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Abstract

With the widespread use of information technologies, more and more complex data is

generated and collected every day. Such complex data is various in structure, size, type

and format, e.g. time series, texts, images, videos and graphs. Complex data is often high-

dimensional and heterogeneous, which makes the separation of the wheat (knowledge) from

the chaff (noise) more difficult. Clustering is a main mode of knowledge discovery from

complex data, which groups objects in such a way that intra-group objects are more similar

than inter-group objects. Traditional clustering methods such as k-means, Expectation-

Maximization clustering (EM), DBSCAN and spectral clustering are either deceived by

“the curse of dimensionality” or spoiled by heterogenous information. So, how to effectively

explore complex data? In some cases, people may only have some partial information about

the complex data. For example, in social networks, not every user provides his/her profile

information such as the personal interests. Can we leverage the limited user information

and friendship network wisely to infer the likely labels of the unlabeled users so that the

advertisers can do accurate advertising? This is the problem of learning from labeled and

unlabeled data, which is literarily attributed to semi-supervised classification.

To gain insights into these problems, this thesis focuses on developing clustering and

semi-supervised classification methods that are driven by the concepts of independence,

unimodality and homophily. The proposed methods leverage techniques from diverse ar-

eas, such as statistics, information theory, graph theory, signal processing, optimization

and machine learning. Specifically, this thesis develops four methods, i.e. FUSE, ISAAC,

UNCut, and wvGN. FUSE and ISAAC are clustering techniques to discover statistically
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independent patterns from high-dimensional numerical data. UNCut is a clustering tech-

nique to discover unimodal clusters in attributed graphs in which not all the attributes are

relevant to the graph structure. wvGN is a semi-supervised classification technique using

the theory of homophily to infer the labels of the unlabeled vertices in graphs. We have

verified our clustering and semi-supervised classification methods on various synthetic and

real-world data sets. The results are superior to those of the state-of-the-art.



Zusammenfassung

Täglich werden durch den weit verbreiteten Einsatz von Informationstechnologien mehr

und mehr komplexe Daten generiert und gesammelt. Diese komplexen Daten unterschei-

den sich in der Struktur, Größe, Art und Format. Häufig anzutreffen sind beispielsweise

Zeitreihen, Texte, Bilder, Videos und Graphen. Dabei sind diese Daten meist hochdimen-

sional und heterogen, was die Trennung des Weizens ( Wissen ) von der Spreu ( Rauschen

) erschwert. Die Cluster Analyse ist dabei eine der wichtigsten Methoden um aus kom-

plexen Daten wssen zu extrahieren. Dabei werden die Objekte eines Datensatzes in einer

solchen Weise gruppiert, dass intra-gruppierte Objekte ähnlicher sind als Objekte anderer

Gruppen. Der Einsatz von traditionellen Clustering-Methoden wie k-Means, Expectation-

Maximization (EM), DBSCAN und Spektralclustering wird dabei entweder “durch der

Fluch der Dimensionalität” erschwert oder ist angesichts der heterogenen Information nicht

möglich. Wie erforscht man also solch komplexe Daten effektiv? Darüber hinaus ist es oft

der Fall, dass für Objekte solcher Datensätze nur partiell Informationen vorliegen. So gibt

in sozialen Netzwerken nicht jeder Benutzer seine Profil-Informationen wie die persönlichen

Interessen frei. Können wir diese eingeschränkten Benutzerinformation trotzdem in Kom-

bination mit dem Freundschaftsnetzwerk nutzen, um von von wenigen, einer Klasse zuge-

ordneten Nutzern auf die anderen zu schließen. Beispielsweise um zielgerichtete Werbung

zu schalten? Dieses Problem des Lernens aus klassifizierten und nicht klassifizierten Daten

wird dem semi-supversised Learning zugeordnet.

Um Einblicke in diese Probleme zu gewinnen, konzentriert sich diese Arbeit auf die

Entwicklung von Clustering- und semi-überwachten Klassifikationsmethoden, die von den



xviii Zusammenfassung

Konzepten der Unabhängigkeit, Unimodalität und Homophilie angetrieben werden. Die

vorgeschlagenen Methoden nutzen Techniken aus verschiedenen Bereichen der Statistik, In-

formationstheorie, Graphentheorie, Signalverarbeitung, Optimierung und des maschinelles

Lernen. Dabei stellt diese Arbeit vier Techniken vor: FUSE, ISAAC, UNCut, sowie wvGN.

FUSE und ISAAC sind Clustering-Techniken, um statistisch unabhängige Muster aus

hochdimensionalen numerischen Daten zu entdecken. UNCut ist eine Clustering-Technik,

um unimodale Cluster in attributierten Graphen zu entdecken, in denen die Kanten und

Attribute heterogene Informationen liefern. wvGN ist eine halbüberwachte Klassifika-

tionstechnik, die Homophilie verwendet, um von gelabelten Kanten auf ungelabelte Kan-

ten im Graphen zu schließen. Wir haben diese Clustering und semi-überwachten Klassi-

fizierungsmethoden auf verschiedenen synthetischen und realen Datensätze überprüft. Die

Ergebnisse sind denen von bisherigen State-of-the-Art-Methoden überlegen.



Chapter 1

Introduction

We are drowning in data but starved for knowledge. Due to the widespread use of in-

formation technologies, huge amounts of complex data are generated and collected every

day. Such complex data are in the forms of documents, time-series, images, audios, videos,

graphs, etc. Analysing such complex data is of great challenge and importance. The

concept of Knowledge Discovery in Databases (KDD) [49] has been evolved as a possible

solution for complex data mining. The KDD process mainly contains the steps as indi-

cated in Figure 1.1 from [95]. The steps contain selection, preprocessing, transformation,

data mining and evaluation. This thesis only focuses on the data mining step which is to

extract patterns from the transformed data using unsupervised or semi-supervised learning

methods.

Raw data Preprocessed data Patterns Knowledge

Selection Data mining EvaluationPreprocessing

Target data

Transformation

Transformed data

Figure 1.1: Knowledge Discovery in Databases (KDD) process.

For the step “data mining” in the KDD process, the ten most challenging problems have

been identified in [79]. This thesis mainly focuses on the development of novel methods
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for three challenges:

1. Scaling up for high dimensional data and high speed data streams.

2. Mining complex knowledge from complex data.

3. Data mining in a network setting: community and social networks.

One problem belonging to the first challenge is “the curse of dimensionality” [75] which

refers to the difficulties that arise when analyzing data in high-dimensional spaces. One

difficulty is that there tend to be little difference in the “similarity” or “dissimilarity”

between different pairs of objects in high-dimensional spaces. Clustering methods that

are based on Euclidean distance, Mahalanobis distance or Manhattan distance tend to fail

in high-dimensional spaces. Subspace clustering methods have appeared as alternatives

to full space clustering methods in high-dimensional spaces. In addition to “the curse of

dimensionality”, scalability is another problem in high-dimensional spaces. For example,

the very famous spectral clustering needs to eigen-decompose the graph Laplacian matrix,

which costs O(n3) (n is the number of data objects) that prevents its application on large-

scale data. Chapter 3 and Chapter 4 deal with the first challenge. The two unsupervised

learning methods FUSE [100] and ISAAC [101] are based on the concept of independence.

One task belonging to the second challenge is the cluster detection in attributed graphs

or data that are not i.i.d (independent and identically distributed), i.e. data objects are not

independent of each other and are not of a single type. Such data includes social networks

where friendship relationships are available along with the users’ individual attributes (cf.

Figure 1.2); system biology where interacting genes and their specific expression levels are

given; and sensor networks where connections between sensors as well as individual mea-

surements are recorded. Generally, not all attributes are relevant to the graph structure.

To detect clusters in attributed graphs, we need to consider both types of information.

How to effectively and efficiently use available information remains a big challenge. In

Chapter 5, we propose a method UNCut to deal with this challenge.

One task belonging to the third challenge is the vertex classification in plain graphs.
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Figure 1.2: An example social network with graph and vector data.

Generally, we know the labels of some vertices in graphs. However, only very few vertices

have labels compared to large amounts of unlabeled vertices. For example, in social graphs,

not every user provides his/her profile information such as the personal interests which

are relevant for targeted advertising. Can we leverage the limited user information and

friendship graph wisely to infer the labels of unlabeled users? Chapter 6 in this thesis deals

with the vertex classification in graphs.

To deal with the above listed three challenges, this thesis develops four novel methods

using concepts of independence, unimodality and homophily.

1.1 Independence

The task of Blind Source Separation (BSS) is to separate a set of source signals from a

set of mixed signals under some assumptions, e.g. the source signals are non-negative, or

statistically independent, etc. In this thesis, the concept of statistically independence is

exploited to discover non-redundant or statistically independent patterns from data. In

probability theory, two random variables are statistically independent if the realization of
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one does not affect the probability distribution of the other. Two main BSS techniques

called Independent Component Analysis (ICA) [5] and Independent Subspace Analysis

(ISA) [4] are adopted as foundations of our proposed methods FUSE and ISAAC. Why do

we want to find non-redundant patterns?

High-volume data may have different perspectives inside, which can be clustered in

different ways in different subspaces. Figure 1.3 shows the Amsterdam Library of Object

Images (ALOI) data set (can be found here1) that can be interpreted in different ways,

i.e. objects can be clustered by their shape or color. A global dimensionality reduction

method like PCA [44] cannot deal with this kind of multifaceted data. Therefore, sub-

space clustering is developed to tackle the difficulties. Subspace clustering achieves finding

all clusters in all subspaces. By using relevant attributes to form a subspace, subspace

clustering methods can not only avoid “the curse of dimensionality”, but also find differ-

ent perspectives in data. However, many existing subspace clustering methods find many

redundant clusters which do not report extra useful or novel information in the data and

which result in high runtime, low quality results and overwhelming data analysts. Thus,

detecting non-redundant patterns is of great importance in data mining.

          

Figure 1.3: Four objects of different shapes and colors from ALOI.

1.2 Unimodality

In statistics, a unimodal distribution refers to a probability distribution which only has

a single mode (i.e. peak). A mode of a continuous probability distribution is a value at

which the probability density function (PDF) attains its maximum value. If the maximum

1http://aloi.science.uva.nl/
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value of a PDF can be attained at more than one value, such a distribution is called

multimodal distribution. From the behavior of the cumulative distribution function (CDF),

unimodal distribution can also be defined as: if the CDF is convex for x < m and concave

for x > m (m is the mode), then the distribution is unimodal. Unimodal distributions

include Gaussian distribution, Cauchy distribution, Student’s t-distribution, chi-squared

distribution, exponential distribution and etc. In the task of knowledge discovery from

data, we consider each cluster taking a unimodal distribution. To measure the unimodality,

we adopt a statistic test called Hartigans’ dip test [51] in Chapter 5. Figure 1.4 and

Figure 1.5 give us an intuitive demonstration to understand the concept of unimodality

and multimodality. Figure 1.4(a) shows a Gaussian cluster with mean 0 and variance 1.

Figure 1.4(b) depicts the histogram after projecting data onto the x-axis and Figure 1.4(c)

depicts the histogram after projecting data onto the y-axis. If we apply the dip test on the

data projection onto the x-axis, we get a dip value of 0.0258 and p-value of 0.957. Likewise,

we apply the dip test on the data projection onto the y-axis, we get a dip value of 0.0226

and p-value of 0.994. The dip test tells us that the data shown in Figure 1.4(a) follows

unimodal distributions because the p-value is greater than the significance level α = 0.05.

For the data shown in Figure 1.5(a), we project the data onto the x-axis and y-axis as

well. Figure 1.5(b) and Figure 1.5(c) show their histograms. We apply the dip test on

both axises. The dip value of the x-axis is 0.0867 and the p-value is 0; the dip value of the

y-axis is 0.0937 and the p-value is 0. Since the p-value is less than the significance level

α = 0.05, the data follows multimodal distributions.

1.3 Homophily

Homophily (“birds of a feather flock together”) in networks refers to that similar indi-

viduals are likely to be connected. For example, in a social network, people with similar

interests, e.g. politics, religion, education and etc., are likely to be connected; in a cita-

tion network, papers with similar topics are likely to be connected. Homophily has also

been discovered in other scenerios. For example, in personalized PageRank scenerio, peo-
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Figure 1.4: The demonstration of the unimodality.
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Figure 1.5: The demonstration of the multimodality.

ple usually tend to like web pages that are heavily connected to their favorite ones; in

content-based recommendation scenerio, people usually tend to like similar contents they

have read before. Figure 1.6 shows the network derived from the books on US polictics

around the time of the 2004 presidential election (the original network data can be found

here2). The network has 105 vertices and 441 edges. Each vertex represents a book sold

by Amazon and each edge represents frequent copurchasing of books by the same buyers.

The books can be categorized into three types, i.e. “liberal” (green), “neutral” (red) and

“conservative” (pink). We can see that similarity breeds connection [68]. If a buyer buys a

liberal book, he/she tends to buy another liberal book; Likewise, if a buyer buys a conser-

vative book, he/she tends to buy another conservative book. For the vertex classification

in networks, one proper assumption of the network is that the network possesses a high

2http://www-personal.umich.edu/ mejn/netdata/
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amount of homophily, i.e. similar vertices are more likely to be connected. In Chapter 6,

we propose a semi-supervised learning framework called wvGN to infer the labels of the

unlabeled vertices based on the theory of homophily.

Figure 1.6: The demonstration of homophily in the Polbooks network.

1.4 Goals and Structures of this Thesis

To advance the state-of-the-art in solving three challenges in data mining, this publication-

based thesis focuses on building novel methods that use concepts of independence, uni-

modality and homophily. The remainder of this thesis is organized as follows:

• Chapter 2 introduces notations that are used through this thesis and background

techniques the proposed methods are based on.

• Chapter 3 presents a clustering technique called Full Spectral Clustering (FUSE)

that exploits the cluster-separation information from all eigenvectors to deal with

the multi-scale data which contains structures at different scales of size and density.

• Chapter 4 presents a subspace clustering method called ISAAC to detect multiple

independent subspace clusters from high-dimensional data. The detected clusters are
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non-redundant.

• Chapter 5 shows an effective and efficient clustering method for attributed graphs.

The Hartigans’ dip test and the normalized cut are combined in one framework to

detect cohensive clusters which have densely connected edges and have as many

unimodal attributes as possible.

• Chapter 6 proposes a semi-supervised learning method for the vertex classification

in graphs. The proposed method is based on the theory of homophily.

• Chapter 7 gives concluding remarks, as well as directions for the future research.



Chapter 2

Background

In this chapter, we elaborate some background techniques this thesis is based on. Before

giving their details, let me first give the main notations used through this thesis.

Notations. We use lower-case Roman letters (e.g. a, b) to denote scalars. Upper-case

Roman letters (e.g. A,B) are used for continuous random variables. A random column-

vector (list of random variables) of length d is denoted by an accented upper-case bold

Roman letter (e.g. ~A = (A1, . . . , Ad)
ᵀ). The probability density function (PDF) of a

random variable A is denoted by fA(x). The joint PDF of random variables A and B is

fA,B(x, y); for a random vector ~A it is f~A(x). We denote regular vectors (row) by boldface

lower case letters (e.g. x). Matrices are denoted by boldface upper case letters (e.g. X).

We denote entries in a matrix by non-bold lower case letters, such as xij. Row i of matrix

X is denoted by the vector xi·, column j by the vector x·j. We use [x1, · · · , xn] to denote a

row created by stacking n continuous random variables; similarly, we use X = [x1; · · · ; xm]

to denote creating a matrix by stacking xi along the rows. A set is denoted by calligraphic

capital letters (e.g. S). An undirected graph or network is denoted by G = (V , E), where

V = {v1, . . . , vn} is a set of graph vertices and E is a set of graph edges. An undirected

attributed graph or network is denoted by G = (V , E ,F), where F ∈ Rn×d is a data matrix

of attributes associated to vertices and d is the number of attributes. A graph cluster is

a subset of vertices S ∈ V . The affinity matrix of the vertices is denoted by A ∈ Rn×n
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with aij ≥ 0, aij = aji (the graph is undirected). The degree matrix D is a diagonal

matrix associated with A with dii =
∑

j aij. The normalized affinity matrix or random

walk transition matrix P is defined as D−1A. Thus, a normalized graph random-walk

Laplacian matrix is L = I − P = I − D−1A according to Meila and Shi [69], where I is

an identity matrix. The indicator function is denoted by 1(x). For a matrix X ∈ Rn×n,

diag(X) ∈ Rn×1 is a vector created by extracting the diagonal of X.

2.1 Independent Subspace Analysis

ISA [4] aims to find an orthogonal linear transformation for a given dataset which, upon

application, yields several jointly-independent source subspaces, each containing one or

more source subspace components. Components within the same subspace generally have

high dependencies. The objective differs from Independent Component Analysis (ICA),

which requires pairwise independence between all individual components. In the familiar

context of the “Cocktail Party Problem”, an ISA subspace is perhaps a string quartet,

where dependency exists between the sounds produced by the ensemble members (the

subspace components).

We assume in this paper that the data under consideration are realized from the random

column-vector ~X = (X1, . . . , Xm)ᵀ. Our concrete data matrix X ∈ Rm×n is formed from

n observations of this vector. ISA describes X as a linear mixture of sources, X = MS,

where M is a mixing matrix and S corresponds to the sources. Without any loss of

generality [110] we assume “whiteness”, which means that 1) the data matrix X has been

whitened by applying zero mean normalization and PCA (all variables are uncorrelated,

with unit variance and zero expectation value), 2) the mixing matrix M is orthogonal

and 3) the task is complete (implying that the mixing matrix is square and full rank, i.e.

M ∈ Rm×m). Inverting the system, we denote with W = M−1 a “demixing” matrix such

that WX = S ∈ Rm×n. The sources matrix S is understood to represent n observations of

a random column-vector ~S = (S1, . . . , Sm)ᵀ, with each random variable Si termed a source

subspace component.
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We express ISA’s “pooling” of source subspace components into source subspaces

through the use of q non-empty, pairwise-disjoint sets S1, . . . ,Sq (calligraphic font) of

random variables. Together, these sets partition the random variables in ~S (that is,

S1 ∪ · · · ∪ Sq = {S1, S2, . . . , Sm}). We denote with ~S1, . . . , ~Sq each of the random vectors

formed from the random variables of the corresponding subspaces, and hence we denote

with S1, . . . ,Sq ∈ R|Si|×n the sub-matrix of S which corresponds to the subspace Si.

ISA’s task is to find the demixing matrix W such that the “independence” between

source subspaces is maximized:

Definition 1 Independent Subspace Analysis [110]. Given a “data” matrix X ∈

Rm×n, the number q of subspaces to find and a vector d = (d1, . . . , dq) ∈ Nq holding

the subspace dimensions (
∑q

i=1 di = m), find a demixing matrix W ∈ Rm×m such that

S = WX and the corresponding source subspaces S1, . . . ,Sq (|Si| = di,∀i = 1 . . . q) have

minimal mutual information

JI(W) := I(S1, . . . ,Sq) (2.1)

Various ISA algorithms exist which vary in terms of the applied cost function and

the optimization technique [110]. Like the popular FastISA algorithm, the demixing

matrix W is usually determined by iteratively updating its rows in a fixed-point manner.

Unfortunately, FastISA and others dictate equal-sized subspaces (|S1| = |S2| = · · · =

|Sq|). In our context this condition is too rigid – clusterings may well exist in subspaces

of differing dimensionality. With [110] we choose in this work a variant which relaxes this

requirement. In short, the approach makes use of the “ISA separation principle”, which

states that ISA can be solved by first performing ICA and then searching for groups of

components such that the independence between those groups is maximized (the groups

need not have an equal number of components). The only parameter this variant needs is

the subspace cardinalities.

To better understand ISA, we show an example here in Figure 2.1. Figure 2.1(a) and

(b) demonstrate two independent subspaces. Figure 2.1(c) and (d) are two axis-parellel

subspaces of the mixed data shown in Figure 2.1(a) and (b). The elements of the mixing
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matrix is uniformly distributed. Figure 2.1(e) and (f) show the two recovered independent

subspaces by ISA. Compared with the data shown in Figure 2.1(a) and (b), we can see that

the scale of the data shown in Figure 2.1(e) and (f) is changed because of the whitening.

Compared with the data shown in Figure 2.1(b), we can also see that the data shown

Figure 2.1(f) are rotated because ISA rotates the subspace to maximize the independence.

2.2 Independent Component Analysis

If the dimensionality of the sources is single, ISA becomes ICA [5]. Let s1, · · · , sm be

m one-dimensional independent sources. Each has n i.i.d samples denoted by si =

[si1, · · · , sin](1 ≤ i ≤ m). Let S = [s1; · · · ; sm] ∈ Rm×n and we assume S is hidden

and only a matrix X of mixed sources can be observed. The task of ICA is to find a

demixing matrix W ∈ Rm×m such that S = WX and every two components si and sj

(1 ≤ i, j ≤ m, i 6= j) are statistically independent. Without loss of generality, we assume

data has been whitened, which means (1) the expectation value is zero and the covariance

matrix is the identity matrix (I), (2) the demixing matrix is square, orthogonal (W·W = I)

and full rank. To better understand ICA, we show here an example in Figure 2.2. Figure

2.2(a) shows three true signals: sinusoid, square, and sawtooth. Figure 2.2(b) shows three

mixed signals which are generated by introducing uniform mixing weights into the true

signals. Figure 2.2(a) shows three recovered signals (independent components). Compared

with the true signals, the recovered signals have the same frequency, but the amplitudes

may be different.

2.3 Normalized Cut

The definition of the widely used normalized cut [56] objective function is:

NCut(S) =
cut(S,S)

vol(S)
. (2.2)
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Figure 2.1: ISA.

where cut(S,S) =
∑

vi∈S,vj∈S aij and vol(S) =
∑

vi∈S,vj∈V aij.

Equation 2.2 can be equivalently rewritten as (for a more detailed explanation, please

refer to [97]):

NCut(S) = uᵀLu, s.t. uᵀDu = vol(G), Du ⊥ 1 . (2.3)
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where u is the cluster indicator vector and uᵀLu is the cost of the cut and 1 is a constant

vector whose entries are all 1. Note that finding the optimal solution is known to be NP-

hard [25] when the values of u are constrained to {1,−1}. But if we relax the objective

function to allow it take values in R, a near optimal partition of the graph G can be

derived from the second smallest eigenvector of L. More generally, k eigenvectors with the

k smallest eigenvalues partition the graph into k subgraphs with near optimal normalized

cut value.

2.4 Truncated Power Iteration

Although spectral clustering has gained its popularity and success in data mining and

machine learning fields, its high time complexity (O(n3) for computing the eigenvectors of

the graph Laplacian matrix L) limits its practical use in real-world data. To address the

difficulty, Lin and Cohen [37] used truncated power iteration to find a pseudo-eigenvector

on the normalized affinity matrix W with time complexity O(n), which is very efficient and

attractive. Note that the k largest eigenvectors of P are also the k smallest eigenvectors

of L. Power Iteration (PI) is an efficient and popular method to compute the dominant

eigenvector of a matrix. PI starts with a random vector v0 and iteratively updates as

follows [37],

vt =
Pvt−1

‖Pvt−1‖1

(2.4)

Suppose P has eigenvectors U = [u1; u2; · · · ; un] with eigenvalues Λ = [λ1, λ2, · · · , λn],

where λ1 = 1 and u1 is constant. We have PU = ΛU and in general PtU = ΛtU. When

ignoring renormalization, Equation 2.4 can be written as

vt = Pvt−1 = P2vt−2 = · · · = Ptv0

= c1P
tu1 + c2P

tu2 + · · ·+ cnP
tun

= c1λ
t
1u1 + c2λ

t
2u2 + · · ·+ cnλ

t
nun

(2.5)
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According to Equation 2.5, we have

vt

c1λt1
= u1 +

c2

c1

(
λ2

λ1

)t
u2 + · · ·+ cn

c1

(
λn
λ1

)t
un (2.6)

So the convergence rate of PI towards the dominant eigenvector u1 depends on the

significant terms
(
λi
λ1

)t
(2 6 i 6 n). PI will finally converge to the dominant eigenvector

u1 which is of little use in clustering. PIC [37] defines the velocity at t to be the vector

δt = vt − vt−1 and defines the acceleration at t to be the vector εt = δt − δt−1 and stops

PI when ‖εt‖max is below a threshold ε̂.

Here let me use Figure 2.3 to demonstrate the mechanism of the truncated power itera-

tion. Figure 2.3(a) shows the data which contains four clusters. Figure 2.3(b) demonstrates

the pseudo-eigenvector generated by the power iteration method at the step one. We can

see that the four clusters are well separated in this pseudo-eigenvector. Figure 2.3(d)

shows the pseudo-eigenvector at the step fifteen. We can see that the pseudo-eigenvector

has converged and is of on use in clustering. Figure 2.3(c) shows the pseudo-eigenvector

after the convergence of the truncated power iteration. This pseudo-eigenvector will be fed

into k-means to find clusters.

2.5 The Dip Test

We apply a univariate statistic hypothesis test for unimodality called Hartigans’ dip test

[51] on the vertex attributes to measure the degree of the unimodality of a graph cluster

in Chapter 5. The dip measures the departure of a distribution from unimodality. Before

introducing the concept of the dip test, let me first introduce the concepts of the greatest

convex minorant (g.c.m) and the least concave majorant (l.c.m.). The greatest convex

minorant of F (x) in (−∞, xl] is sup G(x) for x ≤ xl, where the sup is taken over all

functions G that are convex in (−∞, xl] and nowhere greater than F (x). The least concave

majorant of F (x) in [xu,∞) is inf L(x) for x ≥ xu, where the inf is taken over all functions

L that are concave in [xu,∞) and nowhere less than F (x).
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Figure 2.3: Truncated power iteration.

Let U be the set of all unimodal distributions, the dip test of the distribution function

F (x) is computed as follows,

D(F ) = inf
U∈U

sup
x
|F (x)− U(x)| (2.7)

The dip test is the infimum among the supremum computed between the cumulative

distribution function (CDF) of F and the CDF of U from the set of unimodal distributions.

The computation of the dip test is: Let F (x) be an empirical distribution function for the

sorted samples x1, ..., xn. There are n · (n− 1)/2 candidate modal intervals. Compute for

each candidate [xi, xj], i ≤ j ≤ n the g.c.m. of F (x) in (−∞, xi] and the l.c.m. of F (x)

in [xj,∞) and let di,j be the maximum distance of F to these computed curves (g.c.m.

and l.c.m.). Finally, it selects the modal interval with the maximum distance which is the

twice of the dip test. For more details, please refer to [7, 51].

As pointed out in [51], the class of uniform distributions is the most suitable for the



18 2. Background

null hypothesis, because their dip test values are stochastically larger than those of other

unimodal distributions. The p-value for the unimodality test is then computed by com-

paring D(F ) with D(U r) b times, each time with a different n observations from U , and

the proportion
∑

1≤r≤b 1(D(F ) ≤ D(U r))/b is the p-value. If the p-value is greater than a

significance level α, say 0.05, the null hypothesis H0 that F is unimodal is accepted.

2.6 Kernel Density Estimation

We use Kernel Density Estimation (KDE) with a Gaussian kernel for estimating probability

density functions. For a vector x ∈ Rd observed from a random vector ~A of length d, the

zero-mean Gaussian kernel with covariance matrix Σ is defined as

G(x,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
xᵀΣ−1x

)
(2.8)

With such a kernel, KDE for the random vector ~A finds an approximate value f̂~A(x) to the

true density value f~A(x) at point x by summing contributions from Gaussians centered at

each of the n observations in A,

f̂~A(x) =
1

n

n∑
i=1

G(x− a·i,Σ) (2.9)

One parameter related to KDE is the bandwidth. To demonstrate how the bandwidth

affects the estimated probability density function of given data, we use Figure 2.4 as an

example. We can see that when increasing the value of bandwidth, the estimated proa-

bility density function becomes more smooth. In this thesis, we choose elliptical Gaussian

kernels, implying a diagonal Σ with positive bandwidth entries σj,j. We select bandwidths

according to [16]: σj,j = 0.9 · n−1/(d+4) ·min(αj, βj/1.34), where αj and βj are the variance

and the inter-quartile range of the jth dimension of all n observations respectively.
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Figure 2.4: Kernel Density Estimation (Gaussian kernels with different bandwidths).

2.7 Support Vector Machines

Support Vector Machines (SVM) aim at finding a hyperplane in a mapping space (by a

mapping function Φ(x)) to maximize the margin between two classes. Mathematically

speaking, the goal of SVM is to derive a discriminant function f(x) such that the margin

between support vectors from different classes are maximized. For all hyperplanes which

separate classes perfectly, we prefer the one which has the maximized distance. In addition,

we prefer the hyperplane which makes each point be on the correct side of the boundary,

i.e. f(xi) · yi > 0, where yi ∈ {±1}. The objective function is:

min
w,b

1

2
wᵀw

s.t. yi(w
ᵀxi + b) ≥ 1, i = 1, · · · , n

(2.10)

where 1
2

is added for the mathematical convenience.

To take account the data points that do not satisfy yi(w
ᵀxi+b) ≥ 1, we introduce slack

variables ξi ≥ 0 to make the following hold: 1) ξi = 0 if the data point is on or inside the

correct margin boundary, 2) ξi = |yi − (wᵀxi + b)| otherwise. Hence, the data point is in

the correct side of the decision boundary if 0 6 ξi < 1 and the data point situates on the
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wrong side of the decision boundary if ξi > 1.

We replace the hard constraints yi(w
ᵀxi + b) ≥ 1 with the soft margin constraint

yi(w
ᵀxi + b) ≥ 1− ξi and the objective function becomes:

min
w,b,ξ

1

2
wᵀw + C

n∑
i=1

ξi

s.t. ξi ≥ 0, yi(w
ᵀxi + b) ≥ 1− ξi, i = 1, · · · , n

(2.11)

where C is a regularization parameter which is used for controlling the tolerance number

of errors. Because ξi > 1 means data point i is misclassified,
∑n

i=1 ξi can be interpreted

as an upper bound on the number of misclassified data points. In this thesis, we focus on

linear SVM.

2.8 Cluster Evaluation

“The validation of clustering structures is the most difficult and frustrating part of cluster

analysis. Without a strong effort in this direction, cluster analysis will remain a black art

accessible only to those true believers who have experience and great courage.” [6].

2.8.1 Precision, Recall and F1-score

First, let me use Figure 2.5 to denote the concepts of true positive (TP), false positive

(FP), true negative (TN), and false negative (FN) that compare the results of the clus-

terer/classifier under test with trusted external judgments. Figure 2.5(a) shows the exter-

nal judgment (ground truth) of the data. Figure 2.5(b) is the clustering results of some

clustering method. Accuracy, presicion and recall are then defined as: Precision = TP
TP+FP

,

Accuracy = TP+TN
TP+TN+FP+FN

, Recall = TP
TP+FN

. And the F1-score is defined as the harmonic

mean of precision and recall: F1 = 2
1

Precision
+ 1

Recall
= 2·Precision·Recall

Precision+Recall
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(a) The ground truth.

True Positive

False Positive

False Negative

True Negative

(b) The clustering result.

Figure 2.5: The demonstration for the concepts of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN).

Macro-F1 score is the average F1-score over classes:

Macro-F1 =
1

c

c∑
i=1

F1i

where c is the number of classes, and F1i = 2·Precisioni
·Recalli

Precisioni
+Recalli

is the F1-score of the i-th

class.

Micro-F1 [80] is computed as follows:

Micro-F1 =

∑c
i=1 2∑c

i=1

(
1

Precisioni + 1

Recalli
)

Macro-F1 [80] is more affected by the rare classes because all classes are weighted evenly

while Micro-F1 is affected more by the common classes because it weights objects evenly.

2.8.2 Rand Index

Given a set of n objects S = {o1, · · · , on} and two partitions of S to compare, X =

{X1, · · · ,Xr} and Y = {Y1, · · · ,Ys}. Now the TP, FP, TN, and FN are defined as follows:

• TP: the number of pairs of elements in S that are in the same subset in X and also
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in the same subset in Y .

• FP: the number of pairs of elements in S that are not in the same subsets in X but

in the same subset in Y .

• TN: the number of pairs of elements in S that are not in the same subsets in X and

also not in the same subsets in Y .

• FN: the number of pairs of elements in S that are in the same subset in X but not

in the same subsets in Y .

(a) The ground truth.

True Positive

False Positive

True Negative

False Negative

(b) The clustering result.

Figure 2.6: The demonstration for computing Rand Index.

The Rand Index R is defined as: R = TP+TN
TP+FP+TN+FN

= TP+TN
n·(n−1)/2

. Before introducing

the Adjusted Rand Index (ARI) [62], let me first summarize the overlap between X and

Y in a contingency table where each element denotes the number of objects in common

between Xi and Yj.

The ARI is defined as follows:

ARI =

∑
ij

(
nij

2

)
−
(∑

i

(
ai
2

)∑
j

(
bj
2

))
/
(
n
2

)
1
2

(∑
i

(
ai
2

)
+
∑

j

(
bj
2

))
−
(∑

i

(
ai
2

)
·
∑

j

(
bj
2

))
/
(
n
2

)
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Table 2.1: The Contingency Table.

Y1 Y2 . . . Ys Sums
X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2

...
...

...
. . .

...
...

Xr nr1 nr2 · · · nrs ar
Sums b1 b2 · · · bs

2.8.3 Purity

Before computing purity, each cluster is assigned to the class which dominates in the

cluster. And the purity is computed as follows:

Purity(X ,Y) =
1

n
·

r∑
i=1

max
j6s
|Xi ∩ Yj|

The value of Purity ranges from 0 to 1. The higher the value is, the better the clustering

is. One problem of purity is that if each object is a cluster, the value of Purity will be 1.

Thus, Purity is usually used to evaluate the clustering with equal number of clusters to

those of the ground truth.

2.8.4 Mutual Information

In information theory, the mutual information of two random variables maesures the

amount of information they have in common. Unlike the correlation which can only

capture the linear relationships between two random variables, mutual information can

capture non-linear or high-order relationships. For two partitions or clusterings X and Y ,

their mutual information is computed as follows:

I(X ;Y) =
r∑
i=1

s∑
j=1

p (Xi ∩ Yj) · log

(
p (Xi ∩ Yj)
p(Xi) · p(Yj)

)
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The normalized mutual information (NMI) [10] is defined as follows:

NMI(X ;Y) =
I(X ;Y)√

H(X ) ·H(Y)

where H(X ) and H(Y) are the entropy of X and Y , respectively. The definition of the

entropy is:

H(X ) = −
r∑
i=1

p(Xi) · log (p(Xi))

The adjusted mutual information (AMI) [73] is proposed to correct the measures for

randomness. AMI subtracts the expectation value of the mutual information, so that the

AMI is zero when two different distributions are random, and one when two distributions

are identical. It is defined as follows:

AMI(X ;Y) =
I (X ;Y)− E (I(X ;Y))

max (H(X ), H(Y)− E (I(X ;Y)))

where E (I(X ;Y)) is the expectation value of the mutual information between X and Y .



Chapter 3

Full Spectral Clustering

Multi-scale data which contains structures at different scales of size and density is a big

challenge for spectral clustering. Even given a suitable locally scaled affinity matrix, the

first k eigenvectors of such a matrix still cannot separate clusters well. Thus, in this

chapter, we exploit the fusion of the cluster-separation information from all eigenvectors to

achieve a better clustering result. Our method FUll Spectral ClustEring (FUSE) is based

on Power Iteration (PI) and Independent Component Analysis (ICA). PI is used to fuse all

eigenvectors to one pseudo-eigenvector which inherits all the cluster-separation information.

To conquer the cluster-collision problem, we utilize PI to generate p (p > k) pseudo-

eigenvectors. Since these pseudo-eigenvectors are redundant and the cluster-separation

information is contaminated with noise, ICA is adopted to rotate the pseudo-eigenvectors

to make them pairwise statistically independent. To let ICA overcome local optima and

speed up the search process, we develop a self-adaptive and self-learning greedy search

method. Finally, we select k rotated pseudo-eigenvectors (independent components) which

have more cluster-separation information measured by kurtosis for clustering. Various

synthetic and real-world data verifies the effectiveness and efficiency of our FUSE method.

Parts of the materials presented in this chapter have been published in [100], where

Wei Ye devised the main concept, did the most parts of the experimental evaluation and

wrote the major parts of the paper; Christian Böhm and Claudia Plant supervised the
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project and contributed to the concept development and paper writing; Sebastian Goebl

contributed to the paper writing and some experimental evaluation.

“Wei Ye, Sebastian Goebl, Claudia Plant, Christian Böhm. FUSE: Full Spectral Clus-

tering. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp.

1985–1994, 2016.”

3.1 Motivation

Clustering is a basic technique in data analysis and mining. Two commonly used methods

are k-means and Expectation Maximization clustering (EM) which pre-assume that data

fits a Gaussian model. Such model-based clustering methods perform well if data fits

the model. However, in most cases, we do not know the distribution of data. It is hard

to decide which model to adopt. Spectral clustering, on the other hand, does not pre-

assume any model. It only uses local information (point to point similarity) to achieve

global clustering. Thus it is very elegant and popular in data ming and machine learning.

Spectral clustering transforms the clustering of a set of data points with pairwise similarities

into a graph partitioning problem, i.e., partitioning a graph such that the intra-group

edge weights are high and the inter-group edge weights are low. There are three kinds

of similarity graphs, i.e., the ε-neighborhood graph, the k-nearest neighbor graph and

the fully connected graph [97]. Luxburg [97] emphasized that “theoretical results on the

question how the choice of the similarity graph influences the spectral clustering result do

not exist”. However, the parameters (ε,k,σ) of these similarity graphs highly affect the

clustering results, especially in cases where data contains structures at different scales of

size and density. One usually used objective function in spectral clustering is normalized

cut [56]. As pointed out in [13], the normalized cut criterion does not always work even

given a proper affinity matrix.

Consider three clusters of different geometry shapes and densities in Figure 3.1(a). Both

Gaussian clusters have 100 data points. The rectangular stripe cluster has 400 data points

sampled from a uniform distribution. Conventional spectral clustering algorithms tend to
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fail on this multi-scale data. Self-tuning spectral clustering (ZP) [66] proposes to use the

locally scaled affinity matrix to solve the limitation. Further, ZP rotates the eigenvectors

to create the maximally sparse representation to estimate the number of clusters auto-

matically. However, such proposals still do not work on multi-scale data because of the

unsuitability of the normalized cut criterion only using local information. Such an argu-

ment can be inferred from Figure 3.1(c). ZP fails to correctly separate the three clusters.

Both cuts are along the stripe. Intuitively, it is not difficult to understand. The normalized

cut criterion tries to make clusters “balanced” as measured by the number of vertices or

edge weights. Since each of the two Gaussian clusters only has 100 data points and they

are so close to the stripe cluster, cuts between the Gaussian clusters and the stripe cluster

have a higher penalty than those along the stripe.

Differing from other spectral clustering algorithms, our method combines the cluster-

separation information from all eigenvectors to achieve a better clustering result. As can

be seen from Figure 3.1(d), only some controversial data points lying on the boundaries are

clustered incorrectly. The fusion of the cluster-separation information from all eigenvec-

tors is accomplished by exploiting truncated Power Iteration (PI). To yield good clustering,

spectral clustering uses the first k eigenvectors of the graph Laplacian matrix. Similarly,

we use PI to generate p (p > k) pseudo-eigenvectors. Each pseudo-eigenvector is a linear

combination of all original eigenvectors, including the information not only from the “infor-

mative” eigenvectors but from the “noise” eigenvectors. Note that the pseudo-eigenvectors

are redundant to each other. One main question is how to make the information from the

“informative” eigenvectors stand out and suppress the information from the “noise” eigen-

vectors? In this paper, we use Independent Component Analysis (ICA) to reduce the re-

dundancy, i.e., to make the pseudo-eigenvectors statistically independent (non-redundant)

to each other. After whitening (more details in Section 3.2.1), ICA rotates the pseudo-

eigenvectors to find the direction in which the entropy is minimized. Subsequently, a

kurtosis-based selection strategy is exploited. Such a minimum-entropy rotation plus a

kurtosis-based selection improve the cluster separation. The contributions are as follows:
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Figure 3.1: Clustering results of ZP and FUSE on our Syn1 data ((b) gives the top 10
eigenvalues of the normalized affinity matrix).

• We achieve the eigenvector-fusion by using Power Iteration (PI). The gen-

erated pseudo-eigenvectors include information from all eigenvectors.

• We improve the cluster separation by applying ICA combined with a

kurtosis-based selection strategy. Since the generated pseudo-eigenvectors are

redundant to each other, which is not beneficial to good clustering, we apply ICA

to make them statistically independent. Then, a kurtosis-based selection strategy is

exploited to improve the cluster separation. To the best of our knowledge, we are

the first to apply ICA on spectral clustering.

• We develop a greedy search method to render searching for statistically

independent components more efficient and effective. The greedy search

strategy discriminates the search order to let ICA not easily get trapped into local
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optimal. In addition, during the search process, the greedy search makes use of

self-adaptive and self-learning strategies to balance the efficiency and effectiveness.

3.2 Full Spectral Clustering

3.2.1 Fusing eigenvectors

For real-world data, a single pseudo-eigenvector is not enough when the number of clusters

is large. The reason is we need more eigenvectors to discriminate clusters when the clus-

ter count increases. Thus, the cluster-collision problem may happen on one-dimensional

pseudo-eigenvector. However, using PI p (p > k) times with random generated starting

vectors to generate p pseudo-eigenvectors is not sufficient either, which can only alleviate

the situation a little because of the redundant information provided by these pseudo-

eigenvectors. It is just the first step of the eigenvector fusion. We also need to reduce

the redundancy in these pseudo-eigenvectors. Our goal is twofold: 1) generate p pseudo-

eigenvectors, 2) reduce redundancy to make the cluster-separation information stand out

and suppress the noise information. The goal can also be rephrased as fusing the cluster-

separation information from all original eigenvectors to improve clustering. Why do we

need to fuse the information from all eigenvectors? The analysis in [13] shows that “when

confronted with clusters of different scales, corresponding to a multi-scale landscape po-

tential, standard spectral clustering which uses the first k eigenvectors to find k clusters

will fail”. Even given a locally scaled affinity matrix [66], ZP still cannot overcome the

limitation if clusters have comparable densities.

For example, Figure 3.2(a) demonstrates the eigenvector space (consists of the eigen-

vectors associated with the top three minimum eigenvalues) found by ZP (other spectral

clustering algorithms yield similar ones) on the running example (Syn1) in Section 3.1. It

demonstrates that the three clusters are connected together in the eigenvector space, which

is the reason for k-means’ difficulty in separating them. The cluster-separation information

is not provided by the first three eigenvectors. However, we can see from Figure 3.2(b)
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that the blue and red clusters have fewer overlapped data points with the black cluster. If

we fuse the information from the eigenvectors in Figure 3.2(b) to those in Figure 3.2(a), we

can achieve a better clustering result. In this paper, we use truncated Power Iteration (PI)

to fuse eigenvectors. Figure 3.2 (c) shows the four pseudo-eigenvectors returned by running

PI four times with randomly generated starting vectors. The resulting pseudo-eigenvectors

are very similar and redundant, e.g., the pseudo-eigenvectors vt1 and vt4. Thus, the cluster-

separation information is not standing out. Figure 3.2(d) gives the pseudo-eigenvector

space returned by our algorithm. In such space, the blue and red clusters have much fewer

close data points to the black cluster compared to those in Figure 3.2(a), which makes

k-means easily distinguish them from each other.

Consider that each pseudo-eigenvector generated by PI is a linear combination of

all eigenvectors of the normalized affinity matrix P and every pair of distinct pseudo-

eigenvectors is redundant. One way to reduce redundancy is to make p pseudo-eigenvectors

statistically independent, which can be accomplished by ICA. Mathematically speaking,

the problem formulation is as follows:

Definition 2 Statistically Independent Pseudo-eigenvectors. Given a pseudo-

eigenvector matrix V ∈ Rp×n generated by running PI p times, find a demixing matrix

W ∈ Rp×p such that E = WV and the sum of mutual information between pairwise com-

ponents of E is minimized, where E ∈ Rp×n is a resulting independent pseudo-eigenvector

matrix.

JI(W) := min
∑

1≤i,j≤p,i 6=j

I(ei·; ej·) (3.1)

The demixing matrix W can be derived by determining the directions of minimal

entropy. To find such directions, ICA requires to whiten data, i.e., the expectation value

of data is zero and the covariance matrix of data is the identity matrix, by applying PCA.

The demixing matrix W is orthonormal in white space. After whitening data, ICA finds

those directions of minimal entropy by rotating the whitened data. In this paper, instead

of using fastICA [3], we use Jacobi ICA [30, 88] to find statistically independent pseudo-

eigenvectors for the reasons that 1) we can choose different kinds of contrast functions,
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Figure 3.2: Demonstration of the (pseudo-)eigenvector space generated by ZP and FUSE
on Syn1 data. (a) the eigenvector space (consists of the first three eigenvectors) returned
by ZP, (b) the eigenvector space consists of the fourth and fifth eigenvectors returned by
ZP, (c) four pseudo-eigenvectors generated by running PI four times with random initial
vectors, (d) the pseudo-eigenvector space returned by FUSE, in which the clusters are well
separated.

2) we can make it escape from local optima more easily. Note that Equation 3.1 can be

solved by iteratively optimizing every pairwise mutual information. We rewrite Equation

3.1 as the following objective function:

min I(ei·; ej·)

s.t. E = WV, 1 ≤ i, j ≤ p, i 6= j
(3.2)

Now it comes to how to select k independent components. Since ICA is interested in

searching for non-Gaussian directions, in which negentropy is minimized. Non-Gaussian

may be super-Gaussian as well as sub-Gaussian. We are only interested in sub-Gaussian
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directions, in which clusters are as much separated as possible. Such directions can be

best modeled by uniform distributions [17]. In this paper, we use kurtosis to measure

the distance of the probability distribution of an independent component to Gaussian

distribution. The kurtosis is the fourth standardized moment, defined as,

Kurt(X) =
µ4

σ4
=

E ((X − µ)4)

(E ((X − µ)2))2 (3.3)

where µ4 is the fourth moment of the mean and σ is the standard deviation.

The kurtosis of any univariate Gaussian distribution is 3. The kurtosis of any sub-

Gaussian distribution is below 3 and the kurtosis of any sup-Gaussian distribution is above

3. We prefer the independent components associated with the top k minimum kurtosis

values.

3.2.2 Givens Rotation

The objective function in Equation 3.2 is difficult to solve. Inspired by Learned-Miller et.

al [30] and Kirshner et. al [88] in which they used Givens rotation to estimate a demixing

matrix for independent component analysis by sequentially rotating every two mixture

components. The reason behind Givens rotation is: 2d-pairwise distances are not chang-

ing after rotation, thus joint distribution remains the same, whereas marginal distributions

change after rotation. Thus, any metric based on joint distribution and marginal distribu-

tions varies when the rotation angle θ varies. We can find the maximal or minimal values

of metrics with respect to θ. For d-dimensional data, a Givens rotation of angle θ for
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dimensions i and j is defined as:

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · cos θ · · · − sin θ · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · sin θ · · · cos θ · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1


where sin θ is on the j-th row and i-th column and − sin θ is on the i-th row and j-th

column of G.

The demixing matrix W can be estimated as

W =
∏

G(i, j, θ∗), 1 ≤ i, j ≤ p, i 6= j (3.4)

where G(i, j, θ∗) is a Givens rotation of the best angle θ∗ for optimizing the mutual infor-

mation of the dimensions i and j of a data matrix.

3.3 Algorithm

3.3.1 Greedy Search

Learned-Miller et. al [30] and Kirshner et. al [88] optimized Equation 3.2 by exhaustively

search over K = 150 values of θ in the range
[
0, π

2

]
which is time-consuming. Besides, they

did not discriminate the order of optimization for different pairwise dimensions, which

results in getting easily trapped in local optima. Considering the two limitations, we

propose a new optimization method which is very efficient and effective.

To speed up the search process, we do not exhaustively search over K = 150 values

of θ in the range
[
0, π

2

]
. In contrast, we use the history search as anchors to guide the
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search process. From this perspective, the greedy search is a self-learning method based on

its learned knowledge. The strategy of adjusting the search resolution (see the following)

makes our greedy search self-adaptive. Note that we only need to consider θ in the interval[
0, π

2

]
because the effectiveness of any 90 degree rotation is equivalent as explained in

[30]. In this paper, we adopt kernel generalized variance (KGV) proposed by Bach and

Jordan [34] to estimate pairwise mutual information considering its linear complexity and

especially its smoothness w.r.t. log function. For a detailed description, please see [34,109].

Now we give an example to demonstrate our greedy search method. Because in practical

use we can choose different contrast functions, here we just give a generalized function f

to demonstrate the main idea. The curve in Figure 3.3 (a) is a function of θ. The goal

is to find the best θ∗ achieving the maximal objective function f in the interval
[
0, π

2

]
(the minimal f can be achieved by finding the maximal −f). Our method is described as

follows:

Case 1: As depicted in Figure 3.3 (a), we set the ascending and descending step

size to π
2K

. We choose three different initial θ (in our example is θ1, θ2 and θ3) with the

same interval (e.g. π
2K

) and compute their objective function (f(θ1), f(θ2) and f(θ3)). If

f(θ3) ≤ f(θ2) ≤ f(θ1), we assume that the function is continuously decreasing and we

multiply the descending step size by τ = 2 ( the search resolution) and update θ3 for the

following iteration. If τ is two large, the method may skip some important search niche,

while if τ is too small, the efficiency will be decreased. We update θ1 = θ2, θ2 = θ3,

f(θ1) = f(θ2) and f(θ2) = f(θ3) as history reference values for the following search.

Case 2: We compute f(θ3) as depicted in Figure 3.3 (b). If f(θ2) ≤ f(θ3) and

f(θ2) ≤ f(θ1), we assume the function is continuously increasing. We set the descending

step size to its initial value and multiply the ascending step size by τ and update θ3. Also,

we update θ1 = θ2, θ2 = θ3, f(θ1) = f(θ2) and f(θ2) = f(θ3) as history reference values for

the following search. If f(θ3) ≤ f(θ2) ≤ f(θ1), go to case 1.

Case 3: We compute f(θ3) as depicted in Figure 3.3 (c). If f(θ1) ≤ f(θ2) ≤ f(θ3),

we assume the function is continuously increasing. We set the descending step size to its

initial value and multiply the ascending step size by τ and update θ3. Also, we update
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θ1 = θ2, θ2 = θ3, f(θ1) = f(θ2) and f(θ2) = f(θ3) as history reference values for the

following search. if not, go to case 4.

Case 4: In this case (Figure 3.3 (d)), f(θ1) ≤ f(θ2) and f(θ3) ≤ f(θ2), we assume

there may be some peaks in the interval. We exhaustively search in the interval [θ1, θ3]

with a step size π
2K

. Finally, we update θ1 = θ2, θ2 = θ3, f(θ1) = f(θ2), f(θ2) = f(θ3) and

set the ascending step size to its initial value. Since now f(θ2) ≤ f(θ1), we assume the

function is continuously decreasing. We multiply the descending step size by τ and update

θ3. If f(θ3) ≤ f(θ2), go to case 1; if f(θ3) ≥ f(θ2), go to case 2.

We repeat the above four cases until θ3 ≥ π
2
. Note that, in each case, we update the

best objective function value fb and θ∗.

3.3.2 FUSE

As said before, in [30] and [88], the authors do not differ between the order of optimizing

pairwise dimensions which results in the algorithm’s getting easily trapped in local optima.

In this paper, we use a greedy selection method, i.e., computing the objective function

values for each pairwise dimensions and then optimizing pairs according to their objective

function values from the worst to the best, to make our method not easily get trapped in

local optima. Our pseudo-code is given in Algorithm 1.

Steps 1 – 2 initialize the demixing matrix W to an identity matrix, compute the affinity

matrix A and normalize it to P. Steps 3 – 8 generate p = k+ 1 pseudo-eigenvectors using

power iteration (PI). In step 4, the starting vector is randomly generated following a

Gaussian distribution with mean 0 and variance 1. In Steps 5 – 8, each starting vector is

iteratively updated by power iteration until the acceleration threshold ε̂ or the maximum

iteration number is reached. Step 10 whitens the pseudo-eigenvector matrix V to let it have

zero expectation value and an identity covariance matrix. In step 11, c includes the indices

of each pairwise components in E and their mutual information values (ai ∈ {1, 2, · · · , p}).

To let the algorithm escape from local optima, step 14 sorts c in descending order w.r.t.

mutual information values. Steps 15 – 19 use the greedy search to find the best θ∗ for each
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pairwise components of E to make them statistically independent and update components’

pairwise mutual information value stored in cj3, and also update E and W. We set the

mutual information threshold to 0.1 for a balance between the efficiency and effectiveness.

If we set it lower, the efficiency will be decreased but effectiveness will be increased and vice

versa. Step 20 returns the selected independent components which will be fed to k-means

to find clusters.
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Figure 3.3: Greedy search strategy

3.3.3 Complexity Analysis

We omit the runtime for computing the affinity matrix which is a common step in all

spectral clustering methods. The analysis of runtime complexity of FUSE is as fol-

lows: In steps 3 – 8, generating one pseudo-eigenvector costs O(e) time [39], where e

is the number of edges, and thus the runtime complexity to generate p = k + 1 pseudo-

eigenvectors by power iteration is O((k+ 1)e). In step 10, as a preprocessing step, whiten-
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ing data costs O((k + 1)2n) time. In this paper, we adopt Kernel Generalized Variance

(KGV) using incomplete Cholesky decomposition proposed in [34] to estimate mutual

information. The complexity of KGV is O(m2M2n) [34], where m is data dimension

and M is the maximal rank considered by the low-rank decomposition algorithms for

the kernels. In step 11, the computation time for all pairwise mutual information val-

ues is k(k+1)
2
· O(22M2

1n) = O(k2M2
1n). To make FUSE escape from local optimal, we

sort c using quick sort algorithm. The runtime complexity of the ordering process is

3(k + 1) · O(l log l) = 3(k + 1) · O(k(k+1)
2

log k(k+1)
2

) = O(k4 log k). The time cost of finding

independent pseudo-eigenvectors is 3(k + 1) · k(k+1)
2
·K · O(22M2

2n) = O(k3M2
2n). Finally,

we use k-means to cluster on the selected independent pseudo-eigenvectors. The total run-

time complexity of FUSE is O (ke+ k2M2
1n+ k3M2

2n+ k4 log k) plus the time complexity

of k-means, i.e., O(nk)×(# k-means iterations) [20].

3.4 Experimental Evaluation

Competitors: To evaluate the performance of FUSE, we adopt three spectral clustering

methods NCut [56], NJW [9] and ZP [66] and power-iteration-based clustering methods PIC

[37], PIC-k [36], DPIC [71] and DPIE [45] as competitors. FUSE and all the comparison

methods are written in Matlab. All experiments are run on the same machine with an Intel

Core Quad i7-3770 with 3.4 GHz and 32 GB RAM. The code of FUSE and all synthetic

and real-world data used in this paper are available at the website1.

Parameters: The parameters for spectral clustering, power-iteration-based clustering

methods are set according to their original papers. For FUSE, we set ε̂i = i · dlog(k)e · 1e−5
n

as adopted by DPIE [45]. For text data, we use cosine similarity (
xi·xj

‖xi‖2‖xj‖2 ) to compute

the affinity matrix. For network data, the element aij of the affinity matrix A is simply

1 if blog i has a link to j or vice versa, otherwise aij = 0. For all other data, the locally

scaled affinity matrix is computed as the way proposed in [66] with KNN = 7. The original

ZP method automatically chooses the number of clusters. For a fair comparison, we give

1https://github.com/yeweiysh/FUSE
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Algorithm 1: FUSE

Input: Data X ∈ Rm×n

Output: cluster indicator vectors
1 T ← 1000, levels ← 3, sweeps ← p; /* p = k + 1 */

2 Initialize the demixing matrix W ∈ Rp×p to the identity matrix and compute the
random walk transition matrix P ∈ Rn×n;

3 for j ← 1 to p do
4 t← 0,v0

j ← randn (1, n); /* vj ∈ R1×n */

/* power iteration */

5 repeat

6 vt+1
j ← Pvt

j

‖Pvt
j‖1

;

7 δt+1 ← |vt+1
j − vtj|;

8 t← t+ 1;

9 until ‖δt+1
j − δtj‖max ≤ ε̂ or t ≥ T ;

10 V = [v1; . . . ; vp];
11 V← whiten (V),E←WV;

/* c has l =
(
p
2

)
tuples */

12 c← ((a1, a2, I1 = I(va1·; va2·)), . . . , (al−1, al, Il = I(val−1·; val·)));
13 for level← 1 to levels do
14 for sweep← 1 to sweeps do
15 c← order descending by I value (c);

/* minimize pairwise mutual information */

16 for j ← 1 to l do
17 if cj3 > 0.1 then
18 [θ∗, cj3]← greedy search (cj1, cj2,E);
19 E← G(cj1, cj2, θ

∗)E;
20 W← G(cj1, cj2, θ

∗)W;

21 compute kurtosis of each pseudo-eigenvector in E and return the
pseudo-eigenvectors associated with the top k minimum values;
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ZP the correct number of clusters.

Since all the comparison algorithms use k-means in the last step, in each experiment

k-means is run 100 times with random starting points and the most frequent cluster as-

signment is used [37]. We run each experiment 50 times and report the mean and standard

deviation of Adjusted Mutual Information (AMI) [73]. For AMI, higher value means better

clustering.

3.4.1 Synthetic Data

Quality

Synthetic dataset Syn1 is the running example used in Section 3.1. Syn1 has three

clusters. Each of the two Gaussian clusters has 100 data points and the stripe cluster has

400 data points. We have shown the results before.

Synthetic dataset Syn2 has three clusters as well depicted in Figure 3.4(a). Both

Gaussian clusters have 100 data points and the rectangular cluster has 400 data points.

Both Gaussian clusters have some very close data points to the rectangular cluster making

them hard to be separated correctly. The mean AMI of FUSE is 0.750 and the highest of

the comparison algorithms’ is 0.574 achieved by PIC-k. ZP only has a value 0.483. Figure

3.4(b)– (d) give us an intuitive demonstration. FUSE just wrongly clustered a few data

points in the magenta rectangular cluster to the blue Gaussian cluster, while ZP and PIC-k

wrongly clustered about a half of the data points in the magenta rectangular cluster to the

blue Gaussian cluster. Our algorithm is superior to the competing algorithms.

Syn3 in Figure 3.5(a) also has three clusters. Two Gaussian clusters each has 90

and 92 data points, respectively. The blue ring cluster has 130 data points. Syn3 is

very interesting because the density of the blue ring cluster is lower than those of the

Gaussian clusters. And the ring cluster is very close to the Gaussian clusters, which could

make the KNN = 7 neighbors of some points in the blue ring cluster be belonging to the

Gaussian clusters. Syn3 is also difficult to cluster correctly. However, FUSE achieved the

best compared to all the comparison algorithms. PIC-k even clustered several data points
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(a) Syn2 (b) FUSE

(c) ZP (d) PIC-k

Figure 3.4: Clustering results on Sync2 (shown are the most frequent clusterings)

belonging to two Gaussian clusters to the ring cluster, which did not make sense.

Syn4 in Figure 3.6(a) contains five clusters, each of the two Gaussian clusters has 100

data points, each of the two square clusters has 82 and 100 data points respectively and

the ring cluster has 56 data points. The ring cluster is very close to the square clusters and

even has some overlap with the two Gaussian clusters. Still, FUSE achieved the best result,

only not distinguishing between the overlapped data points from the Gaussian clusters and

the ring cluster. ZP wrongly detected a half of the data points in the ring cluster to the

green Gaussian cluster. PIC-k wrongly clustered several data points in the ring cluster

to the black square cluster although the densities of these two clusters are significantly

different.

For all these multi-scale synthetic datasets, our algorithm FUSE outperforms all the
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(a) Syn3 (b) FUSE

(c) NJW (d) PIC-k

Figure 3.5: Clustering results on Sync3 (shown are the most frequent clusterings)

competing algorithms. FUSE is even superior to the spectral clustering algorithms ZP,

NCut and NJW, which proves that the normalized cut criterion is not alway suitable for

clustering. FUSE-E is our algorithm using the exhaustive search strategy over θ proposed

in [30,88] which does not discriminate the order of optimization of the pseudo-eigenvectors

generated by PI. We can see that sometimes it gets trapped in local optimal (the result on

Syn3). Our algorithm FUSE adopting the greedy search strategy achieves quite similar

or even better results than using the exhaustive search strategy.

Scalability

In this experiment, we want to test the runtime against the number of data points using

data Sync5. Synthetic dataset Sync5 is generated as follows: Firstly, we generate two
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(a) Syn4 (b) FUSE

(c) ZP (d) PIC-k

Figure 3.6: Clustering results on Sync4 (shown are the most frequent clusterings)

2D clusters sampled from uniform distributions with the number of data points 4,000 and

1,000 respectively. The two clusters are our basis clusters. Then at each step we increase

the data points in each cluster by the size of its basis. Finally, we have data points varying

from 5,000 to 30,000 by a step size 5,000. We feed each algorithm with the same affinity

matrix. Thus, the runtime does not include the computation time for the affinity matrix.

The results are demonstrated in Figure 3.7. Since the runtime of NJW and NCut are

similar, here we only show the runtime of NCut for a clearer demonstration. Figure 3.7

shows that the runtime of FUSE becomes much lower than that of ZP, NCut and DPIC

when increasing the number of data points. Compared to PIC, we can see their slope

variances are quite similar. The runtime difference between FUSE and PIC is owing to

that FUSE needs to determine the directions in which the entropy of pseudo-eigenvectors
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Table 3.1: AMI on Synthetic Data (mean ± standard deviation)

AMI Sync1 Sync2 Sync3 Sync4
FUSE 0.715±0.131 0.750±0.127 0.702±0.048 0.891±0.016
FUSE-E 0.735±0.142 0.750±0.120 0.688±0.044 0.886±0.018
ZP 0.374±0 0.483±0 0.528±0 0.882±0
NCUT 0.370±0 0.479±0 0.522±0 0.874±0.002
NJW 0.379±0 0.451±0 0.533±0 0.879±0.002
PIC 0.355±0.088 0.309±0 0.494±0.059 0.840±0.034
PIC-k 0.324±0.048 0.574±0.105 0.508±0.055 0.8544±0.022
DPIC 0.324±0.094 0.465±0.113 0.499±0.107 0.482±0.064
DPIE 0.350±0.056 0.128±0.097 0.310±0 0.630±0

is minimized. Compared with PIC-k, the runtime of FUSE becomes close to that of PIC-k

when the number of data points increases to 30,000. Note that FUSE-E is our algorithm

using the exhaustive search strategy. FUSE is faster than FUSE-E as can be seen from

the figure. Our algorithm is of more practical use than ZP, NCut, NJW and DPIC.
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Figure 3.7: Runtime comparison
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3.4.2 Real-world Data

Clustering

Now we demonstrate the effectiveness of our FUSE on seven real-world datasets. Pendig-

its is available from UCI machine learning repository2. The original datasets MNIST,

20Newsgroups, Reuters21578, TDT2 and RCV1 are available at this website3.

20ngD from [37] is a subset of 20Newsgroups, and MNIST0127 from [71] is a sub-

set of MNIST. TDT2 3classes, Reuters 4classes and RCV1 4classes are samples

from original Reuters21578, TDT2 and RCV1 corpus using random indices from the

website30. Agblog is a connected network dataset of 1222 liberal and conservative po-

litical blogs mined from blog homepages [37]. For text datasets, we use the preprocessed

document-term matrix to compute the TF-IDF matrix. Then each feature vector is nor-

malized to have unity norm. Finally, we use cosine similarity to compute the affinity

matrix. The statistics of all datasets are given in Table 3.2.

Table 3.2: Statistics of Datasets

Dataset #instances #features #clusters
Pendigits 7494 16 10
MNIST0127 4189 784 4
Agblog 1222 498 2
20ngD 800 26214 4
TDT2 3classes 314 36761 3
Reuters 4classes 649 18933 4
RCV1 4classes 1000 29985 4

From Table 3.3, we can see that on all datasets, FUSE achieves the best results, even

outperforms self-tuning spectral clustering algorithm (ZP) and the conventional spectral

clustering algorithms (NCut and NJW). Compared to PIC and PIC-k, FUSE improves

AMI on each dataset. The most likely reason is the pseudo-eigenvectors found by FUSE

are statistically independent (non-redundant), which make every cluster stand out in each

2http://archive.ics.uci.edu/ml/
3http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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pseudo-eigenvector. Compared to DPIC and DPIE which also aim at reducing redundancy

in pseudo-eigenvectors generated by PI, FUSE improves AMI much on most datasets. One

reason is that finding directions in which the entropy is minimized is much more beneficial

to clustering.

Table 3.3: AMI on Real-world Data (mean ± standard deviation)

AMI Pendigits MNIST0127 Agblog 20ngD
FUSE 0.828±0.009 0.594±0.043 0.729±0.001 0.348±0.017
ZP 0.813±0 0.444±0 0.017±0 0.293±0
NCUT 0.800±0 0.418±0 0.002±0 0.325±0.022
NJW 0.800±0 0.496±0.040 0.017±0 0.265±0
PIC 0.680±0 0.446±0.034 0.226±0.317 0.318±0.004
PIC-k 0.773±0.024 0.456±0.006 0.227±0.288 0.284±0.051
DPIC 0.616±0.044 0.331±0.006 0.330±0 0.046±0.028
DPIE 0.624±0.034 0.011±0.003 0.050±0 0.271±0.046

AMI TDT2 3classes Reuters 4classes RCV1 4classes
FUSE 0.951±0.005 0.593±0.031 0.493±0.015
ZP 0.673±0 0.585±0.02 0.452±0
NCUT 0.670±0 0.539±0.004 0.405±0
NJW 0.670±0 0.567±0.005 0.402±0
PIC 0.308±0.287 0.310±0 0.335±0.034
PIC-k 0.400±0.300 0.366±0.069 0.351±0.021
DPIC 0.606±0.019 0.234±0.028 0.150±0.044
DPIE 0.135±0.197 0.434±0.198 0.404±0.043

Two most interesting results are on Agblog and TDT2 3classes datasets. All com-

parison methods except PIC and PIC-k fail on Agblog dataset. Agblog dataset has

two balanced clusters with the number of instances 586 and 636, respectively. We show

the most frequent data embeddings of FUSE and ZP (the results of NJW and NCut are

very similar) in Figure 3.8(a), (b) and (c). We can see that most data points (blue ones

in Figure 3.8(b) and (c)) are assigned to one cluster, which makes the results of ZP and

PIC-k not appealing. However, our algorithm finds the embedding space in which two

clusters are separated evenly.

Figure 3.9 shows the clustering results on the TDT2 3classes dataset. Figure 3.9(b)

demonstrates the eigenvector space found by ZP, in which the red square cluster and the
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Figure 3.8: The embedding space found by FUSE, ZP and PIC-k on Agblog data.

dot magenta cluster are connected together. ZP only achieves 0.673 in terms of AMI. PIC-

k found two pseudo-eigenvectors. Also in its found embedding space, two clusters (blue

and magenta) are not well separated. However, in the embedding space detected by our

algorithm, three clusters are well separated, which makes the value of AMI much higher

than those of the competing methods as can be seen in Table 3.3. Thus, the embedding

space found by our algorithm is much more attractive and effective.
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Figure 3.9: The embedding space found by FUSE, ZP and PIC-k on TDT2 3classes
data.

If we look into Table 3.4, we can find that we have six datasets on which the runtime of

our method is much lower than that of NCUT and NJW. And we also have four datasets

on which our method is faster than ZP. Our method is very efficient and promising for

practical use. However, on Pendigits dataset, FUSE is slower than the conventional
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spectral clustering algorithms because the maximal rank M considered by KGV is close to

n which costs much time to compute the pairwise mutual information.

Table 3.4: Runtime (sec) on Real-world Data (mean ± standard deviation)

Runtime Pendigits MNIST0127 Agblog 20ngD
FUSE 90.644±13.336 3.831±0.890 0.325±0.074 0.474±0.132
ZP 50.250±3.105 41.188±0 0.781±0 0.271±0
NCUT 50.375±2.066 62.697±0 2.318±0 0.957±0
NJW 51±3.406 59.940±0 0.374±0 0.807±0
PIC 5.197±0.017 0.249±0.031 0.063±0.010 0.013±0.003
PIC-k 13.745±5.020 0.263±0.036 0.035±0.006 0.002±0.002
DPIC 299.556±30.740 20.270±1.933 0.521±0.047 0.468±0.078
DPIE 0.099±0.520 1.816±3.822 0.003±0.002 0.097±0.009

Runtime TDT2 3classes Reuters 4classes RCV1 4classes
FUSE 0.826±0.376 0.394±0.201 0.391±0.148
ZP 0.032±0 0.438±0 52.714±4.310
NCUT 51.429±3.824 51±3.512 52.143±3.891
NJW 50.286±3.302 51±3.873 52.143±4.100
PIC 0.035±0.042 0.010±0.006 0.003±0
PIC-k 0.005±0.015 0.002±0 0.003±0
DPIC 0.099±0.078 0.231±0.042 0.502±0.074
DPIE 0.183±0.019 0.104±0.015 3.287±0.041

Image Segmentation

In this section, we apply our algorithm on image segmentation. Figure 3.10 and Figure

3.11 show two examples from the Berkeley Segmentation Dataset and Benchmark 4. Each

pixel is represented as a five dimensional vector of its pixel coordinates x and y, and the

color intensities [20]. We set the number of clusters in Figure 3.10 three and four for

Figure 3.11. Since the results returned by ZP, NCut and NJW are very similar, we only

show the results of ZP here. For other methods, we show such methods whose results are

more interpretable. Figure 3.10(b) shows that FUSE separates the deer, the grass and

the forest very well. ZP correctly segments the grass, but does not distinguish the deer

from the forest, while PIC-k recognizes the deer but not the grass or the forest. Compared

4https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html
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to Figure 3.10(a), Figure 3.11(a) demonstrates a more challenging task because the two

elephants are very similar in terms of the color and position. However, our method FUSE

successfully distinguishes these two similar elephants and also recognizes the sky. ZP cannot

separate the two elephants, but the sky is well segmented. DPIE can also distinguish the

two elephants but the segmentation is worse than FUSE’s. In addition, DPIE does not

segment the sky well.

(a) (b) FUSE

(c) ZP (d) PIC-k

Figure 3.10: Image segmentation (shown are the most frequent clusterings of each
method)

3.5 Related Work

Spectral clustering. Spectral clustering is very popular in data mining owing to its abil-

ity to detect arbitrary-shape clusters in data spectrum space. Spectral clustering can be
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(a) (b) FUSE

(c) ZP (d) DPIE

Figure 3.11: Image segmentation (shown are the most frequent clusterings of each
method)

divided into three categories by the type of Laplacian matrix, i.e., unnormalized spectral

clustering, normalized spectral clustering proposed by Shi and Malik (NCut) [56] and an-

other normalized spectral clustering proposed by Ng, Jordan and Weiss (NJW) [9]. After

deciding the type of Laplacian matrix, it computes the first k eigenvectors of the Laplacian

matrix and then uses k-means to cluster in the space formed by these eigenvectors. Spec-

tral clustering is very elegant. However, the computation cost is very high for large-scale

data. Finding eigenvectors takes O(n3) in general. Recently, researchers have proposed

many fast approximating techniques, such as IRAM and sampling techniques [22,26]. Spec-

tral clustering assumes that the “informative” eigenvectors are those associated with the

smallest k eigenvalues, which seems not to be successful on some real-world data with

much noise or multi-scale density. And this promotes many researchers work on how to
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select much informative eigenvectors, and how to estimate the local scale of data with

varying densities, shapes and levels of noise [20, 66, 94, 108]. ZP [66] is a representative

of all these algorithms. ZP takes local scaling into consideration and constructs a locally

scaled affinity matrix which proves beneficial to clustering especially for multi-scale data

or data with irregular background clutter. ZP also exploits the structure of eigenvectors to

improve clustering. As NCut, NJW and other spectral-based clustering methods, ZP only

uses the first k eigenvectors to cluster, which is not appropriate in some cases. However,

our algorithm FUSE exploits all “informative” eigenvectors and fuses all their information

to accomplish better clustering.

Power-iteration-based clustering. Power Iteration Clustering (PIC) [37] uses trun-

cated power iteration on a normalized affinity matrix of the data points to find a very

low-dimensional data embedding which is a linear combination of the major eigenvectors

for clustering. It is very elegant and efficient. However, the assumptions it bases on are

very strict and it returns only one pseudo-eigenvector which prevents its performance on

data with large number of clusters, where cluster-collision problem is easy to happen. PIC-

k [36] has been proposed to alleviate the situation but actually it still cannot solve the

cluster-collision problem due to much similarity exists in the returned pseudo-eigenvectors.

Another clustering algorithm based on power iteration is Deflation Power Iteration Clus-

tering (DPIC) [71] which uses Schur complement deflation to generate multiple orthogonal

pseudo-eigenvectors. However, the pseudo-eigenvectors still contain noise together with

cluster-separation information. Diverse Power Iteration Clustering (DPIE) [45] normalizes

the residue (regression) error which is obtained by subtracting the effects of the already-

found DPIEs from the embeddings returned by PIC. However, DPIE cannot guarantee

to find diverse embeddings in every iteration and it bases on the assumption that clear

eigen-gap exists between every two successive eigenvalues which is also very strict. Our

method FUSE does not make any assumptions and finds statistically independent pseudo-

eigenvectors, each of which is a different linear combination of the original eigenvectors.

Besides, each statistically independent pseudo-eigenvector eliminates noise and only keeps

cluster-separation information which makes FUSE much more advanced and effective.
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3.6 Summary

We have proposed FUSE to handle multi-scale data on which the normalized cut criterion

tends to fail even given a suitable locally scaled affinity matrix. FUSE exploits PI and

ICA to fuse all “informative” eigenvectors to yield better clustering. Since the pseudo-

eigenvectors fused by PI are redundant and the cluster-separation information does not

stand out, ICA is adopted to reduce the redundancy. Then, a kurtosis-based selection

strategy is used to improve cluster separation. To speed up the search process, we have

developed a greedy search method which learns from its history search records and also

adaptively adjusts its search resolution. Extensive experiments and evaluations on various

synthetic and real-world data show FUSE’s promising in dealing with multi-scale data.
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Chapter 4

Finding Multiple Independent

Subspace Clusters

In Chapter 3, we proposed full spectral clustering (FUSE) method to find clusters in

full space. However, high-dimensional data can encapsulate different object groupings

in subspaces of arbitrary dimension and orientation. Finding such subspaces and the

groupings within them is the goal of generalized subspace clustering. In this chapter

we present a generalized subspace clustering technique capable of finding multiple non-

redundant clusterings in arbitrarily-oriented subspaces. We use Independent Subspace

Analysis (ISA) to find the subspace collection that minimizes the statistical dependency

(redundancy) between clusterings. We then cluster in the arbitrarily-oriented subspaces

identified by ISA. Our algorithm ISAAC (Independent Subspace Analysis and Clustering)

uses the Minimum Description Length principle to automatically choose parameters that

are otherwise difficult to set. We comprehensively demonstrate the effectiveness of our

approach on synthetic and real-world data.

Parts of the materials presented in this chapter have been published in [101], where Wei

Ye was mostly responsible for the development of the main idea, conducted the most parts

of the experimental evaluation, and wrote the major parts of the paper; Claudia Plant

supervised the project and helped with the development of the idea and the paper writing;
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Samuel Maurus and Nina Hubig wrote some parts of the paper and did some experiments.

“Wei Ye, Samuel Maurus, Nina Hubig, Claudia Plant. Generalized Independent Sub-

space Clustering. IEEE 16th International Conference on Data Mining (ICDM), pp. 569–

578, 2016.”

4.1 Motivation

Data can hold a wealth of potential insights, some of them perhaps in the form of object

clusterings. However, as the dimensionality of a dataset increases, full-space clustering

methods (e.g. classical k-means or DBSCAN) encounter a suite of difficulties colloquially

attributed to the curse of dimensionality. These difficulties are detailed with examples

in [46]. One difficulty is the increasing “meaninglessness” when trying to discriminate

between “similar” and “dissimilar” objects in high-dimensional spaces. Another difficulty

arises when some attributes are relevant to some object groupings but not to others (or

the attributes are simply always irrelevant). These difficulties become evident on datasets

of even moderate dimensionality. To make matters worse, real-world datasets are almost

invariably contaminated with noise and outliers.

The research field of subspace clustering focuses on addressing these difficulties. Gen-

erally, the goal of algorithms from this field is to find clusters in subspaces of the original

feature space. Clearly there is an infinite number of such subspaces, so this is no trivial

problem. To increase tractability, much existing research presents techniques which find

axis-parallel subspaces only. In this work we make no such restriction and focus on 1)

the general problem of finding arbitrarily-oriented subspaces and 2) achieving multiple

independent clusterings in these subspaces.

To set the stage, we introduce in Figure 4.1 our “running example” of an illustrative

(synthetic) 4D dataset1 which is known to contain different clusterings in two subspaces.

The projections of the raw-form data onto two of its 2D axis-parallel subspaces2 are shown

1The data and its generative model are available in our supplement.
2For reference we also provide the full scatterplot matrix for the four axis-parallel dimensions in our

supplement (none of the axis-parallel views shows convincing clusterings in both subspaces).
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Figure 4.1: An illustrative 4D dataset with twelve objects. The axis-parallel subspaces
(left) show little evidence of object-grouping, and we can clearly see from the object
relationships across subspaces (e.g. comparing the blue rectangles) that the subspaces have
a high mutual information (redundancy, dependency). PCA (middle) struggles to identify
a more interesting grouping. ISAAC (right) finds two clusterings in two subspaces, one
with four clusters and the other with three. The grouping of objects in each clustering is
different, so both clusterings are informative and non-redundant.

on the left. Classical full-space clustering methods like k-means view the data from this

perspective, where our naked eye fails to identify any obvious grouping behavior. Further-

more, if one considers the positions of the points in relation to one another (enhanced in

the image by lines that connect the objects of common color), one appreciates why the

mutual information between these subspaces is relatively high. That is, when considering

subspaces from this first perspective, the bottom subspace offers little information gain

over the top.

To mitigate such problems, it is common to pre-process data using Principal Component
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Analysis (PCA) before the application of a full-space clustering technique. In this example,

the major and minor eigenvector spaces of the PCA result (Figure 4.1, middle) indeed

show some improvement, but struggle to uncover any highly-convincing groupings. This is

unsurprising: PCA fails in such settings [46] because it is a global dimensionality reduction

technique that finds one optimal representation for the complete set of points. In our

example we have different clusterings in different subspaces, so the global approach falters.

The algorithm we propose in this paper is named ISAAC. On the right of Figure 4.1

we see that it is able to correctly identify multiple clusterings, that is, a clustering in each

of two different arbitrarily-oriented subspaces. We can see that the number of clusters in

each clustering may be different, and also note that the number of dimensions per subspace

may be different (in this example both subspaces have two dimensions). Importantly,

ISAAC focuses on minimizing redundancy between clusterings by maximizing independence

between subspaces. Practically this means that each clustering found by ISAAC in each

independent subspace is highly informative and non-redundant. The lower subspace, for

example, shows tight grouping of objects with common color and shape. In contrast, the

upper subspace shows tight grouping of objects with heterogeneous color and shape. The

upper subspace hence encapsulates different grouping behavior, which is non-redundant

information potentially leading to another valuable domain insight.

To arrive at such a solution, our method ISAAC combines Independent Subspace Anal-

ysis (ISA) [4] and clustering in one automatic framework. Through ISA we linearly trans-

form the original space into several pairwise-independent (non-redundant) subspaces. We

find the appropriate subspace cardinalities (required by ISA) using a greedy heuristic search

that exploits the Minimum Description Length (MDL) principle. For practically finding

the correlation clusters in each subspace, we use EM clustering with a hard-assignment of

objects to clusters after each expectation-maximization step (MDL needs definite assign-

ment of objects to clusters), although we note that our technique is agnostic to the exact

algorithm used in this step. Again MDL is adopted to automatically choose the number

of clusters in each independent subspace, making ISAAC parameter-free in theory and

practice. The contributions can be summarized as follows:
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• We present a highly effective technique for finding multiple subspaces

and the clusterings within them. Our algorithm ISAAC uses a greedy search

algorithm to parameterize ISA and acquire promising independent subspaces for clus-

tering.

• We minimize the redundancy between clusterings to maximize the in-

sights. The subspaces found by ISA are inherently non-redundant, making each

clustering informative.

• We remain robust against noise because ISAAC can separate noise attributes

from those crucial for clustering.

• We support automation by exploiting information theory. ISAAC is

parameter-free because all building blocks of the framework exploit the MDL princi-

ple.

4.2 Generalized Independent Subspace Clustering

4.2.1 Statistical Independence in Clustering

Why does it make sense to search for statistically-independent subspaces in the context of

clustering? We offer a brief review of the intuition. From probability theory we know that

two random variables A and B are statistically independent when their joint probability

density function (PDF) is factorizable to a product of its marginal PDFs: fA,B(A,B) =

fA(A) ·fB(B). In this situation we understand that knowing the ai value from a realization

(ai, bi)
ᵀ of the random vector (A,B)ᵀ gives us no additional information about the value

of bi, and vice versa.

We can apply this basic formulation to pairs of subspaces, each of which is simply a set

of random variables.

Definition 3 (Independent Subspaces) Two subspaces A = {A1, . . . , Au} and B =

{B1, . . . , Bv} are called mutually independent when the joint PDF of all involved random
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variables (i.e. from both subspaces) is factorizable to a product of the joint PDFs of the

subspace-specific random variables:

fA1,...,Au,B1,...,Bv(α1, . . . , αu, β1, . . . , βv)

= fA1,...,Au(α1, . . . , αu) · fB1,...,Bv(β1, . . . , βv),

∀α1, . . . , αu, β1, . . . , βv ∈ R (4.1)

Consider again ISAAC’s solution to our running example (Figure 4.1), which illustrates

independence in the context of clustering. Knowing that an object is in the “red cluster”

in the bottom subspace tells us little about the cluster in which that object is found in the

top subspace. The two subspaces are hence highly independent (non-redundant). If the

same points were instead clustered similarly in both subspaces, the two subspaces would

be highly dependent (redundant).

At this stage it is also appropriate to review the notion of statistical independence

within a subspace. Inside a subspace, we have one random variable associated with each

dimension. Broadly speaking, if objects exhibit strong clustering behavior within a sub-

space, then the statistical independence between the random variables of that subspace

is low (equivalently, the dependency is high). For example, looking at the lower subspace

found by ISAAC in our “running example” (Figure 4.1), we gain a high amount of infor-

mation about the “x-axis” position of a point if we know that it lies on the bottom of the

“y-axis” (i.e. in the cluster of points 1− 2− 3− 4). In the case of the other extreme, if the

distribution of objects within a subspace were uniformly random (no clustering behavior),

then statistical dependence would be minimal.

In summary, we seek high independence between subspaces in order to reduce redun-

dancy and find multiple potential insights of data, and low independence within a subspace

for identifying interesting object groupings. ISA optimizes based on the first condition, and

also permits high-dependency within identified subspaces (the second condition). However,

it is of course possible for ISA to yield a set of subspaces where the dependency within each

is not “interesting” enough (i.e. no interpretable clustering behavior). In Section 4.2.4 we
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Figure 4.2: Conceptual overview of our “workflow” for clustering in independent sub-
spaces.

describe how our algorithm ISAAC mitigates such unfavorable solutions by equating “in-

terpretability” with “compressability”, thus weeding out candidate solutions which have

negligible clustering behavior within each subspace.

4.2.2 Broad Overview of our Approach

Before risking “losing sight of the forest for the trees”, we first consider in Figure 4.2 an

overview of our approach. The data matrix X is the input to our algorithm. Based only on

X, we calculate candidate parameters for input to ISA (Section 4.2.3). For each candidate

parameter we then solve Problem ISA. The solution in each case is a demixing matrix

W and a set of subspace matrices encapsulating the projection of the original data onto

the subspaces identified by ISA.

We choose the most appropriate solution from this set (Section 4.2.4). Finally, for the

chosen solution, we perform clustering in each subspace, appropriately choosing clustering

parameters for each subspace (Section 4.2.5).

In order to select the most appropriate solution, we adopt the Minimum Description

Length (MDL) principle [55]. Given a set of candidate models, the core idea of the MDL

principle is to choose the model which allows a receiver to exactly reconstruct the original

data using the most succinct transmission. Exploiting the idea that any regularity in data

can be used to compress that data, MDL balances the coding length of the model and the
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coding length of the deviations of the data from that model. More concretely, the coding

cost for transmitting data D together with a “hypothesizing” model M is3

L(D,M) = L(M) + L(D|M). (4.2)

The reader can find a more complete treatment of MDL in [55]. Note that we use an

entropy-coding strategy in this work (to optimize the overall compression of the data).

The following subsections provide the technical details for each stage.

4.2.3 Choosing Candidate Subspace Cardinalities

Our task in Stage 2 of Figure 4.2 is to find candidates for the subspace cardinalities vector d

required by Problem ISA. As ISA is invariant to permutations of a given d, the number of

possibilities for the vector d is equal to the partition4 p(m) of m. For increasing m the value

of p(m) quickly becomes intractably large, so we need a heuristic for generating sensible

candidates. The heuristic’s guiding principle is to search for the axis-parallel subspaces of

X that maximize the intra-subspace dependency and minimize inter-subspace dependency.

As depicted with dI, . . . ,dV for the seven-dimensional example in Figure 4.2, our heuristic

involves generating these candidates in a bottom-up fashion.

Our first candidate is the vector dI = (1, 1, . . . , 1) ∈ {1}m, which corresponds to a

single subspace for every dimension of X. Given dI, we “merge” cardinalities based

on the pairwise dependencies between the corresponding subspaces in X. For example,

our running-example data (Figure 4.1) was drawn from a random vector ~X of length

m = 4, so dI = (1, 1, 1, 1). Based on this first vector, we consider the data subspaces

{X1} , {X2} , {X3} , {X4} and compute a measure reflecting their pairwise dependencies.

We then merge those subspaces that we deem “dependent”, taking the strength of these

dependencies into account in order to resolve merge conflicts.

To support this strategy, we require a mechanism for deciding whether two subspaces

3We abuse the notation here: D and M are not random variables.
4The number of ways to express m as the sum of positive integers (order irrelevant).
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are “dependent enough” to warrant a merge. Here we again turn to information theory: if

the cost to compress the objects in separate subspaces exceeds that for a joint subspace,

we consider those subspaces as merge candidates:

Definition 4 (Mergeable Subspaces) We define two subspaces A and B for the same n

objects as mergeable when

CM(A,B) = CH(A ∪ B)− CH(A)− CH(B) < 0, (4.3)

where

CH(X ) =
|X |
2
· log2(n) +

n∑
i=1

log2

1

f̂~X(x·i)

is the entropy cost for encoding the n objects in subspace X using the KDE estimate f̂~X for

its probability-density function (the first summand represents the cost to encode the KDE

model, i.e. its covariance matrix).

The CM values for our running example are shown in Table 4.1. Based on (4.3), all of

these pairs are a candidate for merging. We greedily choose {X1, X2} and {X3, X4} (these

being the strongest). Our second candidate vector is hence dII = (2, 2). This process

repeats until there are no more merge candidates, or until we have arrived at one “global”

subspace (|d| = 1). With these termination conditions it is trivial to show that the maximal

number of candidates generated is m, and that convergence is guaranteed. In the case of

our running example, the second merge iteration sees CM({X1, X2} , {X3, X4}) = 2.81 > 0,

so no further merges are performed.

Table 4.1: Example merge costs CM (running example).

Candidate (i, j) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
CM(Xi, Xj) -10.31 -0.36 -0.03 -1.13 -0.46 -8.21
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4.2.4 Compressing ISA Solutions

Our task in Stage 5 of Figure 4.2 is to compress the ISA solutions corresponding to each of

our cardinality vectors dI, . . . ,dV. In accordance with (4.2) we find the total ISA-solution

coding cost LI(D,M) by summing two costs: the cost LI(M) to compress the ISA model,

and the cost LI(D|M) to compress the ISA data with respect to the ISA model:

LI(D,M) = LI(M) + LI(D|M) (4.4)

LI(M): Compressing the ISA Model

The elements of the ISA model requiring compression are 1) the subspace cardinalities

vector d and 2) the demixing matrix W. In tune with the MDL principle we wish to

penalize clustering models with a higher complexity, which in our case corresponds to those

models with a larger number of subspaces. However, we do not wish to bias solutions for

which structure can be found in the demixing matrix W, as this matrix is simply a rotation

matrix and we view all such matrices to be equally complex. Our coding cost for the ISA

model is hence the sum of a fixed cost for W and a variable cost for d (depending on its

length q):

LI(M) =
m2

2
· log2(n) + (q + 1) · log2(m) (4.5)

Here we have used the technique from [55] (stating that a cost of p
2
· log2(n) is sufficient

in terms of accuracy for p real parameters modeling n data objects) for parameter-encoding

the mixing matrix. For the vector d we need to encode q integers and the value of q itself,

all of which are upper-bounded by m (hence requiring log2(m) bits each).

LI(D|M): Compressing the ISA Output Data

We seek to compress the matrix S, that is, our “demixed” data. To this end we require

a joint probability density function for each subspace’s set of random variables. Again we

use Kernel Density Estimation for this task (Section 2.6). Each KDE model then needs to

be likewise encoded. A zero-mean KDE model using an elliptical Gaussian kernel consists
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only of the diagonal covariance matrix Σ. Over all subspaces we hence need to encode a

total of m covariance matrix entries, so the cost Ck of encoding all KDE models is

Ck =
m

2
· log2(n). (4.6)

Using KDE we obtain estimates f̂~S1 , . . . , f̂~Sq for the probability density functions of

the random vectors ~S1, . . . , ~Sq. These random vectors contain the same random variables

as the subspaces S1, . . . ,Sq; the n realizations of these random vectors (our transformed

original observations) are encapsulated by the sub-matrices S1, . . . ,Sq. Using entropy

coding, object j within subspace i (denoted with the vector si·j) is assigned a coding cost

of log2(1/f~Si(si·j)). Substituting our KDE estimates and aggregating for all subspaces and

objects gives us the coding cost for the demixed data,

CS =

q∑
i=1

n∑
j=1

log2

1

f̂~Si(si·j)
. (4.7)

The coding cost of our data transformed with respect to the ISA model is then

LI(D|M) = Ck + CS. (4.8)

4.2.5 Compressing the Subspace Clusterings

In Stage 7 of Figure 4.2 it is in theory possible to use any full-space clustering technique.

In this paper, we use EM clustering with a hard-cluster assignment after each expectation-

maximization step (henceforth denoted EMh). We compute the total clustering coding

cost LC(D,M) for one subspace (we cluster independently in each subspace, choosing the

most suitable k value for each) by summing two costs: the cost LC(M) to compress the

clustering model, and the cost LC(D|M) to compress the clustered data with respect to

the clustering model:

LC(D,M) = LC(M) + LC(D|M) (4.9)
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LC(M): Compressing the Clustering Model

EMh requires two parameters per cluster: the mean vector µ and the covariance matrix

Σ. In our context, clustering in subspace Si sees each mean vector µ described by one

parameter for each of its di dimensions, and each covariance matrix Σ described with

one parameter for each of di · (di + 1)/2 entries. (We exploit symmetry here.) Using the

parameter-coding model from Section 4.2.4, we find the cost to compress the clustering

model in subspace Si as

LC(M) =
k∑
j=1

(d2
i + 3di)

4
· log2(nj), (4.10)

where k denotes the number of clusters and nj denotes the number of objects in the j-th

cluster.

LC(D|M): Compressing the Clustered Data

Assuming EMh is given a subspace data matrix Si ∈ Rdi×n corresponding to subspace Si,

it partitions that data into k clusters. Let c ∈ {1, . . . , k}n hold the cluster-assignments

for the n objects (that is, object p ∈ {1, . . . , n} is assigned to cluster cp). Let n ∈ Nk

hold the object counts for the k clusters (that is, cluster j ∈ {1, . . . , k} has nj objects).

We encode each object o in cluster j dimension-wise using Gaussian probability density

functions f̂ j1 (o), . . . , f̂ jdi(o). For each of these distribution functions we estimate the mean

and variance from the cluster-object values in that dimension.

The cost for compressing an object o in cluster j of subspace i then considers the cost

of its cluster assignment and the cost of its deviation from the model in each dimension:

CH(o;nj , f̂
j
1 (o), . . . , f̂

j
di
(o)) = log2

(
n

nj

)
+

di∑
p=1

log2

(
1

f̂ jp (op)

)

We aggregate over all clusters and their objects to arrive at the cost for one subspace Si:

LC(D|M) =
k∑
j=1

 ∑
o∈{si·r|cr=j}

CH(o;nj , f̂
j
1 (o), . . . , f̂

j
di
(o))

 (4.11)
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4.3 Algorithm

Here we detail ISAAC in two parts, namely 1) automating ISA to find the best S, W and

d (Stages 1–6 in Figure 4.2), and 2) automating the clustering in each subspace (Stage 7

in Figure 4.2). We provide an implementation in our supplement5.

Algorithm 2: Parameter-free ISA

Input: Data X ∈ Rm×n.
Output: Matrices Wb and Sb (Sb = WbX), vector db.

1 d← (1, . . . , 1) ∈ {1}m; /* First candidate */

2 a← ({X1} , . . . , {Xm});
3 (S,W)← ISA(X,d); /* First ISA result */

4 cb ← LI(S, {d,W}) ; /* Eq. (4.4) */

5 Sb ← S, Wb ←W, db ← d; /* Track best */

6 while q > 1 do /* q = length(d) */

/* c has lc tuples: each a merge candidate with CM value (Eq.

(4.3)) */

7 c← ((a1, a2, t1 = CM(a1, a2)),
8 . . . , (aq−1, aq, tlc = CM(aq−1, aq)));

/* Abort if nothing to merge */

9 if min(t1, . . . , tlc) > 0 then break;
10 c← order ascenting by t value (c); /* Sort */

11 d← (), a← (); /* New d,a candidates */

12 for k ← 1 to lc take ci as (Xi,Xj, tk) and do
13 if tk < 0 and (Xi ∪ Xj) ∩

(⋃
X∈aX

)
= ∅ then

/* Merge Xi and Xj */

14 a.push (Xi ∪ Xj), d.push (|Xi ∪ Xj|);
15 else
16 a.pushAll (Xi,Xj), d.pushAll (|Xi| , |Xj|);

17 (S,W)← ISA(X,d); /* ISA result */

18 if LI(S, {d,W}) < cb then
19 cb ← LI(S, {d,W});
20 Sb ← S, Wb ←W, db ← d;

5https://github.com/yeweiysh/ISAAC

https://github.com/yeweiysh/ISAAC
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4.3.1 Parameter-free ISA

The commented pseudo-code for our parameter-free ISA approach is given in Algorithm 2.

Lines 7– 16 represent the procedure for generating candidate subspace cardinality vectors

d (Section 4.2.3). At line 7 we build a vector c of tuples that encapsulates the information

we showed with an example in Table 4.1: each c entry contains a potential merge candidate

and its corresponding “dependency indicator” value CM (Equation 4.3). We sort c based

on these values (line 10) to ensure that the most dependent subspaces are merged first,

and populate a new d candidate (and its corresponding subspaces a) by merging those

subspaces which have not already been merged and which also satisfy our merge condition

(line 13). We execute ISA for the new candidate d vector (line 17) and greedily set the

result as our local optimum on improvement (lines 18– 20).

4.3.2 Independent Clustering

Given (Wb,Sb,db) from Algorithm 2, we cluster in each subspace S1, . . . ,Sq independently.

To automatically find the number of clusters in subspace Si, we perform EMh (EM cluster-

ing with a hard-cluster assignment after each expectation-maximization step) with k = 2

and increment k until Equation (4.9) ceases to decrease (descending search) or until k > n.

The solution is that which corresponds to the minimum coding cost (Equation 4.9). This

procedure is repeated for each subspace. The pseudo-code is given in Algorithm 3.

4.3.3 Convergence and Complexity

We first consider the complexity of a single call to ISA (lines 3 and 17). As discussed in

Section 2.1, we choose with [110] an ISA implementation which supports heterogeneous

subspace dimensionalities. It relies on the ISA separation principle, which proposes that

the ISA task can be solved by ICA preprocessing and subsequent clustering of the ICA

components into statistically-independent groups. The ICA implementation (FastICA)

has guaranteed convergence and a worst-case runtime in O(nm) (assuming its iteration
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Algorithm 3: Independent Clustering

Input: Sb and db
Output: the cluster indicator matrix I

1 I← ∅, tmp← ∅, l(1) = 1e10;
2 for i← 1to length(db) do
3 k ← 2, c← ∅;
4 while true do
5 tmp← EMh(S

i
b, k); /* Temporary Cluster indicator */

6 l(k)← evaluating the coding cost by Eq. (4.11);
7 if l(k) < l(k − 1) and k <= n then
8 c← tmp;
9 k ← k + 1;

10 else
11 break;

12 I(i, :)← c; /* To create a matrix by stacking c along the rows */

count to be bounded). Given the IC A result, ISA proceeds to group the components into

subspaces. This grouping is equivalent to multiplying the ICA mixing matrix W by a

permutation matrix, for which there quickly become an intractable number of possibilities

for large m [110]. The implementation hence uses a greedy approach for finding an optimal

permutation matrix: it iterates over all pairs of components between subspaces (the count

of which is in O(m2) for our initial d vector), swapping them when beneficial. It does

this for a maximum fixed number of iterations, thus has guaranteed convergence with a

worst-case run-time complexity in O(nm2). Whitening data, a preprocessing step in ISA,

likewise has complexity in O(nm2), so the overall run-time complexity of a call to ISA is

in O(nm2).

Next, we consider the evaluation of coding cost LI for an ISA solution (lines 4 and 18).

For Kernel Density Estimation we use the tractable solution discussed in [1] with time

complexity in O(nm), avoiding the näıve approach’s quadratic cost in n. After we have

the KDE estimate, equation (4.7) is evaluated in O(nm) time. The run-time growth rate

for evaluating LI is hence in O(nm).

On line 7 we compute dependency indicators for each pair of subspaces. The patho-
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logical case here is for a candidate d = (
√
m, . . . ,

√
m) ∈ Z

√
m

+ , which implies O(m) pairs

for which we need to calculate the measure CM . For each combination we again depend

on KDE, requiring O(n
√
m) for each subspace. The run-time of line 7 hence grows with

O(nm
√
m) in the worst case.

Finally, from Section 4.2.3 we know that the main loop (line 6) has guaran-

teed worst-case convergence in m iterations (the pathological case for the number of

d-vector candidates). Algorithm 2 hence has a worst-case run-time complexity in

O(m (nm
√
m+ nm2 + nm)) = O(nm3).

For a given subspace and k value, clustering with EMh has a run-time in O(nmk) (again

assuming a bounded number of E-M iterations). Our search for the optimal k for a given

subspace introduces an additional loop with worst-case n iterations (again a pathological

case; practically the number of iterations is around a few dozen). In the worst-case we

also have m subspaces in which to perform clustering, so the worst-case computational

complexity of the clustering stage is in O(n2m2k). Assuming the worst-case for both

stages we find the worst-case ISAAC run-time complexity as O(nm3 + n2m2k).

4.4 Experimental Evaluation

We present comparisons with both axis-parallel subspace clustering and arbitrarily-oriented

multiple-clustering methods. With INSCY [47], STATPC [43] and RESCU [31] we

have axis-parallel methods which, like ISAAC, focus on reducing redundancy between

clusterings. With Orth1, Orth2 (orthogonal clustering, and clustering in orthogonal

subspaces, both presented in [106]) and mSC [24] we likewise have three non-redundant

methods for finding arbitrarily-oriented subspaces. In addition, we also compare to the

baseline of ISAAC, i.e. ISA plus EMh, denoted by ISAEMh. The parameters for subspace

clustering methods are set according to their original papers. For mSC, we provide the

true number of subspaces and clusters. In real-word data, we set the number of subspaces

for mSC equal to those found by ISAAC. For Orth1 and Orth2, we provide the true

number of clusters. For ISAEMh, we provide the true subspace cardinalities and the true
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number of clusters in each subspace. All experiments were done on the same machine (Intel

Quad i7-3770, 3.4 GHz, 32 GB RAM). We report the “pair counting F1-measure” [28], the

harmonic mean of precision and recall, for quality in all cases. All synthetic data can be

found in the supplement.

4.4.1 Synthetic Data

Cluster Quality

To generate synthetic dataset, we assume we have q two-dimensional “ground truth” sub-

spaces with a clustering in each. Half of these subspaces contain four clusters; the remaining

subspaces contain six (varying size of clusterings). Correlations between the observations

in each cluster are obtained by 1) starting with n observations generated from uncorre-

lated standard normal variables, 2) choosing a correlation matrix C and scalar r ∈ [0, 1]

such that ci,i = 1 and ci,j = r, i 6= j, and 3) applying C’s Cholesky transformation to the

observations. Clusters are then positioned in the two-dimensional space by their respec-

tive centers – each a random sample from the set [20, 80]2. To simulate non-redundancy

between clusterings, we randomly permute the object IDs in each subspace before merging

them to a full-space dataset. We generate another two synthetic datasets with three- and

five-dimensional “ground truth” subspaces using the same method.

Figure 4.3 shows the effect of increasing the number of subspaces q (here n = 1200). A

point on the plot represents the mean value over ten independently-generated datasets; the

error bars (shown only for every second q value to reduce clutter) represent one standard

deviation in each direction. Note also that we omit the poorer of Orth1 and Orth2 in

each plot to reduce clutter. Given the true subspace cardinalities and the true number of

clusters in each subspace, ISAEMh consistently outperforms. ISAAC’s outperforms on the

synthetic datasets with 2D and 3D “ground truth” subspaces, despite not being “helped”

with the provision of any input parameters (the other multiple-clustering techniques re-

quire the correct number of subspaces and/or clusters). On the synthetic dataset with

5D “ground truth” subspaces, mSC and Orth1 have a similar performance compared to
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ISAAC. The first row of Figure 4.4 shows the four independent subspaces contained in

the synthetic dataset with 2D “ground truth” subspaces. The second row of Figure 4.4

demonstrates the four independent subspaces (corresponding to the subspaces depicted in

the first row) and clusterings found by ISAAC. Compared to the original subspaces, we

can see from the figure that the found subspaces are rotated because ISA tries to find

arbitrarily-oriented subspaces which are a linear combination of the original ones. When

checking the found subspace (the second row, second column of Figure 4.4, which corre-

sponds to the subspace shown in the first row, second column of Figure 4.4), we find the

top two very-close clusters are not separated by ISAAC. In other independent subspaces,

clusters are separated cleanly.
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Figure 4.3: Variation in quality. From the left to the right, (1), (2) and (3): increasing
subspaces q and (4) additional noise dimensions.
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Robustness against noise attributes

Fixing q = 6 and otherwise following the same generation process, we measure the effect of

adding noise dimensions to our data (Figure 4.3 (2D basis)). Keeping in mind that ISAAC

is an automated technique that requires no parameters, it remains promisingly robust to

an increasing number of noise attributes and continues to achieve an F1 value superior to

the competition. Of note is that STATPC is particularly susceptible to noise.

Figure 4.4: Cluster Quality. the first row: synthetic data with four two-dimensional
independent subspaces; the second row: the four independent subspaces and clusterings
found by ISAAC.

Scalability

Figure 4.5 shows how execution time grows with increasing dataset dimensions n and m.

For the case of varying n we fix m = 4 (two two-dimensional subspaces, each with three

clusters generated as above). For the case of varying m we fix n = 1000 and assign

ten dimensions to each subspace (giving ten subspaces for m = 100, each containing two

clusters). It is important to note that ISAAC is the only fully-automatic method being

evaluated: it invests time to search for appropriate model-values in various stages of the

framework (this additional effort is included in the experimental results). Despite this – and

ignoring constant factors – ISAAC “holds its own” in terms of the run-time growth rate.

Its observed quadratic growth rate in n is comparable to mSC, INSCY and STATPC
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(Orth2 behaves linearly, and RESCU’s runtime grows with n3). ISAAC’s runtime grows

proportionally to m3, and is hence faster than INSCY and comparable to STATPC and

(eventually) mSC. RESCU behaves quadratically.
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Figure 4.5: Variation in runtime. From the left to the right, increasing number of (1)
data objects n and (2) dimensions m.

4.4.2 Experiments on Real-world Data

Quantitative Analysis

We compare the F1 measure on nine real-world datasets. The Breast (Wisconsin Diag-

nostic), Ecoli, Spam, Shuttle, Musk and Connectionist Bench (Sonar, Mines vs. Rocks)

datasets are from the benchmark UCI repository. The metabolic dataset is from a PKU

newborn screening [12]. Dancing Stick Figures (DSF) [86] is a multi-view dataset with

900 samples of 20 × 20 images across nine stick figures (Figure 4.6). Amsterdam Library

of Object Images (ALOI) [48] collection consists of images of 1000 common objects taken

from various angles and under various illumination conditions. We chose four different

objects (Figure 4.7) with all their images taken from different viewing directions. We ex-

tracted color and texture features with 611 dimensions for each image using the method

proposed in [82] (code can be found here6). Then for DSF and ALOI, we further apply

6http://www.cat.uab.cat/Research/ColorTextureDescriptors/
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PCA as a preprocessing step (also used in [72, 86]), retaining at least 90% of the variance

(five principal components). All data is available in our supplement.

                 
Figure 4.6: Nine raw samples from the Dancing Stick Figures.

          

Figure 4.7: Four objects of different shapes (ball and cylinder) and colors (green and red)
from ALOI.

ISAAC is deployed in our proposed automated fashion (parameter-free). Orth1 and

Orth2 require the number of clusters, so we use the number of class labels in each re-

spective dataset. For DSF we inform Orth1 and Orth2 that there are three clusters in

each subspace (based on the qualitative intuition in the next section). In addition to the

number of clusters, mSC requires the number of subspaces – here we provide it with the

same value found by ISAAC in all cases.

Table 4.2 reports the F1 measure for each dataset and algorithm. We see that ISAAC

obtains a stronger F1 measure in all cases, even outperforming techniques like mSC, Orth1

and Orth2 which have the advantage of being given the correct number of clusters as a

parameter.

Qualitative Analysis

We now qualitatively interpret and compare the results for Dancing Stick Figures and

Amsterdam Library of Object Images multi-view datasets. For the other datasets, since

we do not have “ground truth” subspaces, we omit their interpretation.

Dancing Stick Figures Dataset In the DSF data, ISAAC finds three independent

subspaces. The first and second subspace contain three clusters and the third contains
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Table 4.2: F1 measure on real-world data (with dimensions (n;m)). ∗ failed because of
non-trivial bugs in the OpenSubspace implementation [32].

Dataset
Metabolic Ecoli Breast Spam Shuttle
(709;10) (336;7) (569;30) (4601;57) (43500;9)

ISAAC 0.81 0.71 0.71 0.69 0.78
mSC 0.41 0.50 0.68 0.68 0.65
Orth1 0.54 0.43 0.69 0.68 0.63
Orth2 0.54 0.42 0.69 0.68 0.65
STATPC 0.44 0.32 0.61 0.68 0.19
INSCY 0.29 0.11 0.65 0.01 –∗

RESCU 0.26 0.07 0.39 –∗ –∗

Dataset
C. Bench Musk DSF ALOI
(208;60) (476;166) (900;5) (288;5)

ISAAC 0.66 0.67 0.86 0.87
mSC 0.61 0.65 0.74 0.79
Orth1 0.60 0.65 0.71 0.67
Orth2 0.52 0.65 0.74 0.62
STATPC 0 0 0.60 0.42
INSCY 0 –∗ 0.62 0.27
RESCU 0 –∗ 0.58 0.33

four. Figure 4.8 depicts the means of the detected clusters in the first and second subspaces

(we don’t show clusters in the third subspace because they are not very interpretable). We

clearly see a compelling separation into upper- and lower-body motions (two non-redundant

views on the data). In comparison, we see in Figure 4.8 the two subspaces found by Orth2

(the best of the competition from Table 4.2). Here Orth2 fails to detect any intuitive and

convincing perspectives.

Amsterdam Library of Object Images Dataset For the ALOI data, ISAAC finds

three independent subspaces. The means of the detected clusters in the subspaces are

depicted in Figure 4.9. Again the subspaces show three interesting perspectives on the

data: one groups by shape (cylinder and ball), another by color (red and green) and the

other by size (small and big). It is very interesting that ISAAC detects the subspace in

which objects of similar sizes are clustered. In comparison, the two subspaces detected

by mSC (the best of the competition from Table 4.2) show that it fails to identify the
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Subspace 1: Upper body Subspace 2: Lower body

ISAAC

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

           

Subspace 1 Subspace 2

Orth2

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Figure 4.8: The means of the clusters detected by ISAAC (top) and Orth2 (bottom) in
two subspaces (Dancing Stick Figures data). ISAAC identifies clear upper- and lower-body
perspectives.

separation between color and shape.

 

 

 

 

 

 

 

 

 

Subspace 1: Shape Subspace 2: Color Subspace 3: Size

ISAAC

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

 

 

 

 

 

 

Subspace 1 Subspace 2

mSC

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Figure 4.9: The means of the clusters detected in the ALOI data by ISAAC (three sub-
spaces, top) and mSC (two subspaces, bottom). ISAAC successfully identifies subspaces
which partition color and shape. In addition, it finds subspace in which objects of similar
sizes are grouped together. (best viewed in color)
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4.5 Related Work and Discussion

Subspace Clustering finds clusters in projections of original data space. The most

related subspace clustering algorithms to our approach are the redundancy-reducing sub-

space clustering algorithms, which include INSCY [47], STATPC [43] and RESCU [31].

INSCY achieves efficient subspace clustering by using depth-first processing with in-

process-removal of redundancy. STATPC approximately extracts a suitable reduced,

non-redundant set of statistically significant regions to detect clusters. RESCU involves

a global optimization that detects the most interesting non-redundant subspace clusters

by inspecting overlapping clusters and reducing the results to a manageable size. Our

algorithm ISAAC combines MDL with ISA in an automatic framework to find statistically

independent subspaces in which clusterings are non-redundant. Since ISAAC is only in-

terested in “independence”, it may neglect searching some arbitrarily-oriented subspaces

which are not independent but in which clusters may really reside.

Multiple Clustering is also a related field for our method. Multiple clustering seeks

to partition a given set of objects in different ways, which represents different perspectives

of the data. COALA [29] generates multiple clusterings by using instance level constrains.

NACI [103] is driven by using mutual information to optimize the dual objective functions

of both quality and dissimilarity. minCEntropy [72] presents a computationally efficient

nonparametric entropy estimator to quantify both clustering quality and distinctiveness.

However, the above methods can only generate two alternative clusterings. MVGen [87]

generates multiple clusterings of data by using multiple mixture models. MVGen uses the

iterated conditional modes (ICM) principle and adopts Bayesian model selection to make a

balance between the complexity of the model and its goodness of fit. SMVC [86] integrates

semi-supervised clustering with multiple clustering and uses variational Bayesian methods

for efficient learning. However, the purposes of MVGen and SMVC are to detect multiple,

overlapping clustering views which are not non-redundant. Multiple Stable Clustering [52]

detects multiple stable clusterings using the idea of clustering stability based on Laplacian

Eigengap. But the found multiple stable clusterings cannot guarantee diversity, i.e., some
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clusterings are redundant and potentially difficult to interpret. mSC [24] integrates the re-

laxed spectral clustering objective with the Hilbert-Schmidt independence criterion (HSIC)

to find multiple non-redundant views, and then uses spectral clustering to find clusters in

each view. Orthogonal projection clustering (OPC) [106] uses two strategies, (1) orthogo-

nal clustering (Orth1), and (2) clustering in orthogonal subspaces (Orth2), to partition

data to achieve multiple clusterings. The last three non-redundant multiple clustering

algorithms achieve the same goal as ISAAC. Differing from Orth1 which directly seeks

non-redundant clusterings, ISAAC indirectly seeks multiple non-redundant clusterings by

using ISA to generate independent subspaces. Thus, clusterings in those subspaces are

independent (non-redundant). The strategy is very similar to those of Orth2 and mSC

which also firstly seek independent or orthogonal subspaces followed by clustering in those

subspaces.

4.6 Summary

We have presented ISAAC, a parameter-free technique for generalized subspace cluster-

ing. It can find multiple clusterings in arbitrarily-oriented subspaces of heterogeneous

dimensionality such that pairwise clusterings are highly statistically-independent (non-

redundant) and contain potentially-differing numbers of clusters. To this end ISAAC com-

bines Independent Subspace Analysis (ISA) and clustering in one automatic framework.

Automation is made possible through the MDL principle, where model parameters are

selected by balancing accuracy and complexity. An efficient, MDL-driven greedy search

heuristic helps ISAAC to find the best space partition. Experiments on synthetic and

real-world data show promising comparisons to state-of-the-art methods with respect to

efficiency and effectiveness.
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Chapter 5

Finding Cohesive Clusters in

Attributed Graphs

In addition to the numerical data which is mined in Chpater 3 and Chapter 4, graph data

such as social graphs, citation graphs, protein-protein interaction graphs, etc., are prevalent

in the real world. And graph vertices are often associated with attributes. For example,

in addition to their connection relations, people in friendship networks have personal at-

tributes, such as interests, ages, and living places. Such graphs are called attributed graphs.

The detection of clusters in attributed graphs is of great practical application, e.g., tar-

geted ads. Attributes and edges often provide complementary information. The effective

use of both types of information promises meaningful results. In this chapter, we propose

a method called UNCut (for Unimodal Normalized Cut) to detect cohesive clusters in at-

tributed graphs. A cohesive cluster is a subgraph that has densely connected edges and

has as many homogeneous (unimodal) attributes as possible. We adopt the normalized

cut to assess the density of edges in a graph cluster. To evaluate the unimodality of at-

tributes, we propose a measure called unimodality compactness which exploits Hartigans’

dip test. Our method UNCut integrates the normalized cut and unimodality compactness

in one framework such that the detected clusters have low normalized cut and unimodality

compactness values. Extensive experiments on various synthetic and real-world data ver-
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ify the effectiveness and efficiency of our method UNCut compared with state-of-the-art

approaches.

Parts of the materials presented in this chapter have been published in [99], where

Wei Ye developed the main idea, implemented the algorithm, did the most parts of the

experimental evaluation, and wrote the major parts of the paper; Linfei Zhou and Xin Sun

did some experiments and wrote some parts of the paper; Christian Böhm and Claudia

Plant supervised the project and contributed to the development of the idea and paper

writing.

“Wei Ye, Linfei Zhou, Xin Sun, Claudia Plant, Christian Böhm. Attributed Graph

Clustering with Unimodal Normalized Cut. European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery (ECML-PKDD), 2017.”

5.1 Motivation

Real-world graphs (networks) tend to have attributes associated with vertices. For exam-

ple, in social networks such as Facebook, Google+ and Twitter, users have their personal

information, e.g., interests, ages, living places, etc., in addition to their friendship rela-

tionships. Proteins in a protein-protein internation network may have gene expressions

in addition to their interaction relations. Such graphs are often referred to as attributed

graphs in which vertices represent entities, edges represent their relations and attributes

describe their own characteristics. Often the attributes and edges provide complementary

information [40]. Neither can we infer vertex relationships from their attributes nor vice

versa. Nevertheless, both types of information can be valuable for the detection of clusters

in attributed graphs. Traditional methods for attributed graph clustering consider all at-

tributes to compute the similarity. However, some attributes may be irrelevant to the edge

structure and thus clusters only exist in the subset (subspace) of attributes. Currently,

several methods have been proposed to detect subspace clusters in attributed graphs, such

as CoPaM [40] and SSCG [85]. CoPaM uses various pruning strategies to find maximal

cohesive patterns in the subspace of attributes. One major problem with CoPaM is that
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it outputs a large number of clusters which have few vertices or attributes and which

overwhelm data analysts. As for SSCG, it needs to eigen-decompose the graph Laplacian

matrix and to update the subspace dependent weight matrix in every iteration, which is

not scalable for large-scale graphs. How to effectively find clusters in attributed graphs

remains a big challenge.

In this work, we develop an effective and efficient method to find cohesive clusters

in attributed graphs. A cohesive cluster is a subgraph that has densely connected edges

and has as many homogeneous (unimodal) attributes as possible. Why do we prefer to

find cohesive clusters? One proper answer is that the more cohesive a graph cluster is,

the more information it can reveal. For example, in social networks, if social networking

advertisers know more characteristics of people, they can do targeted ads more precisely.

Figure 5.1 demonstrates an example social network with three attributes (age, sport time

per week, and studying time per week) associated to each vertex. The task is to divide the

network into two distinct parts which have as many homogeneous (unimodal) attributes

as possible. In this example social network, we have two candidate partitions, i.e., by

the orange dashed line and by the blue dashed line. The orange dashed line divides the

network into two cohesive clusters C1 = {0, 1, 2, 3, 4, 5, 6} that is cohesive on the attribute

studying time and C2 = {7, 8, 9} that is cohesive on all the attributes. The blue dashed

line divides the network into another two cohesive clusters C3 = {0, 1, 2, 3, 4} which is

cohesive on all the attributes and C4 = {5, 6, 7, 8, 9} which is cohesive on the attributes

age and sport time. Compared with clusters C1 and C2, clusters C3 and C4 are more

cohesive. Although the normalized cut value increases a little bit from 0.536 to 0.559, the

unimodality compactness (see Section 5.2) value of attributes dramatically decreases from

3.289 to 1.230. The unimodal normalized cut (see Section 5.2) value of the partition by

the blue dashed line is 0.895 and that of the partition by the orange dashed line is 1.913.

Thus, we prefer clusters C3 and C4 to clusters C1 and C2.

The contributions can be summarized as follows:

• We introduce the univariate statistic hypothesis test called Hartigans’ dip
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Figure 5.1: An example social network.

test [51] to the problem of attributed graph clustering.

• We achieve the cohesive cluster detection by developing an objective

function which integrates the proposed measure unimodality compact-

ness with the normalized cut . The unimodality compactness takes advantage of

Hartigans’ dip test to measure the degree of the unimodality of attributes in a graph

cluster.

• We show the effectiveness and efficiency of our method UNCut by con-

ducting extensive experiments on synthetic and real-world graphs.

5.2 Unimodal Normalized Cut

Our objective is to detect cohesive graph clusters which have densely connected edges (low

normalized cut value) and have as many homogeneous (unimodal) attributes as possible

(low unimodality compactness value). To achieve the goal, we need to take both the edge

structure and attribute information into account. If we eigen-decompose the Laplacian
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matrix associated with the edge structure to generate n eigenvectors, the k eigenvectors

associated with the k smallest eigenvalues near optimally partition the graph into k sub-

graphs. However, the procedure does not consider the attribute information. Since each

eigenvector bisects the graph into two clusters, our idea is to develop a measure to simulta-

neously evaluate the density of the edge structure and the homogeneity of vertex attributes

of a graph cluster derived from the eigenvector. To this end, we first propose a measure

called unimodality compactness to assess the homogeneity of attributes of a graph cluster.

Then we integrate it with the normalized cut and call the combination unimodal normal-

ized cut. We select k eigenvectors associated with the k smallest unimodal normalized cut

values to partition the graph. In the following, we describe our idea in detail. But first let

us give the definitions as follows:

Definition 5 A unimodal graph cluster is defined as a set of vertices with at least one

attribute following unimodal distributions.

To compute the degree of the unimodality of a graph cluster, we devise a measure called

unimodality compactness using the dip test on each attribute of the cluster.

Definition 6 Given a cluster of vertices S with number c > 0 of unimodal attributes, the

unimodality compactness is defined as,

UC(S) = log2

d

c
+

1

c

c∑
i=1

D(Fi) (5.1)

where d is the number of attributes, Fi is the empirical distribution function of the i-th

unimodal attribute of S and D(Fi) is the dip test of Fi.

The first summand measures the number of unimodal attributes of a cluster. The second

summand measures the average dip test of these unimodal attributes. This measure prefers

the cluster that has more unimodal attributes with lower average dip test. Note that the

multimodal (irrelevant) attributes are not considered in the computation. If a graph cluster

only has one unimodal attribute, its unimodality compactness is close to log2 d because the
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second summand in Equation 5.1 is very low. If there is no unimodal attribute in a cluster,

we simply set its unimodality compactness to 2 log2 d. When d is large and c = 1, the

value of d
c

is also large. To reduce the effect of d
c
, we introduce log2 in the definition.

We do not use the sigmoid function here because its resolution is not good, for example

sigmoid(8
1
) = 0.9997 and sigmoid(8

2
) = 0.9820. Also note that a graph cluster will be

more cohesive if it has more unimodal attributes.

A cohesive graph cluster is defined as follows:

Definition 7 A cohesive graph cluster is a subgraph that has densely connected edges

and has as many homogeneous (unimodal) attributes as possible. The density of edges

is measured by the normalized cut, and the homogeneity of attributes is measured by the

unimodality compactness.

To detect cohesive graph clusters, our objective function integrates the normalized cut

and unimodality compactness in one framework which is given as follows:

UNCut(S) = (1− ω) · NCut(S) + ω · UC(S) (5.2)

where ω(0 ≤ ω ≤ 1) is a weight parameter to adjust the importance between the unimodal-

ity compactness value and the normalized cut value of a graph cluster.

As said above, we can first eigen-decompose L to get some eigenvectors. Then, for

each eigenvector, we apply 2-means (k-means with the input cluster number 2) to bisect

the graph into two clusters and compute our objective function (Equation (5.2)). Finally,

we select k eigenvectors associated with the k smallest unimodal normalized cut values.

However, the time complexity to eigen-decompose L is O(n3) which is impractical for

large-scale attributed graphs. Instead, in this work, we use the power iteration method [37]

to compute a number, say 10 · k, of pseudo-eigenvectors (approximate eigenvectors) and

then choose k pseudo-eigenvectors associated with the k smallest unimodal normalized cut

values.

Note that in Chapter 2, Equation (2.5) indicates that v0 can be denoted by c1u1+c2u2+
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· · · + cnun which is a linear combination of all the original eigenvectors. By generating

different starting vectors, we can get diverse linear combinations. If we let the power

iteration method run enough time, it will converge to the dominant eigenvector u1 which

is constant and of little use in clustering. We define the velocity at t to be the vector

δt = vt−vt−1 and define the acceleration at t to be the vector εt = δt− δt−1 and stop the

power iteration when ‖εt‖max is below a threshold ε̂.

The Algorithm 4 gives the pseudo-code to find k clusters with the smallest k unimodal

normalized cut values.

Algorithm 4: UNCut

Input: Adjacency matrix A, data matrix F and the cluster number k
Output: Cluster indicator c

1 ω ← 0.5, ε̂← 0.001;
2 compute the random walk transition matrix P;
3 iter ← 100, K ← 10 · k;
4 for i← 1 to K do
5 t← 0,v0

i ← randn (1, n); /* vi ∈ R1×n */

/* power iteration */

6 repeat

7 vt+1
i ← Pvt

i

‖Pvt
i‖1

;

8 δt+1 ← |vt+1
i − vti|;

9 t← t+ 1;

10 until ‖δt+1
i − δti‖max ≤ ε̂ or t ≥ iter;

11 Si ←2-means (vti);
12 UNCut(Si)← (1− ω) · NCut(Si) + ω · UC(Si);
13 select k pseudo-eigenvectors associated with the k smallest unimodal normalized cut

values;
14 use k-means on the selected k pseudo-eigenvectors to get the cluster indicator c;
15 return c;

Complexity analysis. Lines 5–10 in the Algorithm 4 use the power iteration method

to compute one pseudo-eigenvector, whose time complexity is O(m) [39], where m is the

number of graph edges. Line 11 uses 2-means on each pseudo-eigenvector, whose time

complexity is O(n). At line 12, we compute the unimodal normalized cut which is dom-

inated by the complexity of computing the unimodality compactness of clusters. We first
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need to sort each attribute before computing the dip test, which costs O (n · log(n)). The

computation of dip test on each attribute costs O(n) [51]. Thus, the time complexity of

lines 4–12 is O ((m+ n · log(n) · d) · k). Line 13 uses k-means on the selected k pseudo-

eigenvector, whose time complexity is O(n · k2). The total time complexity of Algorithm

4 is O (m · k + n · log(n) · d · k + n · k2), which is superlinear in the number of vertices n,

linear in the numbers of edges m and attributes d, and quadratic in the number of clusters

k.

5.3 Experimental Evaluation

In this section, we compare our method UNCut with the state-of-the-art methods from

the attributed graph clustering field. As pointed out in [85], the comparison with the

overlapping clustering approaches [40,84] would always be biased to one of the paradigms

due to their completely different objective from those of paititioning clustering approaches.

Thus, following [85] we only compare UNCut with the partitioning clustering methods

SA-cluster [107], SSCG [85] and NNM [70]. We use the synthetic and real-world data to

evaluate the clustering performance. All the experiments are run on the same machine with

an Intel Core Quad i7-3770 with 3.4 GHz and 32 GB RAM. We set ω = 0.5 for our method

UNCut on all the synthetic and real-world data. The parameters for the competitors are

set according to their original papers. For all data, we feed all methods with the same

cluster number. For the evaluation of clustering on synthetic data, we use the Normalized

Mutual Information (NMI), Purity, and Adjusted Rand Index (ARI) [62] as clustering

quality measures. The higher these clustering measures are, the better the clustering is.

Because the real-world data does not have the ground truth, it is difficult to perform a

quality assessment. We use the normalized cut and our unimodadility compactness to

evaluate the clustering performance. The code and all the synthetic and real-world data

are publicly available at the website1.

1https://www.dropbox.com/sh/xz2ndx65jai6num/AAC9RJ5PqQoYoxreItW83PrLa?dl=0
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5.3.1 Synthetic Data

Cluster Quality

We generate synthetic graphs with varying number of vertices n and attributes d. For the

case of varying n, we fix the attribute dimension d = 20. For the case of varying d, we fix

the number of vertices n = 2000. All the graphs are generated based on a benchmark graph

generator [8], which makes the degree and cluster size follow power law distributions that

reflect the real properties of vertices and clusters found in real networks. To add vertex

attributes, for each graph cluster, we choose 20% attributes as relevant attributes and

generate their values according to a Gaussian distribution with mean value of each attribute

randomly sampled from the range [0, 100] and variance value of each attribute randomly

sampled from the range (0, 0.1). To render the other attributes of clusters irrelevant to

the edge structure, we randomly permute the cluster labels and generate each cluster’s

irrelevant attribute values according to a Gaussian distribution with mean 0 and variance

1. For each experiment, we test all the methods on the generated ten attributed graphs

differing in the edge structure and attribute values.

Figure 5.2(a), Figure 5.3(a), and Figure 5.4(a) show the performance of all the methods

when varying the number of attributes, where we can see that UNCut is superior to its

competitors. Compared with SA-cluster and NNM, both UNCut and SSCG exceed them

with large margins. UNCut and SSCG are subspace clustering methods, while SA-cluster

and NNM are full-space clustering methods which are easily deceived by “the curse of

dimensionality”. Figure 5.2(b), Figure 5.3(b), and Figure 5.4(b) present the performance

of all the methods when varying the number of graph vertices. SSCG has a comparable

performance when the number of vertices is 1000. However, our method UNCut beats

SSCG when increasing the vertex number. Note that subspace clustering methods UNCut

and SSCG are still better than the full-space clustering methods SA-cluster and NNM.
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Figure 5.2: Quality evaluation (NMI).
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Figure 5.3: Quality evaluation (Purity).

Scalability

We still use the above attributed graph generation method to generate synthetic graphs

for the evaluation of the runtime of each method. Figure 5.5(a) shows the runtime when

varying the number of attributes (the number of vertices is fixed to 2000). We can see

that NNM is the fastest method and SSCG is the slowest method. SSCG needs to update

its subspace dependent weight matrix in every iteration, which is very time consuming.

Figure 5.5(b) demonstrates the runtime when varying the number of vertices (the number

of attributes is fixed to 20). NNM still performs the best and SSCG performs the worst.

Our method UNCut is in the second place. Because UNCut is linear in the number of
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Figure 5.4: Quality evaluation (ARI).

edges, a drop in the runtime when increasing the number of vertices from 4000 to 6000 can

be interpreted as caused by the drop in the number of edges.
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Figure 5.5: Runtime evaluation.

Stability

In this section, we study how the parameter ω affects the clustering performance. Figure

5.6(a) gives the clustering performance of UNCut on the synthetic graph with 100 attributes

and 2000 vertices when varying ω. And Figure 5.6(b) gives the clustering performance of

UNCut on the synthetic graph with 20 attributes and 1000 vertices when varying ω. From
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Figure 5.6(a), we can see that UNCut achieves the best result when the value of ω is 0.5.

From Figure 5.6(b), we can see that UNCut achieves the best result when the value of ω

is 0.1. For different graphs with different edge structure and attribute values, the values

of the best ω are different.
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Figure 5.6: Varying the parameter ω.

5.3.2 Real-world Data

In this section, we evaluate UNCut and its competitors on six real-world datasets Dis-

ney [33], DFB [85], ARXIV [85], PolBlogs [14], 4area [14] and Patents [85]. The

statistics of the real-world data are given in Table 5.1. The normalized cut and unimodality

compactness values achieved by each algorithm are listed in Table 5.2.

We can see from Table 5.2 that our method UNCut achieves the best results on the

datasets Disney, DFB and ARXIV in terms of both the normalized cut and unimodality

compactness values. On the dataset PolBlogs, SSCG achieves the best normalized cut

value. However, the unimodality compactness value achieved by UNCut is much lower

than those of its competitors. On the dataset 4area, SA-cluster achieves the best results.

Although SSCG is a method detecting subspace clusters, it is defeated by SA-cluster on

the datasets Disney, ARXIV and 4area in terms of the unimodality compactness values.
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For the dataset Patents, all the competitors fail due to their much consumption of the

memory. Our method UNCut is scalable for large-scale networks. To examine whether

UNCut can achieve differing results to those of its competitors, as did in [85], we compute

NMI between the results of UNCut and its competitors. A low NMI value indicates that

UNCut is able to detect novel cluster insights, without implying that the results of the

competitors are worse or meaningless. The NMI values are given in Table 5.3. From Table

5.3, we can see that UNCut can find novel cluster insights different from the competitors,

especially on the 4area dataset. The NMI values between the results of UNCut and

its competitors are near 0, which means totally different insights. For case studies, we

interprete the detected clusters of all the methods on the datasets Disney and PolBlogs.

Table 5.1: Statistics of datasets.

Datasets #vertices #edges #attributes #clusters
Disney 124 333 28 9
DFB 100 1,106 5 14
ARXIV 856 2,660 30 19
PolBlogs 358 1,288 44,839 10
4area 26,144 108,550 4 50
Patents 100,000 188,631 5 150

Disney. Disney is a subgraph of the Amazon copurchase network. Each movie

(vertex) is described by 28 attributes, such as “average vote”, “product group”, “price”

and etc. The green cluster has 14 movies, which is rated as PG (Parental Guidance

Suggested) and attributed as “Action & Adventure”. It contains movies such as “Spy

Kids”, “Inspector Gadget” and “Mighty Joe Young”. The purple cluster includes 9 read-

along movies, which is rated as G (General Audience) and attributed as “Kids & Family”.

It has movies such as “Beauty and the Beast”, “Lilo and Stitch”, “Toy Story 2”, “The

Little Mermaid”, and “Monsters, Inc.”. The purple cluster has three multimodal attributes

“review frequency”, “rating of review with most votes”, and “rating of most helpful rating”.

In other words, the movies in the purple cluster are similar in the subspace spanned by the
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Table 5.2: Normalized cut and unimodality compactness values. (N/A means the results
are not available due to the runout of memory.)

Datasets
Normalized Cut

UNCut SSCG SA-cluster NNM
Disney 2.702 2.646 3.959 8.058
DFB 10.596 13.161 13.116 13.026
ARXIV 1.889 17.940 10.606 18.017
PolBlogs 7.429 5.436 8.181 9.071
4area 30.120 41.314 10.813 N/A
Patents 31.980 N/A N/A N/A

Datasets
Unimodality Compatness

UNCut SSCG SA-cluster NNM

Disney 1.807 20.459 10.709 77.266
DFB 11.541 20.507 60.692 43.082
ARXIV 26.621 176.911 45.940 148.378
PolBlogs 1.568 155.377 217.068 124.404
4area 184.000 152.83 37.075 N/A
Patents 415.941 N/A N/A N/A

Table 5.3: NMI between the results of UNCut and its competitors. (N/A means the
results are not available due to the runout of memory.)

Datasets UNCut SSCG SA-cluster NNM
Disney 1.000 0.724 0.597 0.164
DFB 1.000 0.298 0.246 0.272
ARXIV 1.000 0.096 0.387 0.131
PolBlogs 1.000 0.488 0.297 0.060
4area 1.000 0.027 0.043 N/A
Patents 1.000 N/A N/A N/A

other attributes. The clusters found by our method UNCut are subspace clusters which

are cohesive on as many attributes as possible. SSCG splits our purple cluster into two

clusters and our green clusters into two clusters. SA-cluster splits our green cluster into

two clusters. NNM groups the most of the movies together (yellow cluster), which leads

to the highest unimodality compactness value as shown in Table 5.2.

PolBlogs. PolBlogs is the citation network among a collection of online blogs that

discuss political issues. Attributes are the keywords in their text. If a keyword appears
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(a) UNCut (b) SSCG

(c) SA-cluster (d) NNM

Figure 5.7: Clustering results on Disney. (Plotted by the Python toolbox Networkx )

in the text, the attribute value is set to 1, otherwise 0. Thus, each attribute only has

binary values. The red cluster contains 70 blogs. The top five frequent keywords of the red

cluster are “London”, “Iraq”, “government”, “work”, and “American”. The orange cluster

contains 23 blogs. The top six frequent keywords of the orange cluster are “act”, “bush”,

“conservative”, “court”, “justice”, and “law”. The blue cluster includes 53 blogs. The

top eight frequent keywords of the blue cluster are “people”, “post”, “right”, “political”,

“issue”, “media”, “president”, and “public”. For SSCG and SA-cluster, the sizes of the

two main clusters are very big, i.e., the red and green clusters found by SSCG totally have

312 vertices and the blue and green clusters found by SA-cluster totally have 335 vertices.

For NNM, the most of the blogs belong to the green cluster which has 306 vertices. Thus,

the sizes of the most clusters detected by the competitors are small, which leads to the
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high probability of having multimodal attributes as proved by the much higher unimodality

compactness values in Table 5.2.

(a) UNCut (b) SSCG

(c) SA-cluster (d) NNM

Figure 5.8: Clustering results on PolBlogs. (Plotted by the Python toolbox Networkx )

5.4 Related Work and Discussion

Compared with massive works on the plain graph clustering, there are relatively less work

on the attributed graph clustering. Differing from the plain graph clustering that groups

vertices only considering the edge structure, the attributed graph clustering achieves group-

ing vertices with dense edge connectivity and homogeneous attribute values into clusters.

NNM [70] first develops a measure called normalized network modularity and then proposes
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a spectral method that combines the costs of clustering numerical vectors and normalized

network modularity into an eigen-decomposition problem. BAGC (Bayesian Attributed

Graph Clustering) [111] develops a Bayesian probabilistic model for attributed graphs,

which captures both structure and attribute aspects of a graph. Clustering is accom-

plished by an efficient variational inference method. BAGC is only capable of categorical

attributes. PICS [60] groups vertices into disjoint clusters satisfying that vertices in the

same cluster exhibit similar connectivity and feature coherence. It exploits the Mini-

mum Description Length (MDL) principle to automatically select the parameters such as

the cluster number. PICS is only capable of graphs with binary feature vectors. SA-

cluster [107] designs a unified neighborhood random walk distance to measure the vertex

similarity on an augmented graph. It uses k-medoids to partition the graph into clusters

with cohesive intra-cluster structures and homogeneous attribute values.

However, the above methods which take all attributes into consideration may fail be-

cause there may be attributes irrelevant to the edge structure. Now more researches focus

on detecting subspace clusters to which only subsets of attributes are assigned. CoPaM [40]

exploits various pruning strategies to efficiently find maximal cohesive patterns in the sub-

space of feature vectors. GAMer [84] determines sets of vertices which have high similarity

in the subsets of attributes and are densely connected as well by combining the paradigms

of subspace clustering and dense subgraph mining together. The twofold clusters are op-

timized by exploiting various pruning strategies considering the density, size and number

of relevant attributes. CoPaM and GAMer exploit the notion of quasi-cliques which poses

strong restrictions on the feature range and diameter of the clusters. CoPaM generates

a huge number of redundant overlapping clusters. To reduce the redundancy, GAMer in-

troduces additional parameters which are difficult to set for the real-world data. Differing

from CoPaM and GAMer, our partitioning method UNCut does not suffer from redun-

dancy. SSCG [85] presents a solution for an objective function called Minimum Normalized

Subspace Cut, which integrates spectral clustering to the problem of subspace clustering

for attributed graphs. It detects an individual set of relevant features for each cluster. Our

method UNCut only considers the relevent attributes to the edge strcuture, i.e., irrelevent
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attributes are excluded from the computation of the unimodality compactness. In other

words, UNCut detects subspace clusters with as many unimodal attributes as possible.

Recently, a new research trend is to detect community outliers in attributed graphs.

MAM (maximization of attribute-aware modularity) [77] develops attribute compactness

to quantify the relevance of the attributes, which is then combined with the conventional

modularity for the robust graph clustering with respect to irrelevant attributes and out-

liers. ConSub (congruent subspace selection) [78] defines a measure to assess the degree of

congruence between a set of attributes and the edge structure, which is then used for the

statistical selection of the congruent subspaces. FocusCO [14] defines a new graph clus-

tering problem which incorporates the user’s preference into graph mining. Given a set of

examplar vertices of user’s interest, FocusCO infers user’s preference by applying a distance

metric learning method. New vertices are carefully added to the set of examplar vertices

by checking the weighted conductance. Differing from the conventional attributed graph

clustering methods, FocusCO performs a local clustering of interest to the user rather than

the global partitioning of the entire graph.

5.5 Summary

We have proposed UNCut to detect cohesive clusters in attributed graphs. To this end,

we develop a measure called unimodality compactness, which is then combined with the

normalized cut to elegantly search for cohesive clusters. Since the complexity of the eigen-

decomposition of the graph Laplacian matrix is high, we adopt the power iteration method

to approximately compute the eigenvectors. We have tested our method UNCut on various

synthetic and real-world data, which verifies that UNCut achieves better results than its

competitors.



Chapter 6

Semi-Supervised Learning in Graphs

In Chapter 5, we proposed UNCut to find cohesive clusters in attributed graphs. Generally,

we know the labels of some vertices in graphs. However, only very few vertices have labels

compared to large amounts of unlabeled vertices. For example, in social networks, not every

user provides his/her profile information such as the personal interests which are relevant

for targeted advertising. Can we leverage the limited user information and friendship graph

wisely to infer the labels of unlabeled users?

In this chapter, we propose a semi-supervised learning framework called weighted-vote

Geometric Neighbor classifier (wvGN) to infer the labels of unlabeled vertices in sparsely

labeled graphs. wvGN exploits random walks to explore not only local but also global

neighborhood information of a vertex. Then the label of the vertex is determined by the

accumulated local and global neighborhood information. Specifically, wvGN optimizes

a proposed objective function by a search strategy which is based on the gradient and

coordinate descent methods. The search strategy iteratively conducts a coarse search and

a fine search to escape from local optima. Extensive experiments on various synthetic and

real-world data verify the effectiveness of wvGN compared to state-of-the-art approaches.

Parts of the materials presented in this chapter have been published in [98], where Wei

Ye proposed the main idea, conducted the experimental evaluation, and wrote the most

parts of the paper; Linfei Zhou and Dominik Mautz helped with the derivation of the
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objective function and paper writing; Christian Böhm and Claudia Plant supervised the

project and wrote some parts of the paper.

“Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, Christian Böhm. Learning from

Labeled and Unlabeled Vertices in Networks. ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), 2017.”

6.1 Motivation

The problem of learning from labeled and unlabeled data, literarily attributed to semi-

supervised learning, has aroused considerable interests in recent years. Generally, labeled

data is scarce while unlabeled data is abundant. Labeling data can be very tedious, time-

consuming and expensive because it needs the efforts of skilled human annotators. How to

effectively make use of unlabeled data to improve learning performance is of great practical

significance. Recently, various semi-supervised learning methods have been proposed, such

as TSVM [93,96], LapSVM [67] and LGC [27]. Both LapSVM and LGC make assumption

of local and global label consistency in graph and do not learn directly from data. Although

LapSVM and LGC can be directly applied on sparsely labeled graphs, their performance

is not satisfying when their assumption is not met.

Differing from conventional data which is assumed to be i.i.d (independent and identi-

cally distributed), graph data, extracted from social media, bibliographic databases, etc.,

is interdependent. Vertices connected to each other are likely to have the same labels ac-

cording to the principle of homophily [68]. Relational learning [61, 90] has been proposed

to capture the correlations between connected vertices. It makes a first-order Markov as-

sumption to infer labels, i.e., the label of a vertex is determined by those of its direct

neighbors in the graph. In the prediction process, collective inference is used to find an

equilibrium state such that the inconsistency between neighboring vertex is minimized.

Relational learning methods do not perform well when unlabeled vertices have too few

labeled neighbors to support learning and/or inference [11]. The question is how to infer

the labels of unlabeled vertices when they have too few labeled neighbors? Our idea is to
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use random walk to capture both short and long distance relationships in graphs. To be

specific, if a vertex has too few labeled neighbors, we can exploit its one- to m-hop (See

Section 6.2) neighbors to support the learning process.

To motivate the problem, we use a real graph called Karate Club [102] shown in

Figure 6.1(a). The graph records 78 pairwise interactions (links) between 34 members of

a karate club who interacted outside the club. The graph is partitioned into two commu-

nities. The blue community contains 16 members and the green community contains 18

members. For the test, the labels of the two vertices in black are given and the labels of

the other vertices are unknown to all the methods. Figure 6.1(b) shows the result of our

method wvGN only using the geometric one-hop neighborhood information (the definition

is given in Section 6.2.1). Five members are misclassified, which leads to a Micro-F1 score

of 0.844; Figure 6.1(c) gives the result of wvGN using the geometric one- and two-hop

neighborhood information. Two members are misclassified, which leads to a Micro-F1

score of 0.938; Figure 6.1(d) shows the result of wvGN using the geometric one- to five-hop

neighborhood information. One member is misclassified, which leads to a Micro-F1 score

of 0.968. When using the geometric one- to eight-hop neighborhood information, wvGN

correctly classifies all the members (Figure 6.1(e)). With the accumulation of both local

and global neighborhood information, the learning performance of wvGN is strengthened.

Figure 6.1(f) demonstrates the result of wvRN (weighted-vote Relational Neighbor clas-

sifier) [89] (the results of LapSVM and LGC are the same and not shown here to reduce

the clutter). We can see that wvRN fails in such an occasion when the graph is sparsely

labeled.

To achieve better classification results, our method wvGN exploits not only local but

also global neighborhood information of vertices in a graph. Specifically, the label of a

vertex is jointly determined by its geometric one-hop to m-hop (m = 1, 2, . . .) neighbors in

the graph. The geometric m-hop neighbors of a vertex are those vertices which are m-hops

away by a random walker. The contributions are as follows:

• We use random walks with arbitrary m hops to accumulate local and global neighbor-
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(a) Karate club (b) wvGN (m=1) (0.844, 0.844)

(c) wvGN (m=2) (0.938, 0.938) (d) wvGN (m=5) (0.968, 0.968)

(e) wvGN (m=8) (1.000, 1.000) (f) wvRN (0.469, 0.319)

Figure 6.1: Classification results on Karate Club. The two labeled vertices are in
black and the misclassified vertices are in red. m is the number of hops of a random
walker. Subcaption: Method (Micro-F1, Macro-F1).

hood information for better classification. m is implicitly determined by the power

method.

• We formulate the semi-supervised learning in graphs as an optimization problem and

propose an objective function based on the L2-loss SVM.
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• We propose a search strategy called gradient and coordinate descent (GCD) to op-

timize the objective function. GCD is a combination of the gradient descent (GD)

and coordinate descent (CD) methods. GD is used for a coarse search and CD is

used for a fine search. GCD does not easily get trapped in local optima.

• We show the effectiveness of our method wvGN by carrying out exhaustive compar-

ative studies with the state-of-the-art methods from various related domains.

6.2 Weighted-vote Geometric Neighbor Classifier

6.2.1 The Model

We first give the problem formulation of Semi-Supervised Learning in Networks as

follows:

Definition 8 Given a graph G = (V , E) with vertices {v1, . . . , vl} labeled as yl =

[y1, . . . , yl] , l � n, yi(1 6 i 6 l) ∈ {+1,−1} and vertices {vl+1, . . . , vn} unlabeled. The

goal is to learn a classifier to infer the labels ŷu = [ŷl+1, . . . , ŷn] of the unlabeled vertices.

To classify the vertices in a graph, in this work, we first transform vertices from graph

space to vector space. For a graph, we define its geometric one-hop neighborhood as

follows:

Definition 9 Geometric One-hop Neighborhood. The geometric one-hop neighbors

of a vertex vi is defined as a set N 1
i which contains those vertex vj which can be reached

by a random walker from vi in one step. The geometric one-hop neighborhood is defined as

a set N 1 =
⋃l
i=1N 1

i .

We denote a vertex vq in the geometric one-hop neighborhood N 1 by pq· which is the

q-th row of the transition matrix P. The class indicator score of the vertex vq is defined

as follows:

f(pq·) = pq· ·wᵀ + b (6.1)
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where the weight vector w and bias term b are the parameters to be learned.

Then the label of the vertex vq is infered by the following formula,

yq = sign(f(pq·)) = sign(pq· ·wᵀ + b) (6.2)

If we want to seek the separating hyperplane with the largest margin for the positive

and negative samples, Equation (6.1) becomes the problem of linear support vector ma-

chines (SVM). However, Equation (6.1) does not take the neighborhood relationship into

consideration to classify vertices in graphs, which would lead to the deterioration of the

classifier. The theory of homophily [68] tells us that vertices connected to each other tend

to have the same labels. For example, friends connected in a social network are likely to

have similar interests; papers connected in a citation network are likely to have similar

topics. Thus to classify the vertex vq, we need to consider its neighborhood information.

A simple relational neighbor classifier (RN) [89] estimates the class-membership probabil-

ity of the vertex vq by P (class|vq) = 1
Z

∑
label(vi)=class|i∈N 1

q
ai,q, where Z =

∑
i∈N 1

q
ai,q.

However, in some cases, it is still hard to determine the label of a vertex according to

the theory of homophily. For example in Figure 6.2, the vertex v5 is connected to three

vertices in the green class and also connected to three vertices in the yellow class. Since

P (yellow|v5) = P (green|v5) = 0.5, what is the label of the vertex v5?

1

2
3

4

5

7

8

9

6

Figure 6.2: An example graph with the vertex v5 unlabeled.

In this work, we use a weighted-vote strategy to integrate the neighborhood information
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of the vertex vq with Equation (6.1) as follows:

f(pq·) = pq· ·wᵀ + b > 0, yq = 1

if

∑
i∈N 1

q
aiqf(pi·)∑

i∈N 1
q
aiq

≥ +1
(6.3)

Similarly, if the weighted indicator score is less than or equal to -1, we have:

f(pq·) = pq· ·wᵀ + b < 0, yq = −1

if

∑
i∈N 1

q
aiqf(pi·)∑

i∈N 1
q
aiq

≤ −1
(6.4)

Inequalities (6.3) and (6.4) can be combined into the following inequality:

yq ·
∑

i∈N 1
q
aiq(pi· ·wᵀ + b)∑
i∈N 1

q
aiq

≥ 1

⇒yq ·

(∑
i∈N 1

q
aiq · pi·
dqq

·wᵀ + b

)
≥ 1

⇒yq ·
(

aq· ·P
dqq

·wᵀ + b

)
≥ 1

⇒yq · (pq· ·P ·wᵀ + b) ≥ 1

(6.5)

The above inequality is just for the classification of the vertex vq using its geometric

one-hop neighborhood information. However, in real graphs, the vertex may be sparsely

labeled. For example in Figure 6.3, how to infer the class label of the vertex v5 when its

directly connected neighbors are unlabeled? The relational neighbor classifier (RN) [89]

iteratively classifies vertices using its previously inferred labels. However, if there is an

error inference, the error will be amplified in the subsequent inference procedure.

Thus, we also need to integrate the information from a vertex’s geometric m-hop (m ≥

2) neighborhood, whose definition is as follows:

Definition 10 Geometric m-hop Neighborhood. The geometric m-hop neighbors of

a vertex vi is defined as a set Nm
i which contains those vertex vj which can be reached by a
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Figure 6.3: An example graph with sparsely labeled vertices.

random walker from vi in m steps. The geometric m-hop neighborhood is defined as a set

Nm =
⋃l
i=1Nm

i .

In the geometric m-hop neighborhood Nm
i , vq is denoted by pmq· which is the q-th row

of the transition matrix Pm. If we replace pq· in the Inequality (6.5) with pmq· , we have:

yq ·
∑

i∈Nm
q
aiq(p

m
i· ·wᵀ + b)∑

i∈Nm
q
aiq

≥ 1

⇒yq ·

(∑
i∈Nm

q
aiq · pmi·

dqq
·wᵀ + b

)
≥ 1

⇒yq ·
(

aq· ·Pm

dqq
·wᵀ + b

)
≥ 1

⇒yq · (pq· ·Pm ·wᵀ + b) ≥ 1

⇒yq ·
(
pmq· ·P ·wᵀ + b

)
≥ 1

⇒yq ·
(
pm+1
q· ·wᵀ + b

)
≥ 1

(6.6)

where pm+1
q· is the representation of vq in the geometric (m+ 1)-hop neighborhood.

We can see from above that in geometric neighborhood N 1∪· · ·Nm, a vertex is always

transformed to its next-hop neighborhood by the transition matrix P. Similar to SVM

[19,21], we introduce a positive slack variable ξq in the constraints and the Inequality (6.6)

becomes:

yq ·
(
pm+1
q· ·wᵀ + b

)
≥ 1− ξq

ξq ≥ 0, 1 ≤ q ≤ l, m ≥ 1
(6.7)
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Compared with the large amount of unlabeled data, the amount of labeled data is

limited in the semi-supervised learning scenario. In addition, as we said before, it is hard

to infer the label of a vertex if it has too few labeled neighbors. To alleviate these situations,

we accumulate the information from every geometric neighborhood and represent the vertex

vq by xq = p2
q·+ · · ·+ pm+1

q· = pq· · (P + · · ·+ Pm). The unconstrained SVM problem with

L2 loss is formulated as follows:

min
w,b

1

2
w ·wᵀ +

α

l

l∑
q=1

max(1− yq · f(xq), 0)2 (6.8)

Note that xq can be considered as a random walker taking m+1(m ≥ 1) hops from the

vertex vq and accumulating the neighborhood information at each hop. With higher values

of m, xq becomes more global. Meanwhile, xq becomes identical, because the transition

probability tends to converge towards the stationary distribution which is not useful in

classification. To avoid the situation where all vertices have identical representation, we

introduce a dampening factor at each hop such that higher hops have higher penalty and

thus decay faster. Inspired from the heat kernel [35], the dampening factor for the m-th hop

is defined as ρm/m!, where ρ is a non-negative parameter (considered as the temperature

in the heat kernel).

In this work, we penalize wi by d
− 1

2
ii . For mathematical convenience, we extend each

instance xq as [xq, 1] and w as [w, b]. The objective function (6.8) now becomes:

min
w

F (w) =
λ

2
(w � d)(w � d)ᵀ +

α

l

l∑
q=1

max(1− yqxqwᵀ, 0)2 (6.9)

where � means the Hadamard product, λ and α are regularization parameters, xq =[
pq· ·

(
ρ1

1!
P + · · ·+ ρm

m!
Pm
)
, 1
]
, X = [x1; . . . ; xn] and d =

[
diag(D−

1
2 )ᵀ, 1

]
.
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6.2.2 Optimization

Stochastic gradient descent (SGD) algorithm is very successful in training large-scale SVM

[92] on sparse data. However, we find it gets easily trapped in local optima because the

representation of each vertex in vector space is not sparse. So do the GD and CD methods

(See Section 6.3.1) because they are dependent on the starting point. In this work, we use

a combination of GD and CD to optimize our objective function given in (6.9). Specifically,

we first conduct a coarse search by GD owing to its fast convergence and then conduct a

fine search by CD. The gradient of (6.9) with respect to w is:

F ′(w) = λw � d− 2α

l

∑
j∈I(w)

yjxjbj(w) (6.10)

where bj(w) = 1− yjxjwᵀ and I(w) = {j|bj(w) > 0}.

We iteratively update w as follows:

wt+1 = wt − ηtF ′(wt) (6.11)

where ηt is the learning rate at the t-th iteration and is chosen from {1, β, β2, . . . } by a

line search.

We can see that the learning rate ηt for each element in w is the same at each iteration,

which leads to GD’s easily getting trapped in local optima. To let GD escape from local

optima, we conduct a fine search by CD. The CD method has been successfully applied

for solving large-scale L2-loss SVM [57]. The method starts from an initial vector w0 (the

final output of GD in this work) and iteratively generates a sequence {wt} (t = 0, 1, 2, . . .).

At each iteration, wt+1 is produced by sequentially updating each entry of wt with other

entries fixed. The process produces a sequence of vectors wt,i (i = 1, . . . , n+ 1), such that

wt,0 = wt, wt,n+1 = wt+1 and

wt,i =
[
wt+1

1 , . . . , wt+1
i , wti+1, . . . , w

t
n+1

]
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Updating wt,i to wt,i+1 becomes the following one-variable sub-problem:

min
z

Fi(w
t+1
1 , . . . , wt+1

i , wti+1 + z, wti+2 . . . , w
t
n+1)

≡min
z

Fi(w
t,i + zei)

= min
z

λ

2

(
(wt,i + zei)� d

) (
(wt,i + zei)� d

)ᵀ
+
α

l

∑
j∈I(wt,i+zei))

(bj(w
t,i + zei))

2

(6.12)

where ei ∈ R1×(n+1) is a vector with the i-th entry 1 and all other entries 0.

The first derivative of (6.12) with respect to z is:

F ′i (z) = λ
(
wt,ii + z

)
· di −

2α

l

∑
j∈I(wt,i+zei))

(yjxji(bj(w
t,i + zei)) (6.13)

As pointed out in [57], Fi(z) is not twice differential at some j, where bj(w
t,i+zei) = 0.

Following [57, 74], we define the generalized second derivative of (6.12) with respect to z

as:

F ′′i (z) = λdi +
2α

l

∑
j∈I(wt,i+zei))

x2
ji (6.14)

The Newton direction at a given z is
F ′i (z)

F ′′i (z)
. We start from z = 0 and apply a line

search z = z − ηi F
′
i (z)

F ′′i (z)
until Fi(z − ηi F

′
i (z)

F ′′i (z)
) < Fi(z), where ηi is the learning rate for the

i-th element and is chosen from {1, β, β2, . . . }.

6.2.3 Implementation Details and Analysis

For each vertex, the random walk takes arbitrary m hops. In the following, we use the

power method to implicitly decide the value of m for each vertex. Note that different

vertices may have different numbers of hops and we do not explicitly compute Pm

owing to its high time complexity. If we denote the m-th term pq· · ρ
m

m!
Pm in xq by vmq ,

then vmq = ρ
m

vm−1
q ·P. We define the velocity at m−1 to be the vector δm−1

q = vmq −vm−1
q ,

the acceleration at m− 1 to be the vector εm−1
q = δmq − δm−1

q and stop the iteration when

‖εm−1
q ‖max is below a threshold ε̂. We set ρ = 5 according to [58], λ = 2−6 according to [91],
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and α = 1, β = 1
2

according to [57]. The pseudo-code for our binary classifier wvGN is

given in Algorithm 5.

In Algorithm 5, steps 4–14 are the details of using the power method to compute

the representation xq of the vertex vq. Note that this part can be parallelized since the

representation computation for each vertex is independent. Step 16 uses our GCD to

optimize (6.9). As described in Procedure (lines 19–25), our GCD method iteratively

conducts GD and CD to escape from local optima. Given the randomly generated initial

w, we first apply a coarse search by GD. If the change of the objective (6.9) is less than a

threshold (10−4), we apply a fine search by CD; otherwise, we continue the coarse search

by GD. We repeat the process until the maximum iteration is reached. In the optimization

process, we find CD costs a lot of time. Inspired by the mini-batch SGD [92], we use CD

to update only a number k = 10% of the elements randomly selected in w. We find such

a mini-batch CD method accelerates the search but does not deteriorate the results (see

Section 6.3.1).

Complexity analysis. Assume that a graph has n vertices and r edges. In Algorithm

5, lines 1–3 costs O(r) time. Lines 4–14 adopts the power method to approximately

compute the representation for each vertex. Since the time complexity of the power method

is O(r) [39], we need O(n ·r) to finish steps 4–14. Procedure (lines 19–25) gives the pseudo-

code for our GCD method. Line 22 uses GD to update w. The time complexity of GD is

bound by the complexity of computing the gradient (Equation (6.10)), i.e., O (l · (n+ 1)),

where l � n is the number of the labeled vertices. Line 23 computes ∆F (w), whose

time complexity is O (l · (n+ 1)). Line 24 updates w by the mini-batch CD, whose time

complexity is determined by the first derivative (Equation (6.13)). It costs O (l · (n+ 1))

to update one element in w. Thus the time complexity to update k elements in w is

O (k · l · (n+ 1)). The total time complexity of GCD is bound by O(k · l · n). Finally, the

time complexity of our method wvGN is O (n · (r + k · l)).
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Algorithm 5: wvGN

Input: Affinity matrix A for a graph and labels yl = [y1, . . . , yl] for the labeled
vertices {v1, . . . , vl}

Output: estimated ŷu = [ŷl+1, . . . , ŷn] for the unlabeled vertices {vl+1, . . . , vn}
1 ρ← 5, t← 50, ε̂← 10−4, λ← 2−6, α← 1, β ← 1

2
;

2 compute the degree matrix D;
3 compute the transition matrix P← D−1A;
/* power iteration method */

4 for j ← 1 to n do

5 v1
j ← pj·

ρ1

1!
·P;

6 m← 1;
7 xj ← v1

j ;

8 repeat
9 vm+1

j ← ρ
m+1

vmj ·P;

10 xj ← xj + vm+1
j ;

11 δm ← |vm+1
j − vmj |;

12 m← m+ 1;

13 until ‖δm+1
j − δmj ‖max ≤ ε̂ or m ≥ t;

14 xj ← [xj, 1];

15 X← [x1; . . . ; xn],d←
[
diag(D−

1
2 )ᵀ, 1

]
;

16 w← GCD(Xl,yl,d, λ, α, β); /* Xl is the labeled data (training data). */

17 ŷu ← sign(Xu ·wᵀ); /* Xu is the unlabeled data (test data). */

18 return ŷu;
19 Procedure GCD(Xl,yl,d, λ, α, β)
20 iter ← 25, w←rand (1,n), w← w

‖w‖2 ;

21 for i← 1 to iter do
22 w←GD (w,Xl,yl,d, λ, α, β);
23 if ∆F (w) < 10−4 then
24 w←miniBatchCD (w,Xl,yl,d, λ, α, β);

25 return w;
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6.3 Experimental Evaluation

Our experiments evaluate the classification performance of wvGN and its competitors on

synthetic and real-world data. We compare wvGN with the state-of-the-art methods from

related research fields. To be specific, the baseline methods are as follows:

• Semi-supervised learning. TSVM [93, 96], LapSVM [67] and LGC [27]. We use the

rows of the transition matrix P to represent vertices and input them to TSVM and

LapSVM.

• Relational learning. wvRN [89], SocDim [64] and SCRN [104].

• Random walk based graph learning. Deepwalk [15], node2vec [2] and SNBC [91].

• Graph diffusion based learning. Heat kernel diffusion [35]. We use the power iteration

method to approximately compute the heat kernel.

For more descriptions on those competitors, please refer to our related work and their

original papers. For the datasets that have more than two classes, we use the one-vs-

rest [18] method to train wvGN for each class, which leads to c (the number of classes)

decision values for each vertex. However, the decision values generated by each binary

wvGN cannot be compared directly because they are not in the same scale. According

to [91], we use Platt’s Scaling [54] to transform these decision values to probability scores

which are based on the same scale and can be compared directly. We assign the most

probable class label to each vertex. To validate results, we use two popular evaluation

measures from [80, 91, 104]: Micro-F1 score and Macro-F1 score. The higher the values of

these evaluation measures, the better the classification.

We randomly sample a number of vertices with labels from each class as training data

and use the rest of vertices as test data. Following the settings in [2, 15, 64], we repeat

this process ten times and report the average and standard deviation of Micro-F1 score

and Macro-F1 score for each method. The default parameters are adopted for the baseline

methods according to their original papers. All experiments are run on the same machine
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with an Intel Core Quad i7-3770 with 3.4 GHz and 32 GB RAM. All graph shown in this

thesis are plotted by the python toolbox NetworkX. The code of wvGN and all synthetic

and real-world data used in this work are available at the website1.

6.3.1 Synthetic Data

We use the benchmark graph generator [8] to generate two synthetic graphs Graph1 and

Graph2. The generator makes the vertex degree and community size follow power law

distributions which reflect the real properties of vertices and communities found in real

graphs. Network1 has 100 vertices and 1008 edges, which are grouped into two classes

(37 and 63 vertices, respectively). The average degree is 21. Network2 has 120 vertices

and 607 edges, which are grouped into three classes (19, 43 and 58 vertices, respectively).

The average degree is 10. For each graph, we vary the number of labeled vertices in each

class from one to five and report the average and standard deviation of Micro-F1 and

Macro-F1 scores in Table 6.1 and Table 6.2.

From Table 6.1, we can see that our method wvGN achieves the best results compared

to the baselines. wvGN achieves an average Micro-F1 score 0.987 and an average Macro-F1

score 0.986 even just given one labeled vertex in each class. In this case, wvGN achieves a

gain of 1.86% (min) over node2vec and 161.1% (max) over TSVM. Thus, there is no much

space left for wvGN to improve its results when given more labeled vertices. However, for

its baselines, we can see that most of them have an ascending performance when given

more labeled vertices because they have a relatively worse starting point. Note that the

graph embedding method node2vec is very competitive. Compared with the Network1,

Network2 is more complex. From Table 6.2, we can see that every method continuously

increases their performance with increasing number of labeled vertices. When given five

labeled vertices in each class, wvGN achieves a gain of 34.1% (min) over node2vec and

183.2% (max) over LGC in terms of Macro-F1 score. “wvGN (full)” means wvGN with

the full use of CD, i.e., all elements in w are updated by CD. Table 6.1 reveals that wvGN

1https://github.com/yeweiysh/wvGN
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achieves approximately the same performance as wvGN (full) while Table 6.2 shows that

wvGN is better than wvGN (full) when the number of labeled vertices exceeds two.

Figure 6.4 and Figure 6.5 give us the intuitive demonstrations of classification on Net-

work1 and Network2 (the labeled vertices are in black). To reduce the clutter, we only

show the results of the top seven methods here. Note that wvGN only misclassifies one

blue vertex (highlighted in red in Figure 6.4(b)). This vertex has three edges connected

to the green class but only one edge to the blue class. Since the graph is unweighted, the

more a vertex has edges connected to a class, the more similar the vertex to the class.

According to the weighted vote strategy (see Section 6.2.1), it makes sense to classify it

as the green class. Figure 6.4(c) depicts the classification result of node2vec. Three blue

vertices are misclassified. Figure 6.4(d) shows that SNBC misclassifies eleven blue ver-

tices. Figure 6.5(b)–(d) show the classification results of wvGN, node2vec and TSVM on

Network2. wvGN misclassifies 25 vertices. node2vec misclassifies 41 vertices. TSVM

misclassifies 54 vertices. wvGN achieves the best results and has a gain of 20.9% over the

second best method node2vec and 45.8% over the third best method TSVM in terms of

Micro-F1 score.

Figure 6.6 (a) and (b) compare our optimization method GCD with GD, CD and SGD

on Network1 and Network2. We can see that all GD, CD and SGD get trapped in local

optimal, which leads to poor performance, especially on Network1. When combining

GD and CD, our method GCD improves the performance.

6.3.2 Real-world Data

For the real-world data, we use four popular relational datasets CoRA, PubMed, IMDb

from [91] and Wikipedia from [2]. Their statistics are given in Table 6.3.

CoRA is a collection of research articles in computer science and PubMed is a col-

lection of research articles in diabetes. Both CoRA and PubMed are sparse citation

graphs. Vertices tend to have low degree in such graphs. By using global neighborhood in-

formation, we can see from Table 6.4 and Table 6.5 that wvGN improves the classification
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Table 6.1: Classification results on Graph1 with the varying number of labeled vertices
(#LV) in each class.

Micro-F1
#LV 1 2 3 4 5
wvGN 0.987±0.007 0.989±0.003 0.993±0.005 0.990±0.003 0.992±0.005
wvGN (full) 0.987±0.005 0.988±0.007 0.993±0.005 0.990±0.006 0.992±0.005
node2vec 0.969±0.005 0.945±0.060 0.948±0.051 0.945±0.056 0.942±0.054
Deepwalk 0.746±0.267 0.756±0.207 0.778±0.189 0.759±0.201 0.796±0.120
SNBC 0.856±0.156 0.812±0.174 0.714±0.107 0.713±0.105 0.749±0.103
wvRN 0.779±0.192 0.666±0.185 0.763±0.211 0.867±0.177 0.926±0.073
SCRN 0.773±0.224 0.742±0.218 0.812±0.172 0.863±0.136 0.902±0.106
SocDim 0.552±0.099 0.520±0.085 0.537±0.058 0.572±0.062 0.600±0.063
HeatKernel 0.824±0.198 0.688±0.200 0.786±0.212 0.882±0.163 0.909±0.119
LGC 0.604±0.186 0.556±0.183 0.605±0.219 0.621±0.221 0.624±0.170
TSVM 0.378±0 0.375±0 0.372±0 0.370±0 0.367±0
LapSVM 0.519±0.094 0.529±0.088 0.560±0.085 0.582±0.144 0.651±0.128

Macro-F1
#LV 1 2 3 4 5
wvGN 0.986±0.007 0.988±0.004 0.992±0.006 0.989±0.003 0.992±0.005
wvGN (full) 0.986±0.005 0.987±0.007 0.992±0.006 0.989±0.007 0.992±0.006
node2vec 0.967±0.005 0.943±0.059 0.946±0.051 0.942±0.055 0.940±0.054
Deepwalk 0.743±0.269 0.745±0.224 0.770±0.199 0.750±0.212 0.787±0.124
SNBC 0.840±0.166 0.809±0.178 0.709±0.108 0.705±0.106 0.738±0.100
wvRN 0.715±0.252 0.551±0.240 0.708±0.257 0.843±0.204 0.917±0.082
SCRN 0.666±0.323 0.610±0.318 0.735±0.256 0.806±0.215 0.870±0.162
SocDim 0.518±0.102 0.497±0.075 0.524±0.046 0.549±0.058 0.584±0.054
HeatKernel 0.777±0.259 0.579±0.261 0.738±0.258 0.866±0.180 0.902±0.123
LGC 0.451±0.224 0.395±0.197 0.475±0.264 0.469±0.270 0.451±0.201
TSVM 0.274±0 0.273±0 0.271±0 0.270±0 0.268±0
LapSVM 0.416±0.089 0.456±0.099 0.497±0.082 0.529±0.167 0.624±0.124

results when the percent of labeled vertices exceeds 1%. From Table 6.4, we can see that

wvRN and HeatKernel are two very competitive baselines considering their classification

results and simplicity. When the percent of labeled vertices is 1%, wvRN is superior to

our method wvGN in terms of Micro-F1 score. When the percent of labeled vertices is

increased to 3%, wvGN achieves a gain of 334.5% (max) over Deepwalk and 6.24% (min)

over wvRN in terms of Macro-F1 score. Table 6.5 demonstrates that HeatKernel is better

than wvGN when the percent of labeled vertices is 1%. wvGN achieves a gain of 120.6%

(max) over wvRN and 2.92% (min) over HeatKernel in terms of Macro-F1 score when the

percent of labeled vertices is 3%.

Differing from CoRA and PubMed, IMDb is produced based on the vertex simi-
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Table 6.2: Classification results on Graph2 with the varying number of labeled vertices
(#LV) in each class.

Micro-F1
#LV 1 2 3 4 5
wvGN 0.667±0.114 0.718±0.110 0.773±0.145 0.890±0.027 0.889±0.025
wvGN (full) 0.674±0.101 0.799±0.076 0.696±0.158 0.863±0.035 0.841±0.058
node2vec 0.604±0.097 0.705±0.073 0.618±0.115 0.679±0.109 0.679±0.109
Deepwalk 0.424±0.074 0.465±0.071 0.429±0.126 0.512±0.059 0.512±0.059
SNBC 0.358±0.67 0.455±0.128 0.487±0.123 0.560±0.050 0.572±0.048
wvRN 0.450±0.121 0.560±0.157 0.569±0.113 0.681±0.075 0.681±0.075
SCRN 0.459±0.146 0.503±0.148 0.573±0.103 0.572±0.048 0.652±0.103
SocDim 0.310±0.079 0.370±0.076 0.429±0.072 0.445±0.047 0.445±0.047
HeatKernel 0.483±0.101 0.573±0.164 0.553±0.126 0.651±0.080 0.651±0.080
LGC 0.312±0.051 0.313±0.047 0.315±0.080 0.352±0.048 0.352±0.048
TSVM 0.542±0.050 0.646±0.075 0.517±0.041 0.520±0.049 0.520±0.049
LapSVM 0.376±0.132 0.494±0.107 0.583±0.105 0.631±0.085 0.631±0.085

Macro-F1
#LV 1 2 3 4 5
wvGN 0.677±0.122 0.733±0.116 0.791±0.150 0.909±0.025 0.909±0.021
wvGN (full) 0.681±0.104 0.823±0.071 0.714±0.151 0.877±0.042 0.853±0.060
node2vec 0.589±0.123 0.718±0.082 0.612±0.126 0.678±0.123 0.678±0.123
Deepwalk 0.407±0.072 0.452±0.068 0.417±0.117 0.485±0.058 0.485±0.058
SNBC 0.353±0.120 0.438±0.131 0.460±0.139 0.567±0.058 0.579±0.049
wvRN 0.362±0.139 0.494±0.178 0.539±0.149 0.648±0.116 0.648±0.116
SCRN 0.363±0.164 0.397±0.183 0.501±0.152 0.579±0.049 0.587±0.174
SocDim 0.291±0.067 0.354±0.065 0.413±0.067 0.421±0.052 0.421±0.052
HeatKernel 0.402±0.145 0.522±0.177 0.525±0.147 0.596±0.120 0.596±0.120
LGC 0.296±0.035 0.290±0.036 0.284±0.067 0.321±0.038 0.321±0.038
TSVM 0.535±0.050 0.647±0.067 0.514±0.041 0.517±0.049 0.517±0.049
LapSVM 0.234±0.086 0.391±0.112 0.569±0.123 0.660±0.079 0.660±0.079

Table 6.3: Statistics of Datasets.

Dataset #vertices #edges #classes
CoRA 24,519 92,207 10
PubMed 19,717 44,324 3
IMDb 19,359 362,079 21
Wikipedia 4,777 184,812 40

larity. Most of the vertices in the graph have similar degrees. Compared with CoRA

and PubMed, IMDb is a more difficult graph to classify. We can see from Table 6.6 that

wvGN is superior to its competitors in terms of Micro-F1 score when the percent of labeled

vertices is greater than 1%. wvGN achieves a gain of 183.7% (max) over node2vec and
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(a) Graph1 (b) wvGN (0.990, 0.989)

(c) node2vec (0.969, 0.967) (d) SNBC (0.888, 0.871)

Figure 6.4: Classification results on Graph1. The two labeled vertices are in black and
the misclassified vertices are in red. Subcaption: Method (Micro-F1, Macro-F1).

6.37% (min) over SocDim in terms of Micro-F1 score when the percent of labeled vertices

is 7%. However, it is defeated by SocDim in terms of Micro-F1 score when the percent of

labeled vertices is 1%. It is also defeated by HeatKernel and SNBC in terms of Macro-F1

score. To sum up, wvGN achieves four out of ten best results; HeatKernel achieves three;

SNBC achieves two; SocDim achieves one.

Wikipedia is a co-occurrence graph of words appearing in the first million bytes of

the Wikipedia dump. It is a highly noisy graph with lots of interclass edges. Our method

wvGN is better than its competitors in terms of Micro-F1 score when the percent of labeled

vertices exceeds 1%. To be specific, wvGN achieves a gain of 336.5% (max) over wvRN and

6.82% (min) over SNBC when the percent of labeled vertices is 7%. SNBC outperforms

wvGN when the percent of labeled vertices is 1%, but the gap is very narrow, only a gain

of 0.72%. In terms of Macro-F1 score, node2vec outperforms wvGN when the percent of
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(a) Graph2 (b) wvGN (0.786, 0.811)

(c) node2vec (0.650, 0.622) (d) TSVM (0.539, 0.537)

Figure 6.5: Classification results on Graph2. The three labeled vertices are in black
and the misclassified vertices are in red. Subcaption: Method (Micro-F1, Macro-F1).

labeled vertices is greater than 1%. To sum up, wvGN achieves five out of ten best results;

node2vec achieves four; SNBC achieves one.

6.4 Related Work

Semi-supervised learning. Transductive SVM (TSVM) [93,96] achieves the aim of max-

margin classification while ensuring that the unlabeled instances are put backward from



6.4 Related Work 117

1 2 3 4 5

0.4

0.6

0.8

1
M

ic
ro

-F
1 

sc
or

e

GCD
GD
SGD
CD

(a) Graph1

1 2 3 4 5
0.2

0.4

0.6

0.8

M
ic

ro
-F

1 
sc

or
e

GCD
GD
SGD
CD
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Figure 6.6: Optimization comparison on the synthetic data. The x-axis represents the
number of labeled vertices in each class.

Table 6.4: Classification results on CoRA with the varying percent of labeled vertices
(%LV). N/A means the results are not available because the algorithm is not finished in
one week.

Micro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.628±0.028 0.716±0.009 0.742±0.006 0.754±0.005 0.758±0.004
node2vec 0.497±0.154 0.503±0.073 0.504±0.077 0.542±0.075 0.548±0.080
Deepwalk 0.232±0.016 0.165±0.019 0.188±0.014 0.241±0.002 0.267±0.009
SNBC 0.501±0.026 0.630±0.011 0.665±0.009 0.680±0.009 0.682±0.009
wvRN 0.652±0.014 0.700±0.007 0.721±0.005 0.732±0.006 0.743±0.003
SCRN 0.643±0.019 0.703±0.007 0.726±0.004 0.736±0.004 0.746±0.003
SocDim 0.493±0.009 0.556±0.005 0.596±0.006 0.625±0.008 0.636±0.004
HeatKernel 0.643±0.020 0.696±0.007 0.720±0.005 0.731±0.006 0.742±0.002
LGC 0.474±0.026 0.487±0.025 0.486±0.018 0.487±0.020 0.485±0.017
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A

Macro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.528±0.020 0.630±0.010 0.661±0.010 0.677±0.006 0.683±0.008
node2vec 0.422±0.100 0.433±0.065 0.464±0.059 0.492±0.053 0.507±0.070
Deepwalk 0.150±0.005 0.145±0.012 0.169±0.010 0.200±0.001 0.216±0.007
SNBC 0.272±0.024 0.492±0.021 0.544±0.001 0.573±0.015 0.578±0.010
wvRN 0.525±0.022 0.593±0.010 0.619±0.008 0.637±0.006 0.649±0.006
SCRN 0.508±0.030 0.592±0.009 0.622±0.007 0.639±0.005 0.652±0.005
SocDim 0.278±0.013 0.448±0.008 0.499±0.009 0.534±0.012 0.548±0.008
HeatKernel 0.517±0.031 0.591±0.010 0.620±0.009 0.637±0.006 0.649±0.004
LGC 0.231±0.003 0.245±0.029 0.231±0.027 0.233±0.016 0.223±0.023
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A



118 6. Semi-Supervised Learning in Graphs

Table 6.5: Classification results on PubMed with the varying percent of labeled vertices
(%LV). N/A means the results are not available because the algorithm is not finished in
one week.

Micro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.630±0.057 0.758±0.012 0.784±0.008 0.790±0.006 0.798±0.005
node2vec 0.640±0.040 0.632±0.061 0.645±0.055 0.656±0.057 0.611±0.062
Deepwalk 0.332±0.014 0.350±0.010 0.352±0.008 0.355±0.008 0.361±0.009
SNBC 0.521±0.072 0.713±0.018 0.723±0.006 0.784±0.006 0.795±0.005
wvRN 0.358±0.008 0.359±0.005 0.359±0.004 0.359±0.003 0.360±0.003
SCRN 0.364±0.009 0.362±0.003 0.363±0.005 0.362±0.003 0.362±0.003
SocDim 0.426±0.016 0.476±0.019 0.515±0.012 0.552±0.021 0.573±0.017
HeatKernel 0.679±0.024 0.733±0.011 0.765±0.006 0.777±0.006 0.788±0.004
LGC 0.622±0.100 0.715±0.063 0.756±0.023 0.766±0.016 0.766±0.017
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A

Macro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.595±0.064 0.739±0.011 0.767±0.010 0.773±0.008 0.782±0.005
node2vec 0.618±0.045 0.695±0.081 0.616±0.068 0.627±0.068 0.574±0.074
Deepwalk 0.327±0.012 0.345±0.009 0.347±0.009 0.350±0.006 0.357±0.009
SNBC 0.442±0.100 0.680±0.015 0.737±0.010 0.763±0.010 0.777±0.006
wvRN 0.332±0.003 0.335±0.003 0.333±0.004 0.334±0.003 0.333±0.002
SCRN 0.331±0.003 0.336±0.002 0.334±0.004 0.334±0.004 0.333±0.003
SocDim 0.377±0.032 0.433±0.041 0.477±0.031 0.531±0.033 0.554±0.022
HeatKernel 0.659±0.024 0.718±0.010 0.750±0.006 0.764±0.007 0.775±0.004
LGC 0.568±0.119 0.689±0 0.727±0.031 0.741±0.018 0.741±0.018
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A

the margin as far as possible. Its objective function is as follows:

min
w,b

1

2
w ·wᵀ + C1

l∑
i=1

max(1− yi · f(xi), 0) + C2

n∑
j=l+1

max(1− yj · f(xj), 0)

Here C1 and C2 are regularization parameters to control the relative hinge-loss on the

labeled and unlabeled instances. TSVM first uses SVM to label the unlabeled instances

and then switches labels to improve the objective function. This process is susceptible to

local optima and requires a large number of label switches before converging. Frequent

label switches lead to higher training time compared to SVM. Laplacian Regularized SVM

(LapSVM) [67] extends SVM by including the intrinsic smoothness penalty term fᵀ · L · f
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Table 6.6: Classification results on IMDb with the varying percent of labeled vertices
(%LV). N/A means the results are not available because the algorithm is not finished in
one week.

Micro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.245±0.077 0.408±0.019 0.415±0.009 0.434±0.009 0.441±0.008
node2vec 0.115±0.027 0.147±0.011 0.141±0.005 0.153±0.010 0.180±0.011
Deepwalk 0.152±0.017 0.133±0.007 0.159±0.002 0.248±0.019 0.328±0.012
SNBC 0.203±0.083 0.358±0.024 0.353±0.010 0.348±0.007 0.348±0.008
wvRN 0.333±0.050 0.360±0.005 0.364±0.004 0.370±0.003 0.374±0.003
SCRN 0.336±0.062 0.367±0.009 0.371±0.003 0.378±0.004 0.380±0.004
SocDim 0.372±0.018 0.386±0.012 0.403±0.001 0.408±0.004 0.411±0.003
HeatKernel 0.308±0.068 0.356±0.012 0.372±0.006 0.393±0.007 0.412±0.008
LGC 0.371±0.040 0.394±0.001 0.397±0.001 0.399±0.001 0.399±0.001
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A

Macro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.087±0.012 0.116±0.005 0.125±0.005 0.134±0.007 0.136±0.005
node2vec 0.086±0.019 0.119±0.004 0.117±0.002 0.121±0.003 0.128±0.004
Deepwalk 0.112±0.006 0.107±0.003 0.111±0.005 0.112±0.005 0.110±0.002
SNBC 0.076±0.015 0.123±0.007 0.144±0.004 0.156±0.004 0.165±0.003
wvRN 0.100±0.007 0.104±0.003 0.103±0.002 0.104±0.002 0.103±0.002
SCRN 0.093±0.009 0.095±0.004 0.095±0.002 0.100±0.003 0.100±0.002
SocDim 0.076±0.005 0.080±0.005 0.088±0 0.092±0.004 0.095±0.003
HeatKernel 0.117±0.014 0.139±0.006 0.147±0.005 0.155±0.006 0.164±0.006
LGC 0.083±0.004 0.090±0.002 0.094±0.002 0.094±0.001 0.095±0.001
TSVM N/A N/A N/A N/A N/A
LapSVM N/A N/A N/A N/A N/A

in SVM’s objective function, where L is the Laplacian matrix. Because LapSVM needs

to compute the inverse of a dense Gram matrix, its time complexity is O(n3) which is

impractical for learning on large-scale graphs. Local and Global Consistency (LGC) [27]

predicts the labels of unlabeled instances following the prior assumption of consistency,

i.e., nearby instances tend to have the same labels, and instances on the same structure

(cluster or manifold) tend to have the same labels. During each iteration, each vertex

not only receives the label information from its neighbors, but also retains its initial label

information. The closed form expression for the vertices is β (I− αS)−1 Y, where S =

D−
1
2 AD−

1
2 and Y keeps the initial label information. The closed form expression needs

to invert the matrix. For learning on large-scale graphs, the inversion operation often



120 6. Semi-Supervised Learning in Graphs

Table 6.7: Classification on Wikipedia with the varying percent of labeled vertices
(%LV). N/A means the results are not available because the algorithm is not finished in
one week.

Micro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.416±0.010 0.453±0.006 0.449±0.010 0.454±0.010 0.454±0.007
node2vec 0.293±0.050 0.312±0.018 0.311±0.024 0.317±0.026 0.343±0.042
deepwalk 0.177±0.015 0.140±0.012 0.135±0.014 0.138±0.018 0.157±0.018
SNBC 0.419±0.005 0.425±0.004 0.424±0.006 0.425±0.006 0.426±0.005
wvRN 0.016±0.011 0.042±0.025 0.078±0.040 0.104±0.035 0.130±0.066
SCRN 0.017±0.013 0.042±0.021 0.083±0.041 0.118±0.031 0.150±0.062
SocDim 0.339±0.015 0.324±0.016 0.326±0.008 0.333±0.009 0.335±0.010
HeatKernel 0.013±0.010 0.043±0.033 0.077±0.043 0.105±0.038 0.128±0.087
LGC 0.367±0.065 0.389±0.001 0.390±0.001 0.390±0.001 0.391±0.001
TSVM N/A N/A N/A N/A N/A
LapSVM 0.274±0.139 0.419±0.006 0.420±0.006 0.422±0.003 0.422±0.006

Macro-F1
%LV 1% 3% 5% 7% 9%
wvGN 0.065±0.004 0.068±0.004 0.063±0.004 0.068±0.005 0.066±0.003
node2vec 0.064±0.004 0.071±0.002 0.076±0.005 0.080±0.006 0.083±0.005
deepwalk 0.042±0.004 0.041±0.002 0.041±0.003 0.040±0.003 0.040±0.002
SNBC 0.044±0.002 0.044±0.003 0.044±0.005 0.045±0.003 0.046±0.004
wvRN 0.007±0.004 0.011±0.006 0.016±0.005 0.020±0.007 0.022±0.006
SCRN 0.007±0.004 0.011±0.005 0.017±0.005 0.021±0.005 0.024±0.005
SocDim 0.056±0.002 0.064±0.003 0.065±0.004 0.068±0.005 0.072±0.004
HeatKernel 0.006±0.004 0.010±0.007 0.015±0.006 0.017±0.006 0.020±0.007
LGC 0.030±0.003 0.030±0 0.030±0 0.030±0 0.029±0
TSVM N/A N/A N/A N/A N/A
LapSVM 0.024±0.007 0.041±0.004 0.042±0.003 0.043±0.003 0.042±0.004

consumes a lot of time and resources. In addition, if the assumption of consistency is

not met, LGC tends to fail. Compared with LGC and other label-propagation based

semi-supervised learning methods, our method wvGN makes no such local and global label

consistency assupmtions but directly learns geometic neighborhood information from data,

which is then used to infer the labels of vertices. Linear Neighborhood Propagation (LNP)

[42] assumes that each data point can be linearly reconstructed from its neighborhood and

it uses this assumption to construct the graph from data. For the graph data from which

we do not need to construct the graph, LNP deteriorates to LGC.

Relational learning. The Relational Neighbor (RN) [41] classifier is a simple classifier

which only uses the class labels of known related instances without doing learning. RN
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works by making two strong yet often reasonable assumptions: 1) some instances’ class

labels are known within the same linked structure and 2) instances related to each other

are similar and likely belong to the same class (also called homophily [68]). However, RN

may not perform well if the labeled instances in the graph are isolated. Instead of making

a hard labeling during the inference process, the weighted-vote Relational Neighbor classi-

fier (wvRN) [89] extends RN by assigning class labels to instances with some probabilities.

Since the number of the labeled instances in graphs is small, both RN and wvRN need

to propagate the known label information to the related instances by a collective infer-

ence procedure. The above two relational classifiers focus on the single-label classification

problem. However, in many real relational graphs, each entity may belong to multiple

classes. SocDim [64] first extracts latent social dimensions via the top eigenvectors of the

modularity matrix and then uses them as features for discriminative learning. The ex-

tracted social dimensions describe each instance’s hidden relations in the graph, which is

specially useful when the graph has multiple diverse relations inside. Since the extracted

latent social dimensions by SocDim are dense which is not scalable for large-scale graphs,

EdgeCluster [65] partitions the edges into disjoint sets such that each set represents one

latent social dimension. To achieve this, a variant of k-means is proposed to handle clus-

tering of many edges. Then a linear SVM is adopted to classify those extracted social

dimensions. SCRN [104] is a method designed for the multi-label graphs. It starts by con-

structing a social feature space which is an edge-centric representation of social dimensions

to capture the vertex’s potential affiliations. To describe each vertex’s intrinsic correlation

to each class, SCRN assigns each vertex a class-propagation probability. Finally, it assigns

the label to a vertex considering its neighbors’ class labels, the similarity to its neighbors

and its class-propagation probability. ghostEdge [11] works by adding ghost edges to a

graph to enable the flow of information from labeled vertices to unlabeled vertices. It

combines the aspects of statistical relational learning and semisupervised learning in one

framework. Within-Network Classification (WNC) [50] proposes structural-aware vertex

features to deal with the situation where the theory of homophily does not hold. WNC

only considers the patterns within a given radius threshold, which is incapable of capturing
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long distance relationships in graphs.

Random walk based learning in graphs. Deepwalk [15] uses local information

obtained from truncated random walks to learn latent representations of vertices in a

graph. It models a stream of short random walks on graphs as natural language sentences,

which is reasonable because both the degree distribution of a connected graph and the

distribution of words in the natural language follow power law distributions. node2vec [2]

is a semi-supervised method for scalable feature learning in graphs. It learns a mapping of

vertices to a low-dimensional feature space, which maximizes the likelihood of preserving

graph neighborhoods of vertices. To efficiently explore diverse neighborhood, a biased

random walk procedure is proposed, which compromises breadth-first sampling (BFS) and

depth-first sampling (DFS). SNBC [91] is a novel structural neighborhood-based learning

method based on the lazy random walk. The classification of a vertex is decided based

on how it is labeled in the respective k-th level neighborhood. The classification results

are affected seriously by the form of the regularization on w. Our method wvGN exploits

random walks to explore geometirc one- to m-hop neighborhood information of a vertex.

And the label of the vertex is determined by the accumulated geometric one- to m-hop

neighborhood information. wvGN uses a proposed gradient and coordinate descent (GCD)

method to optimize its objective function. GCD is robust to the starting point and does

not easily get trapped in local optima.

Graph diffusion based learning. The most related graph diffusion method to our

work is the heat kernel diffusion [35]. It is defined as h = exp(−ρ)
(∑∞

i=0
ρi

i!
Pi
)

s =

exp (−ρ(I−P−1)) s, where s stores the initial class label information of the labeled vertices.

It diffuses the class label information of the labeled vertices to the whole graph through the

above formula. In the classification procedure, it first compares the amount of information a

vertex receives from different classes. Then it assigns the vertex to the class which diffuses

the most information to the vertex. MultiRankWalk [38] is based on the personalized

pagerank diffussion and we find it is inferior to the heat kernel diffusion in the experiments.
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6.5 Summary

We have proposed wvGN to tackle the problem of intra-graph classification when the

number of labeled vertices is limited. wvGN is a semi-supervised learning framework which

exploits both labeled and unlabeled vertices to achieve better classification. Conventional

graph-based semi-supervised and relational learning methods either make assumptions of

local and global label consistency or do not learn from data, and thus they do not perform

well if the assumption is not met or the starting inferene procedure has some errors. To

conquer these, wvGN learns geometic neighborhood information directly from data. It

optimizes an objective function based on L2-loss SVM. A search strategy based on the

gradient and coordinate descent methods has been developed to solve the problem of local

optima. Empirical studies prove that our method wvGN is superior to state-of-the-art

methods.
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Chapter 7

Conclusion and Future Work

The scope of this thesis was restricted to developing unsupervised and semi-supervised

learning methods on three types of complex data, i.e. numerical data, plain graph data

and attributed graph data. We have advanced the state-of-the-art by proposing novel

methods to address three challenges in data mining: (1) scaling up for high dimensional

data and high speed data streams, (2) mining complex knowledge from complex data, and

(3) data mining in a network setting: community and social networks. The proposed novel

methods are based on the concepts of independence, unimodality and homophily.

To deal with the first challenge, we have proposed FUSE and ISAAC. FUSE is suit-

able for multi-scale data on which the normalized cut criterion tends to fail even given a

suitable locally scaled affinity matrix. FUSE exploits the power iteration method to fuse

cluster-separation information from all “informative” eigenvectors. Because the pseudo-

eigenvectors generated by the power iteration method are redundant, ICA is adopted to

reduce the redundancy. When the data dimensions become large, “the curse of dimen-

sionality” appears and clusters only exist in subspaces. Many existing subspace clustering

methods report redundant clusters which result in high runtime, low quality results and

overwhelming data analysts. ISAAC was proposed to find multiple non-redundant clusters

in high-dimensional data. ISAAC is based on ISA and MDL. ISA was adopted to find

independent subspaces and MDL was used to automatically choose parameters that are
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difficult to set.

To deal with the second challenge, we have proposed a method called UNCut to find

cohesive clusters in attributed graphs that have two types of data, i.e. plain graph data

and numerical data. Since not all the attributes of the numerical data are relevant to

the graph structure, it is difficult to detect cohesive clusters which have densely connected

edges and have as many homogeneous attributes as possible. The homogeneity of attribute

is measured by the unimodality compactness that is based on the Hartigans’ dip test. The

assumption we make is that each cluster takes a unimodal distribution. We combined the

unimodality compactness and the normalized cut as the objective function and presented

an approximate solution that used the power iteration method.

To deal with the third challenge, we have proposed a method call wvGN for the semi-

supervised vertex classification in graphs. wvGN is based on the theory of homophily,

i.e. similar vertices tend to be connected with each other. wvGN exploits random walks

to explore geometric one- to m-hop neighborhood information of a vertex. It infers the

label of a vertex by the accumulated geometric neighborhood information. The form of the

objective function of wvGN is close to l2-loss SVM. To get a better solution, we proposed

an optimization method that combined gradient descent and coordinate descent. wvGN

can be parallelized for the large-scale graphs.

From the perspective of effectiveness, the proposed four methods are empirically supe-

rior to the state-of-the-art on synthetic and real-world data with respect to appropriate

quality measures. However, there are still some limitations of our methods. For example,

FUSE needs the input parameters. ISAAC is quadratic in the number of data points and

cubic in the number of dimensions. UNCut is only for the detection of non-overlapping

cohesive clusters in attributed graphs. The graph vertex representation in the vector space

is not sparse in wvGN and thus leads to the high optimization time. We will devise new

strategies to conquer those limitations in the future work.
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[100] W. Ye, S. Goebl, C. Plant and C. Böhm: FUSE: Full Spectral Clustering. In SIGKDD.

ACM (2016) Pages 1985–1994.

[101] W. Ye, S. Maurus, N. Hubig and C. Plant: Generalized Independent Subspace Clus-

tering. In ICDM. IEEE (2016) Pages 569–578.

[102] W.W. Zachary: An information flow model for conflict and fission in small groups.

In Journal of anthropological research, Volume 33. University of New Mexico (1977)

Pages 452–473.

[103] X.H. Dang and J. Bailey: A hierarchical information theoretic technique for the

discovery of non linear alternative clusterings. In SIGKDD. (2010) Pages 573–582.

[104] X. Wang and G. Sukthankar: Multi-label relational neighbor classification using social

context features. In SIGKDD. ACM (2013) Pages 464–472.



137

[105] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick and J. Han:

Personalized entity recommendation: A heterogeneous information network approach.

In Proceedings of the 7th ACM international conference on Web search and data

mining. ACM (2014) Pages 283–292.

[106] Y. Cui, X.Z. Fern and J.G. Dy: Non-redandant multi-view clustering via orthogonal-

ization. In ICDM. (2007) Pages 133–142.

[107] Y. Zhou, H. Cheng and J.X. Yu: Graph Clustering Based on Structural/Attribute

Similarities. In PVLDB, Volume 2. (2009) Pages 718–729.

[108] Z. Li, J. Liu, S. Chen and X. Tang: Noise robust spectral clustering. In ICCV. (2007)

Pages 1–8.
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advices on this thesis, endless support during my study in Germany, flexibility and under-

standing. You never push me but encourage me and teach me how to do research, how

to do presentation and how to do review-feedback. Your rigorous, patient and optimistic

attitude in research tells me the characristics a researcher should have. In addition, you

provide with me the opportunity to supervise student to get experience for my future re-

search career. Thank you very much. I will never forget the fruitful discussions with you

before the conference deadline. Your thought is sharp and always inspires me. It was a

pleasure to be a member in your research group: Data Mining in Medicine. I am also

greatly indebted to Professor Claudia Plant, for her patient supervision in the first two

years of my PhD study. You led me to the research field of data mining. You offered

me the opportunities to cooperate with other students and researchers. You taught me

how to write a scientific paper. You showed me how to balance the work and life. I still

remember you talked with me about your feedback on my KDD manuscript after 19:00

o’clock. I especially thank you for your thoughtful and constructive advices on improving

all my manuscripts. I also thank you for providing me with a good research enviroment

in Helmholtz Zentrum München and the opportunity to visit your data mining group at

University of Vienna, Austria. To Professor Michael Ewers at Klinikum der Universität

München, it was a pleasure to cooperate with you on the project of Alzheimer’s disease.

You offered me a good research topic. I will never forget this precious research experience

and time in Germany. I would also like to thank Professor Ambuj Singh and Professor



140

Heinrich Hußmann, for their interests in my work and their willingness to act as the second

reviewer on this thesis and the chairman of the doctoral committee.

I would like to thank my colleagues and friends over the years in Germany: To Bianca

Wackersreuther, Sebastian Goebl, Samuel Maurus, Nina Hubig and Dominik Mautz, it was

very nice to cooperate with you on our papers and attend the premier conferences with

you. You are open-minded and enthusiastic and I am very appreciated that I know you

guys. To Linfei Zhou and Liang Jin, I feel lucky to be your friends. We came together

to Germany to pursuit our PhD degree. When I have any problems, you can always

give me some suggestions. To other colleagues Xiao He, Jing Feng, Son Mai Thai, Annika

Tonch, Jinyi Ren and Sahar Behzadi Soheil, thank you very much for your advice and help.

All of you played positive roles in my development towards a PhD degree. To Susanne

Grienberger, Sandra Mayer and Franz Krojer, I thank you for your kindly background

and technical supports. I would also like to thank China Scholarship Council and Ludwig-

Maximilians-Universität München, Munich, for offering me the financial support (CSC-

LMU joint Scholarship) for my PhD study in Germany.

Last but not least, I would like to express my deepest gratitude to my parents, brother

and girlfriend. You are amazing, encouraging, brave and persistent. You are always be

there supporting me, encouraging me and advising me when there was a failure. You

are always be there celebrating with me when there was a success. Without your endless

love, understanding, encouragement and support, this thesis would never have seen its

conclusion.



Curriculum Vitae

EDUCATION

Ludwig-Maximilians-Universität München Munich, Germany

Ph. D. in Computer Science 09.2013-01.2018

Shanghai University Shanghai, China

M. Eng. in Control Science and Engineering 09.2010-04.2013

Shanghai University Shanghai, China

B. Eng. in Automation 09.2006-06.2010

RESEARCH INTERESTS

data mining and machine learning. Specifically, clustering, semi-supervised learning

and graph mining.

ACADEMIC HONORS

• KDD 2017 Student Travel Award, ACM SIGKDD and NSF, 2017.

• ACM student scholarship for the 50th celebration of Turing Awards.

• DAAD Conference Travel Award, German Academic Exchange Service (DAAD),

2016.

• ICDM 2016 Student Travel Award, IEEE TCII, 2016.



142

• KDD 2016 Student Travel Award, ACM SIGKDD and NSF, 2016.

• Excellent Master Degree Thesis, Committee of Education, Shanghai, 2015.

• Graduate National Scholarship, Ministry of Education, China, 2012.

• Second Prize in the 8th National Post-Graduate Mathematical Contest in Modeling,

National Mathematical Modeling Contest Committee, 2011.

• National Scholarship for Encouragement, Ministry of Education, China, 2009.

• National Scholarship for Encouragement, Ministry of Education, China, 2008.

• National Scholarship for Encouragement, Ministry of Education, China, 2007.

PROFESSIONAL ACTIVITIES

• Guest PhD student at Integrative Knowledge Discovery and Data Mining Group,

Helmholtz Zentrum Munich, Germany, 10.2013-12.2015.

• Visiting student at Signal and Image Processing Group, Instituto Superior Técnico,
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