184 research outputs found

    Context Selection on Attributed Graphs for Outlier and Community Detection

    Get PDF
    Today\u27s applications store large amounts of complex data that combine information of different types. Attributed graphs are an example for such a complex database where each object is characterized by its relationships to other objects and its individual properties. Specifically, each node in an attributed graph may be characterized by a large number of attributes. In this thesis, we present different approaches for mining such high dimensional attributed graphs

    Data mining using concepts of independence, unimodality and homophily

    Get PDF
    With the widespread use of information technologies, more and more complex data is generated and collected every day. Such complex data is various in structure, size, type and format, e.g. time series, texts, images, videos and graphs. Complex data is often high-dimensional and heterogeneous, which makes the separation of the wheat (knowledge) from the chaff (noise) more difficult. Clustering is a main mode of knowledge discovery from complex data, which groups objects in such a way that intra-group objects are more similar than inter-group objects. Traditional clustering methods such as k-means, Expectation-Maximization clustering (EM), DBSCAN and spectral clustering are either deceived by "the curse of dimensionality" or spoiled by heterogenous information. So, how to effectively explore complex data? In some cases, people may only have some partial information about the complex data. For example, in social networks, not every user provides his/her profile information such as the personal interests. Can we leverage the limited user information and friendship network wisely to infer the likely labels of the unlabeled users so that the advertisers can do accurate advertising? This is the problem of learning from labeled and unlabeled data, which is literarily attributed to semi-supervised classification. To gain insights into these problems, this thesis focuses on developing clustering and semi-supervised classification methods that are driven by the concepts of independence, unimodality and homophily. The proposed methods leverage techniques from diverse areas, such as statistics, information theory, graph theory, signal processing, optimization and machine learning. Specifically, this thesis develops four methods, i.e. FUSE, ISAAC, UNCut, and wvGN. FUSE and ISAAC are clustering techniques to discover statistically independent patterns from high-dimensional numerical data. UNCut is a clustering technique to discover unimodal clusters in attributed graphs in which not all the attributes are relevant to the graph structure. wvGN is a semi-supervised classification technique using the theory of homophily to infer the labels of the unlabeled vertices in graphs. We have verified our clustering and semi-supervised classification methods on various synthetic and real-world data sets. The results are superior to those of the state-of-the-art.Täglich werden durch den weit verbreiteten Einsatz von Informationstechnologien mehr und mehr komplexe Daten generiert und gesammelt. Diese komplexen Daten unterscheiden sich in der Struktur, Größe, Art und Format. Häufig anzutreffen sind beispielsweise Zeitreihen, Texte, Bilder, Videos und Graphen. Dabei sind diese Daten meist hochdimensional und heterogen, was die Trennung des Weizens ( Wissen ) von der Spreu ( Rauschen ) erschwert. Die Cluster Analyse ist dabei eine der wichtigsten Methoden um aus komplexen Daten wssen zu extrahieren. Dabei werden die Objekte eines Datensatzes in einer solchen Weise gruppiert, dass intra-gruppierte Objekte ähnlicher sind als Objekte anderer Gruppen. Der Einsatz von traditionellen Clustering-Methoden wie k-Means, Expectation-Maximization (EM), DBSCAN und Spektralclustering wird dabei entweder "durch der Fluch der Dimensionalität" erschwert oder ist angesichts der heterogenen Information nicht möglich. Wie erforscht man also solch komplexe Daten effektiv? Darüber hinaus ist es oft der Fall, dass für Objekte solcher Datensätze nur partiell Informationen vorliegen. So gibt in sozialen Netzwerken nicht jeder Benutzer seine Profil-Informationen wie die persönlichen Interessen frei. Können wir diese eingeschränkten Benutzerinformation trotzdem in Kombination mit dem Freundschaftsnetzwerk nutzen, um von von wenigen, einer Klasse zugeordneten Nutzern auf die anderen zu schließen. Beispielsweise um zielgerichtete Werbung zu schalten? Dieses Problem des Lernens aus klassifizierten und nicht klassifizierten Daten wird dem semi-supversised Learning zugeordnet. Um Einblicke in diese Probleme zu gewinnen, konzentriert sich diese Arbeit auf die Entwicklung von Clustering- und semi-überwachten Klassifikationsmethoden, die von den Konzepten der Unabhängigkeit, Unimodalität und Homophilie angetrieben werden. Die vorgeschlagenen Methoden nutzen Techniken aus verschiedenen Bereichen der Statistik, Informationstheorie, Graphentheorie, Signalverarbeitung, Optimierung und des maschinelles Lernen. Dabei stellt diese Arbeit vier Techniken vor: FUSE, ISAAC, UNCut, sowie wvGN. FUSE und ISAAC sind Clustering-Techniken, um statistisch unabhängige Muster aus hochdimensionalen numerischen Daten zu entdecken. UNCut ist eine Clustering-Technik, um unimodale Cluster in attributierten Graphen zu entdecken, in denen die Kanten und Attribute heterogene Informationen liefern. wvGN ist eine halbüberwachte Klassifikationstechnik, die Homophilie verwendet, um von gelabelten Kanten auf ungelabelte Kanten im Graphen zu schließen. Wir haben diese Clustering und semi-überwachten Klassifizierungsmethoden auf verschiedenen synthetischen und realen Datensätze überprüft. Die Ergebnisse sind denen von bisherigen State-of-the-Art-Methoden überlegen

    VA-index: Quantifying assortativity patterns in networks with multidimensional nodal attributes

    Get PDF
    Network connections have been shown to be correlated with structural or external attributes of the network vertices in a variety of cases. Given the prevalence of this phenomenon network scientists have developed metrics to quantify its extent. In particular, the assortativity coefficient is used to capture the level of correlation between a single-dimensional attribute (categorical or scalar) of the network nodes and the observed connections, i.e., the edges. Nevertheless, in many cases a multi-dimensional, i.e., vector feature of the nodes is of interest. Similar attributes can describe complex behavioral patterns (e.g., mobility) of the network entities. To date little attention has been given to this setting and there has not been a general and formal treatment of this problem. In this study we develop a metric, the vector assortativity index (VA-index for short), based on network randomization and (empirical) statistical hypothesis testing that is able to quantify the assortativity patterns of a network with respect to a vector attribute. Our extensive experimental results on synthetic network data show that the VA-index outperforms a baseline extension of the assortativity coefficient, which has been used in the literature to cope with similar cases. Furthermore, the VAindex can be calibrated (in terms of parameters) fairly easy, while its benefits increase with the (co-)variance of the vector elements, where the baseline systematically over(under)estimate the true mixing patterns of the network

    Attribute Relationship Analysis in Outlier Mining and Stream Processing

    Get PDF
    The main theme of this thesis is to unite two important fields of data analysis, outlier mining and attribute relationship analysis. In this work we establish the connection between these two fields. We present techniques which exploit this connection, allowing to improve outlier detection in high dimensional data. In the second part of the thesis we extend our work to the emerging topic of data streams

    Data mining using concepts of independence, unimodality and homophily

    Get PDF
    With the widespread use of information technologies, more and more complex data is generated and collected every day. Such complex data is various in structure, size, type and format, e.g. time series, texts, images, videos and graphs. Complex data is often high-dimensional and heterogeneous, which makes the separation of the wheat (knowledge) from the chaff (noise) more difficult. Clustering is a main mode of knowledge discovery from complex data, which groups objects in such a way that intra-group objects are more similar than inter-group objects. Traditional clustering methods such as k-means, Expectation-Maximization clustering (EM), DBSCAN and spectral clustering are either deceived by "the curse of dimensionality" or spoiled by heterogenous information. So, how to effectively explore complex data? In some cases, people may only have some partial information about the complex data. For example, in social networks, not every user provides his/her profile information such as the personal interests. Can we leverage the limited user information and friendship network wisely to infer the likely labels of the unlabeled users so that the advertisers can do accurate advertising? This is the problem of learning from labeled and unlabeled data, which is literarily attributed to semi-supervised classification. To gain insights into these problems, this thesis focuses on developing clustering and semi-supervised classification methods that are driven by the concepts of independence, unimodality and homophily. The proposed methods leverage techniques from diverse areas, such as statistics, information theory, graph theory, signal processing, optimization and machine learning. Specifically, this thesis develops four methods, i.e. FUSE, ISAAC, UNCut, and wvGN. FUSE and ISAAC are clustering techniques to discover statistically independent patterns from high-dimensional numerical data. UNCut is a clustering technique to discover unimodal clusters in attributed graphs in which not all the attributes are relevant to the graph structure. wvGN is a semi-supervised classification technique using the theory of homophily to infer the labels of the unlabeled vertices in graphs. We have verified our clustering and semi-supervised classification methods on various synthetic and real-world data sets. The results are superior to those of the state-of-the-art.Täglich werden durch den weit verbreiteten Einsatz von Informationstechnologien mehr und mehr komplexe Daten generiert und gesammelt. Diese komplexen Daten unterscheiden sich in der Struktur, Größe, Art und Format. Häufig anzutreffen sind beispielsweise Zeitreihen, Texte, Bilder, Videos und Graphen. Dabei sind diese Daten meist hochdimensional und heterogen, was die Trennung des Weizens ( Wissen ) von der Spreu ( Rauschen ) erschwert. Die Cluster Analyse ist dabei eine der wichtigsten Methoden um aus komplexen Daten wssen zu extrahieren. Dabei werden die Objekte eines Datensatzes in einer solchen Weise gruppiert, dass intra-gruppierte Objekte ähnlicher sind als Objekte anderer Gruppen. Der Einsatz von traditionellen Clustering-Methoden wie k-Means, Expectation-Maximization (EM), DBSCAN und Spektralclustering wird dabei entweder "durch der Fluch der Dimensionalität" erschwert oder ist angesichts der heterogenen Information nicht möglich. Wie erforscht man also solch komplexe Daten effektiv? Darüber hinaus ist es oft der Fall, dass für Objekte solcher Datensätze nur partiell Informationen vorliegen. So gibt in sozialen Netzwerken nicht jeder Benutzer seine Profil-Informationen wie die persönlichen Interessen frei. Können wir diese eingeschränkten Benutzerinformation trotzdem in Kombination mit dem Freundschaftsnetzwerk nutzen, um von von wenigen, einer Klasse zugeordneten Nutzern auf die anderen zu schließen. Beispielsweise um zielgerichtete Werbung zu schalten? Dieses Problem des Lernens aus klassifizierten und nicht klassifizierten Daten wird dem semi-supversised Learning zugeordnet. Um Einblicke in diese Probleme zu gewinnen, konzentriert sich diese Arbeit auf die Entwicklung von Clustering- und semi-überwachten Klassifikationsmethoden, die von den Konzepten der Unabhängigkeit, Unimodalität und Homophilie angetrieben werden. Die vorgeschlagenen Methoden nutzen Techniken aus verschiedenen Bereichen der Statistik, Informationstheorie, Graphentheorie, Signalverarbeitung, Optimierung und des maschinelles Lernen. Dabei stellt diese Arbeit vier Techniken vor: FUSE, ISAAC, UNCut, sowie wvGN. FUSE und ISAAC sind Clustering-Techniken, um statistisch unabhängige Muster aus hochdimensionalen numerischen Daten zu entdecken. UNCut ist eine Clustering-Technik, um unimodale Cluster in attributierten Graphen zu entdecken, in denen die Kanten und Attribute heterogene Informationen liefern. wvGN ist eine halbüberwachte Klassifikationstechnik, die Homophilie verwendet, um von gelabelten Kanten auf ungelabelte Kanten im Graphen zu schließen. Wir haben diese Clustering und semi-überwachten Klassifizierungsmethoden auf verschiedenen synthetischen und realen Datensätze überprüft. Die Ergebnisse sind denen von bisherigen State-of-the-Art-Methoden überlegen

    Deep Semi-supervised Anomaly Detection with Metapath-based Context Knowledge

    Full text link
    Graph anomaly detection has attracted considerable attention in recent years. This paper introduces a novel approach that leverages metapath-based semi-supervised learning, addressing the limitations of previous methods. We present a new framework, Metapath-based Semi-supervised Anomaly Detection (MSAD), incorporating GCN layers in both the encoder and decoder to efficiently propagate context information between abnormal and normal nodes. The design of metapath-based context information and a specifically crafted anomaly community enhance the process of learning differences in structures and attributes, both globally and locally. Through a comprehensive set of experiments conducted on seven real-world networks, this paper demonstrates the superiority of the MSAD method compared to state-of-the-art techniques. The promising results of this study pave the way for future investigations, focusing on the optimization and analysis of metapath patterns to further enhance the effectiveness of anomaly detection on attributed networks
    corecore