113 research outputs found

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Direct Speech Reconstruction From Articulatory Sensor Data by Machine Learning

    Get PDF
    This paper describes a technique that generates speech acoustics from articulator movements. Our motivation is to help people who can no longer speak following laryngectomy, a procedure that is carried out tens of thousands of times per year in the Western world. Our method for sensing articulator movement, permanent magnetic articulography, relies on small, unobtrusive magnets attached to the lips and tongue. Changes in magnetic field caused by magnet movements are sensed and form the input to a process that is trained to estimate speech acoustics. In the experiments reported here this “Direct Synthesis” technique is developed for normal speakers, with glued-on magnets, allowing us to train with parallel sensor and acoustic data. We describe three machine learning techniques for this task, based on Gaussian mixture models, deep neural networks, and recurrent neural networks (RNNs). We evaluate our techniques with objective acoustic distortion measures and subjective listening tests over spoken sentences read from novels (the CMU Arctic corpus). Our results show that the best performing technique is a bidirectional RNN (BiRNN), which employs both past and future contexts to predict the acoustics from the sensor data. BiRNNs are not suitable for synthesis in real time but fixed-lag RNNs give similar results and, because they only look a little way into the future, overcome this problem. Listening tests show that the speech produced by this method has a natural quality that preserves the identity of the speaker. Furthermore, we obtain up to 92% intelligibility on the challenging CMU Arctic material. To our knowledge, these are the best results obtained for a silent-speech system without a restricted vocabulary and with an unobtrusive device that delivers audio in close to real time. This work promises to lead to a technology that truly will give people whose larynx has been removed their voices back

    Silent Speech Interfaces for Speech Restoration: A Review

    Get PDF
    This work was supported in part by the Agencia Estatal de Investigacion (AEI) under Grant PID2019-108040RB-C22/AEI/10.13039/501100011033. The work of Jose A. Gonzalez-Lopez was supported in part by the Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship (IJCI-2017-32926).This review summarises the status of silent speech interface (SSI) research. SSIs rely on non-acoustic biosignals generated by the human body during speech production to enable communication whenever normal verbal communication is not possible or not desirable. In this review, we focus on the first case and present latest SSI research aimed at providing new alternative and augmentative communication methods for persons with severe speech disorders. SSIs can employ a variety of biosignals to enable silent communication, such as electrophysiological recordings of neural activity, electromyographic (EMG) recordings of vocal tract movements or the direct tracking of articulator movements using imaging techniques. Depending on the disorder, some sensing techniques may be better suited than others to capture speech-related information. For instance, EMG and imaging techniques are well suited for laryngectomised patients, whose vocal tract remains almost intact but are unable to speak after the removal of the vocal folds, but fail for severely paralysed individuals. From the biosignals, SSIs decode the intended message, using automatic speech recognition or speech synthesis algorithms. Despite considerable advances in recent years, most present-day SSIs have only been validated in laboratory settings for healthy users. Thus, as discussed in this paper, a number of challenges remain to be addressed in future research before SSIs can be promoted to real-world applications. If these issues can be addressed successfully, future SSIs will improve the lives of persons with severe speech impairments by restoring their communication capabilities.Agencia Estatal de Investigacion (AEI) PID2019-108040RB-C22/AEI/10.13039/501100011033Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship IJCI-2017-3292

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech

    Voice restoration after laryngectomy based on magnetic sensing of articulator movement and statistical articulation-to-speech conversion

    Get PDF
    © Springer International Publishing AG 2017.In this work, we present a silent speech system that is able to generate audible speech from captured movement of speech articulators. Our goal is to help laryngectomy patients, i.e. patients who have lost the ability to speak following surgical removal of the larynx most frequently due to cancer, to recover their voice. In our system, we use a magnetic sensing technique known as Permanent Magnet Articulography (PMA) to capture the movement of the lips and tongue by attaching small magnets to the articulators and monitoring the magnetic field changes with sensors close to the mouth. The captured sensor data is then transformed into a sequence of speech parameter vectors from which a time-domain speech signal is finally synthesised. The key component of our system is a parametric transformation which represents the PMA-tospeech mapping. Here, this transformation takes the form of a statistical model (a mixture of factor analysers, more specifically) whose parameters are learned from simultaneous recordings of PMA and speech signals acquired before laryngectomy. To evaluate the performance of our system on voice reconstruction, we recorded two PMA-and-speech databases with different phonetic complexity for several non-impaired subjects. Results show that our system is able to synthesise speech that sounds as the original voice of the subject and also is intelligible. However, more work still need to be done to achieve a consistent synthesis for phonetically-rich vocabularies

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    Reactive Statistical Mapping: Towards the Sketching of Performative Control with Data

    Get PDF
    Part 1: Fundamental IssuesInternational audienceThis paper presents the results of our participation to the ninth eNTERFACE workshop on multimodal user interfaces. Our target for this workshop was to bring some technologies currently used in speech recognition and synthesis to a new level, i.e. being the core of a new HMM-based mapping system. The idea of statistical mapping has been investigated, more precisely how to use Gaussian Mixture Models and Hidden Markov Models for realtime and reactive generation of new trajectories from inputted labels and for realtime regression in a continuous-to-continuous use case. As a result, we have developed several proofs of concept, including an incremental speech synthesiser, a software for exploring stylistic spaces for gait and facial motion in realtime, a reactive audiovisual laughter and a prototype demonstrating the realtime reconstruction of lower body gait motion strictly from upper body motion, with conservation of the stylistic properties. This project has been the opportunity to formalise HMM-based mapping, integrate various of these innovations into the Mage library and explore the development of a realtime gesture recognition tool

    Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics

    Get PDF
    Total removal of the larynx may be required to treat laryngeal cancer: speech is lost. This article shows that it may be possible to restore speech by sensing movement of the remaining speech articulators and use machine learning algorithms to derive a transformation to convert this sensor data into an acoustic signal. The resulting “silent speech,” which may be delivered in real time, is intelligible and sounds natural. The identity of the speaker is recognisable. The sensing technique involves attaching small, unobtrusive magnets to the lips and tongue and monitoring changes in the magnetic field induced by their movement
    corecore