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Abstract – Network connections are far from random and they have been shown to be correlated with 
external nodal attributes in a variety of cases.  Therefore, metrics have been developed to quantify the extend 
of this phenomenon.  In particular, the assortativity coefficient is used to capture the level of correlation 
between a single-dimensional nodal feature and the observed connections.  However, in many cases, a vector 
representation of the node characteristics is more descriptive and provides a better understanding of the 
network structure.  In this work, we develop a metric based on network randomization and empirical 
hypothesis testing that is able to quantify the assortativity patterns of a network with respect to a multi-
dimensional node attribute. Our preliminary experimental results show that our metric outperforms a 
baseline extension of the assortativity coefficient, which has been previously used in the literature.  We 
further showcase its applicability by using it to estimate the assortativity mixing of a social network dataset  
with respect to the mobility trails of its users.   

I. INTRODUCTION 

  Assortativity mixing refers to the phenomenon that describes the tendency of vertices to connect with each 
other when they present similar characteristics.  These characteristics  are either  structural attributes (e.g., node 
degree) or  external features (e.g., age of the node).  Mixing patterns are important in complex network theory since 
they have a variety of implications. For instance, degree assortativity is closely related to the resilience of a network 
to targeted attacks [1]. Furthermore, mixing patterns with respect to external attributes have been integrated into 
generative network  growth models [2,3].  

 The central idea behind quantifying assortativity patterns in a network is to compare the number 
of edges that connect nodes of similar type with the expected number of such connections if the latter 
were picked at random.  This is exactly the basis of the assortativity coefficient [1] that can be applied for 
single dimensional attributes (numerical and categorical).  In particular, if every node i is associated with 
a scalar value xi, we can compute the normalized covariance of the values of xi and xj at the ends of an 
edge {i,j}.  Then the assortativity coefficient is given by:  
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where δij is the Kronecker delta and ki is the degree of node i. A similar expression exists for the case 
where node i is associated with a categorical attribute.    

Nevertheless, formal treatment of mixing patterns for multidimensional nodal attributes has not 
received much attention [4], even though such scenarios appear in a variety of settings. For instance, in 
directed networks, the full degree of a node is represented by a two-dimensional vector, where each 
element represents either the in- or the out-degree of that node.  Hence, if we do not want to lose any 
information during our analysis we need to consider the degree of a node as a vector [5].  Note also that 
vector attributes can describe complex behaviors, such as the purchase behavior of Amazon users, the 
urban mobility of city-dwellers etc.   
 Despite the prevalence of such settings, a formal metric for treating the assortativity with respect 
to a vector attribute is missing. The existing literature does not provide a metric that can be applicable in a 
generic scenario and is mainly focused on specific cases. For example, Foster et al. [5] defined 4 different 
types of degree assortativity for directed networks, essentially reducing the vector attribute to its 
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elements.  Block and Grund [6] utilized stochastic actor-oriented models for networks where the nodes 
have an increasing number of attributes in common.  However, their approach is applicable to 
longitudinal and directed network data.  In a tangential direction, Sanchez et al. [7] developed a method 
for statistical selection of congruent subspaces that have high dependency with the network structure.  
Recently, Pelechrinis [8] developed a generic metric for vector assortatitivity that projects the vectors to 
labels through a clustering process.  However, given that clustering is known to be an ill-posed problem – 
at least under specific axiomatic frameworks [9,10] – selecting an appropriate clustering algorithm for all 
the cases might be impossible.  Hence, its practical applicability is limited.  Finally, the majority of the 
literature that deals with similar problems treats every element of the vector feature in isolation [11,12] – 
this will also serve as our baseline.  

Contrary to the existing literature, we opt to provide a formal and generic metric for quantifying 
the assortativity patterns in a network with multi-attributed nodes. In a nutshell, our approach consists of 
a network randomization process, which allows us to estimate the pairwise similarity of connected nodes, 
if connections were made at random.  Having this distribution allows us to perform an empirical 
hypothesis test, by comparing the actual similarity between connected nodes in the real network and the 
distribution of the randomization (null model).  We evaluate our metric using synthetic data, where the 
ground truth is known.  We further apply our metric on a dataset from a location-based social network 
and quantify the mixing patterns of this network with respect to the mobility traces of the users.     
 Roadmap: In Section II we introduce our proposed metric.  Section III presents our preliminary 
evaluations, while Section V presents the application of our metric on a location-based social network.  
Finally, Section IV concludes our work and discusses its implications and our future directions .   
 

II.   OUR METRIC 

  To develop our metric we draw on the same intution that led to the development of the assortativity 
coefficient.  In particular, we use a vector similarity metric ξ to compute the average similarity µξ between connected 
nodes based on their vector attributes. Consequently, we bootstrap through network randomization the distribution 
for the average similarity µξrand,  if connections were forming at random.  This randomization can either be fully 
random (e.g., Erdos-Renyi random networks) or controled for specific network or external properties that are 
important to the setting at hand (e.g., configuration model).  Once we have build the distribution for µξrand we can 
perform the following two-sided hypothesis test (at a predefined significance level α):  

H0 : µξrand = µξ (2)
H1 : µξrand ≠ µξ (3)

 

 Failure to reject the null hypothesis essentially translates to random mixing in the network with 
respect to the vector attribute of the nodes.  If the null is rejected, then the sign of the difference (µξrand- 
µξ) will inform us whether there is positive or negative mixing.  However, the above test essentially 
responds to the question on whether the network is randomly mixed or not.  We can further quantify the 
level of mixing.  In particular, we compute the standardized mean difference d using the randomized 
network sample and transforming it to a value bounded between -1 and 1: 

s = d
d 2 +ε

(4)  

where d is given by d =
µξ −µξrand

σ
 and σ is the expected variance of the pairwise similarity in the 

randomized  network.  The latter can also be calculated through the repeated randomizations.       
 Equation (4) provides our final assortativity vector metric, with ε being a free parameter.  



III.   RESULTS 

  In order to evaluate our method we generate synthetic network data for which we know the ground truth 
with regards to the mixing patterns, in a manner similar to [8].  As alluded to above we compare with a baseline 
extension of the assortativity coefficient r (Equation (1)) that has been extensively used in the literature.  In 
particular, we first calculate the assortativity coefficient ri of the network with respect to each element i of the vector 
attribute.  Then the baseline assortativity is given by:  

rbase =
rii=1

q
∑
q

(5)  

where q is the dimensionality of the nodal attribute.  In our synthetic data we use q=5.  Given that we 
know the ground truth for the mixing patterns in our networks our evaluation metric is the Root Mean 
Square Error (RMSE) of the assortativity values obtained from our metric and the baseline.  Our metric 
further has two parameters that need to be chosen, namely, (a) the similarity metric ξ, and (b) ε in 
Equation (4).  Therefore, we need to examine the sensitivity of our metric to these parameters.  In 
particular, we consider three similarity metrics (cosine, correlation and Euclidean-based) and examine 
values of ε in [0.1,2].   

 
Figure 1 The proposed metric outperforms the baseline extension of assortativity coefficient. Furthermore, it does 
not appear sensitive to the choice of ε and/or similarity metric. 
 
 In Figure 1 we show that the performance our approach is very similar regardless of the specific 
similarity metric used.  Moreover, the RMSE of our method is much lower compared to the baseline 
(besides very small values of ε).   
 

IV.  MOBILITY ASSORTATIVITY PATTERNS 
 
 Next we turn our attention to a real network dataset, and in particular, a dataset obtained from a 
location-based social network (LBSN), namely, Gowalla [13]. An LSBN consists of two components; (i) 
the social component that resembles any other digital social network, where users are connected based on 
“friendship” relations, and, (ii) the location component, which describes the mobility of the users based 
on their voluntary sharing of their whereabouts (through check-ins).  Our dataset consists of 10,097,713 
check-ins performed by 183,709 users in 1,470,727 distinct venues.  Furthermore, there are 765,871 edges 
in the social (friendship) network.   

Based on the above, every user u in this type of networks can be associated with a vector cu that 
captures the places he has visited.  In particular, the ith element of the vector is equal to the number of 
check-ins that u has in location/venue i. An important question that arises then is ``What are the 



assortativity patterns of this network with respect to the mobility trails of the users?’’.  The answer to this 
question has implications for the underlying spatial homophily of this network [14].  For answering this 
question we rely on our proposed metric (Section II), where we use the cosine similarity as our similarity 
metric.  In particular, the similarity between users u and v is defined as:  

 

ξu,v =
!cu ⋅
!cv!cu 2

!cv 2

(6)  

For our randomization we will consider two scenarios.  First, we completely randomize the edges 
in the network, essentially sampling the G(n,m) Erdós-Rènyi random graph ensemble.  Nevertheless, this 
will lead to an underestimation of the average pairwise similarity since the vast majority of (randomly 
selected) pairs will inevitably live in long distances and hence, the chances of having common venues 
visited will be small.  Therefore, we will also perform a randomization where we will control for the 
distribution of the home-location distance of friends in the real network.   Table 1 presents the computed 
average similarities for the real network as well as the 95% confidence interval from 100 instances of the 
two randomization processes.  As we can notice the average pairwise similarity in the real network is 
significantly higher as compared to the one for the randomized networks. In particular, the average 
similarity in the real network is higher than the upper bound of the 95% confidence interval for both 
cases.  It is also interesting to observe that the average similarity for the pure random graph network 
model is also significantly smaller as compared to the one in which we control for the home-location 
distance distribution of connected nodes.   

 

Real network similarity ER network similarity Home-location controlled 
random network similarity 

0.05425 [0.00233,0.0024] [0.01834, 0.01837] 
 

Table 1   There is a clear positive assortativity mixing with regards to the mobility trails of Gowalla 
users. 

  
 Using then equation (4) we can compute the coefficient, which is equal to 0.94 (p-value < 0.05), 

if we consider the pure ER network model as our baseline, and 0.31 (p-value < 0.05), if we control for the 
home-location distribution in our randomized baseline.  As we can see the selection of the baseline model 
is really important and is application specific.  For example, in the scenario examined it is clear (for the 
reasons also analyzed above) that the ER model overestimates the observed mixing patterns in the 
network. 

 

V.  CONCLUSIONS 

  In this work we designed an assortativity metric for multi-attributed networks.  Our evaluations showed 
that our metric can quantify mixing patterns in the network more accurately than a baseline extension of the 
assortativity coefficient.  We further showcased the applicability of our metric by computing the assorativity of 
location-based social network with respect to the mobility traces of the users.   

 We believe that our work can trigger more research on this largely under-represented topic and we hope to  
drive the development of related metrics for the emerging area of composite networks.  The latter can be thought of 
as multidimensional networks with multiple types of edges and nodes.  In such networks a direct application of 
metrics developed for unimodal networks will lead to large information loss [15].  For example, when there are 
multiple types of edges attached to a node, the degree of a node is not scalar anymore but a vector! Hence, using the 
assortativity coefficient to calculate the degree mixing of this network will ignore important information.   
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