 2014). These restrictions enhanced the 

model’s performance, indicating a computational role for saccades 

(Mnih et al. 2014). In my view, the most promising model of the AB 

would not model the epiphenomenon but instead the phenomenon. 

That is, a model with similar types of constraints as humans together 

with local neural adaptation to model the interaction potentially also 

between targets when they share representational geometry at 

different stages of processing. 
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The role of DCNNs in neuroscience 

Most of the current studies on DCNNs and brain data have been 

focused on correlating the representations within the brain and 

DCNNs. These studies have successfully shown that DCNNs are our 

current most reliable model of the representational geometry at 

different stages of processing in the visual ventral stream (Khaligh-

Razavi and Kriegeskorte 2014; Yamins et al. 2014), following a similar 

hierarchical structure as the visual stream (Eickenberg et al. 2017; 

Cichy, Pantazis, and Oliva 2014; Greene and Hansen 2018; 

Kietzmann et al. 2019). In recent years several studies have shown 

that representational geometry in high-level visual areas predict 

behaviour (Charest et al. 2014; Carlson et al. 2014; Ritchie, Tovar, and 

Carlson 2015). These findings provide crucial evidence for the notion 

that the information that is being decoded from these areas also have 

behavioural consequences as opposed to just being epiphenomenal 

(Grootswagers, Cichy, and Carlson 2018). Almost a decade after 

DCNNs changed the field of vision science, we are now starting to use 

DCNNs as models of clinical conditions (Bonnen, Yamins, and Wagner 

2020) and researchers have been able to produce images designed 

to activate only a select population of neurons (Bashivan, Kar, and 

DiCarlo 2019). Overall, models of the visual system can be infinitely 

useful, and it is up to researchers to find ways of using them to propel 

knowledge.  

 

In chapter two we show two creative ways of how DCNNS can be used 

to explain and manipulate behaviour, both of which are. First, after our 

finding that there are categorical differences in AB magnitude, we were 

posed with the conundrum that visual categories not only share high-

level visual features but also low-level features (Torralba and Oliva 

2003). By taking advantage of the hierarchical structure of AlexNet, 

where low-level visual features are processed in the first few layers 

and high-level information emerges in later layers, we showed that the 

prediction of AB magnitude increased with each layer. We thereby 

provide evidence that the best explanation for the categorical 
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differences in AB magnitude is that they are due to the high-level visual 

features. This implies that some semantic categories, that are known 

to share a distributed code in ITC (Charest et al. 2014; Bao et al. 2020; 

DiCarlo, Yoccolan, and Rust 2012; Kriegeskorte, Mur, and Bandettini 

2008; Kanwisher, McDermott, and Chun 1997; Downing et al. 2001), 

are more likely to be consciously accessed and their high-level visual 

features best explains their differences. Second, we also show that 

similarity between the two targets can affect behaviour. In order to 

manipulate behaviour, we used the inner representations of AlexNet 

to select image pairs that were either similar or dissimilar. We showed 

that similar image pairs lead to an increased probability of correct T2 

report, a notion that seems to contradict the repetition blindness 

literature (Kanwisher 1987; Coltheart, Mondy, and Coltheart 2005; 

Fagot and Pashler 1995; Park and Kanwisher 1994; Bavelier and 

Potter 1992). However, the usage of DCNNs allowed us to define 

similarity in a different, more objective, way than relying on perceptual 

intuitions, ratings or similar methods that are subject to our own biases. 

Since the network we used was trained on strict object classification, 

the similarities between images are probably related to specific object 

features. However, one can imagine that training networks on different 

tasks, from semantics to perceptual qualities, will yield a larger range 

of similarities which in turn can be used in a more systematic way to 

investigate the interactive effects of representational overlap. 

 

Problems with DCNNs as models 

Despite the success of DCNNs in vision sciences, their presence has 

not been without criticism. The main concerns can be summarised into 

three problems: (1) DCNNs do not learn the way humans do, (2) 

DCNNs make mistakes humans would never do, (3) and we are just 

substituting one black box with another. These problems have been 

argued over for many decades, but with the recent upsurge of DCNNs 

it seems as if more researchers are finding them useful and 

acceptance in the field is increasing.  
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First, neural networks were for many decades considered a pipe 

dream for scientists due the difficulty of determining how modifying the 

weights one unit would affect the system's overall behaviour. However, 

this changed in the 1980s with the popularisation of backpropagation 

(Rumelhart et al. 1985; LeCun et al. 1988), a method where errors of 

the output layer are propagated backwards throughout the network 

and therefore solving the problem by iteratively moving the parameters 

closer to a state that produces a desired output. The brain also learns 

by adjusting the connection strength between neurons, but feedback 

connections in the brain seem to have a very different role (Gilbert & 

Li 2013; Lamme, Supèr, and Spekreijse 1998) and human children 

seem to learn unsupervised, without the correct labels on every item 

in their surroundings. Despite these differences, recent proposals 

have been made arguing that the brain might approximate 

backpropagation as a learning mechanism using locally computed 

errors (Lillicrap et al. 2020). This is a drastically different idea than the 

commonly accepted Hebbian notion of learning, which states that 

“cells that fire together, wire together” (Hebb 1949). That is, correlated 

activity between connected neurons leads to a stronger synaptic 

connection between them, a principle that has been successful in 

explaining a wide range of plasticity mechanisms (Sumner et al. 2020). 

However, even if neural networks learn differently from humans, one 

could argue that the learning process is inconsequential if the final 

model shares computational characteristics with the brain.  

 

The second problem is related to the fact that DCNNs are well-known 

to be vulnerable to network adversarial attacks (Goodfellow, Shlens, 

and Szegedy 2014). This can be done by adding an imperceptibly 

small amount of designed noise on top of an image of (for example) a 

panda, and the network would classify it as a gibbon with over 90% 

confidence (Goodfellow, Shlens, and Szegedy 2014). However, 

Firestone (2020) argues that these examples of unhuman behaviour 

do not reflect a meaningful difference in how information is processed. 

Instead, Firestone argues that humans also differentiate in how they 

perceive world, where some are scared of spiders, some perceive a 

blue and black dress to be gold and white (Schlaffke et al. 2015) and 

some humans make errors when constructing sentences, e.g., 
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Spoonerisms (Palmquist 1980). But importantly, neural networks have 

different constraints than humans that make them vulnerable to 

different types of errors that are attributable to their constraints rather 

than their competence (Firestone 2020). This idea is illustrated in a 

study wherein by constraining a DCNN with a retina model and then 

perturbing an image of a cat until the network misclassified it to a dog. 

Importantly, the resulting image also fooled humans (Elsayed et al. 

2018). Overall, biologically constrained DCNNs as a way of increasing 

robustness is gaining more ground in recent years (Girard et al. 2021; 

Zhang et al. 2019; Evans, Malhotra, and Bowers 2021). Developing 

neural networks with biological constraints might not only be beneficial 

in making them more like human cognition but biology can also inspire 

engineers to make more computationally efficient models. 

 

Finally, Kay (2017) contends the idea of DCNNs as useful models of 

the visual system. He argues that neither the implementation nor the 

goals of the neural networks are comparable to humans, and therefore 

their utility to understand the brain is trivial at best. He also iterates a 

common critique of DCNNs; the enormous parameter space, in 

combination with non-linearities, makes for an opaque black box which 

is equally mysterious as the brain. In response to Kay (2017), (Scholte 

2018) agrees that on an implementation-level DCNNs and brains are 

different but this is not a problem if we instead consider DCNNs the 

same way we do with animal models. In a sense, the complexity 

argument against DCNNs should also apply to animal models. For 

example, using rodent brains as models for medical treatments or 

understanding basic perception has been invaluable for science 

despite not having a full understanding of how their brains work. 

Having a potentially unlimited zoo of neural networks with different 

architectures, trained on different data sets with a variety of task goals 

could yield new knowledge unreachable with conventional methods. 

These models can be lesioned and manipulated with precision, 

enabling us to probe and make predictions about human behaviour 

and brain function. The discussion for the role of DCNNs in vision 

science will most certainly continue for a long time (unless they get 

replaced by newer ideas, such as transformers (Tuli et al. 2021)), but 

their impact on the field the past ten years is impossible to dismiss.  
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Relationship to clinical populations 

Although all the chapters in this thesis include only healthy participants 

with no known neurological diseases, some of our findings may shed 

some light on the understanding of certain clinical populations. Many 

types of disorders have been associated with a lower AB performance, 

such as schizophrenia (Wynn et al. 2006), attention deficit 

hyperactivity disorder (Armstrong and Munoz 2003), and lesions in the 

parietal lobe (Husain et al. 1997; Shapiro, Hillstrom, and Husain 2002). 

Two related, but dissociable, neural disorders that connect to our 

findings are visual extinction and simultanagnosia. In visual extinction, 

most associated with a lesion around the right TPJ, the patient can 

attend to an object in the contralesional field (i.e., the left visual field) 

as long as there is no other salient object in the ipsilateral (to the 

lesion) visual field. In this case, it seems as if attending to the right 

visual field interferes with the patient's ability to perceive any object in 

the left visual field. In contrast, simultanagnosia describes the inability 

to perceive two objects even when presented within the same visual 

field. A patient with simultanagnosia being presented with a table with 

food and cutlery would for example only perceive a spoon. While visual 

extinction is associated with unilateral damage, simultanagnosia 

occurs after bilateral damage to the parietal lobe. The main 

commonality is that in both instances patients have an inability to 

resolve attentional conflict - an inability similar to that which causes the 

AB. 

 

Damage to the right TPJ has been associated with a clear reduction 

of performance in the AB (Husain et al. 1997; Shapiro, Hillstrom, and 

Husain 2002), where the maximal extinction occurs when the 

ipsilateral object is presented slightly before the contralateral object 

(Cate and Behrmann 2002). Similarly, our findings in chapter 3 showed 

that individual differences in AB can be related to a more differentiable 

neural code between visual objects in high dimensional 

representational space within the right TPJ. In our data, there were no 

clear categorical organisations within the right TPJ, however, 
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participants who overall had more distinct representations between 

objects in TPJ were more successful in the task. This implies that this 

region does not maintain the semantic input itself but is instrumental 

in transferring perceptual information into working memory, resolving 

attentional conflict when multiple objects are being processed 

simultaneously. Furthermore, in both visual extinction and 

simultanagnosia there is evidence for the notion that similarity 

between the objects exacerbates the condition (Rafal et al. 2002; Ptak 

and Schnider 2005; Baylis, Driver, and Rafal 1993; Coslett and Lie 

2008). For example, Rafal et al. (2002) asked patients with visual 

extinction to report the value of digits and numerical words presented 

simultaneously in each visual field. Patients showed a decreased 

ability to correctly report the left target when it was paired with a right 

visual field target that required the same response (e.g., 1 vs 1) 

regardless of if they were visually similar or not (e.g., 1 vs ONE). 

Similar to findings in repetition blindness (Bavelier and Potter 1992), 

Rafal et al. (2002) also found that phonologically similar pairs (e.g., 

ONE vs WON) led to a direct reduction in performance for reporting 

the item in the left visual field. One interpretation of this is that the 

deficits these patient experiences are not perceptual per se, but rather 

on a response level and related to the current task demands. This is 

mirrored in RSVPs studies with healthy participants showing that 

similarity between targets only affects performance when they are 

similar in the task-relevant domain (Sy and Giesbrecht 2009). 

Interestingly, even in a healthy population, with intact parietal function, 

when instructing participants to report two simultaneously presented 

stimuli (one in each visual field), participants show “pseudoextinction” 

(Goodbourn and Holcombe 2015), where targets in the right visual field 

more often omitted. Together, these findings indicate that even healthy 

individuals exhibit similar deficits (and due to the same competitive 

mechanism) as patients who suffered damage to the parietal lobe 

when they are put under highly demanding situations, such as RSVP. 

By furthering our understanding of the mechanisms behind all types of 

RSVP phenomena, we might be able to model the experience of 

certain clinical populations. 
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Conclusions 

The goal for a researcher in any field is to investigate the world around 

them while attempting to describe an unfathomably complex reality 

while constrained by the limits of our language and cognitive abilities. 

We often use terms such as “understanding” to describe the pinnacle 

of our efforts. However, without a clear definition of what the term 

“understanding” means, it rather becomes an umbrella term used by 

researchers to avoid defining their exact desires. In psychology and 

neuroscience research, the word “understanding” often ends up 

meaning “is there a difference between these two conditions”, which 

indeed is an important starting point when there isn’t sufficient 

knowledge available to make any other predictions. However, I’d 

argue that modelling, prediction, and precise manipulation based on 

models are necessary, but perhaps not sufficient, goals for proper 

understanding.  

 

Throughout this dissertation, these have been the key concepts used 

for understanding. In chapter 2 our initial question started with the 

examination of semantic categories and if they are differentially 

sensitive to the AB window. We found a large variance between 

categories and continued by predicting the individual images AB 

magnitude using hierarchical visual features derived from a DCNN. 

This allowed us to conclude that we can predict how likely an image is 

to gain conscious access based on its high-level visual features, 

demonstrating a new understanding at what level processing the AB 

might be occurring. In an explorative phase we also found that 

similarity in visual features between targets are beneficial for 

performance. We replicated this finding by selecting T1-T2 pairs based 

on their similarity in visual features, thereby using our model to 

manipulate behaviour. These findings seemed contrary to the current 

literature where similarity between targets often led to lower 

performance. In the two following studies (chapter 3 and 4) we show 

that the word “similarity” has been arguably under-defined in previous 

studies in the sense that natural images are complex, just like the 

world around us, and what it means for two natural scenes to be similar 

depends on where in the brain they are being processed at a given 
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moment. This denotes one of the main contributions of this thesis. 

Traditionally, studies of attention, perception, and working memory 

has made use of simple stimuli (such as simple geometric shapes, 

letters, digits, etc.) which has allowed a great deal of control over the 

experimental conditions. However, by embracing the complexity of 

natural images using DCNNs, fMRI and EEG together with multivariate 

methods lends utility in exploring the intricacies of the brain. The 

concept of a dog can be presented in unlimited variations, with 

different breeds, viewing angles, low-level scene statistics etc. On the 

other hand, the letter “G” does not allow for the same breath of 

variation, which thus limits the range of analyses for the researcher. 

Arguably, our findings of low-level similarity in V1 being beneficial for 

performance and conflict in high-level vision and semantic brain areas 

would probably not be possible without the usage of complex stimuli.  

 

In conclusion, the complexity of our environment has shaped our 

brains, our bodies, and how we interact with our surroundings. The 

evolutionary relevance of certain categories has not only affected our 

preferences but also how the multivariate representations of 

categories in high-level visual areas are related to their proclivity to 

conscious access. By embracing the complexity of natural images, 

and utilizing a range of methods from machine learning, deep learning, 

fMRI/EEG, and cognitive modelling I have shown a nuanced picture of 

how natural images interact at different levels of processing and 

emerge into a state underlying conscious report of stimuli. Specifically, 

V1 similarity in multivariate representational space between images 

interacts with attention and enhances the speed of accumulating 

evidence for targets. Meanwhile, high-level similarity between targets 

has a negative impact on target performance where attention has an 

opposite effect compared to V1-similarity and decreases this 

impairment. These are important findings that not only shed new light 

on how object processing and attention interacts but can also be used 

by future modelling work as benchmark behaviours the models should 

exhibit.  
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Nederlandse samenvatting 
Als we onze ogen snel over een visuele scène heen laten gaan, 

verwerken we allerlei informatie zonder enige schijnbare moeite en lijkt 

de informatie continu over de tijd heen geïntegreerd te worden. 

Mensen zijn zo goed in het verwerken van visuele scènes dat de 

betekenis van een scène al geduid kan worden als een plaatje heel 

kort (13 ms) wordt aangeboden (Broers, Potter en Nieuwenstein, 

2018) en binnen een fractie van een seconde kunnen mensen al 

reageren op specifieke informatie uit een scène (Kirchner en Thorpe 

2006). In de afgelopen decennia is vastgesteld dat deze buitengewone 

prestatie bereikt wordt door de inrichting van ons hiërarchische, 

visuele systeem. Met name visuele kenmerken die laag in de visuele 

hiërarchie verwerkt worden, zoals randen, oriëntaties en kleur, worden 

heel snel verwerkt en deze basale visuele kenmerken worden later in 

de visuele hiërarchie gecombineerd tot complexere visuele 

kenmerken die vaak semantische eigenschappen hebben (DiCarlo, 

Yoccolan en Rust 2012). 

 

In een reeks onderzoeken heb ik verschillende varianten van het 

zogeheten “Rapid Serial Visual Presentation” (RSVP) paradigma 

gebruikt om te achterhalen waarom specifieke semantische informatie 

makkelijker in het werkgeheugen terecht komt en hoe scènes die kort 

na elkaar gepresenteerd worden elkaar beïnvloeden. Twee 

veelvoorkomende bevindingen bij multi-target RSVP's zijn de 

zogeheten “Attentional Blink” (AB: Raymond, Shapiro en Arnell 1992) 

en “Repetition Blindness” (RB: Kanwisher 1987). In het AB paradigma 

worden twee target-plaatjes (T1 en T2) kort na elkaar gepresenteerd 

binnen een serie van afleider-plaatjes. Als het tweede target-plaatje 

(T2) 200-500 ms na het eerste target-plaatje (T1) wordt getoond, 

kunnen proefpersonen de T2 vaak veel minder goed 

detecteren/rapporteren. In het RB-paradigma (Kanwisher 1987) 

presteren proefpersonen veel minder goed als zowel T1 als T2 

relevant zijn voor de taakprestatie (Sy en Giesbrecht 2009). Een groot 

probleem in het al bestaande AB- en RB-onderzoek is dat de gebruikte 



Nederlandse samenvatting  
 

 144   

stimuli vaak erg simpel en kunstmatig zijn. Daardoor is het moeilijk te 

begrijpen hoe interacties tussen de visuele targets leiden tot 

veranderingen in taakprestatie. Recente ontwikkelingen in analytische 

methoden maken het mogelijk om verschillen tussen complexe, 

naturalistische stimuli mathematisch te beschrijven. Hierdoor is het 

mogelijk om interacties tussen targets op verschillende niveaus in de 

visuele hiërarchie te kwantificeren en daarmee beter te begrijpen 

waardoor interacties tussen T1 en T2 tot veranderingen in 

taakprestaties in de AB- en RB-paradigma’s leiden. 

 

In mijn onderzoek heb ik verschillende neuroimaging-methoden (EEG, 

fMRI) en computationele modellen (drift diffusion modelling, DDM; 

convolutionele neurale netwerken, CNN) gecombineerd om beter te 

begrijpen, waardoor de “Attentional Blink” en “Repetition Blindness” 

worden veroorzaakt. Het lijkt erop dat visuele target-plaatjes elkaar op 

meerdere verschillende visuele verwerkingsniveaus kunnen 

beïnvloeden en dat afhankelijk van waar deze interactie plaatsvindt 

(laag in de visuele hiërarchie vs. hoog in de visuele hiërarchie) de 

veranderingen in taakprestaties tegengesteld kunnen zijn. Met behulp 

van een rijke dataset aan natuurlijke scènes laat ik zien dat als target-

plaatjes op elkaar lijken hoog in de visuele hiërarchie (waar taal en 

semantiek tot stand komen), dat er dan een verslechtering in 

taakprestaties plaatsvindt. Dit impliceert dat als de betekenis van de 

targets te veel overeenkomt, er slechts 1 scène kan worden 

gerepresenteerd het werkgeheugen (Kanwisher 1987; Wyble et al. 

2011). Als target-plaatjes juist op elkaar lijken laag in de visuele 

hiërarchie (waar basale beeldeigenschappen worden verwerkt), dan 

worden taakprestaties beter, wat doet denken aan de welbekende 

priming-effecten. Ook lijken target-plaatjes sneller verwerkt te worden 

als de beeldeigenschappen overeenkomen laag in de visuele 

hiërarchie, wat extra evidentie is dat er dan priming plaatsvindt.  

 

Samenvattend lijkt het erop dat deze nieuwe onderzoeksbenadering, 

waarbij natuurlijke scènes worden gebruikt als stimuli in staat is om 

vrijwel alle, soms tegenstrijdige bevindingen, in de AB- en RB-

literatuur te verklaren. 
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